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Perspectives on Intelligence in Soft Robotics

Vera Gesina Kortman, Barbara Mazzolai, Aimeé Sakes,* and Jovana Jovanova

1. Introduction

The remarkable adaptability and versatility found in various
organisms in nature have long captivated the scientific commu-
nity. Examples include the hyper-redundant arms of cephalopods
enabling multimodal locomotion, the soft bodies of snakes that

allow for navigating through tight spaces,
and the design of the human hand that
allows for precise grasping capabilities.
The properties of these natural systems,
combining soft and rigid materials, enable
them to respond effectively to environmen-
tal changes solely through physical
interactions.

In contrast, conventional man-made
robots typically display limited adaptability
due to their rigid design and construction
from materials like stainless steel, alumi-
num, or titanium, with Young’s moduli
in the order of 109–1012 Pascal.[1,2] As a
result, conventional rigid robots are gener-
ally suitable to perform predefined tasks in
controlled and known environments and
are generally optimized to perform repeti-
tive tasks. To design robots that are able to
perform well in a real-world environment,
which is unknown and highly dynamic, the
classic approach of robot design should be
adapted.

In recent years, a new class of robots
started to emerge that incorporate soft
materials similar to what is found in

nature.[3] Soft robots are typically made of hyperelastic materials,
such as silicone rubbers, with Young’s moduli in the range of
104–109 Pascal.[2] Soft robots typically inherent the ability to
execute tasks in unknown, dynamic, and unpredictable environ-
ments. Just like organisms in nature, they exploit their material
properties and shape to passively interact with the environ-
ment.[2,4] Researchers have also made significant progress in
developing soft robots that possess the unique ability to heal their
body structure, akin to the self-recovery mechanisms observed in
natural organisms.[5,6] This makes soft robots suitable for a wide
range of applications, from infrastructure inspection to space
applications and deep-sea exploration (Figure 1).[3,7] Moreover,
the material properties of soft robots considerably reduce the risk
of harm made during impact,[2] which makes them especially
suitable for human–machine interaction or interaction with del-
icate objects, in medical applications or the agrofood industry.[2]

Unlike their inspiration sources from nature, soft robots
encounter challenges that are inherently associated with their
material properties. These challenges currently inhibit their full
implementation in real-world applications. Generally, the main
challenges these robots encounter are related to their lack of out-
put forces[8] and their unpredictable behavior. The former is
mainly related to the properties of the soft actuators embedded
in soft robots, which generally generate only low contact forces.
The latter is caused by the highly nonlinear behavior of soft
robots and their complex contact situations, both a result of their
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Engineers frequently aim to streamline environmental factors to facilitate the
effective operation of robots. However, in nature, environmental considerations
play a crucial role in shaping the embodiment of organisms. To comply robots
with the complexity of real-world environments, embedding similar intelligence is
key. In the field of soft robotics, various approaches offer insight into how
intelligence can be integrated into artificial agents. A discussed topic is the
intricate relationship between the brain and the body at the core of intelligence in
robots. The goal of this article is, therefore, to unravel the strategies to implement
different types of intelligence currently adopted in soft robots. A classification is
made by making a distinction between agents that adapt to their environment by
1) their adaptive shape, 2) their adaptive functionality, and 3) their adaptive
mechanics. Additionally, the perspectives on intelligence based on their
computational approach are distinguished: centralized computation, decentral-
ized computation, or embedded computation. It is concluded that a tailored
robotic design approach attuned to specific environmental demands is needed.
To unlock the full potential of soft robots, a fresh perspective on embodied
intelligence is described, so-called mechanical intelligence, emphasizing the
robot’s responsiveness to changing external conditions of a real-world
environment.
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soft material properties. The theoretically unlimited degrees of
freedom make standard control methods for rigid robots not
applicable, which challenges precise control.[7] Again, the adap-
tive properties that facilitate the soft robot’s intelligent adaptive
behavior simultaneously impede their actual use in real-world
applications. Currently, compromises are being made by, for
instance, applying moderate softness or only local soft properties,
resulting in moderate contact forces or moderate adaptive
features.

The ability to integrate intelligence into soft robots without
compromising their functionality emerges as a concern. Legg
and Hutter[9] define intelligence as the ability of an agent to achieve
goals in a wide range of environments. The adaptive properties of
soft robots make them promising candidates for incorporating
intelligence, as they can readily respond to a wide range of envi-
ronmental conditions. By designing soft actuators,[10] soft sen-
sors,[11] and even soft logic[12,13] and memory,[14,15] the trend
is to develop one monolithic soft structure as an all-in-one sys-
tem,[16,17] which opens up opportunities for fully autonomous
soft robots. Nevertheless, the full realization of this potential
depends upon overcoming the existing challenges associated
with their soft and highly nonlinear material properties.

In the field of soft robotics, various approaches offer insights
into how intelligence can be integrated into artificial agents. A
topic of debate is the intricate relationship between the brain
and the body at the core of intelligence in robots. Figure 2
presents a visual representation of diverse perspectives concern-
ing intelligence embedded within artificial bodies, each empha-
sizing varying degrees of consideration for the role of the body in
the process of incorporating intelligence into robots. These per-
spectives are defined as follows. 1) Artificial intelligence: A cog-
nitivist view on intelligence with the focus on brain and central
processing.[18] 2) Embodied Intelligence: The investigation of
the tight coupling between an agent’s body and brain.[19]

3) Morphological Intelligence: The reduction of computational cost
for the brain (or controller) resulting from the exploitation of the mor-
phology and its interaction with the environment.[8] 4) Physical
Intelligence: Physically encoding sensing, actuation, control, mem-
ory, logic, computation, adaptation, learning, and decision-making

into the body of an agent.[19] 5) Mechanical Intelligence: An artifi-
cial agent’s degree of responsiveness to changing external conditions
encoded by the programmed states of its body.

The multidisciplinary landscape of this field of incorporating
intelligence in agents led to the adoption of a wide range of tech-
nologies. Other reviews describe advances in perceptive intelli-
gence in soft robotics,[20] machine learning methods for soft
robotics,[21] the bioinspired evolution in soft robotics,[22] or sum-
marize the research of (modeling) embodied intelligence in soft
robotics.[23–25] This review paper stands out by incorporating and
comparing all the major perspectives on intelligence in soft
robotics. It not only discusses and compares these perspectives,
but also categorizes the strategies typically employed by soft
robots. The goal of this article is, therefore, to unravel the strate-
gies to implement different types of intelligence currently
adopted in soft robots. We uniquely center our attention on
the design of robots tailored for intricate environments through
embodied intelligence. By doing so, we aim to offer valuable
insights into state-of-the-art developments and pave the way for
future development in this rapidly evolving multidisciplinary
field.

The structure of this review is organized as follows. Section 2
delves into the various layers of intelligence depicted in Figure 2
and listed above, moving from the outermost to the innermost
layers. Section 2.1 through 2.3 concentrate on the official defini-
tions of the different perspectives, clarified with examples.
Section 2.4 provides a comparative analysis of the computational
systems used to embed intelligence in soft robotics. In Section 3,
we describe a fresh perspective on intelligence, called mechanical
intelligence, which emphasizes responsiveness to environmental
requirements, see Figure 2.

2. Peeling the Layers of Intelligence

2.1. Artificial Intelligence

Artificial intelligence (AI) mainly focuses on the computational
engine of the robot.[18] This approach is also known as computa-
tional intelligence, the classic approach of intelligence, good old-
fashioned AI, or the symbol processing approach.[26] In this
approach, the robot’s body is usually considered a source of noise
that needs to be compensated by its software, whereas the hard-
ware of the robot is usually perceived as the facilitation of the
software.[18] Robots based on AI are generally successful in fac-
tory environments with controlled conditions, such as situations
involving stable movement, constant geometries, constant orien-
tation, or known terrain.[18] Examples are industrial robotic
arms[27] or humanoid robots such as the humanoid Asimo devel-
oped by Honda.[4,28] Current advancements in AI demonstrate
robots that can handle unstructured terrain by, for example, rein-
forced learning. However, these robots are associated with high
computational costs and lack the flexibility to perform different
autonomous functionalities in unknown environments.[29]

2.2. Embodied Intelligence

A more modern approach to intelligence was introduced in the
mid-1980s, called embodied intelligence or embodied AI. This

Figure 1. Soft robots for deep-sea exploration and terrestrial applications
passively adapting to the changing circumstances of the challenging
environment.
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approach provides a new perspective on intelligence focused on
the complex interaction between the robot’s embodiment and
environment.[18] In this perspective, the robot’s physical body is
designed in such a way that it eases its internal processing when
interacting with the environment. In other words, the robot’s
control system is mediated by the mechanical properties and
geometry of its embodiment.[30] Robots incorporating embodied
intelligence are typically more resilient in real-world applications.

Noticeably, organisms in nature master embodied intelligence
to respond to real-world situations. Their development is the
result of a long evolutionary process. Similarly, the embodied
approach emphasizes that the development of robots should
focus on their brain–body coevolution, where the brain and body
should evolve together. The embodied artificial evolution
describes that robots might evolve out of a large pool of genotypes
considering materials, components, and robot systems.[31] This
would result in powerful robots with their material and morpho-
logical composition properly exploited for their task-environment
performance.[31,32] Morphological computation is a central con-
cept in the field of embodied intelligence,[33] of which Pfeifer
et al. gave the following definition: morphological computation is
based on the processes conducted by the body, that otherwise would be
performed by the brain.[4,18] However, the concept of embodied
intelligence can be drawn further as, in essence, its focus lies in
investigating the tight coupling between an agent body and brain.[19]

We identified two approaches for incorporating embodied
intelligence into an agent: 1) employing either a decentralized
computational system or 2) employing an embedded computa-
tional system. The latter approach is particularly widespread
in soft robots. To guide new researchers in the field of embedded

computation, we identified three primary strategies currently
used to apply embedded computation in soft robots, which will
be further discussed below.

2.2.1. Decentralized Computation

A way to incorporate embodied intelligence in an agent is by
applying decentralized computation, which is in contrast with
the centralized computation approach related to AI. Agents using
decentralized computation embed conventional controllers
locally within their embodiment. A decentralized control system
gathers information from local feedback and control signals, with
less emphasis on the centralized global state of the agent.[34] An
example of an agent that integrates a decentralized control and
feedback system is the octopus. The octopus would be burdened
with a highly complex system to control its hyper-redundant
arms when its processing would only be performed centrally.
The specially arranged anatomy of the octopus’ nervous system
shows that the majority of its nerve cells are located at the periph-
ery, which is close to the motor and sensory information flow
from the arms[35] (Figure 3A). This means that the processing
of the arm’s motor control is partially off-loaded from the central
nervous system toward the peripheral nervous system,[35] as the
neuromuscular system of the arm is able to autonomously exe-
cute motor programs.[36] This is emphasized by the octopus’ arm
which, after being amputated, remains capable of activating motor
programs by feedback control due tactile sensory stimulation.[37]

In summary, the decentralization of the arm’s control system off-
loads the octopus’ overall central control system.

Figure 2. Schematic overview of the different perspectives of intelligence in artificial agents. At the left, the official definitions of the different concepts of
intelligence are stated. As the core, the concept of mechanical intelligence is presented, which is a fresh perspective on intelligence emphasizing the
robot’s responsiveness to changing external conditions of a real-world environment. The layers transition from an emphasis on central processing
(outermost) to a focus on embedded processing (innermost).
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Next to these complex control systems, decentralized compu-
tation can also be observed in simple reflexes, such as the patellar
reflex. Reflexes showcase a local network of sensory neurons and
motor neurons that facilitates a fast response to a stimulus. In the
case of the patellar reflex, the stretch of the patellar tendon results
in an automatic contraction of the quadriceps muscle. This
mechanism, responsible for maintaining balance during walk-
ing, functions without interference from the central brain.
Reflexes are often useful in situations that require rapid and
autonomous responses, for instance, during emergencies.

Moreover, a decentralized arrangement of sensory structures
could enhance the performance of the feedback system. For
example, the nonhomogeneous arrangement of the light-
sensitive cells in the compound eyes of house flies compensates
for the phenomenon of motion parallax.[38,39] In plants, command
centers operate at the level of apexes. This arrangement serves as
inspiration for robots that perform lateral motion detection.

Another example of space-efficient imaging can be found in
the human retina, in which the density of photoreceptors is high-
est at the center and gradually decreases toward the periphery of
the visual field[40] (Figure 3A). This results in an optimal balance
between resolution and required computational power. By focus-
ing the high-resolution region toward the point of interest, this
arrangement ensures an optimal visual information flow.[40]

In addition to using decentralized computation, embodied
intelligence can be achieved by embedding computation directly
into the body of an agent, a process we define as embedded com-
putation. Unlike decentralized computation, which involves inte-
grating conventional controllers or central computation into the
embodiment, embedded computation involves embedding intel-
ligence in the embodiment itself. We made a classification of the
main strategies that are currently employed to apply embedded
computation in soft robots. These soft robots are divided into
three distinct groups.

Figure 3. Illustration of embodied intelligent agents. A) Left: The decentralized control system of the octopus, in which the central brain and optical lobes
are visualized in blue and the peripheral nerve system in green. Right: The decentralized sensing system of the eye, in which the decentral arranged
photoreceptors are visualized in green. B) Illustration of embodied intelligence through adaptive shape. Top: The passively adaptive grip of a soft gripper
that adapts to different target objects. Bottom: A pine cone opens its scales due to the humidity of the environment. C) Illustration of embodied intelli-
gence through adaptive functionality. Top: Earthworm adapting its shape to optimize its functionality during locomotion in air and locomotion in soil. It
has been shown that earthworms only locomote using the first segments in soil. Bottom: Soft microrobot adapting its functionality due to its embedded
magnetic particles and pH-sensitive materials. D) Illustration of embodied intelligence through adaptive mechanics. Top: Tendril coil serving as a spring-
damper system to support the plant. Bottom: Variable stiffness soft gripper which adapts its stiffness when vacuum is applied.
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Adaptive Shape: Agents in this category embed the ability to
adapt their physical configuration in response to environmental
cues. Their functionality is facilitated or improved by these adap-
tive properties.

Adaptive Functionality: Agents in this category dynamically
adjust their functionality depending on situational demands,
which results in multifunctional agents.

Adaptive Mechanics: Agents in this category embed the ability
to adapt their mechanical properties to the conditions of a new
environment.

It must be noted that the groups are not mutually exclusive, as
certain agents can exhibit characteristics or features that align
with multiple categories concurrently. In such cases, these
agents possess attributes or features that place them within
the scope of more than one category, indicating an overlap or
intersection between the defined groups, such as a variable stiff
soft gripper that both adopts an adaptive shape and adaptive
mechanics or an earthworm that both adopts adaptive shape and
adaptive functionality, as explained in more detail below. The
goal of these groups is not primarily to establish a distinct cate-
gorization, but rather to provide inspiration and enhance clarity
of the different intelligent approaches found in nature and arti-
ficial agents.

2.2.2. Embedded Computation by Adaptive Shape

Generally, soft robots are associated with embodied intelligence
due to their soft material properties that adapt to the environ-
ment. Soft pneumatic multifingered grippers are typical exam-
ples of robots that show a control system with embedded
computation by passively adapting their shape to the environ-
ment. These grippers’ behavior is defined by the interaction
between their body and the target object. The compliant proper-
ties of the individual pneumatic fingers shape the gripper pas-
sively around the pressure points of the targeted object, which
results in a universal underactuated gripper[8,41] (Figure 3B).
An example of such a gripper making use of contact-driven defor-
mation is the soft gripper developed by Ilievski et al.[42] which is
able to lift various shaped objects, such as a raw egg and a mouse.
Other examples are the multifingered robot hand developed by
Suzomori et al.[43] or the soft pneumatic gripper for delicate sur-
gical manipulation developed by Low et al.[44] These soft pneu-
matic fingers are also known as fluidic elastomer actuators,
PneuFlex actuators, or Pneumatic Networks (PneuNets).[41]

Next to pneumatic actuation, these soft manipulators can be actu-
ated by tendons, shape-memory materials and other active mate-
rials such as hydrogels, or they can be fully contact-driven.[41,45]

Their soft material properties make them passively adaptive to
their environment, easing their internal processing. Embedded
feedback control is shown in the soft pneumatic fingers devel-
oped by Joshi and Paik.[46] These pneumatic fingers estimate
their output force and displacement without additional sensors,
but by the use of their intrinsic sensing capabilities. Due to their
compliant properties, the generated output force and finger dis-
placement result in internal pressure and volume change.[46]

This means that the internal properties of the pressure and vol-
ume provide feedback regarding the state of the soft pneumatic
finger, so the state can be adapted to grasp an object safely.

Another example of a soft gripper that incorporates a feedback
system with embedded computation is developed by
Gossweiler et al.[47] Due to the embedded mechanochronic poly-
mer, this gripper reacts to stress by changing its color. The color
of mechanochronic polymer changes depending on the gripper’s
level of bending. This enables easy assessment of whether the
gripper is currently in a gripping state or a releasing state.

In nature, plants offer a wide variety of inspiration for the inte-
gration of embodied intelligence in soft bodies, as plants show
intelligent behavior within a brainless body, which means cen-
tralized computation is not available.[48,49] There are a large vari-
ety of plants that react to environmental stimuli by a shape
change.[49] An example is the Venus flytrap, which reacts to
an external force, for example, the touch of an insect, by closing
its trap due to its bistable joint.[50] This mechanism has served as
inspiration for a variety of soft robots, such as the compliant
shading device Flectofold developed by Korner et al.[51] the mag-
netically actuated bistable robot developed by Zhang et al.[52] the
temperature-actuated snapping hydrogel sheet developed by Fan
et al.[53] the hygroscopic bilayer structure developed by Lunni
et al.[54] or the pneumatically actuated bistable gripper developed
by Pal et al.[55] For a systematic overview of artificial Venus fly-
traps, we would like to refer to the study of Esser et al.[56] Many
plants deform passively by taking up water from the environment
to swell their hygroscopic cells.[49] Depending on the architecture
of these hygroscopic cells in combination with nonswelling cells,
bilayered structures are created that show specific deforming
behavior. Examples of plants stimulated by humidity are pine
cones, which seed scales close when subjected to a humid envi-
ronment and open when subjected to a dry environment[49]

(Figure 3B). The direction of deformation of the scales is encoded
in the embedded fibers. Nonliving agents, such as pine cones or
plant seeds,[57] are of particular interest as their behavior is
completely dependent on their embedded computation. This
phenomenon served as inspiration for the development of auton-
omous soft robots, such as the 4D-printed flap structures that
autonomously deform due to changes in environmental humid-
ity.[58] Climbing plants exhibit a similarly remarkable manifesta-
tion of embodied intelligence, as they effectively determine their
growth direction and attachment points despite the absence of a
central nervous system. Similarly, in the apex region of plant
roots, the roots display an ability to “decide” their growth direc-
tion. The embedded nature of these decision-making processes,
especially in the case of roots lacking visual perception, high-
lights the intricate and distributed mechanisms at play.

2.2.3. Embedded Computation by Adaptive Functionality

Soft robots possess the unique ability to deform their bodies due
to their material properties, enabling them to function differently
in varying environments. This principle finds parallels in nature,
where certain organisms showcase the capability to deform their
bodies to achieve adaptive functionalities. For instance, consider
the earthworm, which exhibits remarkable deformable body pat-
terns depending on the desired function, whether it is locomo-
tion or burrowing (Figure 3C). When locomoting, the earthworm
extends its head while shortening its bottom to avoid slipping.[59]

During burrowing, the earthworm anchors its bottom while
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extending and creating space for its head.[60] These intricate
movements are achieved through localized radial extensions
or elongations of its body. By strategically contracting its muscles
in various wavelike patterns, it can achieve specific deformations
that suit the intended functionality. This principle served as
inspiration for the earthworm-inspired soft robot developed by
Ozkan-Aydin et al.[61] This robot can alternate between anchoring
and locomotion by respectively undulating its bottom or peri-
staltically deforming its full body. An even more drastic example
from nature that shows embodied intelligence by adaptive
functionality is the caterpillar-to-butterfly metamorphosis, in
which a transition is made from locomotion on land to locomo-
tion in the air.[62]

An example of a field in which multifunctional bodies proved
to be useful is the field of microrobots, as multifunctionality
allows for miniaturization. These microrobots respond to differ-
ent environmental stimuli to actuate different functionalities.
Xin et al.[63] developed a microrobot for localized cancer cell treat-
ment that opens its gripper in a low-pH environment, closes the
gripper in a higher-pH environment, and locomotes using a
magnetic field (Figure 3C). The robot’s response to its environ-
ment mediates its control system, which makes the actuation of
different functional modes less demanding. Also, the embedded
stimuli-responsive materials mediate the robot’s feedback sys-
tem, making the robot independent of an external power source.
An example of a multifunctional soft sensor is the fingerprint-
inspired e-skin system for sliding detection developed by Chen
et al.[64] Four embedded spiral electrodes are patterned in such a
way that the amount of skin deformation provides information
about both the sliding direction and the displacement and speed.
Embedding such a multifunctional sensor in the feedback sys-
tem would allow a soft robot for further miniaturization.

Other examples showing embodied intelligence by adaptive
functionality are the mechanical creatures called “Strandbeesten”
by Theo Jansen. These kinetic machines are designed in such a
way that they walk independently powered by the wind. They
autonomously change their direction depending on the environ-
ment. Some creatures can even change their locomotion mode
from walking to flying. These machines’ embodiment takes over
their control, switching the locomotion mode, embedding an
embodied intelligence.[19] They work in cooperation with the
environment, instead of working against the disturbances asso-
ciated with the environment.

2.2.4. Embedded Computation by Adaptive Mechanics

The third category of soft robots that show embedded computa-
tion by their adaptive mechanics consists of a group of soft robots
that make use of their adaptive properties to adapt the way forces
act on their body or are generated by their body in different envi-
ronments. Nature shows the same principle in, for example, the
tendril coils that some plants use to support their weight. These
tendrils reach out to detect potential support structures in a
straight shape and deform into a coiled shape when they reach
the support[65] (Figure 3D). The coiled tendril serves as a spring-
like and energy-damping structure supporting the plant.[49] This
mechanism serves as inspiration for coiling soft robots, which
are often built from bilayered structures with a strain mismatch

whose equilibrium state is controlled by certain stimuli, for
example, heat,[65,66] current,[67] or pneumatics.[68]

Another example found in nature showing embedded compu-
tation by its adaptive mechanics is the self-stabilizing feature of
the muscle–tendon system in the leg. The elastic properties of
the tendon and muscle passively adapt the angulation of the knee
during impact with the ground, corresponding to the irregulari-
ties of the terrain.[18] The intrinsic dynamics of a body are
exploited to reduce the complexity of its control system.[69] This
feature of incorporating self-stabilizing behavior is also referred
to as intelligence by mechanics.[70] Holmes et al.[71] even hypothe-
sized a feedforward control loop of the muscle activation for leg-
ged animal motion by preflexes. An artificial example showing
embodied intelligence by self-stabilizing properties is the hexa-
pedal robot developed by Cham et al.[72] This hexapedal robot
makes use of the mechanical reflexes of its complaint knee joints
to adapt its posture passively to the terrain. This reduces the
computational load related to the positioning of the robot’s legs.

Soft robots embedding variable stiffness also show embodied
intelligence by adaptive mechanics. A classic example is the
jammed-based coffee balloon gripper.[73] The gripper deforms
passively around the target object in its soft state, adopting
embedded computation by an adaptive shape. After the applica-
tion of a vacuum, the coffee particles get packed and the gripper
transitions toward its stiffened state (Figure 3D). The initial com-
pliant properties of the gripper are exploited to reduce the grip-
per’s controlling load, whereas the stiff properties of the gripper
are needed to create sufficient contact forces. Here, the contribu-
tion of the gripper’s geometry and materials is dominant in
reducing its computational load.[4] Another soft robot making
use of variable stiffness in a more localized manner is the soft
robot arm inspired by the octopus developed by Laschi et al.[74]

Similarly to the octopus arm, the arm is divided into muscles,
where longitudinal muscles are represented by cables and trans-
versal muscles are represented by shape memory alloys (SMA).
Locally activating the SMA actuators and pulling the longitudinal
cables result in a local increase in stiffness.[74] The soft properties
of the arm provide it with an adaptive shape corresponding to the
environment, which is counterbalanced by its local stiffening that
increases the output force locally.[30] This is, among others, use-
ful in gripping applications. Cianchetti et al.[75] demonstrated
that this principle also applies on a smaller scale. They demon-
strate a soft arm with dimensions applicable for minimally
invasive surgery, incorporating variable stiffness by granular
jamming. In the soft state, the arm is able to move around
obstacles, but when needed, the arm transitions into its jammed
state to increase its payload. Next to reducing the computational
load of an agent, variable stiffness can be used to improve the
performance of the feedback system. For example, Yue et al.[76]

developed a multi-degrees-of-freedom force sensor in which the
sensor sensibility can be adjusted by changing the stiffness of its
pneumatically actuated variable stiff structure. With this intrinsic
range of sensing, the sensor is suitable for a wide range of
applications.

An often-cited example of a robot incorporating embodied
intelligence is the passive dynamic walker.[18,77,78] This two-
legged robot walks down a predetermined slope without the need
for any control. The mechanical construction of the robot is
designed in such a way that the walking behavior is fueled only
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by gravity. This robot makes optimal use of morphological com-
putation by eliminating the need for any internal processing.
There is an ongoing debate surrounding the passive dynamic
walker’s actual capability to perform morphological computation
or whether it is simply a passive mechanical process.[79] To avoid
the discussion of the interpretation of the term computation,
Ghazi-Zahedi[77] proposed an alternative term for morphological
computation, which is morphological intelligence, defined as the
reduction of computational cost for the brain (or controller) resulting
from the exploitation of the morphology and its interaction with the
environment.[77] The term computational cost is applicable in a
larger context compared to the definition of embodied computa-
tion. It refers not only to the amount of computation encoded in
the body but also to the energetic cost.[77] In nature, this kind of
intelligent behavior is, for example, shown by fish swimming
behind obstacles to optimize their energy expense by resonating
upcoming vortices in their body.[80] The vortices excite vibration
modes which trigger resonance and motion. They use the
dynamics of their flexible body to reduce the energetic cost of
swimming, therefore embedding a morphological intelligence
in their body. Other examples are V-shaped falling paper sys-
tems, whose shape can be optimized to minimize the falling
speed.[81] The design of a simple piece of paper can impact its
interaction with the environment by adapting the drag force gen-
eration. This unique quality allows the paper to showcase a form
of embedded intelligence resulting from its morphology.[81]

2.3. Physical Intelligence

An approach closely related to embodied intelligence is physical
intelligence.[19] Physical intelligence describes the understanding
of how a body creates intelligence physically while interacting
with the environment. Physical intelligence is defined by Sitti
et al.[19] as physically encoding sensing, actuation, control, memory,
logic, computation, adaptation, learning and decision-making into
the body of an agent. Physical intelligence differs from embodied
intelligence by essentially focusing on the intelligence encoded
in the body, whereas embodied intelligence focuses on the tight
coupling between an agent’s body and brain.[19]

A physically intelligent example from nature showing
improved functionality through its embodiment is the foot of
a gecko. The contact surface of the foot is covered by hierarchical
microstructures, which gives the gecko the ability to climb verti-
cally[79] (Figure 4A). The microstructure creates tight contact
between the feet and the underlying terrain, as it adapts to
the irregularities of the terrain.[79] This results in sufficiently
powerful van der Waals adhesion to walk on vertical surfaces.[82]

Geckos would not be able to exhibit this climbing functionality
without their specialized morphology, hierarchical arrangement
of the setae, orientation of the air, and distributed forces (among
others), which means that the gecko’s foot morphology embeds
physical intelligence. Examples of physically intelligent soft
robots inspired by the gecko are, for instance, the soft unidirec-
tional robot developed by Wang et al.[83] the soft adhesive pads
developed by Aksak et al.[84] or the multifinger gripper with
gecko-inspired adhesives developed by Ruotolo et al.[85] Physical
intelligence can also appear among agents if their collective
physical interactions create intelligent behavior. In nature, this

appears as result of the swarm behavior of ducklings. Here,
the ducklings use the vortices generated by the other ducklings
to lower the metabolic rate per individual duckling. Examples of
soft robots showing physical intelligence through swarm behav-
ior are the microrobots developed by Dekanovsky et al.[86,87] Their
local interaction with each other results in the weaving of spider-
like webs that adsorb hormonal pollutants from aqueous
environments.[76]

An example of a soft robot showing physical intelligence
through functionality facilitated by its morphology is the soft kir-
igami crawling robot developed by Rafsanjani et al.[88] The skin of
this snake-inspired robot contains kirigami cuts, which provides
directional frictional properties to the outer surface of the robot
(Figure 4B) and results in efficient crawling gaits.[88,89] Without
these integrated kirigami structures, the robot could not perform
this crawling locomotion mode, which means that the function-
ality is encoded in the design of the robot’s body. These artifi-
cially designed structures that show unique properties through
their design are also called metastructures.[19] Other unique
properties they could include are, for instance, vibration

Figure 4. Illustration of physical intelligent agents. A) The hierarchical
structures consisting of setal arrays, containing setae which terminate
in spatulae on the feet of geckos give them the ability to climb vertically.
B) The Kirigami soft robot developed by Rafsanjani et al.[88] can climb hills
due to its kirigami skin.
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attenuation, electromagnetic behavior, photonic behavior, or a
negative poison ratio. Embedding metastructures in soft robots
provides the body with additional functionalities that it originally
would not contain, resulting in a physically intelligent body.

Soft robots could also embed physical intelligence by encoding
logic, memory, or control in their embodiment. Examples of the
former are the circuits developed by Preston et al.[12] which exist
out of soft pneumatic digital logic gates. By making use of a bista-
ble valve to encode NOT, AND, and OR digital logic, these logic
gates have the potential to serve as the base for completely soft
autonomous robots. These soft robots could even display their
stored memory on a soft bubble display.[14] Other examples of
soft robots embedding, logic, memory, and control are the soft
robots with integrated fluidic circuits developed by Mahon
et al.[15]

2.4. Intelligence by Different Computational Systems

The overlap and differences between the different perspectives
on intelligence can best be understood by their control system
architecture. With control or computation, we mean an executive
operation that has some steady state and once the initial or
boundary conditions change then an algorithm is executed lead-
ing to a calculated output based on predetermined rules. A dis-
tinction categorizes agents based on the following computational
approaches.

2.4.1. Centralized Computation

In this approach, the control process is centralized, involving a
single controller that sends input signals to a corresponding actu-
ator. In a closed-loop system, feedback is provided by a single-
output signal toward a separate sensor. Centralized computation
is associated with the AI layer in Figure 2.

2.4.2. Decentralized Computation

An agent that involves decentralized computation distributes
some computational load of the central control system across
multiple separate controllers. In closed-loop configurations,
the feedback system is enhanced by replacing a centralized sens-
ing unit with multiple distributed sensing units. This arrange-
ment can lead to improved agent control, an improved sensory
information flow, and faster response times. The example of the
octopus was given, in which the motor control of the arms is par-
tially offloaded from the central nervous system toward the
peripheral nervous system. Decentralized computation is associ-
ated with the embodied intelligence layer in Figure 2.

2.4.3. Embedded Computation

Agents employing embedded computation integrate either their
control process in the actuator, their sensing mechanism in the
actuator, or they embed both within the actuator itself. An agent
can incorporate embedded computation by providing the
embodiment with an adaptive shape, adaptive functionality,
and/or adaptive mechanics. Agents are empowered to function
autonomously and the opportunity is provided to eliminate the

need for an external power source. For this reason, embedded
computation is the only computational system that is adopted
by nonliving organisms that still show adaptive behavior. The
example of a pine cone was given, in which both the sensing
of the environmental humidity and the control of its bending
behavior are embedded in the material of its scales. It must
be noted, however, that the cellulose in the scale is not a stand-
alone sensor. Embedded computation is associated with the
embodied intelligence layer, the morphological intelligence layer,
and the physical intelligence layer in Figure 2.

Figure 5 shows control schemes associated with the different
computational systems. Each computational system contributes
to various levels of autonomy and control efficiency. It also
presents how the types of intelligence shown in Figure 2 relate
to each other. AI is the only type of intelligence associated with
centralized computation whereas the other types of intelligence
are associated with embedded computation or decentralized
computation. The primary difference between embodied intelli-
gence, morphological intelligence, and physical intelligence lies
in their emphasis on how embodiment reduces the central proc-
essing load. All three perspectives involve embedded computa-
tion, integrating control or sensing within the embodiment.
However, an embodied intelligent agent also enhances the cou-
pling between its control system and embodiment by distributing
the computational load across multiple locations within the
embodiment. This approach offloads the central system or
improves the feedback system, aligning with decentralized
computation.

3. Environmental Responsive Intelligence

3.1. Intelligence of Soft Robots

Soft robots present an interesting case as they are framed as
examples that embody both embodied intelligence and physical
intelligence. This is often explained by their soft material prop-
erties that facilitate embedded computation that makes them
suitable for navigating unpredictable and dynamic environ-
ments. However, in reality, these soft properties sometimes
show inherent challenges to the robot’s overall functionality. A
typical pneumatically driven soft gripper can be taken as an illus-
tration, which excels in its ability to shape passively to a diverse
variety of objects. Although soft grippers demonstrate adaptabil-
ity, a significant limitation arises in balancing between maintain-
ing sufficient gripping forces and preserving their soft and gentle
nature. It can be stated that a balance should be found wherein an
intelligent soft robot should not only demonstrate an adaptive
behavior but also effectively perform its core functionalities. A
soft gripper should possess the capability to respond to changes
in the shape of the targeted object while ensuring it sustains suf-
ficient gripping forces. This would, for instance, mean that a soft
gripper not only conforms its shape to the targeted object but also
modulates its stiffness to maintain optimal load forces under a
wide range of conditions.

Environmental considerations play a crucial role in shaping
structural adaptations. Fully soft bodies, such as those observed
in octopuses, exhibit optimal functionality within aquatic envi-
ronments where arm density is equivalent to water, which
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minimizes energy expenditure. Conversely, in terrestrial set-
tings, rigid skeletal frameworks are indispensable for structural
integrity, highlighting the environment-specific requirements in
robotic design. Notably, the scale of a robot is contingent upon its
environment; fully soft designs, operational in terrestrial envi-
ronments, adopt smaller sizes to mitigate gravitational impact.
The nuanced interplay between structural rigidity, environmen-
tal context, and efficiency advocates for tailored robotic designs
attuned to specific environmental demands.

As of now, engineers often seek to streamline environmental
factors to facilitate the effective operation of robots. Historically,
the simplification of environmental factors was necessitated by
the prevailing technologies. However, contemporary advance-
ments in technology present a landscape wherein opportunities
have emerged to integrate environmental complexity into the
robot design process, which becomes imperative when targeting
real-world applications. To develop robots capable of thriving in
such diverse and challenging settings, the adoption of embodied
intelligence is paramount. This entails the meticulous design of
the robot’s physical form to harmonize it with its specific opera-
tional environment. Consequently, engineers must possess fore-
knowledge regarding the robot’s intended responses to the
environment.

3.2. Mechanical Intelligence

To achieve responsive behavior, soft robots would need to incor-
porate so-called mechanical intelligence. We define this term as
an artificial agent’s degree of responsiveness to changing external con-
ditions encoded by the programmed states of its body.Here, the term
external conditions refers to the set of requirements linked to the
agent’s working environment for maintaining its functionality.
As the working environment changes, the agent needs to adjust
and meet new corresponding requirements. In other words,
responsive agents can adapt to suit different working environ-
ments, ensuring they continue to operate effectively. These adap-
tations might involve changes in body mechanics, shape, or even
functionality. Responsive behavior is embedded in the design
of the agent, meaning that various responsive states are

intentionally programmed during its design process. This can
also be referred to as control by design. The term programmed states
refers to the agent being designed to respond in predetermined
ways to new sets of requirements, ensuring its functionality
remains unimpeded. In essence, the agent’s degree of respon-
siveness is encoded through these programmed states. A higher
number of states embodying different responses would indicate
greater mechanical intelligence in the agent, as it can achieve its
goal in a wider range of environments. This perspective on soft
robots’ responsiveness differs from the embodied intelligence,
morphological intelligence, and physical intelligence approach,
as it primarily focuses on the degree of the agent’s responsive-
ness to the environment and accompanying external stimuli.
Therefore, it is important to distinguish this from studies that
use the termmechanical intelligence as a synonym for embodied
intelligence or physical intelligence.[90–92] Mechanical intelli-
gence aligns with an embedded computational system and the
various strategies for implementing such a system (adaptive
shape, adaptive functionality, and adaptive mechanics), with
the addition that the artificial agent actively responds to changes
in its environment in a preprogrammed way. Our perspective
aligns with the perspective on mechanical intelligence given
by Khaheshi and Rajabi,[93] in addition, offers a detailed defini-
tion and view of the implementation field, and focuses specifi-
cally on the preprogrammed responsiveness of an artificial agent.

As an example, a regular soft robotic gripper would exhibit
mechanical intelligence if it could adapt its shape to different
objects without compromising its functional performance.
Zhou et al.[94] developed such a gripper with soft fingers filled
with granular particles that jam at locations where the gripper
contacts the target object. This adaptive mechanism allows the
gripper to accommodate larger objects and maintain its gripping
performance passively. Similarly, another example of mechanical
intelligence is demonstrated in the reconfigurable miniature fer-
rofluidic robot developed by Fan et al.[95] This soft robot adapts its
shape by stretching and splitting into multiple smaller robots,
enabling it to navigate through variable spaces effectively, show-
casing responsive behavior. Shah et al.[62] created a reconfigura-
ble robot that adapts its locomotion mode based on the terrain,

Figure 5. Schematic of computational system architectures. Green: Centralized computation associated with an artificial intelligent agent. Blue:
Decentralized computation associated with an embodied intelligent agent, distributing computational load of the central control system across multiple
separate controllers or a local controller. Red: Embedded computation associated with embodied intelligent, morphological intelligent, or physical intelli-
gent agents, driven by an integrated control and/or sensing system into the body of the agent.
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using either rolling or inchworm motion to achieve movement
on flat and inclined surfaces, respectively. This responsive func-
tionality exhibits mechanical intelligence, allowing the robot to
adapt to changing environmental conditions. The robots devel-
oped by Hu et al.[96] are yet another example of mechanical intel-
ligence that adapts its locomotion mode depending on the
environment. Here, the magnetic field of the environment
directly controls the locomotion mode of small-scale soft robots.
This way, the robots are able to walk, swim, jump, roll, or crawl,
depending on the demands of the environment. These examples
illustrate how soft robots can embed mechanical intelligence
through their responsive mechanics and functionalities,
enabling them to adapt and interact effectively with their
environments.

3.3. Enablers of Mechanical Intelligence

In order to facilitate an agent with mechanical intelligence, the
agent should be able to respond to the environment by its pre-
determined responsive states. This means it is vital to anticipate
the changing demands of the environment. During operation,
the soft robot should ideally autonomously gather information
from the environment through integrated sensors, subsequently
translating this data into appropriate responses. To make optimal
use of the agent’s embedded intelligence, it should be encour-
aged to implement a control scheme that is associated with
embedded computation in which both the control and sensing
system are directly integrated within the agent’s body. This
type of control system has an advantage that no external power
source is needed, thereby enabling the agent to operate fully
autonomously.

The soft robots embedding fluidic circuits developed by Laake
et al.[97] are an example of such an autonomous agent that inte-
grates both its control system and sensing system. These robots’
soft actuators are connected to specialized soft valves. These
valves transform a continuous inflow of air into cyclic activation,
and by connecting the actuators in parallel, the actuators can be
stimulated in various sequences. The robot can switch between
sequences based on physical cues from the environment,
enabling it to autonomously respond to changing conditions.
For instance, an impact force could prompt a shift in gait to navi-
gate past obstacles or trigger drug release inside the body.

A strategy to embed mechanical intelligence would be to inte-
grate materials that respond to external stimuli such as heat,
light, pH value, or magnetism, also called smart materials, into
the soft robot. Smart materials are already implemented in com-
mercial mechatronic applications.[98] Recently published reviews
show the upcoming interest and potential of smart materials
integrated into soft robots,[99–103] microrobots,[104] or even smart
textiles.[105,106] Programming soft robots with flexible metamate-
rials provides additional opportunities to embed soft robots with
responsive states.[107,108] Energy-harvesting soft materials pro-
vide the potential for the development of autonomous soft robots
without the need for external power sources.[109]

An example of a soft robot embedding mechanical intelligence
by smart materials is the light-driven artificial flytrap developed

by Wani et al.[110] This flytrap integrates a structure consisting of
a light-responsive liquid-crystal elastomer. This material detects
an object when it enters its field of view and, consecutively, ini-
tiates bending due to light-induced rearrangement of its molec-
ular alignment, causing the flytrap to close. This way, this soft
device autonomously recognizes objects and initiates closing
without the need for an external power source. Other examples
of soft robots embedding stimuli-responsive materials are the
soft swimming robots developed by Karshalev et al.[111] These
swimmers change their color to adapt their visibility in different
environments, controlled by environmental stimuli. For instance,
glow-in-the-dark swimmers start to emit green and purple light at
night in response to solar light charging during the day.

Mechanical metamaterials show great potential for embed-
ding mechanical intelligence into soft robots. Pressure actuation
is widely used to actively change the properties of mechanical
metamaterials, allowing for easy integration with conventional
pneumatically actuated soft robots. When inflated of deflated,
these metamaterials can change their shape, functionality, or
mechanical properties due to the presence of internal channels
or cavities inside a soft matrix.[112] For example, the actuator
developed by Pan et al.[113] features local auxetic and nonauxetic
structures that cause bending upon inflation. Similarly, the
metamaterial developed by Chen et al.[114] changes stiffness
when pneumatically changing the shape of integrated holes.
Furthermore, by embedding smart materials in these mechanical
metamaterials, these materials can become responsive to external
stimuli. Mishra et al.[115] demonstrated this with a temperature-
responsive soft fluidic finger that bends at low temperatures
(<30 °C) and expels fluid at high temperatures (>30 °C), result-
ing in a gripper capable of mechanically and thermally manipu-
lating heated objects based on the environmental conditions.

The design space for soft robots incorporating mechanical
intelligence is characterized by the dynamic interplay between
geometry and material properties. By adjusting the geometry of
these robots, it becomes possible to provide them with new
properties. For instance, designing a body as an airtight mem-
brane with embedded particles allows the stiffness of the entire
body to be modified through vacuum application. Model-based
designing can provide fast iterations. New possibilities for com-
plex geometries arise with the use of 3D and 4D printing.[116]

Furthermore, the incorporation of specific materials can further
enhance the capabilities of geometries. For instance, the inte-
gration of smart materials enables direct responsiveness to the
environment or facilitates adjustable stiffness. Roh et al.[117]

demonstrated a 4D-printed magnetically actuated soft gripper
featuring a wavy structure that exhibits complex movements
like contracting, grabbing, and releasing with a simple input
force. These movements are feasible due to the combination
of the gripper’s wavy geometry and magnetically responsive
materials. The potential of the design space for mechanical
intelligence integration is immense, bridging various disci-
plines and offering a unique intersection of cutting-edge tech-
nologies. Figure 6 shows a schematic visualization of the
mentioned potential enablers of mechanically intelligent soft
robots.
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4. Conclusion

The goal of this review article is to present an overview of the
current strategies focused on integrating intelligence into soft
robots. Different perspectives on intelligence were explored
and we discussed different computational systems that support
these different perspectives. Furthermore we classified strategies
to provide soft robots with intelligence through their embodi-
ments as follows: 1) intelligence by an agent’s adaptive shape,
2) intelligence by an agent’s adaptive functionality, and 3) intelli-
gence by an agent’s adaptive mechanics. Examples showed in
what diverse ways these adaptive properties can be reached,
where nature often functions as an excellent source of inspira-
tion. The focus lies on the design of robots tailored for intricate
environments through embodied intelligence.

It is important to acknowledge that the definitions of different
perspectives on intelligence are subject to change over time, and
the boundaries between different approaches tend to overlap.
With the continuous growth of the soft robotic community, a
diverse range of insights and technologies are being adopted.
While this expansion broadens the horizons of this field, it also
introduces challenges in maintaining clarity regarding the
distinctions between various perspectives on embedded intelli-
gence. On the other hand, deliberately bringing complementary
fields toward each other could yield significant benefits. By draw-
ing from the advancements in the current trend of AI, embodied
intelligent soft robotics can enhance its adaptiveness to the

environment. Integrating diverse perspectives on intelligence
has the potential to facilitate soft robots that adapt to a wide range
of environments while functioning optimally.

To bring the intelligence embedded within soft robots to the
next level, we described a fresh perspective on embodied intelli-
gence, emphasizing the robot’s responsiveness to changing
external conditions of a real-world environment. Integrating intel-
ligence into the physical body contributes to reducing the energy
consumption of robots through optimized sensor integration,
adaptable locomotion, and collaborative behaviors, ultimately
enhancing overall energy efficiency. Research should focus on
the integration of fully embedded computational systems in the
soft body of the robot, including the control system and sensing
system. This opens opportunities toward fully autonomous
systems that can operate in a wide range of remote or miniature
applications, for example, applications in surgery, underwater
applications, or applications in disaster areas. Inspiration could be
taken from organisms in nature, such as pine cones, which show
responsive behavior without an internal power source. As the
design space for mechanical intelligence integration is immense,
successfully incorporating mechanical intelligence into soft robots
requires a strong multidisciplinary approach, building upon the
existing diversity that characterizes the field of soft robotics. In this
context, encouraging collaboration and communication between
different disciplines, such as designers, engineers, material scien-
tists, and biologists, becomes essential in unlocking the full poten-
tial of soft robots for various real-world applications.

Figure 6. Schematic visualization of potential enablers of mechanical intelligent soft robots. Enablers of mechanical intelligent soft robots are diverse and
include the use of bioinspired design methodologies, smart use of stimuli-responsive, and metamaterials that can be 3D/4D printed using state-of-the-art
manufacturing facilities and can change their stiffness on demand.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2025, 7, 2400294 2400294 (11 of 14) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2025, 1, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400294, W

iley O
nline L

ibrary on [27/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Acknowledgements
This research was supported by Delft University of Technology. The
authors would like to thank their close colleagues for their assistance
and support throughout the study.

Conflict of Interest
The authors declare no conflict of interest.

Keywords
embodied intelligence, mechanical intelligence, morphological
computation, physical intelligence, soft robotics

Received: April 12, 2024
Revised: September 2, 2024

Published online: September 29, 2024

[1] C. Lee, M. Kim, Y. J. Kim, N. Hong, S. Ryu, H. J. Kim, S. Kim, Int. J.
Control Autom. Syst. 2017, 15, 3.

[2] D. Rus, M. T. Tolley, Nature 2015, 521, 467.
[3] B. Mazzolai, A. Mondini, E. Del Dottore, L. Margheri, F. Carpi,

K. Suzumori, M. Cianchetti, T. Speck, S. K. Smoukov, I. Burgert,
Multifunct. Mater. 2022, 5, 032001.

[4] R. Pfeifer, H. G. Marques, F. Iida, IJCAI 2013, 5.
[5] S. Kriegman, S. Walker, D. Shah, M. Levin, R. Kramer-Bottiglio,

J. Bongard (Preprint), arXiv:1905.09264, v1, Submitted: May 2019.
[6] S. Terryn, J. Langenbach, E. Roels, J. Brancart, C. Bakkali-Hassani,

Q.-A. Poutrel, A. Georgopoulou, T. G. Thuruthel, A. Safaei,
P. Ferrentino, Mater. Today 2021, 47, 187.

[7] Y. Zhang, P. Li, J. Quan, L. Li, G. Zhang, D. Zhou, Adv. Intell. Syst.
2023, 5, 2200071.

[8] K. Ghazi-Zahedi, Morphological Intelligence, Springer, Cham,
Switzerland 2019.

[9] S. Legg, M. Hutter, Minds Mach. 2007, 17, 391.
[10] N. El-Atab, R. B. Mishra, F. Al-Modaf, L. Joharji, A. A. Alsharif,

H. Alamoudi, M. Diaz, N. Qaiser, M. M. Hussain, Adv. Intell. Syst.
2020, 2, 2000128.

[11] H. Wang, M. Totaro, L. Beccai, Adv. Sci. 2018, 5, 1800541.
[12] D. J. Preston, P. Rothemund, H. J. Jiang, M. P. Nemitz, J. Rawson,

Z. Suo, G. M. Whitesides, Proc. Natl. Acad. Sci. USA 2019, 116, 7750.
[13] M. Cianchetti, Front. Robot. AI 2021, 8, 724056.
[14] M. P. Nemitz, C. K. Abrahamsson, L. Wille, A. A. Stokes, D. J. Preston,

G. M. Whitesides, in 2020 3rd IEEE Int. Conf. on Soft Robotics
(RoboSoft), IEEE, Piscataway, NJ 2020, pp. 7–12.

[15] S. T. Mahon, A. Buchoux, M. E. Sayed, L. Teng, A. A. Stokes, in 2019
2nd IEEE Int. Conf. on Soft Robotics (RoboSoft), IEEE, Piscataway, NJ
2019, pp. 782–787.

[16] S. Conrad, J. Teichmann, P. Auth, N. Knorr, K. Ulrich, D. Bellin,
T. Speck, F. J. Tauber, Sci. Robot. 2024, 9, eadh4060.

[17] Y. Zhai, A. De Boer, J. Yan, B. Shih, M. Faber, J. Speros, R. Gupta,
M. T. Tolley, Sci. Robot. 2023, 8, eadg3792.

[18] R. Pfeifer, J. Bongard, in How The Body Shapes The Way We Think: A
New View of Intelligence, MIT Press, Cambridge, MA 2006.

[19] M. Sitti, Extreme Mech. Lett. 2021, 46, 101340.
[20] Z. Lin, Z. Wang, W. Zhao, Y. Xu, X. Wang, T. Zhang, Z. Sun, L. Lin,

Z. Peng, Adv. Intell. Syst. 2023, 5, 2200329.
[21] D. Kim, S.-H. Kim, T. Kim, B. B. Kang, M. Lee, W. Park, S. Ku, D. Kim,

J. Kwon, H. Lee, Plos One 2021, 16, e0246102.
[22] S. Kim, C. Laschi, B. Trimmer, Trends Biotechnol. 2013, 31, 287.

[23] Z. Zhao, Q. Wu, J. Wang, B. Zhang, C. Zhong, A. A. Zhilenkov,
Biomimetics 2024, 9, 248.

[24] G. Mengaldo, F. Renda, S. L. Brunton, M. Bächer, M. Calisti,
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