
Technische Universiteit Delft
Faculteit Elektrotechniek, Wiskunde en Informatica

Delft Institute of Applied Mathematics

The Convergence Speed of Sub-critical Divisible
Sandpiles

(Nederlandse titel: De Convergeer Snelheid van
Sub-critieke Divisible Sandpiles)

Verslag ten behoeve van het
Delft Institute of Applied Mathematics

als onderdeel ter verkrijging

van de graad van

BACHELOR OF SCIENCE
in

TECHNISCHE WISKUNDE

door

Theodorus Johannes Martinus Schuttenbeld

Delft, Nederland
Oktober 2021

Copyright © 2021 door Maarten Schuttenbeld. Alle rechten voorbehouden.

BSc verslag TECHNISCHE WISKUNDE

“The Convergence Speed of Sub-critical Divisible Sandpiles

(Nederlandse titel: De Convergeer Snelheid van Sub-critieke Divisible Sandpiles)”

Theodorus Johannes Martinus Schuttenbeld

Technische Universiteit Delft

Begeleider

Dr. A. Cipriani

Commissielid

Dr.Ir. M Keijzer

Oktober, 2021 Delft

Abstract

This thesis developed a computer powered simulation study of the divisible sandpile model. It
introduces a constant c to a widely used formula to generate sandpiles Levine et al. [8]:

s(x) = 1 + σ(x)− c

|V |
∑
y∈V

σ(y).

This constant can be used to study the convergence characteristics of sandpiles. In this thesis
it is shown that the introduced factor increases the speed of convergence while it no longer
stabilizes in the all-1-configuration. While one should be careful with using c as it does not work
for every distribution of σ(x), it does speed up the stabilization significantly. There is also a
positive correlation found between c and the amount of nodes that remain lower than 1 in the
stable state.

4

Contents

1 Introduction 6

2 Probability tools 8
2.1 Fundamentals of Probability theory . 8
2.2 Clusters . 10

3 Divisible Sandpile Model 11
3.1 Introduction to the Divisible Sandpile Model . 11
3.2 Torus . 12
3.3 Proposition 1.3 . 14
3.4 Convergence speed . 17

4 Adding the constant 21
4.1 Intro: modifying the initial mass . 21
4.2 Subcritical . 21
4.3 Previous proofs . 22
4.4 Influence on the Normal distribution . 23

5 Simulation Study 24
5.1 Modelling the DSM . 24
5.2 Visualisation of the convergence of the sandpile 24
5.3 Influence on the convergence . 26
5.4 Convergence speed . 27
5.5 Odometer . 27

6 Results 30
6.1 Convergence . 31

6.1.1 Relation between c and D . 35
6.2 Odometer . 40
6.3 Clusters . 42

7 Conclusion 43

8 Discussion 44

A Matlab code of the movie 45

B Matlab code of the analysis of C 49

C Matlab code of the convergence speed tests 54

D Matlab code of the 1 dimensional convergence speed test 58

5

1 Introduction

In this thesis we study the divisible sandpile model (DSM) and in particular its stabilization.
The DSM is the continuous version of the Abelian sandpile model introduced in 1987 by Bak,
Tang, and Wiesenfeld [1]. The Abelian sandpile model starts with a finite graph V where every
vertex x ∈ V has a starting weight of s(x) ∈ Z. Also a value a ∈ Z is chosen, all sites for
which s(x) > a are called unstable. Then at every timestep t > 0 all unstable sites topple and
distribute their surplus weight s(x)− a equally over their neighbouring vertices. This toppling
procedure is repeated until all sites are stable, either when they are all equal or when s(x) ≤ a
for all x ∈ V . This model was altered by Levine and Peres [7] from the Abelian sandpile model
with only integer values to the DSM with continuous values. This means that the graph V is
the same however the weights are now s(x) ∈ R.
The variant of the DSM we will focus on is formed by generating randomly σ(x) for all vertices
in V , and using the following formula to compute the starting weight s(x) ∈ R:

s(x) = 1 + σ(x)− 1

|V |
∑
y∈V

σ(y), (1)

where |V | denotes the cardinality of the graph V . This formula is used a lot for the DSM as it
has a few nice properties which we will explain in section 3. For this project Equation 1 was
altered a little bit to the following:

s(x) = 1 + σ(x)− c

|V |
∑
y∈V

σ(y). (2)

Note that Equation 1 and Equation 2 only differ by a constant c ∈ R in the numerator. This
constant could be any real value, and the equations would be equal if c = 1 or in the hypothetical
case where

∑
y∈V σ(y) = 0.

In this thesis the influence of this introduced constant c will be examined. The speed and
the degree of convergence will be looked at using computer simulations. A lot has been proven
about the convergence of the DSM with Equation 1 as its original configuration. Some of these
proofs will be repeated in this thesis, and the consequence of adding the constant to these proofs
will also be examined. Depending on the sign of

∑
y∈V σ(y) the total mass in the sandpile is

either reduced or increased if c gets larger. We will see that if the mass of the sandpile is reduced
the time it takes until a stable state is reached is much lower. Moreover a correlation between
c and the amount of nodes that do not reach 1 is found.

As stated by Levine and Peres [6], the subject of divisible sandpile models has been used
in numerous areas of mathematics, including amongst others statistical physics, free boundary
partial differential equations, probability and number theory. While the introduction of the con-
stant c is purely theoretical, it is useful for all these subjects if it helps us understand sandpile
models better.

To make sure that the reader is able to understand the mathematics used in this thesis,
section 2 starts with explaining the fundamentals of probability theory and other basic mathe-
matical concepts.
In section 3 the divisible sandpile model is explained, and it is proven that the DSM does not
stabilize in finite time. This is an important result for the outcome of the computer simulations.
Section 4 introduces the main idea of this thesis, a new constant is added to the formula that
defines the initial configuration of the sandpile. And the consequences of adding the new con-
stant will be discussed.

6

The simulation study will be explained in section 5. We start of with a tool that allows us to
look at the progression of the sandpile, starting with a graph of the initial configuration and
then it shows what it looks like while approaching the stabilized state. After that the influence
of adding the aforementioned constant on the convergence of the sandpile is studied. The results
of this can be found in section 6.
Section 7 details the conclusions drawn in this thesis, and finally in section 8 the recommenda-
tions for future research are made and certain decisions made are discussed.
All simulation study was done in MATLAB, all the used codes can be found in the appendix.

7

2 Probability tools

Before we can dive into the research of the divisbile sandpile model we first need to make sure
every reader knows all the necessary terms and definitions. We begin with the fundamentals
of probability theory. A helpful book for readers unfamiliar with rigorous probability theory is
Rosenthal [11], it is also the source of most of the following definitions.

2.1 Fundamentals of Probability theory

Definition 1. We define a probability space to be (Ω,F ,P), where:

� the sample space Ω is any non-empty set;

� the σ-algebra F is a collection of subsets of Ω, containing Ω and the empty set ∅, and
closed under complements and countable unions;

� the probability measure P is a mapping from F to [0, 1], with P(∅) = 0 and P(Ω) = 1, such
that P is countably additive.

Definition 2. Given a probability space (Ω,F ,P), a random variable is a function X from Ω
to the real numbers R, such that

{ω ∈ Ω : X(ω) ≤ x} ∈ F , x ∈ R.

Definition 3. Given a random variable X on a probability triple (Ω,F ,P), its distribution (or
law) is the function µ defined on B, the Borel subsets of R, by

µ(B) = P(X ∈ B) = P(X−1(B)), B ∈ B.

Definition 4. We define the cumulative distribution function of a random variable X by FX(x) =
P(X ≤ x), for x ∈ R.

Definition 5. We say that a sequence of real numbers x1, x2, . . . converges to the real number
x if, given any ε > 0, there exists an N ∈ N such that for any n ≥ N , we have |xn− x| < ε. We
shall also write this as limn→∞ xn = x.

Definition 6. A random variable X is simple if range(X) is finite, where range(X)≡ {X(ω);ω ∈
Ω}.

IfX is a simple random variable, then listing the distinct elements of its range as x1, x2, . . . , xn,
we can then write X =

∑n
i=1 xi1Ai where Ai = {ω ∈ Ω;X(ω) = xi} = X−1({xi}), and where

the 1Ai are indicator functions.

Definition 7. For a simple random variable X =
∑n

i=1 xi1Ai we define its expected value or
expectation or mean by

E(X) = E

(
n∑
i=1

xi1Ai

)
=

n∑
i=1

xiP(Ai), {Ai}ni=1 a finite partition of Ω.

Using the definition of the expected value of a simple random variable we can define the
expected value of a general non-negative random variable.

Definition 8. For a general non-negative random variable X we define the expected value E(X)
by

E(X) = sup(E(Y);Y simple, Y ≤ X).

8

Finally, we consider random variables which may be neither simple nor non-negative.

Definition 9. For a random variable X which is not simple nor non-negative, we may write
X = X+ − X−, where X+(ω) = max(X(ω), 0) and X−(ω) = max(−X(ω), 0). Both X+ and
X− are non-negative random variables. We may then set E(X) = E(X+)− E(X−).

We note that E(X) is undefined if both E(X+) and E(X−) are infinite. However, if E(X+) =
∞ and E(X−) < ∞, then E(X) = ∞. Similarly, if E(X+) < ∞ and E(X−) = ∞, then
E(X) = −∞.

Definition 10. The variance of a random variable X on (Ω,F ,P) is defined by

Var(X) = E((X − E(X))2)

Definition 11. Two random variables X and Y are independent if for all Borel sets S1 and S2

P(X ∈ S1, Y ∈ S2) = P(X ∈ S1)P(Y ∈ S2).

Definition 12. The covariance of two random variables X and Y is defined as

Cov(X,Y) =
1

2
(Var(X + Y)−Var(X)−Var(Y)).

This can be rewritten to the more useful

Cov(X,Y) = E((X − E(X))(Y − E(Y))) = E(XY)− E(X)E(Y).

In this paper we will talk a lot about convergence. In probability theory there are multiple ways
to define convergence, because sometimes convergence is quicker or stronger. If Z,Z1, Z2, . . .
are random variables defined on (Ω,F ,P), what does it mean to say that {Zn} converges to Z
as n→∞?

Definition 13. We say that if for all ω ∈ Ω limn→∞ Zn(ω) = Z(ω) then {Zn} converges
pointwise to Z.

A slightly weaker notion which is often used is almost sure convergence. In general almost
surely means with probability 1.

Definition 14. If P{ω ∈ Ω : limn→∞ Zn(ω) = Z(ω)} = 1, we say {Zn} converges almost surely
to Z.

Another notion only involves probabilities.

Definition 15. We say that {Zn} converges in probability to Z if ∀ε > 0,

lim
n→∞

P(|Zn − Z| ≥ ε) = 0.

Proposition 5.2.3 from Rosenthal [11] shows us that if a sequence of random variables con-
verges almost surely, then it converges in probability to the same limit. Because the converse
doesn’t necessarily hold we can speak of strong and weak forms of convergence.

9

2.2 Clusters

Later in the thesis we will see that sometimes clusters of nodes will remain negative while the
rest of the sandpile is already at or close to the converged state. To research this more thor-
oughly a method of finding clusters mathematically is required. The method we will be using is
called k-means, found in Tan, Steinbach, and Kumar [12].

The method starts of with k random initial centroids, where k is the amount of clusters
defined by the user. Each node is then assigned to the closest centroid, each collection of points
assigned to a centroid is then a cluster. Next the centroid of each cluster is updated based
on the average of the nodes in that cluster. Then all nodes are reassigned to the closest cen-
troid again, and the centroids are updated. This is repeated until the centroids remain the same.

Algorithm 1: k-means algorithm

Result: k clusters centered around k centroids
Select k nodes as initial centroids;
repeat

Form k clusters by assigning each node to its closest centroid.;
Recompute the centroid of each cluster.;

until Centroids do not change;

To define the distance between nodes and centroids, the Euclidian distance metric is used.
More on this method can be found in Chapter 8 of Tan, Steinbach, and Kumar [12].

10

3 Divisible Sandpile Model

3.1 Introduction to the Divisible Sandpile Model

We start this chapter by explaining what the Divisible Sandpile Model actually is. In simple
terms it is a mathematical model of a pile of sand that evens out over time, because at every
timestep the high piles topple to fill the lower gaps surrounding it.
In mathematical terms, consider a connected and undirected graph G = (V,E), where V is the
vertex set and E is the set of all edges. We write x ∼ y if the edge (x, y) ∈ E, and we define
the degree of x by deg(x) = #{y ∈ V : y ∼ x}. This graph represents the location but not the
height of the sandpile. Now we can assign a value to each node in the graph which represents
the mass at that position. This mass can be any real value in R, the special case where all values
lie in N is called the Abelian Sandpile Model, more on this version of the sandpile model can be
found in Dhar [4].
The initial configuration is a function s : V → R. Write E(s(x)) for the mean, and Var(s(x))
for the variance of s(x). {E(s(x))}x∈V is sometimes referred to as the density, from the physical
term of mass per unit volume. If s(x) > 1 the node x is called unstable, meaning that it will
topple in the next timestep. By toppling we mean that it will distribute the surplus mass,
s(x)−1, among its neighbours, but always keeping mass of 1 for itself. Toppling happens always
at the same time for all unstable sites. If however s(x) ≤ 1 we call the site stable, meaning that
it will not topple and keep its own mass. It might however increase in mass due to getting the
excess mass of its neighbours.

½

½ 3 ½

½

½

½ 3 ½

½

½

½

½

½

1

1 1 1

1

Figure 1: Left: The initial configuration. Middle: The site in the middle is unstable. Right:
Stable configuration after toppling.

This procedure of toppling can lead to a stable configuration. By that we mean that s(x) ≤ 1
for all x ∈ V , because then no site will topple anymore. It is of interest to us whether a sandpile
stabilizes or not depending on the initial configuration and the underlying graph. Levine et al.
[8] have proven that on a finite connected graph the divisible sandpile with

∑
x∈V s(x) = |V | =

n stabilizes to the all-1-configuration. To reproduce this proof we first need to state a few
definitions. The first is the odometer.

Definition 16. Write ut(x) for the total mass emitted to one of its neighbours after t timesteps.
This quantity is a function which is always positive and strictly increasing with n, so ut(x) ↑ u(x)
as t→∞ for u : V → [0,∞].

Note that we either have u(x) <∞ for all x ∈ V or u(x) =∞ for all x ∈ V . This is because
if u(x) =∞ for any x ∈ V , then it has emitted an infinite amount of mass to all its neighbours

11

y ∼ x which results in u(y) = ∞, and so it spreads around. As a result we can say that s
stabilizes if u(x) < ∞ for all x ∈ V , otherwise we say s explodes. We denote by X = RV the
set of divisible sandpile configurations on G.

A very important feature of the sandpile is its density. The density of the sandpile equals
E(s(x)) where x is a random point in the sandpile. We need to differentiate between three
different cases of density, we say the sandpile is

� subcritical if E(s(x)) < 1;

� critical if E(s(x)) = 1;

� supercritical if E(s(x)) > 1.

We will see later on that the density greatly influences if a sandpile stabilizes or not.

The following is another useful tool for future proofs.

Definition 17. The graph Laplacian ∆ acts on functions f : V → R as

∆f(x) =
∑
y∼x

(f(y)− f(x)). (3)

Note that ∆ is a linear operator, which means that for every pair of functions f and g and
scalar t we have

∆(f + g) = ∆(f) + ∆(g) and ∆(tf) = t∆(f). (4)

Furthermore we call a function harmonic on V if ∆f(x) = 0 for all x ∈ V .
Now if we turn back to the odometer, and assume the initial configuration to be s ∈ X , then
the resulting configuration at time t equals

st = s+ ∆ut.

3.2 Torus

A very important part of a DSM is the underlying graph. In this thesis the underlying graph
is always a torus, unless stated otherwise. A torus is the mathematical way of describing the
surface of a doughnut. In the simulation study we will only be looking at the two-dimensional
torus T2. In simple terms the 2-dimensional torus is constructed by taking a square in Z2 and
identifying the left-right and top-bottom edges. Heuristically it is just like on a world map when
you cross the east side of the map you end up at the western edge of the map. Only this time
it also works for the north-south edge. Figure 2 shows the relation between the square and the
doughnut, both representations of the torus.

12

Figure 2: The construction of the doughnut from a square, the visualisation of a torus in d = 2.
Source: Graaff [5].

Again heuristically this transformation consists of two cuts, the first is from the doughnut
shape to the cylinder. The second is the cut horizontally through the cylinder to fold it flat into
a square.
Formally there are two different kinds of tori, the manifold torus and the topological torus. The
manifold torus is what we explained as the doughnut, the topological torus is the square with
identified sides. We will be using the topological torus Zdn.

Definition 18. The topological torus Zdn is a subspace of Zd defined as

Zdn = (Z ∩ (−n/2, n/2])d (5)

It has to be remarked that there is a slight difference between the topological and the man-
ifold torus. Heuristically this is seen in the construction of the doughnut from the square. In
doing this the square needs to be stretched in a way that is normally not possible. One could
try it by taking a piece of paper and turning it into a cylinder without a problem. However
in bending it to make a doughnut the cylinder starts to fold. This shows that the grid on a
manifold torus differs from the grid on the topological torus.

Considering the topological torus taking d = 1, then for any x ∈ Zdn we have the following
useful property:

x+ n = x.

This can be compared to standing on the equator and walking the full circumference of the
world to the east, ending up at the position started at. In the 2-dimensional case it works also
for the other axis, obtaining for all (x, y) ∈ Z2

n and all a, b ∈ Z:

(x, y) + (an, bn) = (x, y).

13

3.3 Proposition 1.3

A very important result for our research is the following proposition 1.3 from Levine et al. [8].
This proposition proves that the divisible sandpile of a certain specified configuration stabilizes
to the all-1-configuration and the law of its odometer is obtained. Before we can reproduce the
proof of this proposition we need to clarify some definitions used in its statement and its proof.
Levine et al. chose this particular configuration because of the following feature:

∑
x∈V

s(x) =
∑
x∈V

1 + σ(x)− 1

|V |
∑
y∈V

σ(y)


= |V |+

∑
x∈V

σ(x)− |V |
|V |

∑
y∈V

σ(y)

= |V |.

(6)

This ensures that the sandpile is of critical density.
For clarity, |V | means the cardinality of the set V .

Proposition 1. Let G = (V,E) be a finite connected graph. Let (σ(x))x∈V be i.i.d. N(0,1), and
consider the divisible sandpile

s(x) = 1 + σ(x)− 1

|V |
∑
y∈V

σ(y). (7)

Then s stabilizes to the all-1-configuration, and the distribution of its odometer u : V → [0,∞)
is

(u(x))x∈V
d
= (η(x)−min η)x∈V ,

where the η(x) are jointly Gaussian with mean zero and covariance

E[η(x)η(y)] =
1

deg(x) deg(y)

∑
z∈V

g(z, x)g(z, y),

where g is defined by g(x, y) = 1
|V |
∑

z∈V g
z(x, y) and gz(x, y) is the expected number of visits to

y by the simple random walk started at x before hitting z.

The reason why Equation 7 is so important to us is because the main focus of this research
is to add a constant c to it

s(x) = 1 + σ(x)− c

|V |
∑
y∈V

σ(y). (8)

And then look at the influence of this factor c on the convergence of the sandpile. We will want
to look at the toppling behaviour of the new sandpile, whether it still stabilizes and how quickly
it does.
Most of the definitions used in Proposition 1 have already been explained in the previous sections.
We will now state and prove a very useful lemma 7.1 from Levine et al. [8].

Theorem 1. Let G = (V,E) be a finite connected graph with |V | = n. Let s : V → R be a
divisible sandpile with

∑
x∈V s(x) = n. Then, s stabilizes to the all-1-configuration, and the

odometer of s is the unique function u satisfying s+ ∆u = 1 and minu = 0.

14

Proof. First we prove that all harmonic functions f : V → R are constant. To prove this we
assume the contrary, ∆f(x) = 0 for all x ∈ V and f is not constant on the graph V . Since
V is finite we can find a x0 ∈ V such that f(x0) ≥ f(y) ∀y ∼ x0 and ∃y ∼ x0 such that
f(x0) > f(y). For this x0 we get

∆f(x0) =
∑
y∼x0

(f(y)− f(x0)) < 0,

Which is a contradiction to our assumption, so f must be constant on V . Now note that the
kernel of ∆ is 1-dimensional spanned by the constant function. This together with the rank-
nullity theorem tells us that ∆ has rank n− 1.
Next for any function g we have

∑
x∈V ∆g(x) = 0.∑

x∈V
∆g(x) = ∆

(∑
x∈V

g(x)

)
= 0.

Because ∆ is a linear operator following from Equation 4.

Since
∑

x∈V (1 − s(x)) = |V | −
∑

x∈V s(x) = n − n = 0, we have 1 − s = ∆v for some v.
Setting w = v −min v, we have w ≥ 0 and s+ ∆w = 1 because

∆w = ∆(v −min v) =
∑
y∼x

(v −min v)(y)− (v −min v)(x)

=
∑
y∼x

(v(y)−min v − v(x) + min v) =
∑
y∼x

(v(y)− v(x)) = ∆v.

So s stabilizes. Now if u is any function satisfying s+ ∆u ≤ 1, then∑
x∈V

(s+ ∆u)(x) =
∑
x∈V

s(x) +
∑
x∈V

∆u(x) = n

So we get that s+ ∆u = 1 must hold, and thus s stabilizes to the all-1-configuration. Also any
two functions u, v satisfying s+ ∆u ≤ 1 and s+ ∆v ≤ 1 differ only by a constant. Now by the
least action principle (prop 2.5 from Levine et al. [8]), the odometer is the smallest non-negative
of these functions, which also means that its minimum is 0.

We can now start our proof of Proposition 1.

Proof. Note that
∑

x∈V s(x) = n. Therefore by Theorem 1 s stabilizes to the all-1-configuration
and the odometer u satisfies s+ ∆u = 1 and minu = 0.
Fix x, z ∈ V and let f(y) = gz(x,y)

deg(y) be the function satisfying f(z) = 0 and ∆f = 1z − 1x. Now
define

vz(y) :=
1

deg(y)

∑
x∈V

gz(x, y)(s(x)− 1)

Then we get for y 6= z

∆vz(y) = ∆
1

deg(y)

∑
x∈V

gz(x, y)(s(x)− 1)

=
∑
x∈V

∆
1

deg(y)
gz(x, y)(s(x)− 1)

=
∑
x∈V

(1z(y)− 1x(y))(s(x)− 1)

= 1− s(y).

15

However if y = z then

∆vz(y) =
∑
x∈V

(1z(y)− 1x(y))(s(x)− 1)

=
∑
x∈V

(1− 1x(z))(s(x)− 1)

=
∑
x∈V

(s(x)− 1)− (s(z)− 1)

= 1− s(z)

Which gives us that ∆(u− vz) = ∆u−∆vz = 0, so u− vz is constant on V . Let v = 1
n

∑
z∈V v

z.
Because u− vz is constant, u− v is also constant. From the fact that g(x, y) = 1

n

∑
z∈V g

z(x, y),
we can get the more useful

v(y) =
1

n

∑
z∈V

vz(y)

=
1

n

∑
z∈V

1

deg y

∑
x∈V

gz(x, y)(s(x)− 1)

=
1

n deg y

∑
z∈V

∑
x∈V

gz(x, y)(s(x)− 1)

=
1

deg y

∑
x∈V

(s(x)− 1)
1

n

∑
z∈V

gz(x, y)

=
1

deg y

∑
x∈V

(s(x)− 1)g(x, y)

To compute the law of the Gaussian vector v, note that from the definition of s(x) it follows
that

E[(s(z)− 1)(s(w)− 1)] = E

[(
σ(z)− 1

n

∑
x∈V

σ(x)

)(
σ(w)− 1

n

∑
x∈V

σ(x)

)]

= E

σ(z)σ(w)− 1

n
σ(w)

∑
x∈V

σ(x)− 1

n
σ(z)

∑
x∈V

σ(x) +
1

n2

(∑
x∈V

σ(x)

)2


= E(σ(z)σ(w))− 1

n
E

(
σ(w)

∑
x∈V

σ(x)

)
− 1

n
E

(
σ(z)

∑
x∈V

σ(x)

)
+

1

n2
E

(∑
x∈V

σ(x)

)2


= 1z=w −
1

n
− 1

n
+

1

n
= 1z=w −

1

n
.

Hence

E(v(x)v(y)) =
1

deg(x) deg(y)

∑
z,w∈V

g(z, x)g(w, y)E((s(z)− 1)(s(w)− 1))

=
1

deg(x) deg(y)

(∑
z∈V

g(z, x)g(z, y)− 1

n

(∑
z∈V

g(z, x)

)(∑
w∈V

g(w, y)

))
.

(9)

Now let K(y) := 1
deg(y)

∑
w∈V g(w, y), then ∆K =

∑
z,w∈V

1
n(1z − 1w) = 0. So K is constant.

The second term on the right of the final line of Equation 9 equals K2

n . After setting C ∼

16

N(0, K
2

n) a normal distributed random variable independent of v, the Gaussian vectors η and
(v(x) + C)x∈V have the same covariance because

E((v(x) + C)(v(y) + C)) = E(v(x)v(y) + Cv(x) + Cv(y) + C2)

= E(v(x)v(y)) + E(Cv(x)) + E(Cv(y)) + E(C2)

=
1

deg(x) deg(y)

(∑
z∈V

g(z, x)g(z, y)

)
− K2

n
+ 0 + 0 +

K2

n

=
1

deg(x) deg(y)

(∑
z∈V

g(z, x)g(z, y)

)
= E(η(x)η(y)).

This together with E(η(x)) = E(v(x) + C) = 0 leads to

η
d
= v + C. (10)

Now to conclude, notice again that u− v is constant and minu = 0, this gives

u = v −min v
d
= η −min η. (11)

The result presented in Equation 11 is elaborated on further by Levine et al. [8]. They go on
to prove useful properties of the expected value of the odometer. They state that the expected
odometer equals the expected maximum of the field η, since E(η(x)) = 0 and from this it follows
that

E(u(x)) = E(η(x)−min η) = −E(min η) = E(max η). (12)

They then go on to determine the order of E{ηx : x ∈ Zdn} up to a dimension-dependent constant
factor. The results of Levine et al. [8] Table 1 give bounds up to a constant factor depending
only on the dimension d of the sandpile. For our case d = 2 they come to the conclusion that
C−1n ≤ E(max η) ≤ Cn. Here C is an unknown positive constant in R.

3.4 Convergence speed

An important fact to prove before we begin with the simulation study is that the sandpile
will never stabilize in finite time. Although Proposition 1 proves it will stabilize to the all-
1-configuration, it requires an infinite amount of time to do so. Only in the limit do we get
s+ ∆u = 1. We will split the proof in two different parts: first we look at divisible sandpiles on
the torus Zdn for n ≥ 3, and then we look at n = 1 and n = 2. The following proofs have been
taken from Graaff [5]. In the following section s is defined as in Equation 7.

Theorem 2. The divisible sandpile (s(x))x∈Zdn for n ≥ 3 does not stabilize in finite time almost
surely.

The proof of this theorem will be split up in different steps and different lemmas. The basic
concept is to prove that two neighbouring nodes x, y exist such that st(x) > st(y) ≥ 1. This will
mean that x will then be unstable and topple to give some mass to y, which means y will be
unstable and topple in the next timestep to distribute some mass to x again. This will continue
happening and only in the limit will both x and y have a mass of 1. The mass that they keep
giving back and forth will decrease, but only in the limit will it be equal to 0. The following
lemma will prove this formally.

17

Lemma 1. Let (s(x))x∈V be a divisible sandpile as in Theorem 2. If at any timestep t we find
x ∼ y such that st(x) > st(y) ≥ 1, then we have that st+1(y) > 1. As a consequence, the sandpile
does not stabilize in finite time.

Proof. Assume two neighbouring nodes x, y ∈ Zdn exist such that x ∼ y and at time t ≥ 0
st(x) > st(y) ≥ 1. Then for some δ > 0 st(x) = 1 + δ. Now st(x) > 1, so the site is unstable
and topples in this timestep, distributing its excess mass equally over its 2d neighbours. Then
since st(y) ≥ 1 we find st+1(y) ≥ 1 + δ

2d > 1. This proves the claim. Now it continues for t+ 2

we have st+2(x) ≥ 1 + δ
4d2

> 1. Proceeding inductively, the result follows.

Now what is left to the proof of Theorem 2 is proving that these sites x, y ∈ Zdn always exist.
Graaff [5] shows this by partitioning the graph strategically in sites with initial mass greater
than 1, sites which receive mass in the first toppling, and lastly all the sites with mass ≤ 1 which
don’t receive any mass in the first toppling.

Theorem 3. At timestep t = 1, there exist at least two x, y ∈ Zdn such that x ∼ y and st(x) >
st(y) ≥ 1.

Proof. We start with defining the set V +,

V + := {z ∈ Zdn : s(z) > 1}.

This is the collection of all sites that will topple in the first iteration. V + must be non-empty,
because if V + was empty then s(z) < 1 for all z ∈ Zdn following the fact that we have P(s(x) =
1) = 0 for all x ∈ Zdn. Now if s(z) < 1 for all z ∈ Zdn, then

∑
z∈Zdn s(z) < nd, and this is

a contradiction. Now we are looking for two x, y ∈ V + at t = 1 such that x ∼ y, because
then we can use Lemma 1. We will proof this by looking at the case where all x ∈ V + are
isolated, assume there are no x, y ∈ V + such that x ∼ y. This means that for all x ∈ V + we
have s(y) < 1 for all y ∼ x. Choose a random x ∈ V +, we can either find a y ∼ x such that
s(y) + 1

2d

∑
z∼y(s(z) − 1)+ > 1, or we have for all y ∼ x that s(y) + 1

2d

∑
z∼y(s(z) − 1)+ ≤ 1.

We will now show that the former case leads to the use of Lemma 1, while the latter leads to a
contradiction almost surely for n ≥ 3.
We will first look at the first case, so we assume that we can find y ∼ x such that s(y) +
1
2d

∑
z∼y(s(z)− 1)+ > 1. Note that since x ∈ V + we have s(x) > 1, this sites will topple. Now

because of our assumption we get the following at t = 1:

s1(y) = s(y) +
1

2d

∑
z∼y

(s(z)− 1)+ > 1,

with y ∼ x and x ∈ V +, then we can use Lemma 1 because also s1(x) ≥ 1.
Now we consider the second case, assume for all x ∈ V + and for all y ∼ x that s(y) +
1
2d

∑
z∼y(s(z) − 1)+ ≤ 1. This means that after the first toppling all neighbours to any site

in V + still have subcritical mass. In this case we either find a y ∼ x for some x ∈ V + such that

s(y) +
1

2d

∑
z∼y

(s(z)− 1)+ < 1,

or for all x ∈ V + and y ∼ x we have

s(y) +
1

2d

∑
z∼y

(s(z)− 1)+ = 1.

18

This latter case means we have reached a stable situation after the first toppling, we will prove
in the next theorem Theorem 4 that this will almost surely not happen for n ≥ 3. The former
case leads to a contradiction. To prove this we define:

Ṽ + := V + ∪ {z ∈ Zdn : z ∼ x for some x ∈ V +} = V + ∪ {all neighbours of V +}. (13)

Note that we can now use ∑
z∈Zdn

s(z) =
∑
z∈Ṽ +

s(z) +
∑

z∈Zdn\Ṽ +

s(z). (14)

By our assumption we have for all z ∈ Zdn \ Ṽ + that s(z) < 1, and thus∑
z∈Zdn\Ṽ +

s(z) ≤ |Zdn \ Ṽ +| ≤ nd − |Ṽ +|. (15)

Equality only occurs in the case where the set Zdn \ Ṽ + is empty. Now, if all z ∈ V + topple, they
distribute their mass over their neighbours. And by the definition of Ṽ + we have that these
neighbours are in Ṽ +, so we get ∑

z∈Ṽ +

s(z) =
∑
z∈Ṽ +

s1(z). (16)

We have already assumed that all z ∈ V + are isolated, so they do not receive any mass from
toppling neighbours, then∑

z∈Ṽ +

s1(z) =
∑
z∈V +

s1(z) +
∑

z∈Ṽ +\V +

s1(z), (17)

= |V +|+
∑

z∈Ṽ +\V +

[
s(z) +

1

2d

∑
x∼z

(s(x)− 1)+

]
, (18)

< |V +|+ |Ṽ +| − |V +| = |Ṽ +|. (19)

The inequality follows from the fact that by assumption at least one y ∈ Ṽ + with s(y) +
1
2d

∑
z∼y(s(z)− 1)+ < 1. Now combining this result with Equation 14 and Equation 15, we can

obtain ∑
z∈Zdn

s(z) < |Ṽ +|+ nd − |Ṽ +| = nd. (20)

However, this is a contradiction as
∑

z∈Zdn s(z) = nd by definition of s.

What is left to prove now is that the case where for all x ∈ V + and y ∼ x we have
s(y) + 1

2d

∑
z∼y(s(z)− 1)+ = 1 almost surely does not happen. To do this we will use the same

notation as above in the following theorem

Theorem 4. For x ∈ V + and y ∼ x

P

(
s(y) +

1

2d

∑
z∼y

(s(z)− 1)+ = 1

)
= 0,

for n ≥ 3.

19

Proof. For more convenience we define the following:

Λ(x) := σ(x)− 1

nd

∑
w∈Zdn

σ(w).

Note that Λ(x) = s(x)− 1, and using this new notation we find

P

(
s(y) +

1

2d

∑
z∼y

(s(z)− 1)+ = 1

)
= P

(
Λ(y) +

1

2d

∑
z∼y

1Λ(z)>0Λ(z) = 0

)
.

Next we enumerate the neighbours of y from 1 to 2d. It then follows that proving the above
probability is equal to zero is equivalent to proving that for any combination of neighbours
x1, . . . , xk of y with 1 ≤ k ≤ 2d, we have

P

Λ(y) +
1

2d

k∑
j=1

Λ(xj) = 0

 = 0.

To find this probability on the left hand side we will rewrite it.

Λ(y) +
1

2d

k∑
j=1

Λ(xj) = σ(y)− 1

nd

∑
w∈Zdn

σ(w) +
1

2d

k∑
j=1

σ(xj)−
1

nd

∑
w∈Zdn

σ(w)

 ,

= σ(y) +
1

2d

k∑
j=1

σ(xj)−
(

1 +
k

2d

)
1

nd

∑
w∈Zdn

σ(w).

Because we are trying to find the probability that this equals zero we can multiply everything
by nd and rewrite to the following:(

nd −
(

1 +
k

2d

))
σ(y) +

(
nd

2d
−
(

1 +
k

2d

)) k∑
j=1

σ(xj)−
(

1 +
k

2d

) ∑
w∈Zdn\{x1,...,xk,y}

σ(w).

Note that this is a sum of i.i.d. Gaussian random variables. This is only zero if all the coefficients
are equal to zero, or if for all x we have σ(x) = 0 but this has probability of zero. However,
since n ≥ 3, and k ≤ 2d, the term nd −

(
1 + k

2d

)
is always greater than 0. This leads to the fact

that we wanted to prove, P
(
s(y) + 1

2d

∑
z∼y(s(z)− 1)+ = 1

)
= 0.

These results tell us that when we do the computer simulation we will never truly reach a
stable state. In our simulations we will only be able to simulate for a finite time, thus these
previous results mean that our simulations will never truly be accurate. This will be further
discussed in section 6.

20

4 Adding the constant

4.1 Intro: modifying the initial mass

As stated previously, the goal of this research is to investigate the influence of adding a factor c
to Equation 7. Adding this constant alters the formula of the initial distribution of the sandpile
only slightly, but it has great impact. For convenience we will state the formula for the initial
sandpile configuration again with the introduced constant.

s(x) = 1 + σ(x)− c

|V |
∑
y∈V

σ(y).

Note that if c is equal to 1 we get
∑

x∈V s(x) = |V |. We have previously proven in Proposition 1
that in this case the sandpile converges to the all-1-configuration. However if c is not equal to
1 we get

∑
x∈V

s(x) =
∑
x∈V

1 + σ(x)− c

|V |
∑
y∈V

σ(y)


= |V |+

∑
x∈V

(σ(x))− c

|V |
∑
x∈V

∑
y∈V

σ(y)

= |V |+
∑
x∈V

(σ(x))− c|V |
|V |

∑
y∈V

σ(y)

= |V |+ (1− c)
∑
x∈V

σ(x).

(21)

Therefore lemma 7.1 from Levine et al. [8] no longer holds unless c = 1, which is the original
case, or

∑
x∈V σ(x) = 0. Moreover, in a similar way we find for the expected value of s(x)

E(s(x)) = E

1 + σ(x)− c

|V |
∑
y∈V

σ(y)


= E(1) + E(σ(x))− c

|V |
∑
y∈V

E(σ(y))

= 1 + E(σ(x))− c|V |
|V |

E(σ(x))

= 1 + (1− c)E(σ(x)).

This means that if E(σ(x)) = 0 then E(s(x)) = 1 and the sandpile could stabilize. On the other
hand, if E(σ(x)) 6= 0 then the value of c determines if the sandpile stabilizes. It is proven in
Lemma’s 4.1 and 4.2 in Levine et al. [8] that if E(s(x)) > 0, then P(s stabilizes) = 0, and if
E(s(x)) < 0, then P(s stabilizes) = 1.

4.2 Subcritical

The problem with the introduced factor is the fact that the sum
∑

y∈V σ(y) is random. This
leads to three possible situations,

∑
y∈V σ(y) is either positive, negative or equal to zero. Because

of what Levine et al. [8] have proven about the stabilization of the sandpile at critical density, we
require that the

∑
y∈V σ(y) ≥ 0. Otherwise, if

∑
y∈V σ(y) < 0 the sandpile will be supercritical

because
∑

x∈V s(x) will be bigger than |V | for c > 1 as can be seen in Equation 21. And we

21

know that the sandpile will not stabilize if
∑

x∈V s(x) > |V |.
Now if we have

∑
y∈V σ(y) = 0, then we multiply c by zero so it has no influence on the

sandpile at all. Therefore in our computer simulation we will only consider the cases where∑
y∈V σ(y) > 0 because we want the sandpile to be subcritical as it needs to stabilize.

Because we only use
∑

y∈V σ(y) > 0 there is not enough mass in the sandpile to converge to
the all-1-configuration. Which means it will stabilize, we just don’t know what the stabilized
sandpile will look like.

4.3 Previous proofs

With our added factor c a lot of proofs from section 3 will no longer hold. We will shortly go
over where they fail to hold.
Starting at Theorem 1, this theorem fails immediately in the prerequisite of

∑
x∈V s(x) = |V | =

n. This is because in the proof it is used when proving that s+ ∆u = 1 must hold. In our case
we have

∑
x∈V s(x) = n + (1 − c)

∑
x∈V σ(x), which means the sandpile no longer has critical

density. And as a result we will see in the computer simulations that the sandpile will indeed
no longer stabilize to the all-1-configuration like Theorem 1 states.
Next Proposition 1 follows from Theorem 1, so the failure of the latter makes the proof of the
former no longer hold. This is seen in the proof as it is necessary right at the start to state that
the sandpile converges to the all-1-configuration. Later in the proof where the expected value
of s(x) is used to prove that u = η − min η using the covariance of v(x) we get the following
difference:

E[(s(z)− 1)(s(w)− 1)] = E

[(
σ(z)− c

n

∑
x∈V

σ(x)

)(
σ(w)− c

n

∑
x∈V

σ(x)

)]
,

= E

σ(z)σ(w)− c

n
σ(w)

∑
x∈V

σ(x)− c

n
σ(z)

∑
x∈V

σ(x) +
c2

n2

(∑
x∈V

σ(x)

)2
 ,

= E(σ(z)σ(w))− c

n
E

(
σ(w)

∑
x∈V

σ(x)

)
− c

n
E

(
σ(z)

∑
x∈V

σ(x)

)
+
c2

n2
E

(∑
x∈V

σ(x)

)2
 ,

= 1z=w −
c

n
− c

n
+
c2

n
= 1z=w +

c2 − 2c

n
.

(22)

This has consequences for the covariance of the function v, we can continue:

E(v(x)v(y)) =
1

deg(x) deg(y)

∑
z,w∈V

g(z, x)g(w, y)E((s(z)− 1)(s(w)− 1)),

=
1

deg(x) deg(y)

(∑
z∈V

g(z, x)g(z, y) +
c2 − 2c

n

(∑
z∈V

g(z, x)

)(∑
w∈V

g(w, y)

))
.

(23)

Now let again K(y) := 1
deg(y)

∑
w∈V g(w, y), then again ∆K =

∑
z,w∈V

1
n(1z − 1w) = 0. So

K is constant. The second term on the right this time equals K2(c2−2c)
n . Consequentially setting

C ∼ N(0, K
2(c2−2c)
n) a slightly different normal distributed random variable independent of v.

22

Now the Gaussian vectors η and (v(x) + C)x∈V have again the same covariance because

E((v(x) + C)(v(y) + C)) = E(v(x)v(y) + Cv(x) + Cv(y) + C2),

= E(v(x)v(y)) + E(Cv(x)) + E(Cv(y)) + E(C2),

=
1

deg(x) deg(y)

(∑
z∈V

g(z, x)g(z, y)

)
− K2(c2 − 2c)

n
+ 0 + 0 +

K2(c2 − 2c)

n
,

=
1

deg(x) deg(y)

(∑
z∈V

g(z, x)g(z, y)

)
= E(η(x)η(y)).

Which means the law is the same as in Proposition 1, only the sandpile does not conververge to
the all-1-configuration.

Because of these results it is not possible to prove the stabilization of the sandpile with the
added constant c in the same way as before. That is why we want to look at it through computer
simulations.

4.4 Influence on the Normal distribution

By introducing c in Equation 8 we multiply a sum of random variables σ(y) by a scalar c. In
the case where the σ are normally distributed we can use the following property of the normal
distribution [10]:

Proposition 2. If X ∼ N(µ, γ2) and Y = aX + b, then Y ∼ N(aµ+ b, a2γ2).

In most of the simulation study we look at the standard normal N(0, 1) distribution. This
property of the normal distribution then means that the σ(y) variables inside the sum are
N(0, c2) distributed because we can take c into the sum as following:

s(x) = 1 + σ(x)− 1

|V |
∑
y∈V

cσ(y). (24)

Because of this, if c > 1 the introduction of c increases the variance of the σ(y).
Note that this is not the same as leaving c out of Equation 8 and simulating σ ∼ N(0, c2). This
is clear from the fact that only the σ(y) in Equation 24 get multiplied by c and not the σ(x).
However, this result might allow us to understand the results of the simulation study better
later on.

23

5 Simulation Study

To investigate the influence of our constant c a simulation study was done. The MATLAB code
can be found in the appendix. It consists of four different files, we will go through them one by
one. However before we go into the different files we will explain the how the DSM is modelled,
this is then the same in every file.

5.1 Modelling the DSM

To be able to do the simulation study a good written code is required. We will need to simu-
late multiple times and if the code is slow it will take even more time. The code consists of 4
important parts, and the first three of these are exactly the same in all files.

The first part is where all the variables and other settings are defined. This allows us to
make quick changes to the program before running it. The variables that are possible to change
are for example the size of the torus, the amount of iterations, and the values of c we want to test.

The second part consist of generating the values of the σ(x). The way this was implemented
allows us to choose between 5 different distributions: Normal, Gamma, Cauchy, Pareto, and
Poisson. All with their own parameters. For Pareto we took the shape parameter α to be in
(1, 2) this way it has finite mean and infinite variance.
The value of

∑
y∈V σ(y) is calculated because it needs to be positive. If it is negative then the

volume of the torus will become supercritical when c is increased.

The third part consists of the toppling procedure. This is the part that takes almost all of the
time because it requires the most amount of calculations. Unfortunately the toppling procedure
isn’t a simple procedure, it is not possible to do this with for example matrix multiplications,
which MATLAB can do very fast. Instead we use 4 for loops, the first is a loop over all values
of c we want to investigate, the second is for the timesteps, and the third and fourth loop over
every node on the torus. Then within the fourth loop we first check if the current value of the
node is higher than our cutoff of 1. Then it distributes a quarter of that excess value over its
neighbours. And finally the odometer and torus are updated.

The fourth part is different for every file as it defines what we want to investigate. It can be
data, plots of the torus, or different calculations of test statistics.

In general, the torus we work on is of size 400×400. This size is small enough to allow quick
calculations, yet it is large enough to allow no local outliers to interfere with the whole torus.
No problems were encountered that could be blamed on the size of the torus.

5.2 Visualisation of the convergence of the sandpile

At first we visualised the convergence of the torus and the odometer. In MATLAB we were able
to do that by plotting our sandpile every 10 thousand timesteps and then play the graphs in
succession as if it is a movie. On paper that is much harder, but you can get the idea by looking
at the following figures. In this case the standard normal distribution was used to generate the
values of σ(x).

24

Figure 3: Development of stabilization of a sandpile with c = 1.

In Figure 3 the progression of the sandpile is easy to see, it starts with all random values
in the interval [−6, 6], after the first timestep most values are already much closer to 1 as the
interval has now become [−6, 4]. This interval keeps on becoming smaller and smaller, after
100,000 timesteps the range of the figure has become [−1, 1], in reality at that moment the
largest value of the torus is 1.00073 and the smallest value is -0.97373.
It is also very visible in the last few graphs of Figure 3 that the points of the torus that are not
yet close to the stable value of 1 seem to occur in clusters of points. We do not yet have an
explanation for this property but it seems to be related to the location of the minimum value
in the initial torus.

Note that in this situation we used c = 1, so this is what a normal progression of the sandpile
should look like. In the next few subsections we will alter c to see its influence.

Figure 4: Development of the odometer during the stabilization of a sandpile with c = 1.

25

Figure 5: Initial matrix representing the sandpile.

In Figure 4 the development of the odometer of the sandpile is shown. It is clear to see
that at first the odometer doesn’t show signs of a pattern, in the first two graphs all values are
around the same value and there are not a lot of outliers to detect. In the later figures it is very
clear that the odometer is less random. The value of the odometers of neighbouring points is
very closely related. There is also a relation between the location of the last clusters and the
height of the odometer there. Since the points that remain below 1 for a long time have not
emitted any weight to their neighbours the odometer at that location is 0.

5.3 Influence on the convergence

Next we looked into the influence of c on how good the sandpile converges. Ideally the DSM
converges to the all-1-configuration, where all the nodes have weight equal to 1. Since we have
proven that this does not happen in finite time we cannot simulate until we reach this all-1-
configuration. Therefore we define a convergence interval D = (0.995, 1.005). Then we can
simulate N timesteps and look at how many nodes of the graph lie within D.

The amount of iterations was generally first set at 20000, this was arbitrarily chosen based on
the amount of iterations it took to reach 95% of nodes in the convergence interval. For example
the standard normal distributions took around a 17000 iterations to reach this percentage with
c = 1. The value of c was varied mostly between 1 and 5 with steps of 1, or between 1 and 2
with steps of 0.1. Only on a few occasions it was necessary to look at c > 5.

In this file a few test statistics were created. To denote the amount of values inside the in-
terval D at every timestep a was used, while b denoted the percentage of values in the interval.
Also e was used to denote the amount of values below the interval, and h was used to denote
the amount of values above the interval. This allows us to roughly see to what kind of state the
torus converges, it was found that if c increases then e increases too, while h was almost always

26

0. But more on that in the next chapter.

Before we move on it must be noted that even though the mass in the system is much lower
when c is increased, the sandpile most likely does not stabilize completely in finite time. That
is because the argumentation of Lemma 1 still holds. If there are at any time two neighbouring
nodes with st(x) > 1 then there will always be mass that remains moving between the nodes at
every timestep. Theoretically it is possible that by our introduction of c we remove so much mass
that only a handful of nodes are left with mass greater than 1, and there are no neighbouring
nodes that both have mass greater than 1. But in practice this means we have increased c so far
that it is no longer useful. And as soon as the mass starts spreading around it might still occur
that two neighbouring nodes get st(x) > 1. Therefore it is safe to conclude that the sandpile still
does not stabilize fully in finite time, the only way this will happen in practice is if we increase
c to the point that there is almost no mass left in the system.

5.4 Convergence speed

What we noticed was that the amount of nodes in the convergence interval decreased for higher
c, the amount of timesteps it took to get to a reasonable converged state seemed to be shorter
for higher c. To check this we will also look at the first timestep tD where 95% of all nodes
lie within D. This test statistic will tell us about the speed of convergence, however there is a
danger in using this interval D. That is because if we are decreasing the total volume of the
graph then it is possible that there is not enough volume left to get 95% of all nodes in the
interval. This happens when c gets bigger, therefore we will also look at the first timesteps
where 95% and all nodes are in the interval (−∞, 1.005).

5.5 Odometer

To find out how c influences the odometer we looked at two things. We plotted the different
odometers to visually try to understand the difference, and we calculated the mean and variance
of the odometer for every value of c. This seemed to be the best way to find a relation between
c and the odometer.
We did this by calculating

µut =
1

|V |
∑
y∈V

ut(y), (25)

and

σ2
ut =

1

|V | − 1

∑
y∈V

(ut(y)− µut)2 (26)

at every timestep. Understanding these values gives us an idea of the influence of c at the
convergence of the odometer. In an ideal scenario the odometer converges, however this is also
not possible in finite time.

It should also be noted that it was proven by Cipriani, Hazra, and Ruszel [3] that the
distribution of the odometer on a finite graph is known if

∑
x∈V s(x) = |V |. Moreover, they

proved that if s(x) is defined as Equation 7, and (σ(x))x∈Zdn are i.i.d. and in the domain of
normal attraction of a stable law, then the distribution of the odometer converges to a known
distribution. To be able to use these results it needs to be reviewed whether the probability
distributions used in this thesis lie in the domain of normal attraction of a stable law. But

27

before we can do that a few definitions need to be stated.
The domain of normal attraction of a stable law can be defined as following [3]:

Definition 19. Let α ∈ (0, 2]. Let V be a countably infinite index set and (W (x))x∈V be
i.i.d. symmetric random variables with common distribution function in the domain of normal
attraction of an α-stable distribution. This means that, for V1 ⊂ V2 ⊂ . . . such that ∪k≥1Vk = V ,
we have the following limit:

lim
k→+∞

|Vk|−
1
α

∑
x∈Vk

W (x) = ρα, (27)

where ρα has a symmetric α-stable law.

A distribution is called stable if it satisfies the following definition [9]:

Definition 20. A random variable Y and its distribution are said to be stable if for i.i.d. copies
Y1, Y2 of Y and all choices of non-negative constants c1, c2 there exist numbers a > 0 and b ∈ R
such that the following identity in law holds:

c1Y1 + c2Y2
d
= aY + b. (28)

It has been shown by Mikosch [9] that the Gaussian and Cauchy distributions are stable
distributions in itself, and therefore automatically lie in the domain of attraction of an α-stable
distribution. Furthermore for the distributions with finite variance the Central Limit Theorem
can be used, because this theorem states that every distribution with finite variance can be
rescaled to the standard normal distribution in law. Therefore all distributions with finite
variance lie in the domain of normal attraction of the standard normal distribution.
The only remaining distribution is the Pareto distribution. We have chosen the shape parameter
such that the variance is not finite by setting 1 < αP < 2. To be able to show that the Pareto
distribution lies in the domain of attraction of an α-stable law we will use a theorem of Mikosch
[9] which states the following:

Theorem 5. The distribution F belongs to the domain of attraction of an α-stable law for some
α < 2 if and only if:

F (−x) =
q + o(1)

xα
L(x), 1− F (x) =

p+ o(1)

xα
L(x), x→∞, (29)

where L is a slowly varying function and p, q are non-negative constants such that p+ q > 0.

Note that L(x) is said to be slowly varying if limx→∞
L(tx)
L(x) = 1 for all t > 0 [9], and note

that o(1) denotes the little-o-notation. Now set L(x) = 1, then we need to find p, q and α such
that limx→∞ F (−x) = q

xα and limx→∞ 1− F (x) = p
xα for the Pareto distribution. Note that for

this distribution we have F (x) = 1 −
(
xm
x

)αP , where xm > 0, x ∈ [xm,∞) and in this thesis
αP was chosen to be in the interval 1 < αP < 2 such that the distribution has finite mean and
infinite variance. This gives the following results:

lim
x→∞

F (−x) = F (xm) = 1−
(
xm
xm

)αP
= 0.

Therefore we find limx→∞ F (−x) = q
xα ⇔ q = 0. Furthermore:

lim
x→∞

1− F (x) =
(xm
x

)αP
=
xαPm
xαP

.

28

Now setting limx→∞ 1 − F (x) = p
xα gives x

αP
m
xαP = p

xα , therefore p = xαPm and α = αP solves the
equation. We have xm > 0 and 1 < αP < 2, therefore p > 0. These results allow us to use
Theorem 5 to prove that the Pareto distribution used in this thesis belongs to the domain of
attraction of an α-stable law.
Therefore for all the distributions we use in this thesis we can use the results of Cipriani, Hazra,
and Ruszel [3].

These results mean that for c = 1 we know what the odometer should look like in the limit,
however if c 6= 1 then we no longer have

∑
x∈V s(x) = |V |. Therefore we do not yet know what

the odometer will look like if we change c, that is something we want to investigate by doing
the simulation study.

29

6 Results

Altering c and making plots can give us a little insight already in the influence of adding the
constant. It seemed like the constant greatly influenced the starting torus to be closer to zero,
but also more negative. This can be explained by reasoning that by increasing c in equation
Equation 7 we subtract a greater factor of

1

|V |
∑
y∈V

σ(y). (30)

Now if the initial distribution has mostly high values, then the value of Equation 30 will be
relatively high too. When we use a distribution with strictly positive values like for example the
Gamma distribution, then the value of Equation 30 is never close to zero. If c is increased then
we subtract more and more, which gets those high values closer to zero. However in some cases
we found that if we do this then all values will lie below 1 in the initial torus. For example, in
one case of the Gamma distribution we used λ = 1 and α = 5, for c = 1 we found tD = 31465.
We then increased c by one four times until c = 5, for every value of c the sandpile never reached
95% of nodes in D. Moreover, with c = 5 we get the following initial torus:

Figure 6: Initial torus with Gamma(1,5) and c = 5.

This means that the entire torus is negative and no toppling will happen. In one way this
means that the torus is immediately stable! However this is not the way we want it to converge.
This shows us that we should be careful when increasing c, and the way we use c might not be

30

ideal. It might be better to increase c by smaller amounts than we are doing.

Figure 7: Influence of c on the converged sandpile and the odometer after 60,000 timesteps.
Using N(0,1) and c = 1, c = 3, and c = 5.

Figure 7 shows the influence of c on the sandpile and odometer. In this figure the standard
normal distribution was used to generate the values of σ(x) and the value of c was between 1 and
5. The sandpile with c = 1 is close to a converged state, almost all values are very close to 1 and
only a few clusters of nodes remain negative. When comparing that to the other two sandpiles
it is clear to see that they are much further away from the all-1-configuration. This follows
from our introduction of c, the volume is much lower so a lot of nodes will remain negative in a
converged state.
If we look at the odometers it stands out that they all roughly have the same shape, they all
have the highest peak in the middle and a smaller one at the edge. The difference is that for
c = 3 and c = 5 the whole graph is much lower. And since the odometer is always positive a
lot of the smaller values are compressed to a value very close or equal to zero. This is because
in the initial torus a lot more nodes are negative if we increase c. Therefore those small values
will not distribute any mass until they get a lot from their neighbours. However since there is
less mass in the system this might not even happen at all.

6.1 Convergence

After looking at the plots it was clear that c influences the convergence greatly. But to get real
data we will have to run the model multiple times and then look at the test statistics we devised.

First of all we looked at the standard normal distribution. This distribution is very easy to
work with as it has mean 0 and low variance. Therefore it converges relatively quickly when
compared to the other four distributions we tested. Because of this we can use a low amount
of iterations and do this multiple times to take the average to get a more balanced result. In
Table 1 we ran the program 10 times and took the average of the different test statistics. What
is very clear in this table is that tD decreases if c increases, which is exactly what we are looking

31

for. This is a very logical consequence of decreasing the total volume of the system. Since a
lot less nodes have excess mass that they need to get rid of, and a lot more nodes don’t have
enough mass. So those nodes will take on that excess mass of their neighbours without starting
to topple the next iteration.
Another thing that is visible in this table is that the amount of nodes in our convergence interval
D increases at first, but decreases for c > 3. However we can also see that for c ≥ 3 all nodes
are in (−∞, 1.005), this means that for these values of c the torus is very close to a stable state.
This also shows that even for the standard normal distribution if we increase c too much then
not enough mass remains in the system to get every node in D.
The conclusion we can take from this is that increasing c helps reaching a stable state quicker.
Not a lot changes to the sandpile in the next iteration if all values are in (−∞, 1.005), so we can
say that the sandpile has almost stabilized. However, the sandpile has not reached a converged
state we can predict. It is very random and dependant on the initial distribution of the σ(x).

c = 1 c = 2 c = 3 c = 4 c = 5

tD 16096.2 12406 10189.4 8664 7590.1
percentage of nodes in D 98.3 99.2 99.2 98.9 98.6
percentage of nodes in (−∞, 1.005) 98.7 99.7 100 100 100

Table 1: Average of 10 standard normal distributions after 20,000 iterations.

For the following 4 distributions we also started with c = 1 and then increased it by one
until c = 5. At first the amount of iterations was left unchanged, until we realised that this
wasn’t enough for most of the distributions. Only the Poisson distribution allowed a state
close to stabilization before 20,000 iterations when c = 1, for all other values of c and all other
distributions that are used we never reached 95% nodes in D. Therefore we increased the amount
of iterations dramatically to 500,000, this should have been more than enough. The program
had to run overnight to be able to compute this amount of iterations. We therefore only did
this once for every distribution. In the recommendations in section 8 we will get back to this.
In Table 2 we look at the results when using the Poisson distribution to generate the values of
σ(x) we see that tD is very low for c = 1 and almost all of the nodes are in D after 500,000
iterations. For all other values of c there is no value for tD and this is simply because there are
not enough nodes in D. The percentage of nodes in D after 500,000 iterations decreases by a
lot for increased c. Since all nodes are in (−∞, 1.005) for every value of c it is clear that the
sandpiles were very close to stable. The fact that tD does not exist for c > 1 only means that the
sandpile never gets close to the all-1- configuration. If we instead look at the first timestep when
95% of all nodes are in the interval (−∞, 1.005), then we get a completely different image of the
situation. For c = 3, c = 4 and c = 5 we get this already in the first timestep, for c = 2 this is
reached after 10 timesteps, and for c = 1 it is 11960 which is very close to tD. Furthermore if
we go one step further, to the first timestep for which all nodes are in the interval (−∞, 1.005)
then we get 14759, 32, 14, 9 and 5 respectively. This tells us that the sandpile reaches a stable
state really quickly. Although this seems very good, the question arises if this is still useful. Of
course we can keep increasing c to get a faster stabilization because at one point c will be big
enough such that all nodes will start inside (−∞, 1.005).

32

c = 1 c = 2 c = 3 c = 4 c = 5

tD 12368 - - - -
percentage of nodes in D 99.9838 40.1819 9.5769 8.9306 1.4256
percentage of nodes in (−∞, 1.005) 100 100 100 100 100
First time 95% in (−∞, 1.005) 11960 10 1 1 1
First time all in (−∞, 1.005) 14759 32 14 9 5

Table 2: Poisson distribution λ = 1
2 after 500,000 iterations.

Next is the Gamma distribution, we looked at this distribution using parameters α = 5 and
λ = 1. The results in Table 3 look similar to the results of the Poisson distribution. Only for
c = 1 we get a value for tD and almost all of the nodes are in D. As c increases the amount of
nodes in D decreases even more quickly than before. With 0 nodes in D for c = 5 we see that c
is too big, from the beginning all values are smaller than 0.995. This is most likely because we
multiply c by 1

|V |
∑

y∈V σ(y), and since E(σ(y)) = 5 this sum is fairly large. Note that the law

of large numbers tells us that 1
|V |
∑

y∈V σ(y) approaches E(σ(y)) as V is large enough. However

since we subtract a greater factor of 1
|V |
∑

y∈V σ(y) every time we increase c it is very influential

how big E(σ(y)) is. In the first case where we used the standard normal distribution we had
E(σ(y)) = 0, so we could increase c by a lot. But this is no longer possible for other distributions
where the expected value is larger. We could have chosen a lower value for α or λ but we chose
to show the results with these parameters because it shows why E(σ(y)) is so important.

c = 1 c = 2 c = 3 c = 4 c = 5

tD 31465 - - - -
percentage of nodes in D 99.9912 3.0500 0.0850 0.0006 0
percentage of nodes in (−∞, 1.005) 100 100 100 100 100
First time 95% in (−∞, 1.005) 31343 1 1 1 1
First time all in (−∞, 1.005) 34042 9 2 1 1

Table 3: Gamma distribution α = 5 and λ = 1 after 500,000 iterations.

The results in Table 4 are a bit different than before. This is because we used the Cauchy
distribution which has no mean or variance defined. This means that the values of σ(y) can
be very extreme, and that is exactly what happened in this case as can be seen in Figure 8.
This initial sandpile resulted in a ripple effect of the mass distributing itself over the rest of the
graph. As a result this means that for c = 1 even after 500,000 iterations at every moment only
50% of the nodes lie in D and the other 50% are above that still carrying a bit of that mass
emitted from the one extremely high value.
For c ≥ 2 we see the results we expected, the percentage of nodes in D decreases as c increases.
And when compared to the previous distributions more nodes remain in D. The table also
shows that from the very beginning we have 95% of all nodes in (−∞, 1.005), but it still takes
a lot of iterations to get all nodes in (−∞, 1.005). Increasing c from 2 to 5 makes it more than
twice as fast, this is again a logical result of the decreased amount of mass in the system. All
nodes are decreased by a lot, E(σ(y)) might not exist for the Cauchy distribution but we found

1
|V |
∑

y∈V σ(y) = 3.7216. This means that every time we increase c by one the weight of every
node in the initial configuration goes down by almost 4. Which makes it so the ripple effect dies
out much quicker.

33

c = 1 c = 2 c = 3 c = 4 c = 5

tD - - - - -
percentage of nodes in D 50.0000 62.1631 43.0644 32.7356 26.2869
percentage of nodes in (−∞, 1.005) 50.0006 100 100 100 100
First time 95% in (−∞, 1.005) 1 1 1 1 1
First time all in (−∞, 1.005) - 157184 113383 88902 72423

Table 4: Cauchy distribution µ = 0 and λ = 1
2 after 500,000 iterations.

Figure 8: Initial torus with Cauchy distribution, µ = 0 and λ = 1
2 and c = 1.

Lastly we looked at the Pareto distribution, with parameters α = 3
2 and xm = 1. These

parameters were chosen such that the mean is finite, E(σ(x)) = 3, and the variance is infinite.
Just like with the Cauchy distribution we again have one very large outlier as can be seen in
Figure 9, although this time it is much lower. This also results in a much quicker convergence
as can be seen in Table 5. For c = 1 tD is very high, but it exists. And the close to stable
state with all nodes in (−∞, 1.005) is reached much quicker for all values of c. Moreover we
see the same pattern again that by increasing c the percentage of nodes in D decreases and the
first timestep when all nodes are in (−∞, 1.005) also decreases. What we can notice from these
results is the fact that a large outlier is very influential to the convergence speed of the sandpile.

34

c = 1 c = 2 c = 3 c = 4 c = 5

tD 322793 - - - -
percentage of nodes in D 99.8937 20.3238 9.6031 5.8800 4.0331
percentage of nodes in (−∞, 1.005) 100 100 100 100 100
First time 95% in (−∞, 1.005) 322557 27 1 1 1
First time all in (−∞, 1.005) 327669 6720 3538 2418 1889

Table 5: Pareto distribution α = 3
2 and xm = 1 after 500,000 iterations.

Figure 9: Initial torus with Pareto distribution, α = 3
2 and xm = 1 and c = 1.

6.1.1 Relation between c and D

What we noticed in the previous section is that every time c was increased, the amount of nodes
in D would decrease. After a sufficient amount of iterations all nodes would be in (−∞, 1.005),
but only a fraction of that would remain in D. The interval D was constructed to look at how
close a sandpile would get to the all-1-configuration, but it is clear that for higher c the sandpile
gets nowhere close to this.
Because of this we are interested in the relation between c and the amount of nodes that remain
lower than D. To investigate this we plot the amount of nodes smaller than 0.995 versus c,
because we are interested in how many nodes do not get close to the all-1-configuration. In

35

Figure 10 we used the standard normal distribution to generate the values of σ(x). What is
immediately clear is that there is a positive correlation. From this barplot it seems like this is
a linear correlation, to check that we repeated the experiment with a different range of c and
fitted a line.

Figure 10: Plot of the amount of nodes smaller than 0.995 against c, with the standard normal
distribution and 200,000 iterations.

In Figure 11 it looks very close to linear but in fact MATLAB fitted a line of a third order
polynomial. What the reason is for this almost linear relation is unclear. Most likely at this
point is that it is the consequence of the fact that by increasing c the total mass of the system
decreases linearly.

36

Figure 11: Plot of the amount of nodes smaller than 0.995 against c, with the standard normal
distribution and 60,000 iterations.

If we look at the Pareto distribution instead of the Gaussian we get a very different picture.
Figure 12 shows a very concave line. It is still a positive correlation, but the line has a completely
different shape. A problem we encounter again is that if c gets too large then almost all nodes
will lie in (−∞, 0.995). This might explain why in this case the line starts to flatten out as for
c = 2 more than 80% of the nodes is smaller than 0.995. However it has not yet flattened out
as much as compared to the next one in Figure 13.

37

Figure 12: Plot of the amount of nodes smaller than 0.995 against c, with the Pareto distribution.
With α = 3

2 and xm = 1 and 60,000 iterations.

When using the Poisson distribution we get an almost identical line, as can be seen in
Figure 13. The noticeable difference is that the line flattens out much earlier at around 60% of
nodes and it gets a bit flatter.

38

Figure 13: Plot of the amount of nodes smaller than 0.995 against c, with the Poisson distribu-
tion. With λ = 1

2 and 60,000 iterations.

39

Figure 14: Plot of the amount of nodes smaller than 0.995 against c, with the Gamma distribu-
tion. With λ = 1, α = 1 and 60,000 iterations.

In Figure 14 we again see a very similar line to the previous two. The line again increases
with c, and flattens out when it approaches 80% of all nodes.
The reason for the shape of these lines most likely lies in the distribution of the initial sandpile.
As we are deducting mass from every node by increasing c more and more nodes will start below
0.995 or even much lower than that. And since the toppling procedure is constructed in a way
that it only allows mass to be added to nodes that are smaller than 1, the total amount of
nodes below 0.995 can only decrease every timestep and can never increase. A consequence is
that there can only be a positive correlation between c and the amount of nodes smaller than
0.995, as for higher c we start with more lower valued nodes. The way the DSM is formulated
as in Equation 7 the mean of s(x) is 1 if c = 1. So most nodes are distributed around one,
and the distribution gets sparser above that. This means that if we are subtracting mass from
the system this plays a role. At first we are moving a lot of nodes below the threshold of 0.995
by increasing c slightly, the more we increase c less nodes pass that threshold. This reasoning
should explain the shape of the correlation we found.

6.2 Odometer

As we already saw in Figure 7 the odometer is also influenced by the introduction of c. As there
is less mass in the system there is also less mass to be spread around, therefore the odometer
is lower over the whole graph. Since we saw in the previous sections that a lot of nodes remain

40

smaller than 1, we know that the odometer is zero in all those nodes. Before the introduction
of c the odometer would be zero almost nowhere but now it will be zero in a lot of places.

Figure 15: Influence of c on the odometer after 60,000 timesteps. Using N(0,1) and c = 1 and
c = 3.

As can be seen in Figure 15 the odometers look fairly similar, they both have the biggest
peak in the middle and a few smaller peaks around it also in the same place. These two look very
similar because for the standard normal distribution

∑
y∈V σ(y) is very small. In the instance

these two odometers were taken from this sum was only 514, which means that for c = 3 only
0.0064 was subtracted from every node.
If we compare this to the Poisson distribution we get something a lot different. On the left side
in Figure 16 is a graph of the odometer with c = 1, this looks very similar when compared to
the odometers of Figure 15 we have seen before. Which is what we expected as it is one of the
results of Cipriani, Hazra, and Ruszel [2] that the odometers will have the same behaviour. On
the right side of Figure 16 is the odometer with c = 5, since for this distribution only 1.4% of
nodes are in D after 500,000 iterations a lot of the odometer is still zero. These nodes have
never toppled and thus have never distributed any of their mass to their neighbours.

Figure 16: Influence of c on the odometer after 60,000 timesteps. Using the Poisson distribution
with λ = 1

2 and c = 1 and c = 5.

We also looked at the influence of c on the mean and variance of the odometer. As can
be expected after seeing these previous figures, both the mean and variance decreased by a lot

41

when c is increased. This happened for all distributions we tested and all values of c. This is of
course because of all the nodes that start below 1 and never emit any mass, this means that the
odometer is 0 at a lot of nodes. Therefore the mean is a lot lower and since almost all values of
the odometer are the same the variance is also a lot lower.

6.3 Clusters

When the code for this thesis was first written it was tested out while using a very low amount
of iterations and with c = 1. What stood out every time is that the last few nodes that were not
close to 1 yet were all very close together as though they formed a cluster. As can be seen in
Figure 17, for c = 1 there are three clusters identified by using kmeans in MATLAB. For c = 3
and c = 5 that was no longer the case, as there are many more nodes below 1. There are too
many to effectively put them into clusters, as they are now much more randomly spread around.

Figure 17: Influence of c on the converged sandpile and clusters after 60,000 timesteps. Using
N(0,1) and c = 1, c = 3, and c = 5.

Although this was studied only very briefly and not a lot of results came out of it, it is worth
mentioning. Because it is clearly a property of the DSM that when it is close to convergence
the only nodes not yet at 1 lie closely together. This was found for all probability distributions
used for σ(x) with c = 1.

Because of the results of the previous section the amount of nodes not in D differs greatly
between the different distributions used when increasing c. Therefore the clusters disappeared
much quicker for the Pareto distribution for example. Increasing c in this case led to so many
nodes smaller than 1 that the clusters were no longer existent.

42

7 Conclusion

In this thesis we have used a simulation study to look at the influence of introducing a constant
c to the DSM model of Equation 7, which becomes

s(x) = 1 + σ(x)− c

|V |
∑
y∈V

σ(y). (31)

Yes c influences the speed and degree of convergence of the DSM as can be seen in the differ-
ent tables in subsection 6.1, but this is highly dependant on the initial configuration. There are
multiple problems with using c as suggested which lead to limitations in its usability. The fact
that we multiply c by 1

|V |
∑

y∈V σ(y) means that if this sum is large then c cannot be too large.
If the product of these two factors is too high then too much volume is removed from the system,
this leads to very few nodes actually reaching the interval of convergence D. Sometimes there
is not enough mass left to get every node to the lower bound of the interval. This means we
cannot use the same values for c for every distribution. Also since there is not enough mass to
let the sandpile converge to the all-1-configuration the sandpile does not converge to a state we
can predict. The sandpile does stabilize eventually with all nodes at or below 1, after which no
toppling will happen anymore. However this is still not likely to happen in finite time because
the situation of Lemma 1 still occurs.

If instead the sum
∑

y∈V σ(y) is negative then increasing c doesn’t decrease the volume of
the system, but instead increases it. This means that it will never stabilize as there will be too
much mass in the system, there will always be nodes with a mass of higher than 1.

In subsubsection 6.1.1 a positive correlation between c and the amount of nodes lower than
the convergence interval D was found. The shape of this correlation was almost linear for the
standard normal distribution, but not for the other distributions tested. That was most likely
due to the fact that 1

|V |
∑

y∈V σ(y) was several orders of magnitude smaller for the standard
normal distribution.
For the other distributions that were tested the correlation had the same shape, it is a concave
line which flattens out for higher c. It flattens out because for high values of c it goes to 100%
of nodes smaller than 0.995.

The introduced constant c also influences the odometer of the sandpile. Since the total mass
in the system is reduced the odometer as a whole is a lot lower. Moreover, since a lot of the
nodes remain smaller than 1 in the stable state the odometer is zero at those nodes. This means
that for a high value of c · 1

|V |
∑

y∈V σ(y) the whole shape of the odometer changes, and the
mean and variance of the odometer decrease drastically.

To conclude I would say that it is not very straightforward to use c as was suggested. It
would be better to look at the total of c · 1

|V |
∑

y∈V σ(y). Since the total mass being removed

from the system is (c− 1)
∑

y∈V σ(y) the ideal size of c depends on
∑

y∈V σ(y).

43

8 Discussion

In hindsight there are a lot of things that could have been done differently. The reached conclu-
sion that the introduced constant c does help reducing the time to reach a stable state is useful.
However, c should be used carefully as there could be unwanted side effects. If c is something
that can help, then the next question that arises is what the optimal value of c is to reach a
stable state quickly and reliably. Increasing c too much leads to a stable state from the start
but that defeats the point of a sandpile.

The idea of the introduction of c was that the sandpile would become subcritical, to ensure
subcriticality the sum

∑
y∈V σ(y) is of great importance. In this thesis this was ensured by first

determining the sign of
∑

y∈V σ(y) and only using that sandpile if the sign was positive. Then
a positive c could be used. The values of c were chosen by trial and error. It stood out that
for certain distributions a value between 1 and 2 worked best, for some even smaller would be
preferable. And for the standard normal c could be as large as 20. Again, this all depended on
the size of

∑
y∈V σ(y).

Therefore the ideal value of c most likely depends on
∑

y∈V σ(y), that is something further re-
search might be able to prove.

One of the other things that could have been done differently was the way of determining
convergence or stability. The interval D = (0.995, 1.005) was used. This interval is very useful
in determining if the sandpile gets close to the all-1-configuration. However since the sandpiles
we are looking at are subcritical it was already known that these sandpiles would never reach
the all-1-configuration. Therefore it might be better to look at a different interval or a different
method. A different interval could be similar to (−∞, 1 + ε) with ε > 0. Otherwise one could
look at the odometer, if the odometer does not change in a timestep then the sandpile has sta-
bilized. A different method that could be investigated for example is to look at the sum of the
mass that is larger than 1. These last two methods were not implemented in this thesis because
they do not give an indication of how well the sandpile has approached the all-1-configuration
and because we were severely limited by the calculation speed of a single laptop.

It is therefore also advisable if anyone wants to repeat or continue this simulation study to
use more or better computers. The time it took to run the simulations was so long that it didn’t
allow for the amount of iterations we wanted. For example the sandpile of Table 4 with c = 1
should have been calculated for far more than 500,000 iterations. This sandpile took so long
because it was heavily influenced by outliers.
Therefore it could also be interesting to specifically study the influence of large outliers on the
stabilization speed of the DSM, and whether c could help to make this go faster.

A last thing to recommend for future research is to look at the theorems of section 3. It was
shown in subsection 4.3 that these proofs no longer work, but it might be possible to reformulate
the theorems and lemmas to make them work with c.

44

A Matlab code of the movie

1 % third draft of divisible sandpile model

2 %

3 clear all

4 close all

5 format long

6 rng (3); %set randomness

7 m = 400; %number of columns

8 n = 400; %number of rows

9 c =1; %constant determining if

the total will be smaller or larger than n*m in the initial

matrix

10 iterations = 10; %amount of iterations

11
12 mu = 0;

13 sigma = 1;

14 S = mu*ones(n,m)+sigma*randn(n,m); %normal N(mu,sigma ^2)

15
16 %lambda = 1/2; %parameter for poisson

17 %S = poissrnd(lambda ,n,m); %matrix with poisson

18
19 % lambda = 1; %parameter for gamma

20 % alpha = 5; %second parameter for

gamma , alpha =1 is the exponential distr

21 % S = gamrnd(alpha ,lambda ,n,m); %matrix with gamma

22
23 % mu = 0; % statistical median

24 % lambda = 1/2; % half width at the

half maximum density level

25 % S = mu+lambda*tan(pi*(rand(n,m) -1/2)); % Cauchy

distribution

26
27 total = sum(sum(S)); %sum of all sigma 's

28 T = ones(n,m) + S - c/(n*m)*total; %Initial matrix

29 %sum(sum(T))

30 x = 4; %amount of neighbours

31
32 u = zeros(n,m); %odometer

33 N=10; %amount of frames in

movie , please make sure N devides iterations

34 M=[0: iterations/N:iterations]; %take frame if on one of

these iterations

35 O = moviein(N+1); %movie of matrix with N+1

frames

36 P = moviein(N+1); %movie of odometer

37 R = T; %initial matrix for later

plotting

45

38 a = zeros(1, iterations); %amount of values inside

stabilisation interval at every timestep

39 b = zeros(1, iterations); %percentage of values

inside stabilisation interval at every timestep

40 d = zeros(2, iterations); %total sum of values at

every timestep

41 e = zeros(1, iterations); %amount of values < 1-A

/2 at any time step

42 A = 1*10^(-2); %length of stabilisation

interval

43
44 %

45 figure

46 mesh(T)

47 title('Initial matrix ')

48
49 O(:,1) = getframe;

50
51 figure

52 mesh(zeros(n,m))

53 title('Initial odometer ')

54
55 P(:,1) = getframe;

56
57 for k=1: iterations

58 temp=zeros(n,m); %temporary matrix to log the

changes due to toppling

59 for i=1:n

60 for j=1:m

61 if T(i,j) >1

62 t = T(i,j) -1; %the total that will be

removed from (i,j)

63 v = t/x; %the amount that will go to

each neighbour

64
65 i_t = i-1; %top neighbour

66 if i_t == 0 %check if i is on top border

67 i_t = n;

68 end

69
70 i_b = i+1; %bottom neighbour

71 if i_b == n+1 %check if i is on bottom

border

72 i_b = 1;

73 end

74
75 j_l = j-1; %left neighbour

76 if j_l == 0 %check if j is on the left

border

46

77 j_l = m;

78 end

79
80 j_r = j+1; %right neighbour

81 if j_r == m+1 %check if j is on the right

border

82 j_r = 1;

83 end

84
85 temp(i_t ,j)=temp(i_t ,j)+v; %every neighbour

gets v added

86 temp(i_b ,j)=temp(i_b ,j)+v;

87 temp(i,j_l)=temp(i,j_l)+v;

88 temp(i,j_r)=temp(i,j_r)+v;

89 temp(i,j)=temp(i,j)-t; %value on (i,j)

goes back to 1

90 u(i,j)=u(i,j)+v; %odometer

increases every iteration

91 end

92 end

93 end

94 T=T+temp;

95 if ismember(k,M)

96 subplot (2,1,1);

97 mesh(T);

98 title(strcat ({'Matrix after '},num2str(k),' iterations '))

99 O(:,k*N/iterations +1) = getframe;

100 pause (2)

101
102 subplot (2,1,2);

103 mesh(u);

104 title(strcat ({'Odometer after '},num2str(k),' iterations '

))

105 P(:,k*N/iterations +1) = getframe;

106 pause (2)

107 end

108 a(1,k) = sum(sum(1-A/2<T & T<1+A/2));

109 b(1,k) = a(1,k)/(n*m);

110 d(1,k) = sum(sum(T));

111 d(2,k) = sum(sum(temp));

112 e(1,k) = sum(sum(T<1-A/2));

113 end

114
115 figure

116 mesh(T)

117 title('Final matrix ')

118
119 figure

120 mesh(R)

47

121 title('Initial matrix ')

122
123 figure

124 movie(O)

125
126 strcat ({'stabilised after '}, num2str(find(b>=0.95 ,1 ,'first ')),'

iterations ') %gives the amount of iterations need to reach

95% of nodes in stabilisation interval

48

B Matlab code of the analysis of C

1 % third draft of checking influence of C on convergence of dsm

2 % adds calculation of slope and of max value of torus at every

timestep

3 clear all

4 format long

5 r = 1;

6 rng(r); %set randomness

7 m = 400; %number of columns

8 n = 400; %number of rows

9 V = n*m;

10 deltac = 1;

11 c = 1: deltac :5 ; %constant determining

if the total will be smaller or larger than n*m in the initial

matrix

12 C=length(c); %amount of different

values of c to test

13 iterations = 60000; %amount of iterations

14
15 mu = 0;

16 sigma = 1;

17 S = mu*ones(n,m)+sigma*randn(n,m); %normal ~N(mu,sigma ^2)

18 %

19 % lambda = 1/2; %parameter for poisson

20 % S = poissrnd(lambda ,n,m); %matrix with poisson of

size (n,m)

21
22 % lambda = 1; %scale

parameter for gamma

23 % alpha = 1; %shape

parameter for gamma , alpha=1 is the exponential distr

24 % S = gamrnd(alpha ,lambda ,n,m); %matrix with gamma of

size (n,m)

25
26 % mu = 0; % statistical median

27 % lambda = 1; % half width at the half

maximum density level

28 % S = mu+lambda*tan(pi*(rand(n,m) -1/2)); % Cauchy distribution

29
30 % alpha = 1.5; % take

alpha in (1,2) E(X)=inf for alpha <=1, Var(X)<inf for alpha >=2

31 % Xm = 1; % take Xm >0

32 % S = Xm*((ones(n,m)-rand(n,m)).^(-1/ alpha)); % Pareto

33
34 total = sum(sum(S)); %sum of all sigma 's

35 if total <0

36 return

49

37 end

38 x = 4; %amount of neighbours

39
40 u = zeros(n,m); %odometer

41 a = zeros(C,iterations); %amount of values inside

stabilisation interval at every timestep

42 b = zeros(C,iterations); %percentage of values

inside stabilisation interval at every timestep

43 % d = zeros(2, iterations); %total sum of values

at every timestep

44 e = zeros(C,iterations); %amount of values < 1-A/2

at any time step

45 A = 1*10^(-2); %length of stabilisation

interval

46 f = 1:C; %amount of iterations

needed to converge

47 g = 1:C;

48 L = 1:C;

49 z = 0.95; %percentage that needs to

be in stabilisation interval to define converged

50 G = zeros(1,C-1); %used for slope

51 h = zeros(C,iterations); %used for max value on

torus

52 uparam = zeros(2,C); %mean and variance of u

for every c

53 M = cell(C,1); %store odometer for every

c

54 O = cell(C,1); %store final sandpile for

every c

55
56
57 for p=1:C

58 u = zeros(n,m);

59 T = ones(n,m) + S - c(p)/V*total; %Initial matrix

60 for k=1: iterations

61 temp=zeros(n,m); %temporary matrix to log

the changes due to toppling

62 for i=1:n

63 for j=1:m

64 if T(i,j) >1

65 t = T(i,j) -1; %the total that will be

removed from (i,j)

66 v = t/x; %the amount that will go

to each neighbour

67
68 i_t = i-1; %top neighbour

69 if i_t == 0 %check if i is on top

border

70 i_t = n;

50

71 end

72
73 i_b = i+1; %bottom neighbour

74 if i_b == n+1 %check if i is on bottom

border

75 i_b = 1;

76 end

77
78 j_l = j-1; %left neighbour

79 if j_l == 0 %check if j is on the

left border

80 j_l = m;

81 end

82
83 j_r = j+1; %right neighbour

84 if j_r == m+1 %check if j is on the

right border

85 j_r = 1;

86 end

87
88 temp(i_t ,j)=temp(i_t ,j)+v; %every

neighbour gets v added

89 temp(i_b ,j)=temp(i_b ,j)+v;

90 temp(i,j_l)=temp(i,j_l)+v;

91 temp(i,j_r)=temp(i,j_r)+v;

92 temp(i,j)=temp(i,j)-t; %value on (i,

j) goes back to 1

93 u(i,j)=u(i,j)+v; %odometer

increases every iteration

94 end

95 end

96 end

97 T=T+temp;

98 a(p,k) = sum(sum(1-A/2<T & T<1+A/2));

99 b(p,k) = a(p,k)/V;

100 e(p,k) = sum(sum(T<1-A/2));

101 h(p,k) = max(max(T));

102 end

103 uparam(1,p) = sum(sum(u))/V;

104 uparam(2,p) = sum(sum((u-uparam(1,p)).^2))/(V-1);

105 strcat('for c=',num2str(c(p)),{' stabilised after '}, num2str

(find(b(p,:) >=z,1,'first ')),' iterations ')

106 if isempty(find(b(p,:) >=z,1,'first '))

107 f(p)=0;

108 else

109 f(p)=find(b(p,:) >=z,1,'first ');

110 end

111 if isempty(find((a(p,:)+e(p,:))/V>=z,1,'first '))

112 g(p)=0;

51

113 else

114 g(p)=find((a(p,:)+e(p,:))/V>=z,1,'first ');

115 end

116 if isempty(find((a(p,:)+e(p,:))/V==1,1,'first '))

117 L(p)=0;

118 else

119 L(p)=find((a(p,:)+e(p,:))/V==1,1,'first ');

120 end

121 M{p} = u;

122 O{p} = T;

123 end

124
125
126 %strcat('for c=',num2str(c(l)) ,{'stabilised after '}, num2str(

find(b>=0.95,1,'first ')),' iterations ') %gives the amount of

iterations need to reach 95% of nodes in stabilisation

interval

127
128 figure

129 bar(c,(V-a(:, iterations)))

130 xlabel('c')

131 ylabel (['amount of nodes smaller than ' num2str(1-A/2)])

132
133
134 for g = 1:C-1

135 G(g)=(a(g,iterations)-a(g+1, iterations))/deltac;

136 end

137
138 for q = 2:C

139 d(q-1) = c(q);

140 D(q-1) = a(q,iterations);

141 end

142 p = polyfit(c.',(e(:, iterations)) ,3);

143 p1 = polyval(p,c);

144
145
146 figure

147 scatter(c,(e(:, iterations)))

148 hold on

149 plot(c,p1)

150 xlabel('c')

151 ylabel (['amount of nodes smaller than ' num2str(1-A/2)])

152
153 % beta0 = (sum(c.^2)*sum(V-a(:, iterations))-sum(c)*sum(c.'.*(V-a

(:, iterations))))/(C*sum(c.^2) -(sum(c))^2); %intercept

calculated with formula from p 544 book by Rice

154 % beta1 = (C*sum(c.'.*(V-a(:, iterations)))-sum(c)*sum(V-a(:,

iterations)))/(C*sum(c.^2) -(sum(c))^2); %slope

calculated with formula from p 544 book by Rice

52

155 % yfit = beta0 + c*beta1;

156 %

157 % figure

158 % scatter(c,(V-a(:, iterations)))

159 % hold on

160 % plot(c,yfit)

161 % title('Linear line fitted to result ')

162 % xlabel('c')

163 % ylabel(['amount of nodes smaller than ' num2str(1-A/2)])

164
165 % r = V-a(:, iterations) - beta0 -beta1 .*c.'; %

residuals

166 % RSS = sum(r.^2); %

residual sum of squares

167 %

168 % figure

169 % plot(c,r,'*')

170 % title('residuals from fitted line ')

171 % xlabel('c')

172 % ylabel('residual from fitted line ')

53

C Matlab code of the convergence speed tests

1 % first draft of code to check convergence of odometer with

changing c

2 % copied from C_draft3

3 clear all

4 r = 1;

5 rng(r); %set randomness

6 m = 400; %number of columns

7 n = 400; %number of rows

8 V = n*m;

9 % c = 2;

10 deltac = 1;

11 c = 1: deltac :5; %constant determining

if the total will be smaller or larger than n*m in the initial

matrix

12 C = length(c); %amount of different

values of c to test

13 iterations = 60000; %amount of iterations

14
15 mu = 0;

16 sigma = 1;

17 S = mu*ones(n,m)+sigma*randn(n,m); %normal ~N(mu,sigma ^2)

18
19 % lambda = 1/2; %parameter for poisson

20 % S = poissrnd(lambda ,n,m); %matrix with poisson

21
22 % lambda = 1; %parameter for gamma

23 % alpha = 5; %second parameter for

gamma , alpha =1 is the exponential distr

24 % S = gamrnd(alpha ,lambda ,n,m); %matrix with gamma

25
26 % mu = 0; % statistical median

27 % lambda = 1/2; % half width at the

half maximum density level

28 % S = mu+lambda*tan(pi*(rand(n,m) -1/2)); % Cauchy

distribution

29
30 % alpha = 1.5; % take

alpha in (1,2) E(X)=inf for alpha <=1, Var(X)<inf for alpha >=2

31 % Xm = 1; % take Xm >0

32 % S = Xm*((ones(n,m)-rand(n,m)).^(-1/ alpha)); % Pareto

33
34
35 total = sum(sum(S)); %sum of all sigma 's

36 if total <0

37 return

38 end

54

39 x = 4; %amount of neighbours

40
41 u = zeros(n,m); %odometer

42 a = zeros(C,iterations); %amount of values inside

stabilisation interval at every timestep

43 b = zeros(C,iterations); %percentage of values

inside stabilisation interval at every timestep

44 % d = zeros(2, iterations); %total sum of values

at every timestep

45 e = zeros(C,iterations); %amount of values < 1-A/2

at any time step

46 f = zeros(1,C); %timestep of 95% in D

47 g = zeros(1,C); %timestep of 95% in(-inf

,1.005)

48 L = zeros(1,C); %timestep of all in(-inf

,1.005)

49 A = 1*10^(-2); %length of stabilisation

interval

50 z = 0.95; %percentage that needs to

be in stabilisation interval to define converged

51 h = zeros(C,iterations); %used for max value on

torus

52 uparam = zeros(2,C);

53 M = cell(C,1);

54 O = cell(C,1);

55
56
57 for p=1:C

58 u = zeros(n,m);

59 T = ones(n,m) + S - (c(p)/V)*total; %Initial matrix

60 for k=1: iterations

61 temp=zeros(n,m); %temporary matrix to log

the changes due to toppling

62 for i=1:n

63 for j=1:m

64 if T(i,j)>1

65 t = T(i,j) -1; %the total that will be

removed from (i,j)

66 v = t/x; %the amount that will go to

each neighbour

67
68 i_t = i-1; %top neighbour

69 if i_t == 0 %check if i is on top border

70 i_t = n;

71 end

72
73 i_b = i+1; %bottom neighbour

74 if i_b == n+1 %check if i is on bottom

border

55

75 i_b = 1;

76 end

77
78 j_l = j-1; %left neighbour

79 if j_l == 0 %check if j is on the left

border

80 j_l = m;

81 end

82
83 j_r = j+1; %right neighbour

84 if j_r == m+1 %check if j is on the right

border

85 j_r = 1;

86 end

87
88 temp(i_t ,j)=temp(i_t ,j)+v; %every neighbour

gets v added

89 temp(i_b ,j)=temp(i_b ,j)+v;

90 temp(i,j_l)=temp(i,j_l)+v;

91 temp(i,j_r)=temp(i,j_r)+v;

92 temp(i,j)=temp(i,j)-t; %value on (i,j)

goes back to 1

93 u(i,j)=u(i,j)+v; %odometer

increases every iteration

94 end

95 end

96 end

97 T=T+temp;

98 a(p,k) = sum(sum(1-A/2<T & T<1+A/2));

99 b(p,k) = a(p,k)/V;

100 e(p,k) = sum(sum(T<1-A/2));

101 h(p,k) = sum(sum(T>1+A/2));

102 end

103 %max(p) = find(h(p,:) <=1+A/2,1,'first ');

104
105 uparam(1,p) = sum(sum(u))/V;

106 uparam(2,p) = sum(sum((u-uparam(1,p)).^2))/(V-1);

107 strcat('for c=',num2str(p),{' stabilised after '}, num2str(find(b

(p,:) >=z,1,'first ')),' iterations ')

108 if isempty(find(b(p,:) >=z,1,'first '))

109 f(p)=0;

110 else

111 f(p)=find(b(p,:) >=z,1,'first ');

112 end

113 if isempty(find((a(p,:)+e(p,:))/V>=z,1,'first '))

114 g(p)=0;

115 else

116 g(p)=find((a(p,:)+e(p,:))/V>=z,1,'first ');

117 end

56

118 if isempty(find((a(p,:)+e(p,:))/V==1,1,'first '))

119 L(p)=0;

120 else

121 L(p)=find((a(p,:)+e(p,:))/V==1,1,'first ');

122 end

123 M{p} = u;

124 O{p} = T;

125 end

126
127 % strcat('for c=',num2str(c) ,{' stabilised after '}, num2str(

find(b(1,:) >=z,1,'first ')),' iterations ')

128 % if isempty(find(b(1,:) >=z,1,'first '))

129 % f=0;

130 % else

131 % f=find(b(1,:) >=z,1,'first ');

132 % end

133
134 % max = find(h(1,:) <=1+A/2,1,'first ')

135 %

136 % umean = sum(sum(u))/V

137 % uvar = sum(sum((u-umean).^2))/(V-1)

138
139 %strcat('for c=',num2str(c(l)) ,{'stabilised after '}, num2str(

find(b>=0.95,1,'first ')),' iterations ') %gives the amount of

iterations need to reach 95% of nodes in stabilisation

interval

57

D Matlab code of the 1 dimensional convergence speed test

1 % third draft of checking influence of C on convergence of dsm

2 % adds calculation of slope and of max value of torus at every

timestep

3 clear all

4 rng (1); %set randomness

5 m = 1; %number of columns

6 c = 1;

7 deltan =1000;

8 n = 1000: deltan :20000;

9 N = length(n);

10 iterations = 500000; %amount of iterations

11
12 mu = 0;

13 sigma = 1;

14
15
16 x = 2; %amount of neighbours

17
18 a = zeros(N,iterations); %amount of values inside

stabilisation interval at every timestep

19 b = zeros(N,iterations); %percentage of values

inside stabilisation interval at every timestep

20 % d = zeros(2, iterations); %total sum of values

at every timestep

21 e = zeros(N,iterations); %amount of values < 1-A/2

at any time step

22 A = 1*10^(-2); %length of stabilisation

interval

23 z = 0.95; %percentage that needs to

be in stabilisation interval to define converged

24 h = zeros(N,iterations); %used for max value on

torus

25 max = 1:N;

26 uparam = zeros(2,N);

27 uparam2 = zeros(2,N);

28
29
30 for p=1:N

31 u = zeros(n(p) ,1); %odometer back to 0

32 V = n(p);

33 S = mu*ones(n(p) ,1)+sigma*randn(n(p) ,1); %normal ~N(mu,

sigma ^2)

34 total = sum(sum(S)); %sum of all sigma 's

35 T = ones(n(p) ,1) + S - (c/V)*total; %Initial matrix

36 for k=1: iterations

58

37 temp=zeros(n(p) ,1); %temporary matrix to

log the changes due to toppling

38 for i=1:n(p)

39 if T(i,1) >1

40 t = T(i,1) -1; %the total that will be

removed from (i,j)

41 v = t/x; %the amount that will go to

each neighbour

42
43 i_t = i-1; %top neighbour

44 if i_t == 0 %check if i is on top border

45 i_t = n(p);

46 end

47
48 i_b = i+1; %bottom neighbour

49 if i_b == n(p)+1 %check if i is on bottom

border

50 i_b = 1;

51 end

52
53 temp(i_t ,1)=temp(i_t ,1)+v; %every neighbour

gets v added

54 temp(i_b ,1)=temp(i_b ,1)+v;

55 temp(i,1)=temp(i,1)-t; %value on (i,j)

goes back to 1

56 u(i,1)=u(i,1)+v; %odometer

increases every iteration

57 end

58 end

59 T=T+temp;

60 a(p,k) = sum(sum(1-A/2<T & T<1+A/2));

61 b(p,k) = a(1,k)/V;

62 e(p,k) = sum(sum(T<1-A/2));

63 h(p,k) = sum(sum(T));

64 end

65 % max(p) = find(h(p,:) <=1+A/2,1,'first ');

66
67 uparam(1,p) = sum(sum(u))/V;

68 uparam(2,p) = sum(sum((u-uparam(1,p)).^2))/(V-1);

69 uparam2(1,p) = uparam(1,p)/n(p);

70 uparam2(2,p) = uparam(2,p)/(n(p)^2);

71 end

72
73 strcat('for c=',num2str(c) ,{' stabilised after '}, num2str(

find(b(1,:) >=z,1,'first ')),' iterations ')

74 if isempty(find(b(1,:) >=z,1,'first '))

75 f=0;

76 else

77 f=find(b(1,:) >=z,1,'first ');

59

78 end

79
80 % max = find(h(1,:) <=1+A/2,1,'first ')

81 %

82 % umean = sum(sum(u))/V

83 % uvar = sum(sum((u-umean).^2))/(V-1)

84
85 %strcat('for c=',num2str(c(l)) ,{'stabilised after '}, num2str(

find(b>=0.95,1,'first ')),' iterations ') %gives the amount of

iterations need to reach 95% of nodes in stabilisation

interval

86 figure

87 plot(n,uparam2 (1,:))

88 xlabel('n')

89 ylabel('mean of odometer over n')

90
91 figure

92 plot(n,uparam2 (2,:))

93 xlabel('n')

94 ylabel('Variance of odometer over n^2')

95
96 uparam3=zeros(2,N);

97 for i=1:N

98 uparam3(1,i)=uparam(1,i)/(n(i)^(3/2));

99 end

100 figure

101 plot(n,uparam3 (1,:))

102 xlabel('n')

103 ylabel('mean of odometer over n^3/2 ')

104 title (['1D mean over n^3/2, ' num2str(iterations) ' iterations '])

60

References

[1] Per Bak, Chao Tang, and Kurt Wiesenfeld. “Self-organized criticality: An explanation
of the 1/f noise”. In: Phys. Rev. Lett. 59 (4 July 1987), pp. 381–384. doi: 10.1103/

PhysRevLett.59.381. url: https://link.aps.org/doi/10.1103/PhysRevLett.59.
381.

[2] Alessandra Cipriani, Rajat Subhra Hazra, and Wioletta M. Ruszel. “Scaling limit of the
odometer in divisible sandpiles”. In: Probability Theory and Related Fields 172.3 (Dec.
2018), pp. 829–868. issn: 1432-2064. doi: 10.1007/s00440-017-0821-x. url: https:
//doi.org/10.1007/s00440-017-0821-x.

[3] Alessandra Cipriani, Rajat Subhra Hazra, and Wioletta M. Ruszel. “The divisible sandpile
with heavy-tailed variables”. In: Elsevier (2017).

[4] Deepak Dhar. “The Abelian sandpile and related models”. In: Physica A: Statistical Me-
chanics and its Applications 263.1 (1999), pp. 4–25. issn: 0378-4371. url: http://www.
sciencedirect.com/science/article/pii/S0378437198004932.

[5] Jan de Graaff. “Scaling limit of the odometer of correlated Gaussians on the torus Td.”
In: (2018).

[6] Lionel Levine and Yuval Peres. “Laplacian Growth, Sandpiles and Scaling Limits”. In:
Bulletin of the American Mathematical Society (2017).

[7] Lionel Levine and Yuval Peres. “Strong spherical asymptotics for rotor-router aggregation
and the divisible sandpile”. In: Potential Analysis 30 (2009).

[8] Lionel Levine et al. “The Divisible Sandpile at Critical Density”. In: Annales Henri
Poincare (2015).

[9] T Mikosch. “Regular Variation Subexponentiality and Their Applications in Probability
Theory”. In: (1999).

[10] John A. Rice. Mathematical Statistics and Data Analysis, third edition. Brooks/Cole, Cen-
gage Learning, 2007. isbn: 9780495118688.

[11] Jeffrey S. Rosenthal. A first look at rigorous probability theory, second edition. World
Scientific Publishing, 2006. isbn: 9789812703705.

[12] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining. Boston:
Pearson Addison Wesley, 2005. isbn: 0321321367.

Het einde van alle tranen.

61

https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.59.381
https://link.aps.org/doi/10.1103/PhysRevLett.59.381
https://link.aps.org/doi/10.1103/PhysRevLett.59.381
https://doi.org/10.1007/s00440-017-0821-x
https://doi.org/10.1007/s00440-017-0821-x
https://doi.org/10.1007/s00440-017-0821-x
http://www.sciencedirect.com/science/article/pii/S0378437198004932
http://www.sciencedirect.com/science/article/pii/S0378437198004932

	Introduction
	Probability tools
	Fundamentals of Probability theory
	Clusters

	Divisible Sandpile Model
	Introduction to the Divisible Sandpile Model
	Torus
	Proposition 1.3
	Convergence speed

	Adding the constant
	Intro: modifying the initial mass
	Subcritical
	Previous proofs
	Influence on the Normal distribution

	Simulation Study
	Modelling the DSM
	Visualisation of the convergence of the sandpile
	Influence on the convergence
	Convergence speed
	Odometer

	Results
	Convergence
	Relation between c and D

	Odometer
	Clusters

	Conclusion
	Discussion
	Matlab code of the movie
	Matlab code of the analysis of C
	Matlab code of the convergence speed tests
	Matlab code of the 1 dimensional convergence speed test

