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Abstract. In this paper, we investigate the global well-posedness of reaction-diffusion systems
with transport noise on the d-dimensional torus. We show new global well-posedness results for a
large class of scalar equations (e.g., the Allen--Cahn equation) and dissipative systems (e.g., equa-
tions in coagulation dynamics). Moreover, we prove global well-posedness for two weakly dissipative
systems: Lotka--Volterra equations for d \in \{ 1,2,3,4\} and the Brusselator for d \in \{ 1,2,3\} . Many of
the results are also new without transport noise. The proofs are based on maximal regularity tech-
niques, positivity results, and sharp blow-up criteria developed in our recent works, combined with
energy estimates based on It\^o's formula and stochastic Gronwall inequalities. Key novelties include
the introduction of new L\zeta -coercivity/dissipativity conditions and the development of an Lp(Lq)-
framework for systems of reaction-diffusion equations, which are needed when treating dimensions
d\in \{ 2,3\} in the case of cubic or higher order nonlinearities.
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1. Introduction. In this paper, we prove global well-posedness for several sys-
tems of stochastic reaction-diffusion equations with transport noise on the torus \BbbT d.
The systems are of the form

\left\{           
dui  - \nu i\Delta ui dt=

\Bigl[ 
div(Fi(\cdot , u)) + fi(\cdot , u)

\Bigr] 
dt

+
\sum 
n\geq 1

\Bigl[ 
(bn,i \cdot \nabla )ui + gn,i(\cdot , u)

\Bigr] 
dwnt ,

ui(0) = ui,0

(1.1)
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4871

on \BbbT d, where i \in \{ 1, . . . , \ell \} for some integer \ell \geq 1 and infi \nu i > 0. Moreover, u =
(ui)

\ell 
i=1 : [0,\infty ) \times \Omega \times \BbbT d \rightarrow \BbbR \ell is the unknown process, (wn)n\geq 1 is a sequence of

standard independent Brownian motions on a filtered probability space, and

(bn,i \cdot \nabla )ui :=

d\sum 
j=1

bjn,i\partial jui (transport-noise coefficients).

Finally, Fi, fi, gn,i are given nonlinearities of polynomial growth.
Reaction-diffusion equations have been widely studied in applied mathematics

due to their use in biology, economy, chemistry, and population dynamics. Standard
examples include the Allen--Cahn equation, reversible chemical reactions, the Brusse-
lator system, and the Lotka--Volterra equations. The reader is referred to [66, 67, 75]
for further examples. Stochastic perturbations can be used to model uncertainty in
the determination of parameters, nonpredictable forces acting on the system, and
the advection of a turbulent fluid. Stochastic analogues of reaction-diffusion equa-
tions have received much attention in recent years, and much progress has been made
(see, e.g., [1, 15, 16, 24, 33, 50, 58, 76] and references therein). However, many open
problems remain, and in particular, the extensions to the stochastic setting of many
known deterministic results are still not well understood. Further references are given
in subsection 1.3 below.

The present manuscript can be seen as a continuation of our previous work [7],
where we studied local well-posedness and positivity of solutions to reaction-diffusion
equations, by applying the new abstract setting of critical spaces developed in [5, 6].
In this present work, we focus on global well-posedness. In doing so, we exploit (sharp)
blow-up criteria for solutions to (1.1), established in [7]. One of the main contribu-
tions of our work is to allow for stochastic perturbations of transport type, which
can be seen as a simplified model for the advection of a turbulent fluid (see, e.g.,
[34, 46, 53, 59, 80] for physical motivations and [7, subsection 1.3] for the modeling).
The reader is referred to [22, 28] for (different) situations where this fact can be made
rigorous. However, let us emphasize that our results are new even in the case b \equiv 0
due to the presence of the critical superlinear diffusion coefficient g. Transport noise
was introduced by Kraichnan in [48, 49] in the study of passive scalars advected by
turbulent flows and has subsequently been widely used in the context of fluid dynam-
ics. In this theory, the regularity (or irregularity) of (bn,i)n\geq 1 plays an important role.
More precisely, one merely assumes

(bn,i)n\geq 1 \in C\gamma (\BbbT d; \ell 2(\BbbN ;\BbbR d)) for some \gamma > 0.(1.2)

The results of the current paper hold under the assumption (1.2). Here, for simplicity,
we only consider periodic boundary conditions. However, we expect that the tech-
niques we use can be extended to the case of bounded domains \scrO \subseteq \BbbR d with suitable
boundary conditions. In the latter situation, further constraints on bn,i| \partial \scrO might be
needed.

In the main part of the current work, we actually consider reaction-diffusion
equations where the leading operators are of the form div(ai \cdot \nabla ui) instead of \nu i\Delta ui;
see (2.1). One motivation for this is that if one considers (1.1) with Stratonovich
transport noise instead of an It\^o one, then one can reformulate it as a system of
SPDEs in It\^o form with a correction term which is in divergence form. Indeed, at
least formally (in the case gn,i \equiv 0),\sum 

n\geq 1

(bn,i \cdot \nabla )ui \circ dwnt =div(ab,i \cdot \nabla ui)dt+
\sum 
n\geq 1

(bn,i \cdot \nabla )ui dw
n
t ,(1.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

4/
24

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



4872 ANTONIO AGRESTI AND MARK VERAAR

where aj,kb,i =
1
2

\sum 
n\geq 1 b

j
n,ib

j
n,i for all j, k \in \{ 1, . . . , d\} , provided that div bn,i = 0 (incom-

pressibility).
Global well-posedness of reaction-diffusion equations has been extensively stud-

ied in the deterministic literature, and this depends on the fine structure of the
nonlinearities (fi, Fi, gi). Under solely locally Lipschitz and polynomial growth as-
sumptions, commonly used in reaction-diffusion equations, one cannot expect global
well-posedness even in the scalar case (see, e.g., [30, 72] and [66, Chapter 6]). For
systems of reaction-diffusion equations, blow-up phenomena are possible even in pres-
ence of mass dissipation [68]. The latter is rather surprising at first sight since the
mass conservation is strong enough to prevent blow-up in the case of ODEs, i.e., in
absence of spatial variability. The previously mentioned blow-up results show that
further assumptions on the nonlinearities (fi, Fi, gi) are needed to obtain the global
well-posedness of reaction-diffusion equations. In practice, one needs that the non-
linearities are dissipative in some sense so that the formation of singularities is not
possible. To the best of our knowledge, there is no standard way in the deterministic
and stochastic literature to capture the dissipative effect of the nonlinearities. We will
formulate several coercivity/dissipativity conditions on the nonlinearities (fi, Fi, gi),
and we will show how one can use these conditions to obtain global well-posedness in
several concrete situations.

In our study of global well-posedness of (1.1), Lp(Lq)-theory (Lp in time and Lq in
space) plays a key role. This theory was already used in our previous work [7] to derive
high-order regularity and positivity of solutions, which are both essential ingredients in
this manuscript. The positivity of solutions is of fundamental importance for physical
reasons, but we will also use it to derive energy estimates. The need for Lp(Lq)-theory
in the study of global well-posedness of (1.1) can be (roughly) explained as follows. In
reaction-diffusion equations, the nonlinearities in (1.2) are of high polynomial growth,
say h\gg 1. In the case that h or d are large enough (e.g., (d,h) = (3,2) or (d,h) =
(2,3)), then one can no longer work in an L2(L2)-setting because the nonlinearities
require better Sobolev embeddings. Alternatively, one could use an L2(Hs,2)-setting.
However, this has two disadvantages. First, it typically requires transport noise of
smoothness \geq s which is not satisfied in general, as \gamma > 0 in (1.2) is typically small.
Second, energy estimates in L2(Hs,2) are hard to prove. In particular, we could not
find suitable coercivity/dissipativity conditions that can be verified in applications. In
contrast, in an Lp(Lq)-setting this works very well, as we will see. Finally, we mention
that from the scaling argument in [7, subsection 1.4], the right space to study well-
posedness of (1.1) is the (critical) Lebesgue space L

d
2 (h - 1)(\BbbT d;\BbbR \ell ).

In addition to the more abstract statements on global well-posedness, we have
included several concrete applications as well. These include the following well-known
equations:

\bullet Allen--Cahn equation (phase separation): Theorems 1.1 and 3.2.
\bullet Coagulation dynamics [27] (used in chemistry and rain formation): Theo-

rem 3.9.
\bullet Several types of Lotka--Volterra models (predator-prey systems): Theorems

3.11 and 4.5.
\bullet Brusselator (chemical morphogenetic processes): Theorems 1.2, 4.11, and 4.9.

Several of the global well-posedness results for the above equations appear to be
completely new (even without transport noise), and our regularity results also seem
new for each of these equations. In the next subsections, we discuss further details in
the scalar setting \ell = 1 and the system case (\ell \geq 2) separately.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4873

1.1. The scalar case and Allen--Cahn equation. In the scalar case \ell = 1 of
(1.1), we establish global well-posedness of (1.1) under the following L\zeta -coercivity/
dissipativity condition:

There exist \zeta \geq d(h - 1)
2 \vee 2 and M,\theta > 0 such that, for all u\in C1(\BbbT d),\int 

\BbbT d
| u| \zeta  - 2

\Bigl( 
\nu | \nabla u| 2 + F (\cdot , u) \cdot \nabla u - uf(\cdot , u)

\zeta  - 1
 - 1

2

\sum 
n\geq 1

\bigl[ 
(bn \cdot \nabla )u+ gn(\cdot , u)

\bigr] 2\Bigr) 
dx(1.4)

\geq \theta 

\int 
\BbbT d

| u| \zeta  - 2
\bigl( 
| \nabla u| 2  - M | u| 2

\bigr) 
dx - M.

Here we have omitted the subscript i, as we are dealing with scalar equations, and
h > 1 denotes the growth of the nonlinearity (fi, Fi, gi); see Assumption 2.1. The
condition (1.4) can be seen as an L\zeta -variant of the usual coercivity condition for
stochastic evolution equations in the variational setting; see, e.g., [4, 73] and [54,
Chapter 4]. The restriction \zeta \geq d

2 (h - 1) is related to the aforementioned criticality of

L
d
2 (h - 1) for (1.1) (see [7, subsection 1.4]). The restriction \zeta \geq 2 is necessary because

of some nontrivial obstacles in stochastic calculus in L\zeta for \zeta < 2; cf. [64]. In the

applications we consider, it turns out that the minimal choice \zeta = d(h - 1)
2 \vee 2 leads to

the largest class of nonlinearities f , F , g (with h fixed) which satisfy (1.4).
In subsection 3.1, we give examples of nonlinearities satisfying (1.4) and two

sufficient ``pointwise"" conditions for (1.4), namely Lemmas 3.3 and 3.5. Moreover, in
many situations of interest, one knows a priori that solutions to (1.1) are positive.
In that case, it is enough to have (1.4) for u \geq 0. This is particularly interesting for
polynomial nonlinearities of even order (see Example 3.4) which, to the best of our
knowledge, have not been considered before in the literature.

To make the introduction and results of the paper more explicit, we discuss what
our results give for the Allen--Cahn equation with transport noise and superlinear
diffusion, i.e., (1.1) with

\ell = 1, f(\cdot , u) = u - u3, and gn(\cdot , u) = \theta nu
2, where \theta := (\theta n)n\geq 1 \in \ell 2.(1.5)

Theorem 1.1 (global well-posedness: 3D Allen--Cahn equation). Assume that
\| \theta \| \ell 2 \leq 1 and that (1.2) holds. Let f and g be as in (1.5), and suppose that F = 0.
Fix \delta \in (1, 43 \wedge (1 + \alpha )), p \in [3,\infty ), and \kappa c := p(1 - \delta 

2 ) - 1. Let u0 \in L0
F0

(\Omega ;L3(\BbbT 3)).
Suppose that, for some \nu 0 \in (0, \nu ),

div bn = 0 in D \prime (\BbbT 3) for n\geq 1, and
\sum 
n\geq 1

| bn(x) \cdot \xi | 2 \leq 2\nu 0| \xi | 2 for x\in \BbbT 3, \xi \in \BbbR 3.

Then there exists a unique global (p,\kappa c, \delta , q)-solution u to (1.1) satisfying, a.s.,

u\in H\theta ,p
loc ([0,\infty ), t\kappa \mathrm{c} dt;H2 - \delta ,q(\BbbT 3))\cap C([0,\infty );L3(\BbbT 3)) \forall \theta \in [0, 12 ),

u\in C\theta 1,\theta 2loc ((0,\infty )\times \BbbT 3) \forall \theta 1 \in [0, 12 ), \forall \theta 2 \in (0,1 + \alpha ).(1.6)

(p,\kappa , \delta , q)-solutions are defined in Definition 2.3. The above results follow from
Theorem 3.2 and Lemma 3.5. Continuous dependence on the initial data also holds;
see Proposition 5.3.

The explicit form of gn in (1.5) has been chosen to avoid technicalities here, and it
is not needed for Theorem 1.1 to hold. The complete picture is given in Example 3.4.

The quadratic nonlinearity in (1.5) and the choice of the initial data from L3

are optimal from a scaling point of view; see [7, subsection 1.4] for d = h = 3. In

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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4874 ANTONIO AGRESTI AND MARK VERAAR

addition to the growth condition of gn, we also assumed in Theorem 1.1 the explicit
bound \| \theta \| \ell 2 \leq 1 that limits the possible growth of gn at infinity. This restriction
appears naturally when checking the L\zeta -coercivity/dissipativity condition (1.4) with

\zeta = d(h - 1)
2 = 3. Physically, the condition \| \theta \| \ell 2 \leq 1 ensures that the dissipation of the

deterministic nonlinearity u - u3 is balanced by the energy production of gn. Hence,
in the situation of Theorem 1.1, the restriction on \theta seems optimal with our methods.

Although there have been several works on Allen--Cahn equations and their vari-
ations (see, e.g., [8, 12, 31, 39, 41, 74, 79]), part of the content of Theorem 1.1 seems
to be new. The novelty is that the diffusion gn is of optimal growth (even with ex-
plicit constrain on \theta ) and the transport noise can be rough (1.2). In particular, we
can cover the case of transport by turbulent fluids (see the comments below (1.2)).
Surprisingly, the solution to (1.5) instantaneously regularizes in time and space (1.6),
regardless of the one of the initial data u0. With respect to the noise, the gain of
regularity in (1.6) is suboptimal:

(bn)n\geq 1 \in C\gamma (\BbbT 3; \ell 2(\BbbN ;\BbbR 3)) =\Rightarrow u(t)\in C1+\gamma  - \varepsilon (\BbbT 3) a.s. for all t, \varepsilon > 0.(1.7)

Moreover, in the Sobolev scale, an optimal gain of regularity holds; cf. [7, Theorem
4.2]. Such instantaneous gain of regularity can be used, for example, to study the
separation property of solutions to Allen--Cahn-type equations; see, e.g., [11, Theorem
1.3]), where a more complicated nonlinearity is considered.

1.2. The system case and the 3D Brusselator. In the system case, the
situation is much more involved compared to the scalar one. First, there are several
ways to extend the condition (1.4) to the system case. One possibility is to require
that all components of (1.1) satisfy (1.4) or more generally that the sum over i of all
components of the system (1.1) satisfy an estimate like (1.4). Such a condition covers
the case of ``fully"" dissipative systems, and we examine this in section 3. However,
in most of the cases of practical interests, the dissipative effect of the nonlinearity is
not present in all components of the system (1.1). A prototype example that will be
treated here is the Brusselator system (see subsection 4.3 for physical motivations):

f1(\cdot , u) = - u1u22 and f2(\cdot , u) = u1u
2
2.(1.8)

In the case of physically relevant positive solutions, one sees that f1 is dissipative,
while f2 is not, i.e., f1(\cdot , u)u1 \leq  - u21u22 \leq 0 and f2(\cdot , u)u2 = u1u

3
2 \geq 0. Thus, it is

not possible to prove an estimate for u = (u1, u2) directly since there is no way to
adsorb the positive term f2(\cdot , u)u2 when performing energy estimates. Our strategy
for studying (1.1) is to first estimate u1 and, based on that, to determine a bound for
u2. This is exactly the content of subsection 4.1, where we provide a generalization
of the condition (1.4) for the case where M is allowed to be random. The results we
can prove for weakly dissipative systems are new, but a complete theory, as in the
deterministic case, is still out of reach. The reader is referred to subsection 1.4 for
more details. At the present stage, the situation for the system case is not as complete
as the scalar one.

Below we state our main result for the 3D Brusselator system, i.e., (1.1) with
(1.8). The case of dimensions \leq 2 is discussed in subsection 4.3.1.

Theorem 1.2 (global well-posedness: 3D Brusselator). Suppose that (1.2) holds.
Suppose that F = 0, f is as in (1.8), and there exists an N > 0 such that gi =
(gn,i)n\geq 1 :\BbbR 2 \rightarrow \ell 2 satisfies

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4875

\| gi(y) - gi(y
\prime )\| \ell 2 \leq N(1 + | y| + | y\prime | )| y - y\prime | for all y, y\prime \in \BbbR 2, i\in \{ 1,2\} ,(1.9)

\| g1(y)\| 2\ell 2 \leq N(1 + y1) +
y1y2
5

for all y= (y1, y2)\in [0,\infty )2,(1.10)

\| g2(y)\| 2\ell 2 \leq N(1 + y1 + y2 + y1y2) for all y= (y1, y2)\in [0,\infty )2,(1.11)

and g1(0, y2) = g2(y1,0) = 0 for all y1, y2 \geq 0. Fix \delta \in (1, 43 \wedge (1 + \alpha )), p \in (2,\infty ),
and \kappa c := p(1 - \delta 

2 ) - 1. Let u0 \in L0
F0

(\Omega ;L3(\BbbT 3;\BbbR 2)) be such that a.s. u0 \geq 0 on \BbbT 3,
componentwise. Suppose that, for some \nu 0,i \in (0, \nu i) and i\in \{ 1,2\} ,\sum 

n\geq 1

| bn,i(x) \cdot \xi | 2 \leq 2\nu 0,i| \xi | 2 for x\in \BbbT 3, \xi \in \BbbR 3.

Then there exists a unique global (p,\kappa c, \delta , q)-solution u to (1.1) satisfying

u\in H\theta ,p
loc ([0,\infty ), t\kappa \mathrm{c} dt;H2 - \delta ,q(\BbbT 3;\BbbR 2))\cap C([0,\infty );L3(\BbbT 3;\BbbR 2)) a.s. \forall \theta \in [0, 12 ),

u\in C\theta 1,\theta 2loc ((0,\infty )\times \BbbT 3;\BbbR 2) a.s. \forall \theta 1 \in [0, 12 ), \forall \theta 2 \in (0,1),

u\geq 0 componentwise a.e. on (0,\infty )\times \Omega \times \BbbT 3.

The above result follows from Theorem 4.11 with h = 3, and its proof requires
the full power of our theory and is the final application in this paper. As above,
Proposition 5.3 ensures continuous dependence on the initial data.

Note that the Brusselator system (1.1) has the same local scaling as the Allen--
Cahn equation discussed in subsection 1.1, i.e., the deterministic nonlinearity has
cubic growth. Hence, as for the Allen--Cahn equation, the growth of g1, g2 in (1.9)
and the choice of L3-data is optimal as well. Moreover, under additional smoothness
assumptions on g1, g2 (cf. [7, Assumption 4.1]), also in the case of the Brusselator
system, we have a suboptimal gain of regularity w.r.t. the regularity of the noise; i.e.,
(1.7) holds for the solution u= (u1, u2) to (1.1). An optimal gain of regularity holds
again in the Sobolev scale.

Conditions (1.10)--(1.11) can considered as the analogue of \| \theta \| \ell 2 \leq 1 in Theo-
rem 1.1. Regarding the latter condition, requirements (1.10)--(1.11) ensure that the
dissipation of f1 is stronger than the energy production of (f2, g1, g2). In particular,
the numerical factor 1

5 in the last term on the RHS of (1.10) seems optimal in the
general situation of Theorem 1.1, at least with our methods. To prove the global
well-posedness of (1.1), we use the previously mentioned variant of (1.4) where M is
allowed to be random.

1.3. Further comparison to the literature. To the best of our knowledge,
the present work is the first to consider superlinear diffusion and transport noise
simultaneously (this is the reason why we only consider trace-class noise).

In the presence of transport noise, the only work known to us is by Flandoli [26].
There, the author showed the global existence of scalar reaction-diffusion equations
under a strong-dissipation condition on f and g\equiv 0. Moreover, it is assumed that f is
of odd order. The results of section 3 extend and refine those of [26]; cf. Example 3.4.

In the absence of transport noise, reaction-diffusion equations have been studied
by many authors. Let us emphasise that in the case bn,i \equiv 0, one can also treat
rougher noise than the one we use in (1.1) (i.e., white or colored noise instead of
trace-class noise). The 1D case with rough and multiplicative noise has been investi-
gated in [19, 29, 60, 61]. For dimensions d \geq 2, the work of Cerrai [14] shows global
existence under strong dissipative conditions on fi and sublinear growth of gi. Later,
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4876 ANTONIO AGRESTI AND MARK VERAAR

Salins in the works [77, 78] extended the results of [14] in the case of scalar equa-
tions. More precisely, in [77] global existence for scalar reaction-diffusion equations
has been proven for superlinear (f, g) without any dissipative conditions but employ-
ing a ``Osgood""-type condition. In particular, in [77], f cannot grow more than | u| \gamma 
for some \gamma > 1. The paper [78] studies a reaction-diffusion equation in the scalar case
where f is strongly dissipative and g is of ``lower order"" compared to the dissipative
effect of f ; see [78, eq. (1.7)]. The work [78] is closer to the present work. In the
special case that both approaches are applicable (i.e., in the presence of trace-class
noise), our results improve those of [78]. The reader is referred to Remark 3.7(b) for
details.

Finally, we mention further work in the case of nonlocally Lipschitz nonlinearity,
which is beyond the scope of this paper. In [51], the case of strong dissipative and
locally Lipschitz f and H\"older continuous g was considered, where g grows sublin-
early. In the case of (possible) noncontinuous fi and global Lipschitz diffusion g,
well-posedness was considered in [57] by using the theory of monotone operators.

1.4. Open problems. There are still many open problems concerning the global
well-posedness of stochastic reaction-diffusion equations. Two classes for which the
deterministic setting is well understood are

\bullet systems with a triangular structure and
\bullet systems with mass conservation and quadratic nonlinearities.

Deterministic systems with a triangular structure are well understood; see, e.g.,
[67, section 3]. Here triangular structure means that for a lower triangular invertible
matrix R, the mapping \BbbR \ell \ni y \mapsto \rightarrow Rf(y) grows linearly in | y| . If F \equiv 0, then global
strong solutions to (2.1) (without noise) exist; see, e.g., [67, Theorem 3.5]. The core
of the proof is a duality argument (see [67, Theorem 3.4]) which we do not know
how to extend to SPDEs with transport noise. The Lotka--Volterra equation and the
Brusselator system, analyzed in subsections 4.2--4.3, are triangular systems.

For deterministic systems with mass conservation and quadratic nonlinearities
with F \equiv 0 and mass control, global existence of strong solutions to (2.1) (without
noise) has been shown in [25], provided that | f(y)| \lesssim 1 + | y| 2+\varepsilon , where \varepsilon > 0 is
sufficiently small. The proofs are based on an ingenious combination of interpolation
inequalities and H\"older regularity theory for suitable auxiliary functions of u= (ui)

\ell 
i=1.

At the present stage, the extension of these arguments to their stochastic variant with
transport noise seems out of reach.

1.5. Notation. Here we collect some notation that will be used throughout the
paper. Further notation will be introduced where needed. We write A \lesssim P B (resp.,
A\gtrsim P B) whenever there is a constant C > 0 depending only on P such that A\leq CB
(resp., A \geq CB). We write C(P ) if the constant C depends only on P . As usual,
a\vee b=max\{ a, b\} and a\wedge b=min\{ a, b\} for a, b\in \BbbR .

Letting p\in (1,\infty ) and \kappa \in ( - 1, p - 1), we denote by w\kappa the weight w\kappa (t) = | t| \kappa for
t \in \BbbR . For a Banach space X and an interval I = (a, b) \subseteq \BbbR , Lp(a, b,w\kappa ;X) denotes
the set of all strongly measurable maps f : I\rightarrow X such that

\| f\| Lp(a,b,w\kappa ;X) :=

\Biggl( \int b

a

\| f(t)\| pXw\kappa (t)dt

\Biggr) 1/p

<\infty .

Furthermore, W 1,p(a, b,w\kappa ;X) \subseteq Lp(a, b,w\kappa ;X) denotes the set of all f such that
f \prime \in Lp(a, b,w\kappa ;X) (here the derivative is taken in the distributional sense) and we
set
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4877

\| f\| W 1,p(a,b,w\kappa ;X) := \| f\| Lp(a,b,w\kappa ;X) + \| f \prime \| Lp(a,b,w\kappa ;X).

Let (\cdot , \cdot )\theta ,p and [\cdot , \cdot ]\theta be the real and complex interpolation functors, respectively.
The reader is referred to [10, 43] for details. For each \theta \in (0,1), we set

H\theta ,p(a, b,w\kappa ;X) = [Lp(a, b,w\kappa ;X),W 1,p(a, b,w\kappa ;X)]\theta .

In the unweighted case, i.e., \kappa = 0, we set H\theta ,p(a, b;X) := H\theta ,p(a, b,w0;X) and
similar for Lebesgue spaces. For \scrA \in \{ Lp,H\theta ,p,W 1,p\} , we denote by \scrA loc(a, b;X)
(resp., \scrA loc([a, b),w\kappa ;X)) the set of all strongly measurable maps f : (c, d)\rightarrow X such
that f \in \scrA (c, d;X) for all a< c< d< b (resp., f \in \scrA (a, c,w\kappa ;X) for all a< c< b).

The d-dimensional torus is denoted by \BbbT d, where d \geq 1. For \theta 1, \theta 2 \in (0,1),
C\theta 1,\theta 2loc ((a, b)\times \BbbT d;\BbbR \ell ) denotes the space of all maps v : (a, b)\times \BbbT d\rightarrow \BbbR \ell such that for
all a< c< d< b we have

| v(t, x) - v(t\prime , x\prime )| \lesssim c,d | t - t\prime | \theta 1 + | x - x\prime | \theta 2 for all t, t\prime \in [c, d], x, x\prime \in \BbbT d.

This definition is extended to \theta 1, \theta 2 \geq 1 by requiring that the partial derivatives \partial \alpha ,\beta v
(with \alpha \in \BbbN and \beta \in \BbbN d) exist and are in C

\theta 1 - | \alpha | ,\theta 2 - | \beta | 
loc ((a, b)\times \BbbT d;\BbbR \ell ) for all \alpha \leq \lfloor \theta 1\rfloor 

and
\sum d
i=1 \beta i \leq \lfloor \theta 2\rfloor .

We will use the periodic Bessel potential spaces Hs,q(\BbbT d) and Besov spaces
Bsq,p(\BbbT 

d). Here q \in (1,\infty ) denotes the integrability, p \in [1,\infty ] is the microscopic
parameter, and s \in \BbbR denotes the smoothness. For details on Besov spaces, see, e.g.,
[81, 82]. Note that we write u \in Bsq,p(\BbbT 

d;\BbbR \ell ) if each of the components of u is in

Bsq,p(\BbbT 
d), and similarly for Bessel potential spaces. We also employ the standard ab-

breviation Hs := Hs,2. We often write Bsq,p instead of Bsq,p(\BbbT 
d;\BbbR \ell ) if no confusion

seems likely, and similarly for Hs,q and Hs.
Finally, we collect the main probabilistic notation. In the paper, we fix a filtered

probability space (\Omega ,A , (Ft)t\geq 0,\BbbP ) and we denote by \BbbE [\cdot ] =
\int 
\Omega 
\cdot d\BbbP the expected

value. A map \sigma : \Omega \rightarrow [0,\infty ] (note that the value \infty is included) is called a stopping
time if \{ \sigma \leq t\} \in Ft for all t\geq 0. For stopping times \sigma , \tau , we introduce the notation
(which might be nonstandard)

[\tau ,\sigma ]\times \Omega := \{ (t,\omega )\in [0,\infty )\times \Omega : \tau (\omega )\leq t\leq \sigma (\omega )\} .
Similar definitions hold for [\tau ,\sigma ) \times \Omega , (\tau ,\sigma ) \times \Omega , etc. P denotes the progressive
\sigma -algebra on the above mentioned probability space.

1.6. Overview. Below we give an overview of the results proven here.
\bullet Section 2: review of the local existence theory of [7].
\bullet Section 3: global existence via L\zeta -coercivity/dissipativity condition, including

the following:
\diamond Subsection 3.1: fully dissipative systems/equations, e.g., Allen--Cahn

equations.
\diamond Subsection 3.2.1: coagulation dynamics.
\diamond Subsection 3.2.2: symbiotic Lotka--Volterra equations.

\bullet Section 4: global existence for weakly dissipative systems, including the fol-
lowing:
\diamond Subsection 4.1: energy estimates via iteration of L\zeta -coercivity/

dissipativity conditions.
\diamond Subsection 4.2: global existence for Lotka--Volterra equations.
\diamond Subsection 4.3: global existence for the Brusselator system.

\bullet Section 5: continuous dependence on the initial data in the presence of energy
estimates.
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4878 ANTONIO AGRESTI AND MARK VERAAR

2. A review of the local existence theory. In this section, we recall the local
well-posedness results of [7], as well as the blow-up criteria, regularity, and positivity
results.

Consider the following system of SPDEs on \BbbT d:\left\{           
dui  - div(ai \cdot \nabla ui)dt=

\Bigl[ 
div(Fi(\cdot , u)) + fi(\cdot , u)

\Bigr] 
dt

+
\sum 
n\geq 1

\Bigl[ 
(bn,i \cdot \nabla )ui + gn,i(\cdot , u)

\Bigr] 
dwnt ,

ui(0) = u0,i,

(2.1)

where i \in \{ 1, . . . , \ell \} and \ell \geq 1 is an integer. Here u = (ui)
\ell 
i=1 : [0,\infty )\times \Omega \times \BbbT d \rightarrow \BbbR \ell 

is the unknown process, (wn)n\geq 1 is a sequence of standard independent Brownian
motion on the above mentioned filtered probability space, and

div(ai \cdot \nabla ui) :=
d\sum 

j,k=1

\partial j(a
j,k
i \partial kui) and (bn,i \cdot \nabla )ui :=

d\sum 
j=1

bjn,i\partial jui.

As explained in section 1, bjn,i models small-scale transport effects. The aj,ki take into
account inhomogeneous conductivity and may also take into account the It\^o correction
in the case of Stratonovich noise. Note that in the ith equation there is no mixing
in the diffusion terms div(ai \cdot \nabla ui) and (bn,i \cdot \nabla )ui, which is the usual assumption in
reaction-diffusion systems.

The following is the main assumption on the coefficients and nonlinearities.

Assumption 2.1. Let d, \ell \geq 1 be integers. We say that Assumption 2.1(p, q, h, \delta )
holds if q \in [2,\infty ), p \in [2,\infty ), h > 1, \delta \in [1,2), and for all i \in \{ 1, . . . , \ell \} the following
hold:

(1) For each j, k \in \{ 1, . . . , d\} , aj,ki :\BbbR +\times \Omega \times \BbbT d\rightarrow \BbbR , bji := (bjn,i)n\geq 1 :\BbbR +\times \Omega \times \BbbT d\rightarrow 
\ell 2 are P \otimes B(\BbbT d)-measurable.

(2) There exist N > 0 and \alpha >max\{ d\rho , \delta  - 1\} , where \rho \in [2,\infty ) such that a.s. for
all t\in \BbbR + and j, k \in \{ 1, . . . , d\} ,

\| aj,ki (t, \cdot )\| H\alpha ,\rho (\BbbT d) + \| (bjn,i(t, \cdot ))n\geq 1\| H\alpha ,\rho (\BbbT d;\ell 2) \leq N.

(3) There exists \nu i > 0 such that a.s. for all t\in \BbbR +, x\in \BbbT d and \xi \in \BbbR d,

d\sum 
j,k=1

\left(  aj,ki (t, x) - 1

2

\sum 
n\geq 1

bjn,i(t, x)b
k
n,i(t, x)

\right)  \xi j\xi k \geq \nu i| \xi | 2.

(4) For all j \in \{ 1, . . . , d\} , the maps

F ji , fi :\BbbR + \times \Omega \times \BbbT d \times \BbbR \rightarrow \BbbR , gi := (gn,i)n\geq 1 :\BbbR + \times \Omega \times \BbbT d \times \BbbR \rightarrow \ell 2

are P \otimes B(\BbbT d)\otimes B(\BbbR )-measurable. Set Fi := (F ji )
d
j=1. Assume that

F ji (\cdot ,0), fi(\cdot ,0)\in L
\infty (\BbbR + \times \Omega \times \BbbT d), gi(\cdot ,0)\in L\infty (\BbbR + \times \Omega \times \BbbT d; \ell 2),

and a.s. for all t\in \BbbR +, x\in \BbbT d, and y \in \BbbR ,

| fi(t, x, y) - fi(t, x, y
\prime )| \lesssim (1 + | y| h - 1 + | y\prime | h - 1)| y - y\prime | ,

| Fi(t, x, y) - Fi(t, x, y
\prime )| \lesssim (1 + | y| 

h - 1
2 + | y\prime | 

h - 1
2 )| y - y\prime | .

\| gi(t, x, y) - gi(t, x, y
\prime )\| \ell 2 \lesssim (1 + | y| 

h - 1
2 + | y\prime | 

h - 1
2 )| y - y\prime | .
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4879

Note that Assumption 2.1(2) and Sobolev embeddings imply that aj,ki \in C\gamma (\BbbT d)
and (bjn,i)n\geq 1 \in C\gamma (\BbbT d; \ell 2) uniformly w.r.t. (t,\omega ) for some \gamma > 0 depending only on
\alpha ,d and \rho .

Often we will additionally assume the following on the parameters (see [7, As-
sumption 2.4 and section 7]).

Assumption 2.2. Let d\geq 2. We say that Assumption 2.2(p, q, h, \delta ) holds if h > 1
and one of the following cases holds:

(i) p\in (2,\infty ), q \in [2,\infty ), and \delta \in [1, h+1
h ) satisfy

1

p
+

1

2

\biggl( 
\delta +

d

q

\biggr) 
\leq h

h - 1
,

d

d - \delta 
< q <

d(h - 1)

h+ 1 - \delta (h - 1)
,

and \kappa c := p

\biggl( 
h

h - 1
 - 1

2

\biggl( 
\delta +

d

q

\biggr) \biggr) 
 - 1.

(ii) p = q = 2, \kappa = 0, \delta = 1, and h \leq 4+d
d with the additional restriction h < 3 if

d= 2.

The parameters q and p will be used for spatial and time integrability, respectively,
and the parameter \delta is used to decrease spatial smoothness. The parameter \kappa c is
related to the critical weight t\kappa used for the time-integrability. It is interesting to
note that large values of h require lower values of \delta , which requires higher values of q.

Below, we stress the dependence on (p,\kappa , q,h, \delta ) in the definition of solutions.
However, in [7, Proposition 3.5 and Remark 7.4] it is proved that the solutions to (2.1)
for different choices of the parameters (p,\kappa , q,h, \delta ) satisfying Assumption 2.2 actually
coincide. The sequence of independent standard Brownian motions (wn)n\geq 1 uniquely
induces an \ell 2-cylindrical Brownian motion given byW\ell 2(v) :=

\sum 
n\geq 1

\int 
\BbbR +
vndw

n
t , where

v= (vn)n\geq 1 \in L2(\BbbR +; \ell 
2).

Definition 2.3. Assume that Assumption 2.1(p, q, h, \delta ) is satisfied for some

h> 1, and let \kappa \in [0, p2  - 1). Suppose that u0 \in B
2 - \delta  - 2 1+\kappa 

p
q,p (\BbbT d;\BbbR \ell ) a.s.

\bullet Let \sigma be a stopping time and u = (ui)
\ell 
i=1 : [0, \sigma )\times \Omega \rightarrow H2 - \delta ,q(\BbbT d;\BbbR \ell ) be a

stochastic process. We say that (u,\sigma ) is a local (p,\kappa , \delta , q)-solution to (2.1) if
there exists a sequence of stopping times (\sigma j)j\geq 1 such that the following hold
for all i\in \{ 1, . . . , \ell \} :
-- \sigma j \leq \sigma a.s. for all j \geq 1 and limj\rightarrow \infty \sigma j = \sigma a.s.;
-- for all j \geq 1, the process 1[0,\sigma j ]\times \Omega ui is progressively measurable;
-- a.s. for all j \geq 1, we have ui \in Lp(0, \sigma j ,w\kappa ;H2 - \delta ,q(\BbbT d)) and

div(Fi(\cdot , u)) + fi(\cdot , u)\in Lp(0, \sigma j ,w\kappa ;H - \delta ,q(\BbbT d)),
(gn,i(\cdot , u))n\geq 1 \in Lp(0, \sigma j ,w\kappa ;H1 - \delta ,q(\BbbT d; \ell 2));

-- a.s. for all j \geq 1, the following holds for all t\in [0, \sigma j ]:

ui(t) - u0,i =

\int t

0

\Bigl( 
div(ai \cdot \nabla ui) + div(Fi(\cdot , u)) + fi(\cdot , u)

\Bigr) 
ds

=

\int t

0

\Bigl( 
1[0,\sigma j ]

\bigl[ 
(bn,i \cdot \nabla )u+ gn,i(\cdot , u)

\bigr] \Bigr) 
n\geq 1

dW\ell 2(s).

\bullet (u,\sigma ) is a (p,\kappa , \delta , q)-solution to (2.1) if for any other local (p,\kappa , \delta , q)-solution
(u\prime , \sigma \prime ) to (2.1) we have \sigma \prime \leq \sigma a.s. and u= u\prime on [0, \sigma \prime )\times \Omega .

Note that a (p,\kappa , q, \delta )-solution is unique by definition. The main result on local
existence, uniqueness, and regularity is as follows (see [7, Theorem 2.6]).
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4880 ANTONIO AGRESTI AND MARK VERAAR

Theorem 2.4 (local existence in critical spaces). Let Assumptions 2.1(p, q, h, \delta )
and 2.2(p, q, h, \delta ) be satisfied. Then, for any

u0 \in L0
F0

(\Omega ;B
d
q - 

2
h - 1

q,p (\BbbT d;\BbbR \ell )),

the problem (2.1) has a (unique) (p,\kappa c, \delta , q)-solution (u,\sigma ) such that a.s. \sigma > 0 and

u\in C([0, \sigma );B
d
q - 

2
h - 1

q,p (\BbbT d;\BbbR \ell )),
u\in H\theta ,p

loc ([0, \sigma ),w\kappa \mathrm{c}
;H2 - \delta  - 2\theta ,q(\BbbT d;\BbbR \ell )) \forall \theta \in [0, 12 ) if p > 2 and \theta = 0 if p= 2.

(2.2)

Moreover, u instantaneously regularizes in space and time: a.s.,

u\in H\theta ,r
loc (0, \sigma ;H

1 - 2\theta ,\zeta (\BbbT d;\BbbR \ell )) \forall \theta \in [0,1/2), \forall r, \zeta \in (2,\infty ),(2.3)

u\in C\theta 1,\theta 2loc ((0, \sigma )\times \BbbT d;\BbbR \ell ) \forall \theta 1 \in [0,1/2), \forall \theta 2 \in (0,1).(2.4)

Note that (2.4) is a consequence of (2.3) and Sobolev embeddings. Next, we state
one of our blow-up criteria which we use to obtain global existence for the solution to
(2.1) provided by Theorem 2.4 (see [7, Theorem 2.11 and Proposition 7.3]).

Theorem 2.5 (blow-up criteria). Let the assumptions of Theorem 2.4 be sat-
isfied, and let (u,\sigma ) be the (p,\kappa c, q, \delta )-solution to (2.1). Let h0 \geq 1 + 4

d . Suppose
that p0 \in (2,\infty ), h0 \geq h, \delta 0 \in (1,2) are such that Assumptions 2.1(p0, q0, h0, \delta 0)
and 2.2(p0, q0, h0, \delta 0) hold. Let \zeta 0 =

d
2 (h0  - 1). The following hold for all 0< s< T <

\infty :
(1) If q0 = \zeta 0, then for all \zeta 1 > q0

\BbbP 
\Bigl( 
s < \sigma < T, sup

t\in [s,\sigma )

\| u(t)\| L\zeta 1 (\BbbT d;\BbbR \ell ) <\infty 
\Bigr) 
= 0.

(2) If q0 > \zeta 0, p0 \in 
\bigl( 

2
\delta 0 - 1 ,\infty 

\bigr) 
, p0 \geq q0, and

d
q0

+ 2
p0

= 2
h0 - 1 , then

\BbbP 
\Bigl( 
s < \sigma < T, sup

t\in [s,\sigma )

\| u(t)\| L\zeta 0 (\BbbT d;\BbbR \ell ) + \| u\| Lp0 (s,\sigma ;Lq0 (\BbbT d;\BbbR \ell )) <\infty 
\Bigr) 
= 0.

(3) If p0 = q0 = 2, \delta 0 = 1, then

\BbbP 
\Bigl( 
s < \sigma < T, sup

t\in [s,\sigma )

\| u(t)\| L2(\BbbT d;\BbbR \ell ) + \| u\| L2(s,\sigma ;H1,2(\BbbT d;\BbbR \ell )) <\infty 
\Bigr) 
= 0.

The main result on positivity (in a distributional sense) is as follows (see [7,
Theorem 2.13]).

Proposition 2.6 (positivity). Let the assumptions of Theorem 2.4 be satisfied.
Let (u,\sigma ) be the (p,\kappa c, \delta , q)-solution to (2.1) where \kappa c is as in Theorem 2.4. Suppose
that

u0 \geq 0 a.s. (componentwise)

and that there exist progressive measurable processes c1, . . . , c\ell :\BbbR +\times \Omega \rightarrow \BbbR such that
for all i\in \{ 1, . . . , \ell \} , n\geq 1, y= (yi)

\ell 
i=1 \in [0,\infty )\ell and a.e. on \BbbR + \times \Omega ,

fi(\cdot , y1, . . . , yi - 1,0, yi+1, . . . , y\ell )\geq 0,

Fi(\cdot , y1, . . . , yi - 1,0, yi+1, . . . , y\ell ) = ci(\cdot ),
gn,i(\cdot , y1, . . . , yi - 1,0, yi+1, . . . , y\ell ) = 0.

Then u(t, x)\geq 0 a.s. for all x\in \BbbT d and t\in [0, \sigma ).
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4881

3. Global existence and uniqueness for fully dissipative systems. In this
section, we turn to the problem of determining when the solutions of (2.1) provided by
Theorem 2.4 are global. It is well known that Assumption 2.1 is not enough to ensure
global existence of (1.1) in general, even in the scalar case \ell = 1, and further conditions
on the nonlinearities are required (cf. [30, 71], [72, section 19] for the deterministic
case). In this section, we propose a new type of L\zeta -coercivity/dissipation condition

on (ai, Fi, fi, bi, gi), where \zeta = d(h - 1)
2 \vee 2, and h is as in Assumption 2.1. Explicit

examples will be discussed in subsections 3.1 and 3.2 below.

Assumption 3.1 (L\zeta -coercivity/dissipativity). Let Assumption 2.1(p, q, h, \delta ) be
satisfied. Let \zeta \in [2,\infty ). We say that Assumption 3.1(\zeta ) holds if there exist constants
\theta ,M,C,\alpha 1, . . . , \alpha \ell > 0 such that a.e. in [0,\infty )\times \Omega for all u= (ui)

\ell 
i=1 \in C1(\BbbT d;\BbbR \ell ),

\ell \sum 
i=1

\alpha i

\int 
\BbbT d

| ui| \zeta  - 2
\Bigl( 
ai\nabla ui \cdot \nabla ui + Fi(\cdot , u)

 - uifi(\cdot , u)
\zeta  - 1

 - 1

2

\sum 
n\geq 1

\bigl[ 
(bn,i \cdot \nabla )u+ gn,i(\cdot , u)

\bigr] 2\Bigr) 
dx

\geq \theta 

\ell \sum 
i=1

\int 
\BbbT d

| ui| \zeta  - 2| \nabla ui| 2 dx - M

\ell \sum 
i=1

\int 
\BbbT d

| ui| \zeta dx - C.

Moreover, given S \subseteq \BbbR \ell , we say that Assumption 3.1(\zeta ) holds for S-valued functions
if the above is satisfied for all u\in C1(\BbbT d;\BbbR \ell ) with u(x)\in S for all x\in \BbbT d.

The constants \alpha 1, . . . , \alpha \ell can be chosen to exploit the dissipation effect of a certain
nonlinearity appearing in the ith equation in the system (2.1) with i \in \{ 1, . . . , \ell \} 
fixed. In case of high dissipation in the ith equation, one chooses \alpha i relatively large
compared to \alpha j for j \not = i (see Assumption 3.10 in the case of symbiotic Lotka--Volterra
equations).

By approximation and using Assumption 2.1, one can check that if the above
assumption holds, then it extends to all u \in H1,q0(\BbbT d;\BbbR \ell ) with q0 > d. A typical

situation where the above assumption is satisfied is in the case yifi(\cdot ,y)
\zeta  - 1 \leq 0 for | y| \rightarrow \infty 

and all i\in \{ 1, . . . , \ell \} ; i.e., the system of SPDEs (2.1) has dissipation in all components.
In the applications given in subsections 3.1 and 3.2, we will see that the conditions
needed to check Assumption 3.10(\zeta ) become more restrictive for larger values of \zeta .
The (a, b)-terms can usually be estimated using Assumption 2.1(3). The reason for
also considering Assumption 3.1 for the restricted class of functions taken values in S
is that often the solution to (2.1) is known to take values [0,\infty )\ell , [ - 1,1]\ell , [0,1]\ell , etc.
(see Proposition 2.6 for a sufficient condition for positivity).

Next, we state the main result of this section.

Theorem 3.2 (global well-posedness: fully dissipative systems). Suppose that
the assumptions of Theorem 2.4 hold, let (u,\sigma ) be the (p,\kappa c, \delta , q)-solution to (2.1)
where \kappa c is as in Theorem 2.4, and suppose that u takes values in S a.e. on [0, \sigma )\times \Omega 
for some S \subseteq \BbbR \ell . Suppose that Assumption 3.1(\zeta ) holds for S-valued functions with

\zeta \geq d(h - 1)
2 \vee 2. Then (u,\sigma ) is global in time; i.e., \sigma =\infty a.s. In particular, (2.2)--(2.4)

hold with \sigma = \infty . Moreover, for all \lambda \in (0,1), there exist N0,N0,\lambda > 0 such that for
any 0< s< T , L\geq 0, and i\in \{ 1, . . . , \ell \} ,
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4882 ANTONIO AGRESTI AND MARK VERAAR

sup
t\in [s,T ]

\BbbE 1\Gamma \| ui(t)\| \zeta L\zeta +\BbbE 
\int T

s

\int 
\BbbT d

1\Gamma | ui| \zeta  - 2| \nabla ui| 2 dxdt\leq N0

\Bigl( 
1 +\BbbE 1\Gamma \| u(s)\| \zeta L\zeta 

\Bigr) 
,

(3.1)

\BbbE sup
t\in [s,T )

1\Gamma \| ui(t)\| \zeta \lambda L\zeta +\BbbE 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

s

\int 
\BbbT d

1\Gamma | ui| \zeta  - 2| \nabla ui| 2 dxdt

\bigm| \bigm| \bigm| \bigm| \bigm| 
\lambda 

\leq N0,\lambda 

\Bigl( 
1 +\BbbE 1\Gamma \| u(s)\| \zeta \lambda L\zeta 

\Bigr) 
,

(3.2)

where \Gamma = \{ \| u(s)\| L\zeta \leq L\} . Moreover, one can take s = 0 if for some \varepsilon > 0, u0 \in 
B\varepsilon \zeta ,\infty (\BbbT d;\BbbR \ell ) a.s., or u0 \in L2(\BbbT d;\BbbR \ell ) a.s. and \zeta = 2.

The final assertion extends to u0 \in L\zeta (\BbbT d;\BbbR \ell ) a.s. and \Gamma =\Omega , as will be shown in
section 5; see Corollary 5.4. In case s= 0, we can let L\rightarrow \infty and thus omit \Gamma . Later
on in Proposition 5.3, we will see that if u0 \in L\zeta (\BbbT d;\BbbR \ell ) a.s., then one can show that
the estimates (3.1) and (3.2) also hold with s= 0. Finally, continuity w.r.t. the initial
data follows from Theorem 5.2.

The proof of the above result will be given in subsection 3.3. In the next subsec-
tions, we first discuss some sufficient conditions for Assumption 3.1.

Often, when dealing with scalar equations, i.e., \ell = 1, we omit the subscript i= 1.

3.1. Sufficient conditions for \bfitL \bfitzeta -coercivity/dissipativity. In this subsec-
tion, we discuss examples of nonlinearities satisfying Assumption 3.1. Before doing
so, we write down two classes of examples where Assumption 3.1 is satisfied. In
Lemma 3.3, we present a pointwise condition for L\zeta -coercivity/dissipativity with-
out assuming any smoothness on (Fi, bi, gi). This condition is further weakened in
Lemma 3.5, where the case of \ell = 1 and smooth functions (F, b, g) is considered.
Further variations where only one or two functions have smoothness are also possible.

Lemma 3.3 (pointwise L\zeta -coercivity/dissipativity without smoothness). Suppose
that Assumption 2.1 holds with \zeta \geq 2. For \varepsilon i > 0, let

N\varepsilon i
i (\cdot , y) = yifi(\cdot , y)

\zeta  - 1
+

1

2

\sum 
n\geq 1

| gn,i(\cdot , y)| 2 +
4

\nu i  - \varepsilon i

\Bigl( 
| Fi(\cdot , y)| +

\sum 
n\geq 1

| bn,i(\cdot )| | gn,i(\cdot , y)| 
\Bigr) 2
.

If there exist \varepsilon i \in (0, \nu i), M > 0, and \alpha 1, . . . , \alpha \ell > 0 such that a.e. in [0,\infty )\times \Omega \times \BbbT d
for all y \in \BbbR \ell 

\ell \sum 
i=1

\alpha i| yi| \zeta  - 2N\varepsilon i
i (\cdot , y)\leq M(| y| \zeta + 1),(3.3)

then Assumption 3.1(\zeta ) is satisfied. Moreover, if the above only holds with y \in S \subseteq \BbbR \ell ,
then Assumption 3.1(\zeta ) holds for S-valued functions.

Proof. We prove the claim only for \ell = 1, as the general case is analogous. We
omit the subscript i= 1 for notational convenience.

We claim that for all z \in \BbbR d and y \in \BbbR ,

az \cdot z + F (\cdot , y) \cdot z  - yf(\cdot , y)
\zeta  - 1

 - 1

2

\sum 
n\geq 1

\bigl[ 
bn \cdot z + gn(\cdot , y)

\bigr] 2 \geq \theta | z| 2  - M(| y| 2 + 1).(3.4)

The claim implies Assumption 3.1(\zeta ) by applying (3.4) with y= u and z =\nabla u.
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4883

To prove the claim, set h(\cdot , y) = - yf(\cdot ,y)
\zeta  - 1  - 1

2

\sum 
n\geq 1 | gn(\cdot , y)| 2. Then

LHS of (3.4) = az \cdot z  - 1

2

\sum 
n\geq 1

| bn \cdot z| 2 + F (\cdot , y) \cdot z  - 
\sum 
n\geq 1

bn \cdot zgn(\cdot , y) - h(y)

(i)

\geq \nu | z| 2  - | z| | F (\cdot , y)|  - | z| 
\sum 
n\geq 1

| bn| | gn(\cdot , y)|  - h(y)

(ii)

\geq \varepsilon | z| 2 + 4

\nu  - \varepsilon 

\Bigl( 
| F (\cdot , y)| +

\sum 
n\geq 1

| bn| | gn(\cdot , y)| 
\Bigr) 2

 - h(y)

(3.3)

\geq \varepsilon | z| 2  - M(| y| 2 + 1),

where in (i) we used Assumption 2.1(3) and in (ii) we used ab \leq (\nu  - \varepsilon )a2 +
1

4(\nu  - \varepsilon )b
2.

In case \ell = 1, then clearly (3.3) implies the existence of M > 0 such that, a.e. in
[0,\infty )\times \Omega \times \BbbT d,

yf(\cdot , y)
\zeta  - 1

+
1

2

\sum 
n\geq 1

| gn(\cdot , y)| 2 \leq M(| y| 2 + 1), y \in \BbbR .(3.5)

In the next example, we will see that fi determines the admissible growth of Fi and
gn,i in order to satisfy Assumption 3.1.

Example 3.4 (strongly dissipative f). Let h > 1 and \zeta \geq 2. Suppose that
Assumption 2.1 holds. In the study of reaction-diffusion equations, the following
dissipative condition on f is often employed.

There exist N0,N1 > 0 such that, a.e. in [0,\infty )\times \Omega \times \BbbT d and for all i\in \{ 1, . . . , \ell \} ,

fi(\cdot , y)yi \leq  - N0| yi| h+1 +N1(| y| 2 + 1), y \in \BbbR \ell ;(3.6)

cf. [52, Examples 4.2 and 4.5]. In particular, odd polynomial nonlinearities with
negative leading coefficients satisfy (3.6), e.g., the Allen--Cahn nonlinearity: f(u) =
u - u3 with \ell = 1.

In case fi satisfies (3.6), condition (3.3) holds if there exist \varepsilon \in (0, \nu ) and M > 0
such that, a.e. in [0,\infty )\times \Omega \times \BbbT d and for all y \in \BbbR , i\in \{ 1, . . . , \ell \} ,

1

4(\nu  - \varepsilon )

\Bigl( 
| Fi(\cdot , y)| +

\sum 
n\geq 1

| bn,i(\cdot )| | gn,i(\cdot , y)| 
\Bigr) 2

+
1

2
\| (gn,i(\cdot , y))n\geq 1\| 2\ell 2(3.7)

\leq M(1 + | y| 2) + N0

\zeta  - 1
| yi| h+1.

This shows that Fi and gi can have growth of order | y| h+1
2 for | y| \rightarrow \infty but with a

restriction on the constant which depends on the constant N0 appearing in (3.6).
In particular, a standard Young's inequality argument shows that (3.7) holds if

there exist M1,M2 > 0 and \delta \in (0, h+1) such that, a.e. in [0,\infty )\times \Omega \times \BbbT d and for all
y \in \BbbR , i\in \{ 1, . . . , \ell \} ,

| Fi(\cdot , y)| 2 + \| gi(\cdot , y)\| 2\ell 2 \leq M1(1 + | y| 2) +M2| yi| h+1 - \delta .(3.8)

Finally, if one can prove that the local solution provided by (2.4) takes values in
S \subseteq \BbbR \ell for some S, then Assumption 3.1(\zeta ) holds for S-valued functions if (3.7) and
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4884 ANTONIO AGRESTI AND MARK VERAAR

(3.8) hold only for y \in S. In particular, many even polynomials satisfy (3.6) for y\geq 0,
e.g., for \ell = 1 and the logistic nonlinearity f(u) = u(1 - u).

Using smoothness assumptions on the coefficients and the nonlinearity, we formu-
late a simple sufficient condition for Assumption 3.1(\zeta ) in the case of scalar equations.
A version of the results below also hold in the system case as well, we but will not
state this explicitly.

Lemma 3.5 (pointwise L\zeta -coercivity/dissipativity with smoothness: scalar case).
Assume that \ell = 1 and that Assumption 2.1 holds. Let \zeta \geq 2. Suppose that a.s. for
every fixed t \in [0,\infty ) and u \in \BbbR , for every \phi \in \{ F,g\} , x \mapsto \rightarrow \phi (t, x,u) and x \mapsto \rightarrow 
\nabla x\phi (t, x,u) are continuous (and thus periodic), and that div(b) \in L\infty ([0,\infty ) \times \Omega \times 
\BbbT d; \ell 2). If there exist anM > 0 and \varepsilon > 0 such that for all u\in \BbbR , a.e. in [0,\infty )\times \Omega \times \BbbT d,

uf(\cdot , u)
\zeta  - 1

+
1

2
\| (gn(\cdot , u))n\geq 1\| 2\ell 2 + \varepsilon sup

| y| \leq | u| 
| divxF (\cdot , x, y)| 2(3.9)

+\varepsilon 
\sum 

k\in \{ 0,1\} 

sup
| y| \leq | u| 

\| (\nabla k
xgn(\cdot , x, y))n\geq 1\| 2\ell 2 \leq M(1 + | u| 2),

then Assumption 3.1(\zeta ) is satisfied. Moreover, if the above only holds for S-valued
functions u with S \subseteq \BbbR , then Assumption 3.1(\zeta ) holds for all S-valued functions.

Note that in many cases the \varepsilon -terms vanish, and in that case, the condition reduces to
(3.5). In particular, the proof below shows that the last term on the LHS of (3.9) can
be omitted if b= 0 or (div(b) = 0 in D \prime (\BbbT d), and g is x-independent). In order to keep
the focus on global well-posedness, the tedious but elementary proof of Lemma 3.5 is
given in Appendix B.

From Lemma 3.5 and the text below it, we obtain the following.

Example 3.6. Let \zeta \geq 2. Suppose that F is x-independent, and suppose that b= 0
(or div(b) = 0 and g is x-independent). Then Assumption 3.1 holds, provided that
there exist constants N0,N1,M \geq 0 such that, for all y \in \BbbR and a.e. on \BbbR + \times \Omega ,

f(\cdot , y)y\leq  - N0| y| h+1 +N1(| y| 2 + 1) and \| g(t, y)\| 2\ell 2 \leq M(1 + | y| 2) + 2N0

\zeta  - 1
| y| h+1.

(3.10)

As in Example 3.4, if the local solution provided by (2.4) is positive, then it suffices
to consider y\geq 0 in the above conditions.

Remark 3.7.
(a) Many authors consider the ``one-sided Lipschitz condition"" (see [20, 58, 63,

76]):

(y1  - y2)(f(y1) - f(y2))\leq C(y1  - y2)
2, y1, y2 \in \BbbR .

Clearly, it implies (3.10) with N0 = 0.
(b) The dissipative condition (3.10) appears, for instance, in [14, 26, 52, 78, 85]

and the references therein. In these works, g usually has linear growth. An
exception is [78], where the higher growth order of \| g\| 2\ell 2 is allowed as long as
it is strictly lower than that of f . An important difference with [78] is that
we consider transport noise, and therefore it is assumed to be trace-class.
Motivations for gradient noise are given in [7].

(c) The use of positivity to check blow-up criteria for SPDEs with polynomial
nonlinearities of even degree and negative leading coefficients seems to be
new.
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4885

3.2. Further applications: Coagulation dynamics and symbiotic Lotka--
Volterra model.

3.2.1. A model from coagulation dynamics. Here we consider a model from
[27] on coagulation dynamics. Coagulation is used in chemistry and rain formation. It
is a chemical process used to neutralize charges and form a gelatinous mass. In [27],
(probabilistically) weak solutions are obtained and pathwise uniqueness is proved
on \BbbR d. Below, we will show that if \BbbR d is replaced by \BbbT d, then our setting can be
used to obtain strong global well-posedness directly and, moreover, deduce high order
regularity of the solution. More precisely, we consider the stochastic coagulation
equations (with transport noise and superlinear diffusion), i.e., (2.1) with \ell \geq 1,

fi(y) =

i - 1\sum 
j=1

yjyi - j  - 2

\ell \sum 
j=1

yjyi for y \in \BbbR \ell and i\in \{ 1, . . . , \ell \} ,(3.11)

and Fi \equiv 0 and (ai, bi, gi) as in Assumption 3.8 below. In the above, we set
\sum 0
j=1 := 0.

The unknown ui : [0,\infty )\times \Omega \times \BbbT d\rightarrow \BbbR \ell describes the density of particle i\in \{ 1, . . . , \ell \} .
As explained in (1.3), the Stratonovich formulation is covered as well. A difficulty in
proving global well-posedness for (3.11) is that the quadratic nonlinearity f does not
satisfy the usual one-sided Lipschitz condition (see Remark 3.7).

Consider the following conditions on the parameters and coefficients.

Assumption 3.8. Let d \geq 1, \delta \in [1,2), h = 2, and q = max\{ d/2,2\} , and let
p\geq max\{ 2

2 - \delta , q\} . Suppose that Assumption 2.1(p, q, h, \delta ) holds with F = 0.
(1) Suppose that for all i \in \{ 1, . . . , \ell \} , n \geq 1, y = (yi)

\ell 
i=1 \in [0,\infty )\ell , and a.e. on

\BbbR + \times \Omega ,

gn,i(\cdot , y1, . . . , yi - 1,0, yi+1, . . . , y\ell ) = 0.

(2) Suppose that there is a \lambda \in [0,2) such that a.e. on \BbbR + \times \Omega ,

limsup
y\in [0,\infty )\ell ,| y| \rightarrow \infty 

q - 1

| y| 22| y| 1
ess sup
(t,\omega ,x)

\sum 
n\geq 1

\ell \sum 
i=1

| gn,i(t,\omega ,x, y)| 2 \leq \lambda .

In the above, we used the notation | y| p =
\bigl( \sum \ell 

j=1 | yj | p
\bigr) 1/p

. The function g does
not appear in [27], but under the above hypothesis, it can be added without much
additional difficulty. The smallness condition of Assumption 3.8(2) on g is often
satisfied with \lambda = 0. Note that for d\in \{ 1,2,3,4\} one can take q= 2.

Assumption 2.1 is a condition on the coefficients (a, b) and the nonlinearity g.
Clearly, f is quadratic and therefore satisfies the local Lipschitz requirement with
h= 2.

Our main result concerning (3.11) is the following well-posedness result.

Theorem 3.9 (global well-posedness: coagulation equations). Suppose that As-
sumption 3.8 holds, and set \kappa c = p(1 - \delta 

2 ) - 1. Then, for every u0 \in L0
F0

(\Omega ;Lq(\BbbT d;\BbbR \ell ))
with u0 \geq 0 (componentwise), there exists a (unique) global (p,\kappa c, q, \delta )-solution u :
[0,\infty )\times \Omega \times \BbbT d \rightarrow [0,\infty )\ell to the stochastic coagulation equations (as described near
(3.11)). Moreover, a.s.,
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4886 ANTONIO AGRESTI AND MARK VERAAR

u\in C([0,\infty );B0
q,p(\BbbT d;\BbbR 

\ell )),

u\in H\theta ,r
loc (0,\infty ;H1 - 2\theta ,\zeta (\BbbT d;\BbbR \ell )) \forall \theta \in [0,1/2), \forall r, \zeta \in (2,\infty ),

u\in C\theta 1,\theta 2loc ((0,\infty )\times \BbbT d;\BbbR \ell ) \forall \theta 1 \in [0,1/2), \forall \theta 2 \in (0,1).

Moreover, the energy estimates (3.1) and (3.2) hold with \zeta = q. Moreover, one can
take s = 0 if for some \varepsilon > 0, u0 \in B\varepsilon \zeta ,\infty (\BbbT d;\BbbR \ell ) a.s., or u0 \in L2(\BbbT d;\BbbR \ell ) a.s. and
\zeta = p= q= 2.

Note that for d\leq 4 we can take p= q= 2 and \delta = 1 (thus \kappa c = 0).

Proof. First consider d \geq 4. Then Assumption 2.2(p, q, h, \delta ) holds. By Theo-
rem 2.4 there exists a (p,\kappa c, \delta , q)-solution (u,\sigma ). Moreover, (2.2), (2.3), and (2.4)
imply the required regularity if we can check that \sigma =\infty .

Since u0 \geq 0 and g satisfies Assumption 3.8(1), it follows from Proposition 2.6
that a.s. u \geq 0 on [0, \sigma ). To prove global existence by Theorem 3.2, it is enough to
check Assumption 3.1(q) for [0,\infty )d-valued functions. By Lemma 3.3 it is enough to
show that

\ell \sum 
i=1

N
\nu /2
i (y)\leq C for all y \in [0,\infty )d.(3.12)

Moreover, by the properties of f and g it suffices to prove (3.12) for | y| 2 \geq R for some
R> 0. By Assumption 3.8(2) we can find \eta > 0 and R> 0 such that, for all | y| 2 \geq R,\biggl( 

1

2
+ \eta 

\biggr) \sum 
n\geq 1

\ell \sum 
i=1

| gn,i(\cdot , y)| 2 \leq 
| y| 22| y| 1
q - 1

.(3.13)

Since
\sum i - 1
j=1 yjyi - j \leq 

1
2

\sum i - 1
j=1 y

2
j + y2i - j \leq | y| 22, we obtain, for y \in [0,\infty )\ell ,

\ell \sum 
i=1

yifi(\cdot , y)\leq 
\ell \sum 
i=1

yi

\left[  | y| 2  - 2

\ell \sum 
j=1

yjyi

\right]  = - | y| 2| y| 1.

Therefore, for all | y| 2 \geq R,

\ell \sum 
i=1

N
\nu /2
i (\cdot , y)\leq  - | y| 22| y| 1

q - 1
+

1

2

\ell \sum 
i=1

\sum 
n\geq 1

| gn,i(\cdot , y)| 2 +
8

\nu 

\ell \sum 
i=1

\sum 
n\geq 1

| bn,i| | gn,i(\cdot , y)| 

\leq  - | y| 22| y| 1
q - 1

+

\biggl( 
1

2
+ \eta 

\biggr) \ell \sum 
i=1

\sum 
n\geq 1

| gn,i(\cdot , y)| 2 +C\eta ,\nu ,b \leq C\eta ,\nu ,b,

where we used (3.13). This proves (3.12), and the global existence follows.
In case d\in \{ 1,2,3\} , we can introduce dummy variables to reduce to the case d= 4

(see [7, Remark 2.2(d)]).

3.2.2. Symbiotic Lotka--Volterra equations. Here we consider the symbiotic
Lotka--Volterra equations, which are used in the case species actually benefit from each
other. This differs from the classical predatory-prey system, which is mathematically
more complicated and will be discussed in subsection 4.2. The stochastic symbiotic
Lotka--Volterra equations (with transport noise and superlinear diffusion) are of the
form (2.1), i.e., with \ell = 2,

fi(\cdot , y) = - y2i + \chi iy1y2 + \lambda iyi for y \in \BbbR 2, i\in \{ 1,2\} ,(3.14)
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4887

Species u2

Species u1

Food Death\chi 1u1u2 \geq 0 \chi 2u1u2 \geq 0

 - u2
2 \leq 0

 - u2
1 \leq 0

 - \lambda \prime \prime 
2u2 \leq 0

 - \lambda \prime \prime 
1u1 \leq 0\lambda \prime 

1u1 \geq 0

\lambda \prime 
2u2 \geq 0

Fig. 1. Scheme for the symbiotic Lotka--Volterra equations.

and Fi \equiv 0, and (ai, bi, gi) is as in Assumption 3.10. The unknowns u1, u2 : [0,\infty )\times \Omega \times 
\BbbT d \rightarrow \BbbR are the population of the species. The reader is referred to [23, 47] for some
comments on the deterministic model. The presence of transport noise models the
small-scale randomness in migration processes (see [7, subsection 1.3]). The additional
terms gn,i can model further random forces acting on the system. A schematic idea
of the model is depicted in Figure 1, where \lambda \prime i  - \lambda \prime \prime i = \lambda i for i\in \{ 1,2\} . For simplicity,
we take a unitary rate of self-interaction, but this is not essential.

In order to state our global well-posedness result for \varepsilon 1, \varepsilon 2 > 0 we take N\varepsilon i
i as in

Lemma 3.3:

N\varepsilon i
i (\cdot , y) = - y3i + \chi iyiy1y2 +

1

2

\sum 
n\geq 1

| gn,i(\cdot , y)| 2 +
4

\nu i  - \varepsilon i

\left(  \sum 
n\geq 1

| bn,i| | gn,i(\cdot , y)| 

\right)  2

.

Assumption 3.10. Let d \in \{ 1,2,3,4\} , p = q = 2, \kappa = \kappa c = 0, h = 2, \delta = 1, and
Assumption 2.1(p, q, h, \delta ) holds with F = 0 and \ell = 2. Suppose the following:

(1) The mappings \lambda 1, \lambda 2, \chi 1, \chi 2 : \BbbR + \times \Omega \times \BbbT d \rightarrow \BbbR are bounded P \otimes B(\BbbT d)-
measurable maps.

(2) There exist \alpha i > 0, \varepsilon i \in (0, \nu i) for i\in \{ 1,2\} and M > 0 such that\sum 
i\in \{ 1,2\} 

\alpha iN
\varepsilon i
i (\cdot , y)\leq M(| y| 2 + 1), y\geq 0.

(3) gn,1(\cdot ,0, y2) = gn,2(\cdot , y1,0) = 0 for all y \in \BbbR 2 and n\geq 1.

Note that Assumption 3.10(3) is used to obtain the positivity of the solution u.
Now suppose that g has at most linear growth. Using v2w\leq 2

3v
3 + 1

3w
3, one can

check that

 - y31 + \chi 1y1y1y2  - y32 + \chi 2y1y
2
2 \leq  - (1 - 2

3\chi 1  - 1
3\chi 2)y

3
1  - (1 - 1

3\chi 1  - 2
3\chi 2)y

3
2 .

Thus, Assumption 3.10(2) holds with \alpha 1 = \alpha 2 = 1 if \chi 1, \chi 2 \in [0,1]. If \chi 1, \chi 2 \in [0,1)
and can even allow g, which has growth \lesssim (1 + | y| ) 3

2 - \gamma for some \gamma > 0, then one can
also allow large \chi 1 > 1 if \chi 2 is small enough, which follows by choosing 0<\alpha 1 <\alpha 2.

Theorem 3.11 (global well-posedness: symbiotic Lotka--Volterra). Let 1\leq d\leq 4,
and let Assumption 3.10 be satisfied. Then, for every u0 \in L0

F0
(\Omega ;L2(\BbbT d;\BbbR 2)) with

u0 \geq 0 (componentwise), there exists a (unique) global (2,0,1,2)-solution u : [0,\infty )\times 
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4888 ANTONIO AGRESTI AND MARK VERAAR

\Omega \times \BbbT d \rightarrow [0,\infty )2 to the stochastic symbiotic Lotka--Volterra equations (as described
near (3.14)). Moreover, a.s.,

u\in L2
loc([0,\infty );H1(\BbbT d;\BbbR 2))\cap C([0,\infty );L2(\BbbT d;\BbbR 2)),

u\in H\theta ,r
loc (0,\infty ;H1 - 2\theta ,\zeta (\BbbT d;\BbbR 2)) \forall \theta \in [0,1/2), \forall r, \zeta \in (2,\infty ),

u\in C\theta 1,\theta 2loc ((0,\infty )\times \BbbT d;\BbbR 2) \forall \theta 1 \in [0,1/2), \forall \theta 2 \in (0,1).

Finally, the energy estimates (3.1)--(3.2) hold for \zeta = 2.

Proof. First, consider d = 4. Assumptions 2.1(2,2,2,1) and 2.2(2,2,2,1) hold.
From Theorem 2.4 we obtain a local (2,0,1,2)-solution (u,\sigma ) which satisfies the reg-
ularity results (2.3) and (2.4). Moreover, Proposition 2.6 implies u\geq 0.

It remains to check global existence and the a priori estimates. By Assump-
tion 3.10(2) we can apply Lemma 3.3 to verify Assumption 3.1(2). Therefore, Theo-
rem 3.2 gives \sigma =\infty .

In case 1 \leq d \leq 3, we can introduce dummy variables to reduce to the case
d= 4.

3.3. Proof of Theorem 3.2 via energy estimates. To prove Theorem 3.2,
we check the blow-up criterion of Theorem 2.5. The key ingredients for this are
the following energy estimates for (p,\kappa c, q, \delta )-solutions to (1.1), where \kappa c is as in
Theorem 2.4.

Lemma 3.12 (energy estimates). Let the assumptions of Theorem 2.4 be satisfied.
Let (u,\sigma ) be the local (p,\kappa c, \delta , q)-solution to (2.1). Suppose that Assumption 3.1(\zeta )

holds, where \zeta \geq d(h - 1)
2 \vee 2 is fixed. Then, for all 0< s< T <\infty and i\in \{ 1, . . . , \ell \} ,

sup
t\in [s,\sigma \wedge T )

\| ui(t)\| \zeta L\zeta <\infty a.s. on \{ \sigma > s\} ,(3.15) \int \sigma \wedge T

s

\int 
\BbbT d

| ui| \zeta  - 2| \nabla ui| 2 dxdt <\infty a.s. on \{ \sigma > s\} .(3.16)

Moreover, for all \lambda \in (0,1) there exist N0,N0,\lambda > 0 such that for all 0 < s < T <\infty ,
L\geq 0, and i\in \{ 1, . . . , \ell \} ,

sup
t\in [s,T ]

\BbbE 
\Bigl[ 
1[s,\sigma )(t)1\Gamma \| ui(t)\| \zeta L\zeta 

\Bigr] 
+\BbbE 

\int \sigma \wedge T

s

\int 
\BbbT d

1\Gamma | ui| \zeta  - 2| \nabla ui| 2 dxdt(3.17)

\leq N0

\Bigl( 
1 +\BbbE 1\Gamma \| u(s)\| \zeta L\zeta 

\Bigr) 
,

\BbbE sup
t\in [s,\sigma \wedge T )

1\Gamma \| ui(t)\| \zeta \lambda L\zeta +\BbbE 
\bigm| \bigm| \bigm| \int \sigma \wedge T

s

\int 
\BbbT d

1\Gamma | ui| \zeta  - 2| \nabla ui| 2 dxdt
\bigm| \bigm| \bigm| \lambda (3.18)

\leq N0,\lambda 

\Bigl( 
1 +\BbbE 1\Gamma \| u(s)\| \zeta \lambda L\zeta 

\Bigr) 
,

where \Gamma = \{ \sigma > s, \| u(s)\| L\zeta \leq L\} . Furthermore, one can take s= 0 in (3.17)--(3.18) if
for some \varepsilon > 0, u0 \in B\varepsilon \zeta ,\infty (\BbbT d;\BbbR \ell ) a.s., or u0 \in L2(\BbbT d;\BbbR \ell ) a.s. and \zeta = p= q= 2.

By the regularity results (2.3)--(2.4) and s > 0, the quantities in (3.15)--(3.16) are
well-defined.

Before giving the proof of Lemma 3.12, we show how it implies Theorem 3.2. The
proof of Lemma 3.12 will be given in subsection 3.4.
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4889

Proof of Theorem 3.2. We only consider the case \ell = 1, as the general case is
analogous. As above, we omit the subscript i= 1. Let (u,\sigma ) be a (p,\kappa c, \delta , q)-solution
to (2.1) provided by Theorem 2.4. It remains to show that \sigma =\infty a.s.

Step 1: Case \zeta > d(h - 1)
2 \vee 2. Fix 0< s< T <\infty . By Lemma 3.12,

u\in L\infty (s,\sigma \wedge T ;L\zeta ) a.s. on \{ \sigma > s\} ,(3.19)

and u : [s,\sigma \wedge T ) \rightarrow L\zeta is continuous by (2.4). Let h0 := max\{ h,1 + 4
d\} . Applying

(3.19) and then Theorem 2.5(1) with \zeta 1 = \zeta , \delta 0 \in (1, h0+1
h0

] small enough, and p0 large
enough, it follows that

\BbbP (s < \sigma < T ) = \BbbP 
\Bigl( 
s < \sigma < T, sup

t\in [s,\sigma )

\| u(t)\| L\zeta <\infty 
\Bigr) 
= 0.(3.20)

Since \sigma > 0 a.s. by Theorem 2.4, letting s \downarrow 0 we obtain \BbbP (\sigma < T ) = 0. Letting T \rightarrow \infty ,
we find that \sigma =\infty a.s.

Step 2: Case \zeta = d(h - 1)
2 \vee 2. In this case, we apply the sharper result of The-

orem 2.5(2) with a specific choice of the parameters (p0, q0, \delta 0) and h0 as in Step 1.
Let \zeta 0 =

d
2 (h0  - 1). Then one can check that \zeta 0 = \zeta . Choose \delta 0 \in (1, h0+1

h0
). For \varepsilon > 0

fixed, let q0 = d(h0 - 1)
2 (1 + \varepsilon ). For \varepsilon > 0 small enough, one has q0 <

d(h0 - 1)
h0+1 - \delta 0(h0 - 1) .

Moreover, q0 > \zeta 0, and q0 > 2. Define p0 by 2
p0

= 2
h0 - 1  - d

q0
. Then p0 \rightarrow \infty as \varepsilon \downarrow 0.

From this one can see that for \varepsilon > 0 small enough

p0 >

\biggl( 
2

\delta 0  - 1

\biggr) 
\vee q0 and

1

p0
+

1

2

\biggl( 
\delta 0 +

d

q0

\biggr) 
\leq h0
h0  - 1

.

In particular, Assumptions 2.1(p0, q0, h0, \delta 0) and 2.2(p0, q0, h0, \delta 0) hold.
We claim that it is enough to show that for all 0< s< T <\infty and a.s. on \{ \sigma > s\} 

u\in L\infty (s,\sigma \wedge T ;L\zeta 0) and u\in Lp0(s,\sigma \wedge T ;Lq0).(3.21)

Indeed, if (3.21) holds a.s. on \{ \sigma > s\} , then the claim follows from Theorem 2.5(2)
and an argument similar to the one used in (3.20) and below it. Thus, it remains to
prove (3.21). To this end, fix 0 < s < T < \infty . By Lemma 3.12 and \zeta = \zeta 0, a.s. on
\{ \sigma > s\} ,

u\in L\infty (s,\sigma \wedge T ;L\zeta 0) and | u| (\zeta 0 - 2)/2| \nabla u| \in L2(s,\sigma \wedge T ;L2).(3.22)

Thus, the first part of (3.21) follows from the first part of (3.22). To show the second
part of (3.21), we use an interpolation argument. By the chain rule and the smoothness
of u (see (2.3)), a.e. on [s,\sigma )\times \{ \sigma > s\} , one has

\zeta 20
4

\int 
\BbbT d

| u| \zeta 0 - 2| \nabla u| 2 dx=
\int 
\BbbT d

\bigm| \bigm| \bigm| \nabla \bigl[ | u| \zeta 0/2\bigr] \bigm| \bigm| \bigm| 2 dx.
Thus, (3.22) implies that a.s. on \{ \sigma > s\} 

| u| \zeta 0/2 \in L\infty (s,\sigma \wedge T ;L2) and | u| \zeta 0/2 \in L2(s,\sigma \wedge T ;H1).(3.23)

Standard interpolation inequalities and Sobolev embedding imply that

L\infty (s,\sigma \wedge T ;L2)\cap L2(s,\sigma \wedge T ;H1) \lhook \rightarrow L2/\theta (s,\sigma \wedge T ;H\theta ) \lhook \rightarrow L2/\theta (s,\sigma \wedge T ;L\xi ),
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4890 ANTONIO AGRESTI AND MARK VERAAR

where \theta \in (0,1) and \xi \in (2,\infty ) satisfies \theta  - d
2 = - d

\xi . Thus, by (3.23),

u\in L\zeta 0/\theta (s,\sigma \wedge T ;L\xi \zeta 0/2) a.s. for all \theta \in (0,1).(3.24)

Taking \theta = \zeta 0/p0 < 1 (here we use p0 > q0 > \zeta 0), we obtain \zeta 0/\theta = p0 and

2

\xi \zeta 0
=

2

d\zeta 0

d

\xi 
=

1

\zeta 0
 - 2\theta 

d\zeta 0
=

2

d(h0  - 1)
 - 2

dp0
=

1

q0
.

Hence, the second part of (3.21) follows from (3.24).
Step 3: The energy estimates (3.1) and (3.2) are immediate from the bounds in

Lemma 3.12.

3.4. Proof of Lemma 3.12: Energy estimates for (2.1). The proof uses
It\^o's formula for \| u\| \zeta 

L\zeta 
combined with the L\zeta -coercivity of Assumption 3.1 and the

stochastic Gronwall lemma (see [32, Corollary 5.4b)]). The validity of It\^o's formula
heavily relies on the regularity of u obtained in Theorem 2.4.

Proof of Lemma 3.12. Let 0< s< T <\infty be fixed. We split the proof into several
steps. To keep the notation short, we consider the case \ell = 1 in Steps 1--5. Comments
on the case \ell \geq 1 are given in Step 6.

Step 1: Preparation -- case \ell = 1. To obtain estimates leading to (3.15)--(3.16), we
need a localization argument. Hence, we introduce stopping times (\tau j)j\geq 1. To define
\tau j , we exploit the instantaneous regularization of u; see (2.3)--(2.4). More precisely,
for each j \geq 1, we can define the stopping time \tau j by

\tau j = inf
\bigl\{ 
t\in [s,\sigma ) : \| u(t) - u(s)\| C(\BbbT d) + \| u\| L2(s,t;H1(\BbbT d)) \geq j

\bigr\} 
\wedge T

on \{ \sigma > s,\| u(s)\| C(\BbbT d) \leq j  - 1\} and \tau j = s otherwise. Here we also set inf\varnothing := \sigma \wedge T .
By (2.3)--(2.4), we have limj\rightarrow \infty \tau j = \sigma . In the following, [s, \tau j) \times \Omega serves as

approximation of the stochastic interval [s,\sigma )\times \{ \sigma > s\} on which we prove bounds.
Note that

\| u\| L\infty ((s,\tau j)\times \BbbT d) \leq 2j  - 1 a.s. on \{ \tau j > s\} .

Thus, Assumption 2.1(4) yields, for all r \in (2,\infty ), i\in \{ 1, . . . , \ell \} ,

1[s,\tau j)\times \Omega 

\bigl[ 
div(Fi(\cdot , u)) + fi(\cdot , u)

\bigr] 
\in L\infty (\Omega ;Lr(s, \tau j ;H

 - 1,r)),

1[s,\tau j)\times \Omega (gn,i(\cdot , u))n\geq 1 \in L\infty (\Omega ;Lr(s, \tau j ;L
r(\ell 2))).

(3.25)

Combining (3.25), the stochastic maximal Lp-regularity estimates of [3, Theorem
1.2], and the fact that (u| [0,\tau j)\times \Omega , \tau j) is a local (p,\kappa , \delta , q)-solution to (2.1), we have
u\in C([s, \tau j ];C(\BbbT d)) a.s.

Fix \Gamma \in Fs such that \Gamma \subseteq \{ \sigma > s\} . Since it is convenient to work with processes
defined on \Omega \times [s,T ] rather than [s, \tau j)\times \Gamma , we set

u(j)(t) = 1\Gamma u(t\wedge \tau j) on \Omega \times [s,T ].

We omit the dependence on \Gamma for brevity. Since (u,\sigma ) is a (p,\kappa c, \delta , q)-solution to (2.1),
we have a.s. for all t\in [s,T ]

u(j)(t) - u(j)(s) =

\int t

s

1[s,\tau j ]\times \Gamma 

\Bigl[ 
div(a \cdot \nabla u) +

\bigl( 
div(F (\cdot , u)) + f(\cdot , u)

\bigr) \Bigr] 
dr

+
\sum 
n\geq 1

\int t

s

1[s,\tau j ]\times \Gamma 

\Bigl[ 
(bn \cdot \nabla )u+ gn(\cdot , u)

\Bigr] 
dwnr .

(3.26)
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4891

From the definition of \tau j , it is clear that

u(j) \in L2(\Omega ;L2(s, \tau j ;H
1)).(3.27)

Now arguing as in the proof of [4, Theorem 3.3] (see the argument below (4.5) there),
by stochastic maximal L2-regularity applied to (3.26), we also obtain that u(j) \in 
L2(\Omega ;C([s,T ];L2)).

Let \xi \in C2
b(\BbbR ) be such that \xi (y) = | y| \zeta for | y| \leq 2j  - 1. By (3.26) and (3.25), we

may apply an extended form of It\^o's formula (see Lemma A.1) to \xi (u) to obtain that
a.s. for all t\in [s,T ]

\| u(j)(t)\| \zeta 
L\zeta 

= \| u(j)(s)\| \zeta 
L\zeta 

+ \zeta (\zeta  - 1)\scrD (t) + \zeta \scrS (t),(3.28)

where \scrD and \scrS stand for ``deterministic"" and ``stochastic"" parts, respectively. They
are defined by

\scrD (t) =

\int t

s

\int 
\BbbT d

1[s,\tau j ]\times \Gamma | u| \zeta  - 2

\biggl( 
uf(\cdot , u)
\zeta  - 1

 - \nabla u \cdot a\nabla u - \nabla u \cdot F (\cdot , u)

+
1

2

\sum 
n\geq 1

[(bn \cdot \nabla )u+ gn(\cdot , u)]2
\biggr) 
dxdr,

\scrS (t) =
\sum 
n\geq 1

\int t

s

\int 
\BbbT d

1[s,\tau j ]\times \Gamma | u| \zeta  - 2u[(bn \cdot \nabla )u+ gn(\cdot , u)] dxdwnr .

By Assumption 3.1(\zeta ), one has

\scrD (t)\leq C0(t - s) - \theta 

\int t

s

\int 
\BbbT d

1[s,\tau j ]\times \Gamma | u| \zeta  - 2| \nabla u| 2 dxdr

+M0

\int t

s

\int 
\BbbT d

1[s,\tau j ]\times \Gamma | u| \zeta dxdr,

where M0 = \theta M and C0 = \theta C. Therefore, by (3.28) for t\in [s,T ],

\| u(j)(t)\| \zeta 
L\zeta 

+ \theta \zeta (\zeta  - 1)

\int t

s

\int 
\BbbT d

1[s,\tau j ]\times \Gamma | u| \zeta  - 2| \nabla u| 2 dxdr

\leq \zeta (\zeta  - 1)C0(t - s) + \| u(j)(s)\| \zeta 
L\zeta 

+ \zeta (\zeta  - 1)M0

\int t

s

1[s,\tau j ]\times \Gamma \| u(r)\| \zeta L\zeta dr+ \zeta \scrS (t),

(3.29)

where we note that u = u(j) on [s, \tau j ] \times \Gamma , so that u can be replaced by u(j). The
above estimate will be used to derive the assertion of the lemma in several steps.

Step 2 -- case \ell = 1: Let (\theta ,M,C) be as in Assumption 3.1, and set C0 = C\theta ,
M0 :=M\theta . Then

sup
r\in [s,t]

\BbbE \| u(j)(r)\| \zeta 
L\zeta 

\leq et\zeta (\zeta  - 1)M0

\Bigl( 
\zeta (\zeta  - 1)C0t+\BbbE [1\Gamma \| u(s)\| \zeta L\zeta ]

\Bigr) 
for all t\in [s,T ].

(3.30)

Note that the constants appearing on the RHS of (3.30) are independent of (j, s,\Gamma ).
Taking expectations in (3.29) and using \BbbE \scrS (t) = 0 by (3.25) and (3.27), we obtain

\BbbE \| u(j)(t)\| \zeta 
L\zeta 

+ \theta \zeta (\zeta  - 1)\BbbE 
\int t

s

\int 
\BbbT d

1[s,\tau j ]\times \Gamma | u(r)| \zeta  - 2| \nabla u| 2 dxdr

\leq \zeta (\zeta  - 1)C0(t - s) +\BbbE \| u(j)(s)\| \zeta 
L\zeta 

+ \zeta (\zeta  - 1)M0

\int t

s

\BbbE \| u(j)(r)\| \zeta 
L\zeta 

dr

(3.31)
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4892 ANTONIO AGRESTI AND MARK VERAAR

for all t \in [s,T ]. Thus, (3.30) follows from Gronwall's inequality applied to t \mapsto \rightarrow 
supr\in [s,t]\BbbE \| u(j)(r)\| 

\zeta 
L\zeta 

.
Step 3 -- case \ell = 1: There exists a constant N \geq 1 depending only on the constants

(\theta ,M,C,T, \zeta ) such that

\BbbE 
\int \sigma \wedge T

s

1\Gamma \| u(r)\| \zeta L\zeta dr+\BbbE 
\int \sigma \wedge T

s

\int 
\BbbT d

1\Gamma | u| \zeta  - 2| \nabla u| 2 dxdr\leq N
\bigl[ 
1 +\BbbE \| 1\Gamma u(s)\| \zeta L\zeta 

\bigr] 
.

(3.32)

To see this, note that by (3.30) and Fubini's theorem we obtain

\BbbE 
\int T

s

\| u(j)(r)\| \zeta 
L\zeta 

dr\leq 
\Bigl( 
\zeta (\zeta  - 1)C0 +\BbbE 

\bigl[ 
1\Gamma \| u(s)\| \zeta L\zeta 

\bigr] \Bigr) 
(1 + T )e\zeta (\zeta  - 1)TM0 .(3.33)

Therefore, letting j\rightarrow \infty , by Fatou's lemma we find that

\BbbE 
\int \sigma \wedge T

s

1\Gamma \| u(r)\| \zeta L\zeta dr\leq lim inf
j\rightarrow \infty 

\BbbE 
\int \tau j

s

1\Gamma \| u(r)\| \zeta L\zeta dr

\leq lim inf
j\rightarrow \infty 

\BbbE 
\int T

s

1\Gamma \| u(j)(r)\| \zeta L\zeta dr

\leq 
\Bigl( 
\zeta (\zeta  - 1)C0 +\BbbE 

\bigl[ 
1\Gamma \| u(s)\| \zeta L\zeta 

\bigr] \Bigr) 
(1 + T )e\zeta (\zeta  - 1)TM0 ,

which gives the estimate for the first term in (3.32).
From (3.31) and (3.33) we obtain

\theta \zeta (\zeta  - 1)\BbbE 
\int \tau j

s

\int 
\BbbT d

1\Gamma | u| \zeta  - 2| \nabla u| 2 dxdr\leq M1

\Bigl( 
\zeta (\zeta  - 1)C0 +\BbbE 

\bigl[ 
1\Gamma \| u(s)\| \zeta L\zeta 

\bigr] \Bigr) 
,

where M1 =M0(T +1)e\zeta (\zeta  - 1)TM0 . Letting j\rightarrow \infty in the same way as before, we find
that

\theta \zeta (\zeta  - 1)\BbbE 
\int \sigma \wedge T

s

\int 
\BbbT d

1\Gamma | u| \zeta  - 2| \nabla u| 2 dxdr\leq M1

\Bigl( 
C0 +\BbbE 

\bigl[ 
1\Gamma \| u(s)\| \zeta L\zeta 

\bigr] \Bigr) 
,

which gives the estimate for the second term in (3.32).
Step 4 -- case \ell = 1: There exists N0 > 0 depending only on (\theta ,C,M,T, \zeta ,\lambda ) such

that

\BbbE 
\Bigl[ 
1\Gamma sup

t\in [s,\sigma \wedge T )

\| u(t)\| \zeta \lambda 
L\zeta 

\Bigr] 
+\BbbE 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int t

s

\int 
\BbbT d

1[s,\tau j ]\times \Gamma | u| \zeta  - 2| \nabla u| 2 dxdr

\bigm| \bigm| \bigm| \bigm| \bigm| 
\lambda 

\leq N0

\Bigl( 
1 +\BbbE 

\bigl[ 
1\Gamma \| u(s)\| \lambda \zeta L\lambda \zeta 

\bigr] \Bigr) 
,

where 0 < \lambda < 1. The latter estimate follows with u replaced by u(j) by combining
(3.29) with the stochastic Gronwall inequality [32, Corollary 5.4b)] and afterwards
letting j\rightarrow \infty .

Step 5 -- case \ell = 1: Conclusions. By (2.4), for each k\geq 1 we set

\Gamma k := \{ \sigma > s, \| u(s)\| L\infty \leq k\} \in Fs.

Using the estimates (3.32) and Step 4, we find that for all k\geq 1

sup
t\in [s,\sigma \wedge T )

\| u(t)\| \zeta 
L\zeta 

+

\int \sigma \wedge T

s

\int 
\BbbT d

| u| \zeta  - 2| \nabla u| 2 dxdr <\infty a.s. on \Gamma k.
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4893

Since \BbbP (\{ \sigma > s\} \setminus \Gamma k) \rightarrow 0 as k \rightarrow \infty by (2.4), the boundedness of (3.15) and (3.16)
follows.

It remains to prove the estimates (3.17) and (3.18) with \Gamma = \{ \sigma > s\| u(s)\| L\zeta \leq L\} .
These follow from Steps 2, 3, and 4 by letting j \rightarrow \infty . If, additionally, u0 \in B\varepsilon \zeta ,\infty 
a.s. (or u0 \in L2 a.s. and \zeta = 2), then it follows from [7, Propositions 3.1 and 7.1] that
u\in C([0, \sigma );L\zeta ) a.s. Therefore, we can let s \downarrow 0 in (3.17) and (3.18).

Step 6: The system case \ell > 1. One can apply It\^o's formula to \| u(j)i \| \zeta 
L\zeta 

for each
i\in \{ 1, . . . , \ell \} to obtain an analogue of (3.28) for the ith equation of the system. Multi-
plying these equations by \alpha i and summing them up over i, one can use Assumption 3.1
to obtain the following analogue of (3.29):

\ell \sum 
i=1

\| u(j)i (t)\| \zeta 
L\zeta 

+ \theta 

\ell \sum 
i=1

\int t

s

\int 
\BbbT d

1[s,\tau j ]\times \Gamma (r)| ui(r)| \zeta  - 2| \nabla ui(r)| 2 dxdr

\leq C1 +
\ell \sum 
i=1

\alpha i\| u(j)i (s)\| \zeta 
L\zeta 

+M

\ell \sum 
i=1

\int t

s

1[s,\tau j ]\times \Gamma (r)\| u
(j)
i (r)\| \zeta 

L\zeta 
dr+ \scrS (t),

where \scrS =
\sum \ell 
i=1\alpha i\scrS i, and \scrS i is given by

\scrS i(t) =
\sum 
n\geq 1

\int t

s

\int 
\BbbT d

1[s,\tau j ,]\times \Gamma | u
(j)
i | \zeta  - 2ui[(bn,i \cdot \nabla )u

(j)
i + gn(\cdot , u(j))] dxdwnr .

After that, Steps 1--5 can be repeated almost verbatim.

4. Global existence and uniqueness for weakly dissipative systems. In
this section, we establish global well-posedness for certain weakly dissipative systems.
In the case of 2 \times 2 systems, this means that there is a dissipative nonlinearity in
one of the equations but not in both. Therefore, the corresponding system is only
``weakly"" dissipative and the results of the previous section cannot be applied. More
precisely, here we investigate the following cases:

\bullet Lotka--Volterra equations (subsection 4.2).
\bullet The Brusselator system (subsection 4.3).

Moreover, we show that subsection 4.2 also covers the SIR model (susceptible-infected-
removed), and subsection 4.3 also covers the Gray--Scott model.

In the case of weakly dissipative systems, it does not seem possible to formulate
a general ``weak"" dissipation condition which extends Assumption 3.1. At the mo-
ment, we can only argue ``case by case"" by possibly relying on the precise structure
of the equations and on some of the analysis done in the scalar case. For the sake of
simplicity, all the above examples are 2\times 2 systems. However, our arguments can be
generalized in certain situations to \ell \times \ell ones with \ell \geq 3 as well; see, e.g., Remark 4.6.
Our strategy to deal with weakly dissipative systems is to obtain suitable estimates for
u1 by using the dissipation effect of f1 as done in section 3 for scalar equations. Sub-
sequently, we estimate u2 by exploiting the estimate for u1. Since in the u2-equation
in (2.1) there is no dissipation, we cannot follow the arguments of section 3. To prove
estimates on u2, we use a variant of Assumption 3.1 (i.e., L\zeta -coercivity/dissipativity)
that we investigate in subsection 4.1 below.

4.1. Energy estimates: Iteration via \bfitL \bfitzeta -coercivity/dissipativity. In this
section, we prove the main energy estimates for uj , where j \in \{ 1, . . . , \ell \} is fixed, and
\ell \geq 2 is general for the moment. The j-equation of the system (2.1) is
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4894 ANTONIO AGRESTI AND MARK VERAAR\left\{         
duj  - div(aj \cdot \nabla uj)dt=

\bigl[ 
div(Fj(\cdot , u)) + fj(\cdot , u)

\bigr] 
dt

+
\sum 
n\geq 1

\Bigl[ 
(bn,j \cdot \nabla )uj + gn,j(\cdot , u)

\Bigr] 
dwnt ,

uj(0) = u0,j

on \BbbT d. The aim of this subsection is to provide estimates for uj . Later on, this will
be combined with bounds for (ui)

j - 1
i=1 to get a priori bounds. This eventually leads to

global existence in the case of weakly dissipative systems.
Consider the following assumption.

Assumption 4.1 (random L\zeta -coercivity/dissipativity). Suppose that the assump-
tions of Theorem 2.4 are satisfied. Let (u,\sigma ) be the corresponding (p,\kappa c, \delta , q)-solution.
For 0\leq s < T <\infty , j \in \{ 1, . . . , \ell \} , and \zeta \in [2,\infty ), we say that Assumption 4.1(s,T, j, \zeta )
holds if there exists a constant \theta > 0 and there exist P \otimes B(\BbbT d)-measurable maps
M1,M2 : [s,T ]\times \Omega \times \BbbT d\rightarrow [0,\infty ) and \scrR j : [s,T ]\times \Omega \rightarrow [0,\infty ) satisfying

Mk \in L\varphi k(s,T ;L\psi k(\BbbT d)) a.s. for all k \in \{ 1,2\} ,(4.1)

where \psi 1 := \zeta 
2 , \varphi 1 := 1, \psi 2 \in (d2 \vee 1,\infty ), and \varphi 2 := 2\psi 2

2\psi 2 - d , for which the following
conditions hold a.e. in (s,\sigma )\times \{ \sigma > s\} :\int 

\BbbT d
| uj | \zeta  - 2

\Bigl( 
aj\nabla uj \cdot \nabla uj + Fj(\cdot , u) \cdot \nabla uj

 - ujfj(\cdot , u)
\zeta  - 1

 - 1

2

\sum 
n\geq 1

\bigl[ 
(bn,j \cdot \nabla )uj + gn,j(\cdot , u)

\bigr] 2\Bigr) 
dx

\geq 
\int 
\BbbT d

| uj | \zeta  - 2
\Bigl( 
\theta | \nabla uj | 2  - M1  - M2| uj | 2

\Bigr) 
dx+\scrR j .

In the examples below, M1, M2, and the possible extra term \scrR j will depend on
u as well, and often we will be able to bootstrap the integrability of u in applications.

There is no direct connection between Assumptions 4.1 and 3.1. However, the
following lemma can be proved similarly to Lemma 3.3. Lemma 3.5 does not seem to
have an analogue which is easy to state.

Lemma 4.2. Suppose that Assumption 2.1 holds. Suppose that the assumptions
of Theorem 2.4 are satisfied. Let (u,\sigma ) be the corresponding (p,\kappa c, \delta , q)-solution. Let
0\leq s < T <\infty , j \in \{ 1, . . . , \ell \} , and \zeta \in [2,\infty ). Then Assumption 4.1(s,T, j, \zeta ) holds if
there exist P \otimes B(\BbbT d)-measurable M1,M2 : [s,T ]\times \Omega \times \BbbT d \rightarrow [0,\infty ) satisfying (4.1),
and \varepsilon \in (0, \nu ) such that

ujfj(\cdot , u)
\zeta  - 1

+
1

4(\nu j  - \varepsilon )

\Bigl( 
| Fj(\cdot , u)| +

\sum 
n\geq 1

| bn,j | | gn,j(\cdot , u)| 
\Bigr) 2

+
1

2
\| (gn,j(\cdot , u))n\geq 1\| 2\ell 2

\leq M1 +M2| uj | 2  - \scrR j

a.e. on (s,\sigma )\times \{ \sigma > s\} \times \BbbT d.

We are ready to state a key lemma in this section.

Lemma 4.3 (energy estimates with dissipation). Suppose that the assumptions of
Theorem 2.4 are satisfied. Let (u,\sigma ) be the corresponding (p,\kappa c, \delta , q)-solution. Fix 0<
s < T <\infty , j \in \{ 1, . . . , \ell \} , and \zeta \in [2,\infty ), and suppose that Assumption 4.1(s,T, j, \zeta )
holds. For all 0\leq t0 < t1 <\infty , let
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4895

\scrE j(t0, t1) := sup
r\in (t0,t1\wedge \sigma )

\| uj(r)\| \zeta L\zeta +
\theta 

2

\int t1\wedge \sigma 

t0

\int 
\BbbT d

| uj | \zeta  - 2| \nabla uj | 2 dxdr+
\int t1

t0

\scrR j(r)dr.

Then \scrE j(s,T )<\infty a.s. on \{ \sigma > s\} , and there exists a constant C only depending on
(d, \zeta ,\psi 2) such that for all R,\gamma ,\lambda > 0

\BbbP (1\Gamma \scrE j(s,T )>\gamma )\leq 
eR

\gamma 
\BbbE (1\Gamma \xi 1,M \wedge \lambda ) + \BbbP (1\Gamma \xi 1,M >C - 1\lambda ) + \BbbP (1\Gamma \xi 2,M >C - 1R),

(4.2)

where \Gamma \in Fs such that \Gamma \subseteq \{ \sigma > s\} is arbitrary,

\xi 1,M = \| uj(s)\| \zeta L\zeta + \| M1\| L\varphi 1 (s,T ;L\psi 1 ), and \xi 2,M =
\sum 

n\in \{ 1,2\} 

\| Mn\| L\varphi k (s,T ;L\psi k ).

Moreover, for every \eta \in (0,1), there exists \alpha \eta > 0 such that

\BbbE [e - \xi 2,M1\Gamma 1\Gamma \scrE j(s,T )]\eta \leq \alpha \eta \BbbE [1\Gamma \xi 1,M ]\eta .(4.3)

Furthermore, one can take s = 0 if for some \varepsilon > 0, u0 \in B\varepsilon \zeta ,\infty (\BbbT d;\BbbR \ell ) a.s., or

u0 \in L2(\BbbT d;\BbbR \ell ) a.s. and \zeta = p= q= 2.

The above result is a variant of Lemma 3.12, where additional processes M1, M2,
and \scrR j appear which are crucial for applications to several of the concrete systems
we consider below. Note that in (4.2) no integrability in \Omega is required.

Proof of Lemma 4.3. Fix 0< s< T <\infty , and let \Gamma \in Fs be such that \Gamma \subseteq \{ \sigma > s\} 
and 1\Gamma u(s) \in L\zeta (\Omega \times \BbbT d). As in the proof of Lemma 3.12, we need a localization
argument. For each k\geq 1, define the stopping time \tau k by

\tau k = inf
\bigl\{ 
t\in [s,\sigma ) : \| u(t) - u(s)\| C(\BbbT d;\BbbR \ell ) + \| u\| L2(s,t;H1(\BbbT d;\BbbR \ell )) \geq k

\bigr\} 
\wedge T

on \{ \sigma > s,\| u(s)\| C(\BbbT d;\BbbR \ell ) \leq k - 1\} and \tau k = s otherwise. Here we also set inf\varnothing := \sigma \wedge T .
Note that \tau k is well-defined due to (2.3)--(2.4).

Set u
(k)
j (t) = 1\Gamma uj(t \wedge \tau k) on \Omega \times [s,T ]. Here, to economize the notation, we do

not display the dependence on \Gamma . Arguing as in (3.25)--(3.28), an application of the
It\^o formula of Lemma A.1 yields, a.e. on [s,T ]\times \Omega ,

\| u(k)j (t)\| \zeta 
L\zeta 

= \| uj(s)\| \zeta L\zeta + \zeta (\zeta  - 1)\scrD (t) + \zeta \scrS (t),(4.4)

where \scrD and \scrS are the deterministic and stochastic terms and are given by

\scrD (t) =

\int t

s

\int 
\BbbT d

1[s,\tau k]\times \Gamma | uj | \zeta  - 2
\Bigl( ujfj(\cdot , u)

\zeta  - 1
 - \nabla uj \cdot aj\nabla uj  - \nabla uj \cdot Fj(\cdot , u)

+
1

2

\sum 
n\geq 1

[(bn,j \cdot \nabla )uj + gn,j(\cdot , u)]2
\Bigr) 
dxdr,

\scrS (t) =
\sum 
n\geq 1

\int t

s

\int 
\BbbT d

1[s,\tau k]\times \Gamma | uj | \zeta  - 2uj [(bn,j \cdot \nabla )uj + gn,j(\cdot , u)] dxdwnr .

To conclude, it is suffices to show the existence of C > 0 only depending on
(d, \zeta ,\psi 2) such that

1\Gamma \scrE j(s, t\wedge \tau k)\leq 1\Gamma \| uj(s)\| \zeta L\zeta +C\| M1\| L1(s,t;L\psi 1 )

+C

\int t

s

1[s,\tau k]\times \Gamma 

\Bigl( 
1 + \| M1(r)\| L\psi 1 + \| M2(r)\| \varphi 2

L\psi 2

\Bigr) 
\| uj(r)\| \zeta L\zeta dr

+C\scrS (t\wedge \tau k).

(4.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

4/
24

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



4896 ANTONIO AGRESTI AND MARK VERAAR

Indeed, (4.5) implies

1\Gamma \scrE j(s, t\wedge \tau k)\leq \| uj(s)\| \zeta L\zeta +C\| M1\| L1(s,t;L\psi 1 )

+

\int t

s

C
\Bigl( 
1 + \| M1(r)\| L\psi 1 + \| M2(r)\| \varphi 2

L\psi 2

\Bigr) 
1\Gamma \scrE j(s, r \wedge \tau k)dr+C\scrS (t\wedge \tau k).

Recall that \xi 1,M and \xi 2,M are defined in Lemma 4.3. By the stochastic Gronwall
inequality [32, Corollary 5.4b)] applied to the process t \mapsto \rightarrow 1\Gamma \scrE j(s, t\wedge \tau k), we find that,
for all \gamma ,\lambda ,R > 0,

\BbbP 
\Bigl( 
\Gamma \cap 

\bigl\{ 
\scrE j(s, \tau k)\geq \gamma 

\bigr\} \Bigr) 
\leq eR

\gamma 
\BbbE [\xi 1,M \wedge \lambda ] + \BbbP (\xi 1,M >C - 1\lambda ) + \BbbP (\xi 2,M >C - 1R),

(4.6)

and for all \eta \in (0,1) there exists \alpha \eta > 0 depending only on \eta such that

\BbbE [e - 1\Gamma \xi 2,M1\Gamma \scrE j(s, \tau k)]\eta \leq \alpha \eta \BbbE [1\Gamma \xi 1,M ]\eta .(4.7)

Taking k\rightarrow \infty in (4.6), by monotone convergence, one sees that (4.6) and (4.7) hold
with \tau k replaced by \sigma . Hence, (4.2) and (4.3) follow by replacing \Gamma by \Gamma N = \{ \sigma >
s, \| uj(s)\| L\infty \leq N\} \cap \Gamma and letting N \rightarrow \infty . Finally, \scrE j(s,T )<\infty on \sigma > s follows by
first choosing R and \lambda large enough and then letting \gamma \rightarrow \infty .

Next, we prove (4.5). By Assumption 4.1

\scrD (t)\leq  - \theta 
\int t

s

\int 
\BbbT d

1[s,\tau k]\times \Gamma | uj | \zeta  - 2| \nabla uj | 2 dxdr

+ \theta 

\int t

s

\int 
\BbbT d

1[s,\tau k]\times \Gamma | uj | \zeta  - 2(M1 +M2| uj | 2)dxdr - 
\int t

s

1[s,\tau k]\times \Gamma \scrR j(r)dr.

(4.8)

We estimate the Mi-terms. One has a.e. on [s, \tau k]\times \Omega ,\int 
\BbbT d
M2| uj | \zeta dx\leq \| M2\| L\psi 2

\bigm\| \bigm\| | uj | \zeta \bigm\| \bigm\| L\psi \prime 
2

= \| M2\| L\psi 2

\bigm\| \bigm\| | uj | \zeta /2\bigm\| \bigm\| 2L2\psi \prime 
2

(i)

\lesssim \| M2\| L\psi 2

\bigm\| \bigm\| | uj | \zeta /2\bigm\| \bigm\| 2H\theta 
\lesssim \| M2\| L\psi 2

\bigm\| \bigm\| | uj | \zeta /2\bigm\| \bigm\| 2(1 - \theta )L2

\bigm\| \bigm\| | uj | \zeta /2\bigm\| \bigm\| 2\theta H1

\lesssim \| M2\| L\psi 2

\bigm\| \bigm\| | uj | \zeta /2\bigm\| \bigm\| 2(1 - \theta )L2

\bigl( \bigm\| \bigm\| | uj | \zeta /2\bigm\| \bigm\| 2\theta L2 +
\bigm\| \bigm\| \nabla [| uj | \zeta /2]

\bigm\| \bigm\| 2\theta 
L2

\bigr) 
\lesssim \| M2\| L\psi 2\| uj\| \zeta (1 - \theta )L\zeta 

\bigl( 
\| uj\| \zeta \theta L\zeta +

\bigm\| \bigm\| | uj | \zeta /2 - 1| \nabla uj | 
\bigm\| \bigm\| 2\theta 
L2

\bigr) 
(ii)

\leq 1

2\varepsilon 

\bigl( 
\| M2\| L\psi 2 + \| M2\| \varphi 2

L\psi 2

\bigr) 
\| uj\| \zeta L\zeta +

\varepsilon 

2

\int 
\BbbT d

| uj | \zeta  - 2| \nabla uj | 2 dx,

where in (i) we used the embedding H\theta (\BbbT d) \lhook \rightarrow L2\psi \prime 
2(\BbbT d) with \theta = d

2  - d
2\psi \prime 

2
= d

2\psi 2
\in 

(0,1), and in (ii) Young's inequality as well as \varphi 2 =
1

1 - \theta .
For M1, we show that a.e. on [s, \tau k]\times \Omega ,\int 

\BbbT d
M1| uj | \zeta  - 2 dx\lesssim \zeta \| M1\| L\zeta /2(1 + \| uj\| \zeta L\zeta ).(4.9)
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4897

Note that (4.9) is immediate in case \zeta = 2. In case \zeta > 2, one has that (4.9) follows
from \int 

\BbbT d
M1| uj | \zeta  - 2 dx\leq \| M1\| L\zeta /2

\bigm\| \bigm\| | uj | \zeta  - 2
\bigm\| \bigm\| 
L\zeta /(\zeta  - 2)

= \| M1\| L\zeta /2\| uj\| 
\zeta  - 2
L\zeta 

\lesssim \zeta \| M1\| L\zeta /2(1 + \| uj\| \zeta L\zeta ).

From (4.8), and the above estimates for M1 and M2 with \varepsilon = \theta , we obtain

\scrD (t)\leq  - \theta 
2

\int t

s

\int 
\BbbT d

1[s,\tau k]\times \Gamma | uj | \zeta  - 2| \nabla uj | 2 dxdr - 
\int t

s

1[s,\tau k]\times \Gamma \scrR j(r)dr

+C\zeta ,\theta 

\int t

s

1[s,\tau k]\times \Gamma 

\Bigl[ 
\| M1\| L\zeta /2 +

\bigl( 
1 + \| M1\| L\zeta /2 + \| M2\| \varphi 2

L\psi 2

\bigr) 
\| uj\| \zeta L\zeta 

\Bigr] 
dr

a.e. on [s,T ]\times \Omega . This implies the estimate (4.5).
The final assertion concerning s = 0 follows by taking s \downarrow 0 as in Step 5 of

Lemma 3.12.

4.2. Stochastic Lotka--Volterra equations. Lotka--Volterra equations (also
known as predatory-prey model) were initially proposed by Lotka in the theory of
autocatalytic chemical reactions in 1910 [55]. In the book [56], the same author used
this model to study predatory-prey interactions. Around the same years, Volterra
proposed the same equations to study similar systems [84]. The initially proposed
model that consists of a system of ODEs for the unknown density of species can
be extended to a system of PDEs taking into account spatial inhomogeneity and
diffusivity; see, e.g., [18, 38]. Stochastic perturbations of such models take into account
uncertainties in the determination of the external forces and/or parameters; see, e.g.,
[17, 65] and the references therein. As explained before, transport noise can be thought
of as the ``small-scale"" effect of migration phenomena of the species. To the best
of our knowledge, our result is the first global existence result for Lotka--Volterra
equations with transport noise. But even if b = 0, our results seem to be new. Here
we are mainly concerned with modeling of the dynamics of two species. However, our
arguments extend to certain Lotka--Volterra equations for multispecies. The reader
is referred to Remark 4.6 for the precise description. Moreover, in order to simplify
the presentation, we only consider the low-dimensional case d\leq 4 (therefore including
the physical dimensions d \in \{ 1,2,3\} ). The high-dimensional setting requires some
modifications and additional conditions.

Here we consider the stochastic Lotka--Volterra equations (with transport noise
and superlinear diffusion), i.e., (2.1) with \ell = 2,

f1(\cdot , y) = \lambda 1y1  - \chi 1,1y
2
1  - \chi 1,2y1y2 for y \in \BbbR 2,

f2(\cdot , y) = \lambda 2y2  - \chi 2,2y
2
2 + \chi 2,1y1y2 for y \in \BbbR 2,

(4.10)

and Fi \equiv 0, and (a, b,\lambda i, \chi i,j , g) is as in Assumption 4.4 below. In particular, (\lambda i, \chi i,j)
are chosen so that f1 and f2 satisfy Assumption 2.1(4) for h= 2.

The unknowns u1, u2 : [0,\infty ) \times \Omega \times \BbbT d \rightarrow \BbbR model the population of the ith
species. More precisely, u1 and u2 denote the population of the prey and predator,
respectively. A schematic idea of the Lotka--Volterra equations is given in Figure 2,
where \lambda \prime 1 + \lambda \prime \prime 1 = \lambda 1.
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4898 ANTONIO AGRESTI AND MARK VERAAR

Predator u2

Prey u1Food

Death\chi 2,1u1u2 \geq 0  - \chi 1,2u1u2 \leq 0

 - \chi 2,2u
2
2 \leq 0

 - \chi 1,1u
2
1 \leq 0

\lambda \prime 
1u1 \geq 0

\lambda 2u2 \leq 0

\lambda \prime \prime 
1u1 \leq 0

Fig. 2. Scheme for the Lotka--Volterra equations.

In particular, the signs in (4.10) are motivated from a modeling point of view.
Note that we allow \chi i,j \equiv 0 for i, j \in \{ 1,2\} . In particular, situations without self-
interacting are covered, i.e., \chi i,i \equiv 0. From a mathematical viewpoint, the term
+\chi 2,1u1u2 shows that the u2-equation in the Lotka--Volterra equations is not dissi-
pative (below, we are concerned with positive solutions). Hence, the Lotka--Volterra
system is only weakly dissipative and is not covered by section 3.

Assumption 4.4. Let p= q = 2, \kappa = 0, h= 2, 1\leq d\leq 4, \ell = 2, \delta = 1, and suppose
that Assumption 2.1 holds for (a, b, g). Suppose that the following hold:

(1) \lambda i, \chi i,j are bounded P \otimes B(\BbbT d)-measurable, and \chi i,j \geq 0.
(2) a.s. for all t\in \BbbR +, x\in \BbbT d, y1, y2 \geq 0, n\geq 1,

gn,1(t, x, y1,0) = gn,2(t, x,0, y2) = 0.

(3) There exist M,\varepsilon > 0 such that for all i \in \{ 1,2\} , a.e. on \BbbR + \times \Omega \times \BbbT d and
y= (y1, y2)\in [0,\infty )2,

1

4(\nu i  - \varepsilon )

\left(  \sum 
n\geq 1

| bn,i(\cdot )| | gn,i(\cdot , y)| 

\right)  2

+
1

2
\| (gn,i(\cdot , y))n\geq 1\| 2\ell 2 \leq Ni(t, x, y)

(growth condition),

where \nu i are as in Assumption 2.1(3) and

N1(\cdot , y) :=M
\bigl( 
1 + y21

\bigr) 
+ \chi 1,1y

3
1 + \chi 1,2y

2
1y2,

N2(\cdot , y) :=M
\bigl[ 
1 + (1 + y1)y

2
2 + y21y2 + y31

\bigr] 
+ \chi 2,2y

3
2 .

Assumption (2) will be used to prove positivity. This fact is consistent with the
modeling interpretation of ui as the population of the ith species. Condition (3) shows
that g2 is allowed to be superlinear in y = (y1, y2). The growth of \| g2(\cdot , y)\| \ell 2 is at
most | y| 3/2, consistently with Assumption 2.1(4) in the case h = 2. On the other
hand, g1 is allowed to be (super)linear in y1 (if \chi 1,1 \geq c0 > 0). In applications, there is
always interaction between predator and prey, so that \chi 1,2 \geq c0 > 0. In this case, the
growth of \| g1(\cdot , y)\| \ell 2 is at most | y1| | y2| 1/2 for | y| large. If additionally \chi 1,1 \geq c0 > 0,
then we can allow growth | y1| 3/2 + | y1| | y2| 1/2 for | y| large.

Theorem 4.5 (global well-posedness: Lotka--Volterra). Let 1 \leq d \leq 4. Suppose
that Assumption 4.4 holds. Then, for every u0 \in L0

F0
(\Omega ;L2(\BbbT d;\BbbR 2)) with u0 \geq 0
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4899

(componentwise), there exists a (unique) global (2,0,1,2)-solution u : [0,\infty ) \times \Omega \times 
\BbbT d \rightarrow [0,\infty )2 to the stochastic Lotka--Volterra equations (as described near (4.10)).
Moreover, a.s.,

u\in L2
loc([0,\infty );H1(\BbbT d;\BbbR 2))\cap C([0,\infty );L2(\BbbT d;\BbbR 2)),

u\in H\theta ,r
loc (0,\infty ;H1 - 2\theta ,\zeta (\BbbT d;\BbbR 2)) \forall \theta \in [0, 12 ), \forall r, \zeta \in (2,\infty ),

u\in C\theta 1,\theta 2loc ((0,\infty )\times \BbbT d;\BbbR 2) \forall \theta 1 \in [0,1/2), \forall \theta 2 \in (0,1),

and the following estimates hold for all 0<T <\infty and \gamma > 0:

\BbbP 

\Biggl( 
sup
t\in [0,T ]

\| u(t)\| 2L2 \geq \gamma 

\Biggr) 
\leq \psi (\gamma )(1 +\BbbE \| u0\| 2L2),(4.11)

\BbbP 

\Biggl( 
max
1\leq i\leq 2

\int T

0

\int 
\BbbT d

| \nabla ui| 2 dxdt\geq \gamma 

\Biggr) 
\leq \psi (\gamma )(1 +\BbbE \| u0\| 2L2),(4.12)

where \psi does not depend on \gamma and u and satisfies lim\gamma \rightarrow \infty \psi (\gamma ) = 0.

Using Theorem 5.2, one can further weaken the assumption on the initial data.
The main idea in the proof of Theorem 4.5 is to exploit the dissipative effect of

\chi 1,1u
2
1 and \chi 1,2u1u2 in the u1-equation in the Lotka--Volterra equations. To this end,

we need the positivity of u1, u2, which is ensured by Proposition 2.6, (2), and u0 \geq 0
a.s. on \BbbT d.

Proof of Theorem 4.5. As in the proof of Theorem 3.11, by adding dummy vari-
ables, it suffices to consider the case d= 4. The existence of a (2,0,1,2)-solution (u,\sigma )
with the required regularity up to \sigma follows from Theorem 2.4. Moreover, assumption
(2) and Proposition 2.6 yield u \geq 0 on \BbbT d a.s. for all t \in [0, \sigma ). Hence, it remains
to prove that \sigma = \infty a.s. To this end, note that max\{ d2 (h  - 1),2\} = 2 since d = 4
and h = 2. Localizing in \Omega , it is enough to consider u0 \in L2(\Omega ;L2(\BbbT 4;\BbbR 2)); see [6,
Proposition 4.13]. Thus, as in Step 1 in the proof of Theorem 3.2 (but now using
Theorem 2.5(3)), it is enough to show that, for every 0<T <\infty ,

\scrE j(0, T ) := sup
t\in [0,\sigma \wedge T )

\| uj(t)\| 2L2 +

\int \sigma \wedge T

0

\int 
\BbbT d

| \nabla uj(t)| 2 dxdt <\infty a.s.(4.13)

From Assumption 4.4(3) and Lemma 3.3 we see that L\zeta -coercivity for \zeta = 2 holds
for the equation for u1. Thus, Lemma 3.12 implies that for all 0 \leq s < T <\infty and
j = 1, (4.13) holds, and

sup
t\in [0,T ]

\BbbE 1[0,\sigma )(t)\| u1(t)\| 2L2 +\BbbE 
\int \sigma \wedge T

0

\int 
\BbbT d

| \nabla u1| 2 dxdt\leq N0

\Bigl( 
1 +\BbbE 

\bigl[ 
\| u1,0\| 2L2

\bigr] \Bigr) 
,

\BbbE sup
t\in [0,\sigma \wedge T )

\| u1(t)\| 2\lambda L2 +\BbbE 
\bigm| \bigm| \bigm| \int \sigma \wedge T

0

\int 
\BbbT d

| \nabla u1| 2 dxdt
\bigm| \bigm| \bigm| \lambda \leq N0,\lambda 

\Bigl( 
1 +\BbbE 

\bigl[ 
\| u1,0\| 2\lambda L2

\bigr] \Bigr) 
.(4.14)

To check (4.13) for j = 2, note by Assumption 4.4(3) a.e. on [0, \sigma )\times \Omega that

f2(\cdot , u)u2 +
1

4(\nu 2  - \varepsilon )

\left(  \sum 
n\geq 1

| bn,2(\cdot )| | gn,2(\cdot , u)| 

\right)  2

+
1

2
\| g1(\cdot , u)\| 2\ell 2

\leq M0(M1| u2| 2 +M2),
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4900 ANTONIO AGRESTI AND MARK VERAAR

where we used that u21u2 = u
3/2
1 (u

1/2
1 u2)\lesssim u31+u1u

2
2, where M0 \geq 0 is a constant, and

M1 and M2 are given by

M1 := 1[0,\sigma )| u1| 3 + 1 and M2 := 1[0,\sigma )| u1| + 1.

We claim that M1 \in L1(0, T ;L1(\BbbT 4)) and M2 \in L2(0, T ;L4(\BbbT 4)) a.s. Indeed, from
(4.13) for j = 1 we obtain

u1 \in L\infty (0, \sigma \wedge T ;L2(\BbbT 4))\cap L2(0, \sigma \wedge T ;H1(\BbbT 4)) a.s.(4.15)

By Sobolev embedding, interpolation, and (4.15), we have a.s. on \{ \sigma > s\} ,

\| u1\| L3(0,\sigma \wedge T ;L3(\BbbT 4)) \lesssim \| u1\| L3(0,\sigma ;H2/3(\BbbT 4))

\leq sup
t\in [0,\sigma \wedge T )

\| u1(t)\| L2(\BbbT 4) + \| u1\| L2(0,\sigma \wedge T ;H1(\BbbT 4)),

which already gives the first part of the claim. Moreover, taking moments, by (4.14)
(with \lambda = 1/2, which is nonoptimal) we obtain

\BbbE \| u1\| L3(0,\sigma \wedge T ;L3(\BbbT 4)) \lesssim \BbbE sup
t\in [0,\sigma \wedge T )

\| u1(t)\| L2(\BbbT 4) +\BbbE \| u1\| L2(0,\sigma \wedge T ;H1(\BbbT 4))

\lesssim 1 +\BbbE \| u1,0\| L2 .
(4.16)

The second part of the claim follows from (4.15) and H1(\BbbT 4) \lhook \rightarrow L4(\BbbT 4). Moreover,

\BbbE \| u1\| L2(0,\sigma \wedge T ;L4(\BbbT 4)) \leq \BbbE \| u1\| L2(0,\sigma \wedge T ;H1(\BbbT 4)) \lesssim 1 +\BbbE \| u1,0\| L2 .(4.17)

The claim can be combined with Lemmas 4.2 and 4.3 to obtain (4.13) for i= 2.
Moreover, this also implies the following estimate for all \gamma > 0 and \lambda =R\geq max\{ 4C,1\} 
(say):

\BbbP (\scrE 2(0, T )>\gamma )\leq 
ReR

\gamma 
+ \BbbP 

\bigl( 
\| u2,0\| 2L2 +C\| M1\| L1(0,T ;L1) \geq R

\bigr) 
+ \BbbP 

\bigl( 
C\| M1\| L1(0,T ;L1) +C\| M2\| L2(0,T ;L4) \geq R

\bigr) 
\leq e2R

\gamma 
+ \BbbP 

\bigl( 
\| u2,0\| 2L2 \geq R/2

\bigr) 
+ 2\BbbP 

\bigl( 
C\| u1\| 3L3(0,T ;L3) +C \geq R/2

\bigr) 
+ \BbbP 

\bigl( 
C\| u1\| L2(0,T ;L4) +C \geq R/2

\bigr) 
\lesssim 
e2R

\gamma 
+

\BbbE \| u2,0\| 2L2

R
+

\BbbE \| u1\| L3(0,T ;L3)

R1/3
+

\BbbE \| u1\| L2(0,T ;L4)

R

\lesssim 
\Bigl( 
\BbbE \| u0\| 2L2 + 1

\Bigr) \biggl( e2R
\gamma 

+
1

R1/3

\biggr) 
,

where we used (4.16) and (4.17). It remains to take R = max\{ 4C,1, log(\gamma 1/4)\} to
obtain

\BbbP (\scrE 2(0, T )\geq \gamma )\leq \psi (\gamma )
\bigl( 
\BbbE \| u0\| 2L2 + 1

\bigr) 
,

where lim\gamma \rightarrow \infty \psi (\gamma ) = 0. Combined with (4.14), this the energy estimates (4.11) and
(4.12).

We conclude this subsection with several remarks.

Remark 4.6 (stochastic Lotka--Volterra equations for multispecies). In the study
of multispecies systems, one may consider the following extension of the Lotka--
Volterra equations.
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4901

For i\in \{ 1, . . . , \ell \} and \ell \geq 1,

dui  - div(ai \cdot \nabla ui)dt=
\biggl[ 
\lambda iui + ui

\sum 
1\leq j<i

\chi i,juj  - ui
\sum 
j\geq i

\chi i,juj

\biggr] 
dt

+
\sum 
n\geq 1

\Bigl[ 
(bn,i \cdot \nabla )ui + gn,i(\cdot , u)

\Bigr] 
dwnt

on \BbbT d. As above, ui denotes the density of the ith species, and (\chi i,j)
\ell 
i,j=1 : (0,\infty )\times 

\Omega \times \BbbT d \rightarrow [0,\infty )\ell \times \ell is a matrix with bounded P \otimes B(\BbbT d)-measurable entries which
models the interaction of the species. One can readily check that Theorem 4.5 extends
to the above system with appropriate assumptions on the (u0, a, b, g) (i.e., extending
(2)--(3) to the above setting). In particular, g can be chosen to be superlinear in u.
We leave the details to the interested reader. We conclude by mentioning that the
corresponding condition for global existence is satisfied for the natural SPDE version
of the Lotka--Volterra system for three species as analyzed in [42].

Example 4.7 (stochastic diffusive SIR model). In the deterministic setting, the
SIR model (susceptible-infected-removed) is a widely used model in epidemiology
[62, 40, 45]. Taking into account spatial diffusivity and small-scale fluctuations, sto-
chastic perturbations of the SIR model (with constant population N > 0) are of the
form (2.1) with \ell = 2, F = 0, f1(\cdot , u) =  - r1u1u2, and f2(\cdot , u) = r2u1u2 + r3u2.
The quantities u1 and u2 are the population of the stock of susceptible and infected
subjects, respectively, while the stock of removed population u3 (either by death or
recovery) is given by N  - u1  - u2. Finally, (r1, r2) are P \otimes B(\BbbT d)-measurable maps
satisfying ri \geq 0 a.e. on \BbbR + \times \Omega \times \BbbT d and are determined experimentally. Of course,
as a subcase the above model contains the classical SIR model in the case of (\omega ,x)-
independent solutions.

The stochastic diffusive SIR model is a special case of the Lotka--Volterra equa-
tions where one takes \chi 1,2 = r1, \chi 2,1 = r2, \chi i,i \equiv 0, \lambda 1 = 0, and \lambda 2 = r3. Thus, under
suitable assumptions on (a, b, g, u0), the SIR model is included in our setting, and
global well-posedness follows from Theorem 4.5.

4.3. The stochastic Brusselator. Here we study a stochastic perturbation of
the so-called Brusselator. This model appears in the study of chemical morphogenetic
processes (see, e.g., [69, 70, 83]) and in autocatalytic reactions (see, e.g., [9, 13]).
For historical notes and examples of autocatalytic reactions that can be modeled by
using the Brusselator, the reader is referred to the introduction of [86]. Stochastic
perturbations of this model can be used to model thermal fluctuations and/or small-
scale turbulence. Here we consider the stochastic Brusselator (with transport noise
and superlinear diffusion), i.e., (2.1) with \ell = 2,

f1(\cdot , y) = - u1u22 + \alpha 1y1 + \alpha 2y2 + \alpha 0 for y \in \BbbR 2,

f2(\cdot , y) =+y1y
2
2 + \beta 1y1 + \beta 2y2 + \beta 0 for y \in \BbbR 2,

(4.18)

and Fi \equiv 0, and (ai, bi, \alpha i, \beta j , gi) is described below; cf. Assumptions 4.8 and 4.10
below. The unknowns u1, u2 : [0,\infty )\times \Omega \times \BbbT d\rightarrow \BbbR model the unknown concentrations.

Note that f satisfies Assumption 2.1(4) for all h\geq 3. In the following, we assume
that (a, b, g) satisfies Assumption 2.1 with h = 3. We say that (u,\sigma ) is a (unique)
(p,\kappa , q, \delta )-solution to (4.18) if (u,\sigma ) is a (p,\kappa , q, \delta ,3)-solution to (2.1) with the above
choice of (a, b, f,F, g); see Definition 2.3. A (p,\kappa , q, \delta )-solution (u,\sigma ) to (4.18) is said
to be global if \sigma =\infty a.s. In this case, we simply write u instead of (u,\sigma ).
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4902 ANTONIO AGRESTI AND MARK VERAAR

In this subsection, we prove global well-posedness of (4.18) in the physical dimen-
sions d \leq 3. The analysis of (4.18) for d \in \{ 1,2\} is easier than the 3D case. In
particular, in three dimensions, we need positivity of solutions (see Proposition 2.6).
For the reader's convenience, we split the argument into the cases d\in \{ 1,2\} and d= 3;
see subsections 4.3.1 and 4.3.2, respectively.

We believe that the arguments below can be extended to study stochastic per-
turbations of the extended Brusselator (see, e.g., [86]). For the sake of brevity, we do
not pursue this here.

4.3.1. The stochastic Brusselator in one and two dimensions. We begin
by listing the assumptions needed in this subsection.

Assumption 4.8. Suppose that Assumption 2.1(3)--(4) hold as well as the following:
(1) The mappings \alpha i, \beta i : \BbbR + \times \Omega \times \BbbT d \rightarrow \BbbR are bounded and P \otimes B(\BbbT d)-

measurable.
(2) There exist M,\varepsilon > 0 such that for all i \in \{ 1,2\} , a.e. on \BbbR + \times \Omega \times \BbbT d and

y= (y1, y2)\in [0,\infty )2,

1

4(\nu i  - \varepsilon )

\left(  \sum 
n\geq 1

| bn,i(\cdot )| | gn,i(\cdot , y)| 

\right)  2

+
1

2
\| (gn,i(\cdot , y))n\geq 1\| 2\ell 2 \leq Ni(t, x, y)

(growth condition),

where \nu i are as in Assumption 2.1(3) and

N1(\cdot , y) :=M [1 + | y1| 2] + (1 - \varepsilon )| y1| 2| y2| 2,
N2(\cdot , y) :=M [1 + (1 + | y1| 2)| y2| 2 + | y1| | y2| 3 + | y1| 4].

Note that Ni grows like | y| 4 consistently with Assumption 2.1(4) in case h = 3.
However, the condition for g1 is quite restrictive since only the factor | y1| 2| y2| 2 is
allowed. Instead, the one for g2 allows additional terms of quadratic growth and with
a constant M that can be large.

Theorem 4.9 (Brusselator in one and two dimensions). Let d \in \{ 1,2\} . Suppose
that Assumption 4.8 holds. Fix \delta \in (1,2), q \in (2, 2

2 - \delta ), and p \in [ 2
2 - \delta ,\infty ). Suppose

that Assumption 2.1(p, q, h, \delta ) holds with h= 3 and \kappa 0 := p(1 - \delta 
2 ) - 1. Then, for all

u0 \in L0
F0

(\Omega ;Lq(\BbbT d;\BbbR 2)), the stochastic Brusselator (as described near (4.18)) has a
(unique) global (p,\kappa 0, q, \delta )-solution u, and a.s.,

u\in H\theta ,p
loc ([0,\infty ),w\kappa 0 ;H

2 - \delta  - 2\theta ,q(\BbbT d;\BbbR 2))\cap C([0,\infty );B0
q,p(\BbbT d;\BbbR 

2)),

u\in H\theta ,r
loc (0,\infty ;H1 - 2\theta ,\zeta (\BbbT d;\BbbR 2)) \forall \theta \in [0, 12 ), \forall r, \zeta \in (2,\infty ),

u\in C\theta 1,\theta 2loc ((0,\infty )\times \BbbT d;\BbbR 2) \forall \theta 1 \in [0,1/2), \forall \theta 2 \in (0,1).

Moreover, there exists a \zeta > 2 such that for all 0< s< T <\infty , \gamma > 0, and L\geq 0,

\BbbP 

\Biggl( 
sup
t\in [s,T ]

1\Gamma \| u(t)\| \zeta L\zeta \geq \gamma 

\Biggr) 
\leq \psi (\gamma )(1 +\BbbE 1\Gamma \| u(s)\| \zeta L\zeta ),(4.19)

\BbbP 

\Biggl( 
max
i\in \{ 1,2\} 

1\Gamma 

\int T

s

\int 
\BbbT d

| ui| \zeta  - 2| \nabla ui| 2 dxdr\geq \gamma 

\Biggr) 
\leq \psi (\gamma )(1 +\BbbE 1\Gamma \| u(s)\| \zeta L\zeta ),(4.20)
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4903

where \Gamma = \{ \| u(s)\| L\zeta \leq L\} and \psi does not depend on L\geq 1, s, \gamma , and u and satisfies
lim\gamma \rightarrow \infty \psi (\gamma ) = 0, and one can take s= 0 if u0 \in B\varepsilon \zeta ,\infty (\BbbT d;\BbbR 2) a.s. for some \varepsilon > 0.

Furthermore, if u0 \geq 0 (componentwise) a.e. on \Omega \times \BbbT d, \alpha 2, \alpha 0, \beta 1, \beta 0 \geq 0 a.e. on
\BbbR + \times \Omega \times \BbbT d, and gn,1(\cdot ,0, y2) = gn,2(\cdot , y1,0) = 0 a.e. on \BbbR + \times \Omega \times \BbbT d for all y1, y2 \in 
[0,\infty ), then

u\geq 0 (componentwise) a.e. on (0, \sigma )\times \Omega \times \BbbT d.

Using Theorem 5.2, one can further weaken the assumption on the initial data.
The main idea in the proof of Theorem 4.9 is to exploit the dissipative effect of the

nonlinearity  - u1u22 appearing in the u1-equation of (4.18) to estimate certain quan-
tities involving u1 and the product u1u2. Then we use this information to estimate
u2. Note that there are no dissipative effects in the u2-equation.

Proof of Theorem 4.9. We only consider d = 2 since d = 1 can be obtained by
adding a dummy variable. Let h0 = q+ 1.

Step 1: Local well-posedness.One can check that Assumption 2.1(p, q, h0, \delta ) and 2.2
(p, q, h0, \delta ) hold. To obtain a (p,\kappa 0, q, \delta )-solution, one can apply Theorem 2.4 with h
replaced by h0. At the same time, this gives the regularity properties for the paths of
u stated in Theorem 4.9 on (0, \sigma ) instead of (0,\infty ). It remains to check \sigma =\infty .

Step 2: Energy estimate. We claim that there is a \zeta > 2 such that for all 0< s<
T <\infty 

\scrE i(s,T ) := sup
t\in [s,\sigma \wedge T )

\| ui(t)\| \zeta L\zeta +
\int \sigma \wedge T

s

| ui| \zeta  - 2| \nabla ui| 2 dxdr <\infty a.s. on \{ \sigma > s\} 

(4.21)

for i\in \{ 1,2\} , and for \Gamma = \{ \sigma > s,\| u(s)\| L\zeta \leq L\} , one has

\BbbP (1\Gamma \scrE i(s,T )>\gamma )\leq \psi (\gamma )
\bigl( 
\BbbE 1\Gamma \| u(s)\| \zeta L\zeta + 1

\bigr) 
for i\in \{ 1,2\} .(4.22)

The proofs of (4.21) and (4.22) are given in the next two substeps.
Step 2a: There exists \zeta > 2 such that a.s. on \{ \sigma > s\} ,

\widetilde \scrE 1(s,T ) := sup
t\in [s,\sigma \wedge T )

\| u1(t)\| \zeta L\zeta +
\int \sigma \wedge T

s

\int 
\BbbT 2

| u1| \zeta  - 2| \nabla u1| 2 dxdr

+

\int \sigma \wedge T

s

\int 
\BbbT 2

u21u
2
2 dxdr <\infty .

In particular, (4.21) holds for i= 1. Moreover, for all \eta \in (0,1) there is a constant M\eta 

independent of s, k, and u such that

\BbbE | 1\Gamma 
\widetilde \scrE 1(s,T )| \eta \leq M\eta (1 +\BbbE 1\Gamma \| u1(s)\| \zeta \eta L\zeta ).(4.23)

From Assumption 4.8(2) and (4.18) it is elementary to check that there exist
M,\varepsilon 0, \varepsilon 1 > 0 such that for every \zeta \in \{ 2,2 + \varepsilon 0\} , y \in \BbbR 2 and a.e. on \BbbR + \times \Omega ,

f1(\cdot , y)y1
\zeta  - 1

+
1

4(\nu 1  - \varepsilon )

\left(  \sum 
n\geq 1

| bn,1(\cdot )| | gn,1(\cdot , y)| 

\right)  2

+
1

2
\| (gn,1(\cdot , y))n\geq 1\| 2\ell 2

\leq M0(1 + | y| 2) - \varepsilon 1| y1| 2| y2| 2.
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4904 ANTONIO AGRESTI AND MARK VERAAR

Moreover, we may suppose that 2+\varepsilon 0 <
2

2 - \delta . Thus, by Lemma 4.2, Assumption 4.1(\zeta )
holds for \zeta \in \{ 2,2+\varepsilon 0\} . Now the boundedness of the first two terms in Step 2a follows
by applying Lemmas 4.2 and 4.3 with \zeta = 2+ \varepsilon 0, M1 =M2 =M0, and \scrR 1 = 0. The
boundedness of the last term in Step 2a follows by applying Lemmas 4.2 and 4.3 with
\zeta = 2, M1 =M2 =M0, and

\scrR 1(t) =

\int 
\BbbT 2

\varepsilon 11(0,\sigma )(t)| u1(t)| 2| u2(t)| 2 dx.

Moreover, (4.23) (and thus (4.22) for i = 1) follows from (4.3) and the fact that
M1 =M2 =M0 are constant.

Step 2b: (4.21) for i = 2 holds with \zeta = 2 + \varepsilon 0, where \varepsilon 0 is as in Step 2a. By
Assumption 4.8(2), we have, a.e. on [0, \sigma )\times \Omega ,

f2(\cdot , u)u2
\zeta  - 1

+
1

4(\nu 2  - \varepsilon )

\left(  \sum 
n\geq 1

| bn,2(\cdot )| | gn,2(\cdot , u)| 

\right)  2

+
1

2
\| (gn,2(\cdot , u))n\geq 1\| 2\ell 2(4.24)

\leq M0(M1| u2| 2 +M2),

where M0 > 0 is a constant, M1 := 1[s,\sigma )| u1| 4 +1, and M2 := 1[s,\sigma )| u1| | u2| +1. In the
above estimate, we used that | u1| 2| u2| 2 = | u1| 4/3

\bigl( 
| u1| 2/3| u2| 2

\bigr) 
\lesssim | u1| 4+ | u1| | u2| 3, as it

follows from the Young inequality with exponents ( 32 ,3).
We claim that a.s.

M1 \in L1(s,T ;L\zeta /2(\BbbT 2)) and M2 \in L2(s,T ;L2(\BbbT 2)).(4.25)

We begin by noticing that the second assertion of (4.25) follows from Step 2a, and
moreover by (4.23) with \eta = 1/2 we obtain

\BbbE (1\Gamma \| M2\| L2(s,T ;L2(\BbbT 2)))\lesssim (1 +\BbbE 1\Gamma \| u1(s)\| \zeta /2L\zeta 
).(4.26)

For the first assertion of (4.25), note that reasoning as in (3.22)--(3.23) we find
that a.s.

\| | u1| \zeta /2\| L4(s,\sigma \wedge T ;L4(\BbbT 2))

\lesssim \| | u1| \zeta /2\| L4(s,\sigma \wedge T ;H1/2(\BbbT 2))

\lesssim \| | u1| \zeta /2\| L4(s,\sigma \wedge T ;H1/2(\BbbT 2))

\lesssim sup
t\in [s,\sigma \wedge T )

\| | u1(t)| \zeta /2\| L2(\BbbT 2) + \| | u1| \zeta /2\| L2(s,\sigma \wedge T ;H1(\BbbT 2))

\lesssim sup
t\in [s,\sigma \wedge T )

\| u1(t)\| \zeta /2L\zeta (\BbbT 2)
+ \| | u| (\zeta  - 2)/2| \nabla u1| \| L2(s,\sigma \wedge T ;L2(\BbbT 2)) <\infty .

In particular, taking 1/2-moments it follows from (4.23) with \eta = 2/\zeta that

\BbbE \| 1\Gamma M1\| 1/2L1(s,T ;L\zeta /2(\BbbT 2))
(4.27)

\lesssim 1 +\BbbE \| 1\Gamma | u1| \zeta /2\| 4/\zeta L4(s,\sigma \wedge T ;L4(\BbbT 2))

\lesssim 1 +\BbbE sup
t\in [s,\sigma \wedge T )

1\Gamma \| u1(t)\| 2L\zeta (\BbbT 2) +\BbbE \| 1\Gamma | u| (\zeta  - 2)/2| \nabla u1| \| 4/\zeta L2(s,\sigma \wedge T ;L2(\BbbT 2))

\lesssim 1 +\BbbE 1\Gamma \| u1(s)\| 2L\zeta .
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4905

By Lemma 4.2, (4.24), (4.25), and Lemma 4.3, it follows that (4.21) holds for
i= 2, and by (4.26) and (4.27) for all \gamma > 0 and R\geq max\{ 4C,1\} we obtain

\BbbP (1\Gamma \scrE 2(s,T )>\gamma )

\leq ReR

\gamma 
+ \BbbP 

\bigl( 
1\Gamma \| u2(s)\| \zeta L\zeta +C1\Gamma \| M1\| L1(s,T ;L\zeta /2(\BbbT 2)) \geq R

\bigr) 
+ \BbbP 

\bigl( 
C1\Gamma \| M1\| L1(s,T ;L\zeta /2(\BbbT 2)) +C1\Gamma \| M2\| L2(s,T ;L2(\BbbT 2)) \geq R

\bigr) 
\lesssim 
e2R

\gamma 
+

\BbbE 1\Gamma \| u2(s)\| \zeta L\zeta 
R1/2

+
\BbbE 1\Gamma \| M1\| 1/2L1(s,T ;L\zeta /2(\BbbT 2))

R1/2
+

\BbbE 1\Gamma \| M2\| L2(s,T ;L2(\BbbT 2))

R

\lesssim 

\biggl( 
e2R

\gamma 
+

1

R1/2

\biggr) \Bigl( 
\BbbE 1\Gamma \| u(s)\| \zeta L\zeta + 1

\Bigr) 
.

Taking R=max\{ log(\gamma 1/4),4C,1\} , this gives (4.22) for i= 2.
Step 3: Global well-posedness. Let \varepsilon 0 be as in Step 2a, let q0 \in (2,2 + \varepsilon 0), and

take \zeta = 2 + \varepsilon 0. By Theorem 2.5(1) with \zeta 1 = \zeta , \delta 0 \in (1, h0+1
h0

] small enough and p0
large enough, it follows that

\BbbP (s < \sigma < T ) = \BbbP 
\Bigl( 
s < \sigma < T, sup

t\in [s,\sigma )

\| u(t)\| L\zeta <\infty 
\Bigr) 
= 0,

where we used (4.21). Since \sigma > 0 a.s. by Theorem 2.4, letting s \downarrow 0 we obtain
\BbbP (\sigma < T ) = 0. Letting T \rightarrow \infty , we find that \sigma =\infty a.s. Moreover, (4.22) implies the
tail estimates (4.19) and (4.20) for s > 0. The case s= 0 for smooth initial data can
be obtained as in Lemma 3.12 by letting s \downarrow 0.

Step 4: Positivity. This is immediate from Proposition 2.6.

4.3.2. The stochastic Brusselator in three dimensions. In this subsection,
we prove global existence (4.18) in the case d = 3. This will require a more detailed
analysis compared to the case d\in \{ 1,2\} treated in subsection 4.3.1 because we cannot
apply Theorem 2.5(1), as this would require supt\in [s,\sigma \wedge T ) \| u(t)\| L\zeta 1 <\infty a.s. for some
\zeta 1 > 3. For u1, such an estimate holds, but for u2 it seems that we can only deduce
such an a priori energy estimate for \zeta 1 = 3. Instead, we will apply the sharper blow-up
criterion of Theorem 2.5(2). This will require a more detailed analysis with energy
estimates which are mixed in space and time. To prove these new energy estimates
for u2, the positivity of u1 and u2 plays an essential role. Therefore, unlike in the
case d \in \{ 1,2\} we need to restrict ourselves to those g which ensure u \geq 0 from the
beginning. We start by listing our assumptions.

Assumption 4.10. Let d= 3, p\in (2,\infty ), and suppose the following:
(1) Assumption 2.1(p, q, h, \delta ) for q= h= 3 and some \delta > 1.
(2) The mappings \alpha i, \beta i : \BbbR + \times \Omega \times \BbbT 3 \rightarrow \BbbR are bounded and P \otimes B(\BbbT 3)-

measurable.
(3) a.e. on \BbbR + \times \Omega \times \BbbT 3 and for all y1, y2 \geq 0,

\alpha 2, \alpha 0, \beta 1, \beta 0 are nonnegative and gn,1(\cdot , y1,0) = gn,2(\cdot ,0, y2) = 0.

(4) There exist M,\varepsilon > 0 such that for all i \in \{ 1,2\} , a.e. on \BbbR + \times \Omega \times \BbbT 3 and
y= (y1, y2)\in [0,\infty )2,

1

4(\nu i  - \varepsilon )

\left(  \sum 
n\geq 1

| bn,i(\cdot )| | gn,i(\cdot , y)| 

\right)  2

+
1

2
\| (gn,i(\cdot , y))n\geq 1\| 2\ell 2 \leq Ni(t, x, y)

(growth condition),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

4/
24

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



4906 ANTONIO AGRESTI AND MARK VERAAR

where \nu i are as in Assumption 2.1(3) and

N1(\cdot , y) :=M
\bigl[ 
1 + | y1| 2

\bigr] 
+

| y1| 2| y2| 2

5
,

N2(\cdot , y) :=M
\bigl[ 
1 + (1 + | y1| 2)| y2| 2 + | y1| | y2| 3 + | y1| 4

\bigr] 
.

The main result of this subsection reads as follows.

Theorem 4.11 (Brusselator in three dimensions). Suppose that Assumption 4.10
holds. Assume that \delta \in (1, 43 ], p\geq 3\vee 2

2 - \delta , and set \kappa 0 := p(1 - \delta 
2 ) - 1. Then, for every

u0 \in L0
F0

(\Omega ;L3(\BbbT 3;\BbbR 2)) with u0 \geq 0 (componentwise), there exists a (unique) global

(p,\kappa 0, q, \delta )-solution u : [0,\infty )\times \Omega \times \BbbT 3 \rightarrow \BbbR 2 to the stochastic Brusselator (as described
near (4.18)) satisfying u\geq 0 (componentwise) a.e. on \BbbR + \times \Omega \times \BbbT 3, and a.s.,

u\in H\theta ,p
loc ([0,\infty ),w\kappa 0

;H2 - \delta  - 2\theta ,q(\BbbT 3;\BbbR 2))\cap C([0,\infty );B0
3,p(\BbbT 3;\BbbR 2)),

u\in H\theta ,r
loc (0,\infty ;H1 - 2\theta ,\zeta (\BbbT 3;\BbbR 2)) \forall \theta \in [0, 12 ), \forall r, \zeta \in (2,\infty ),

u\in C\theta 1,\theta 2loc ((0,\infty )\times \BbbT 3;\BbbR 2) \forall \theta 1 \in [0,1/2), \forall \theta 2 \in (0,1).

Moreover, for all 0< s< T <\infty , \gamma > 0, and L\geq 0

\BbbP 

\Biggl( 
sup
t\in [s,T ]

1\Gamma \| u(t)\| 3L3 \geq \gamma 

\Biggr) 
\leq \psi (\gamma )(1 +\BbbE 1\Gamma \| u(s)\| 6L6),(4.28)

\BbbP 

\Biggl( 
max
i\in \{ 1,2\} 

1\Gamma 

\int T

s

\int 
\BbbT d

| ui| | \nabla ui| 2 dxdr\geq \gamma 

\Biggr) 
\leq \psi (\gamma )(1 +\BbbE 1\Gamma \| u(s)\| 6L6),(4.29)

where \Gamma = \{ \| u(s)\| L6 \leq L\} and \psi does not depend on L\geq 1, s, \gamma , and u and satisfies
lim\gamma \rightarrow \infty \psi (\gamma ) = 0, and one can take s= 0 if u0 \in B\varepsilon 6,\infty (\BbbT 3;\BbbR 2) a.s. for some \varepsilon > 0.

Using Theorem 5.2, one can further weaken the assumption on the initial data.
Before we start with the proof of Theorem 4.11, we show the a.s. boundedness of

three consecutive parts: the good, the bad, and the ugly part.
\bullet The good part: supt \| u1\| 6L6

x
,
\int 
(t,x)

| u1| 4| \nabla u1| 2 dxdt and
\int 
(t,x)

u21u
2
2 dxdt;

\bullet The bad part: supt \| u2\| 2L2
x
and

\int 
(t,x)

| \nabla u2| 2 dxdt;
\bullet The ugly part: supt \| u2\| 3L3

x
and

\int 
(t,x)

| u2| | \nabla u2| 2 dxdt.
The L3

x-norm in the ugly part appears because we use the blow-up criterion of
Theorem 2.5 with d = h = 3 to check global existence. The estimates in the good
part and the bad part will be needed to estimate (M1,M2) in the ugly part; see (4.46)
below. As we will see, the good part and the ugly part follow from Lemmas 3.12 and 4.3,
respectively. The proof of the bad part requires an additional argument based on the
dissipative effect of  - u1u22 in the u1-equation of (4.18).

The existence of a (unique) (p,\kappa c, \delta , q)-solution (u,\sigma ) to (4.18) with the required
regularity up to the explosion time \sigma follows from Theorem 2.4 and [7, Remark 2.8(c)]
with h= d= 3. Moreover, by Assumption 4.10(3) and Proposition 2.6, we have

u\geq 0 (componentwise) a.e. on [0, \sigma )\times \Omega \times \BbbT 3.(4.30)
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4907

Boundedness of the good part. We will show that a.s. on \{ \sigma > s\} ,

\scrE 11(s,T ) := sup
t\in [s,\sigma \wedge T )

\| u1(t)\| 6L6 +

\int \sigma \wedge T

s

\int 
\BbbT 3

| u1| 4| \nabla u1| 2 dxdr <\infty ,(4.31)

\scrE 12(s,T ) :=
\int \sigma \wedge T

s

\int 
\BbbT 3

| \nabla u1| 2 dxdr+
\int \sigma \wedge T

s

\int 
\BbbT 3

u21u
2
2 dxdr <\infty ,(4.32)

and, moreover, for every \eta \in (0,1) there is a constant M\eta independent of s, u, and L
such that

\BbbE | 1\Gamma \scrE 11(s,T )| \eta \leq M\eta (1 +\BbbE 1\Gamma \| u1(s)\| 6\eta L6),(4.33)

\BbbE | 1\Gamma \scrE 12(s,T )| \eta \leq M\eta (1 +\BbbE 1\Gamma \| u1(s)\| 2\eta L2).(4.34)

The bounds (4.31), (4.32), and (4.23) are proved in a way similar to Theorem 4.9. In-
deed, from Assumption 4.10(4) and Lemma 4.2 one can check that Assumption 4.1(\zeta )
holds for j = 1 and with \zeta = 6, M1,M2 constant, and \scrR 1 = 0. Therefore, (4.31) and
(4.33) are immediate from Lemma 4.3.

For (4.32), again by Assumption 4.10(4) and Lemma 4.2 one has that Assump-
tion 4.1 (\zeta ) holds for j = 1, but this time with \zeta = 2, M1,M2 constant, and

\scrR 1(t) :=
4

5

\int 
\BbbT 3

u21(t, x)u
2
2(t, x)dx.

Here the constant 4
5 is not important and can be replaced by a lower number. There-

fore, the bounds (4.32) and (4.34) follow from Lemma 4.3.

Boundedness of the bad part. We show that for all 0< s< T <\infty 

\scrE 21 :=
\int \sigma \wedge T

s

\int 
\BbbT 3

| u2| 2 + | \nabla u2| 2 dxdr <\infty a.s. on \{ \sigma > s\} ,(4.35)

and, moreover, for every \eta \in (0,1) there is a constant M\eta independent of s, u, and L
such that

\BbbE | 1\Gamma \scrE 21| \eta \leq M\eta (1 +\BbbE 1\Gamma \| u(s)\| 4L6).(4.36)

Since there is no strong dissipation in the equation for u2 due to the term u1u
2
2,

this term is viewed as the bad term. To prove (4.35), we need a new energy estimate,
which requires a localization argument and It\^o's formula once more.

Fix 0 < s < T <\infty , k \geq 1, and let (\Gamma , \tau k) be as in the proof of Lemma 4.3. For
j \in \{ 1,2\} , let

u
(k)
j (t) = 1\Gamma uj(t\wedge \tau k) on \Omega \times [s,T ].

Note that u
(k)
j \geq 0 a.e. on [s,T ]\times \Omega \times \BbbT 3 by (4.30).

We claim that there exist \theta , c0 > 0 such that for all t\in [s,T ],

1\Gamma \| u(k)2 (t)\| 2L2 + \theta 

\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma | \nabla u2| 2 dxdr\leq 1\Gamma \| u(s)\| 2L2(4.37)

+ c0

\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma | u2| 2 dxdr+ c0\scrK (t) +\scrM (t),
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4908 ANTONIO AGRESTI AND MARK VERAAR

where \scrM is a continuous local martingale (which depends on k) and such that
\scrM (s) = 0 and

\scrK (t) :=

\int t

s

\int 
\BbbT 3

1[s,\sigma )\times \Gamma 

\bigl( 
1 + u21u

2
2 + u41 + | \nabla u1| 2

\bigr) 
dxdr.(4.38)

To see that the claim (4.37) yields (4.35), one can argue as follows. The bound-
edness of the good part implies that \scrK (T ) < \infty a.s. on \{ \sigma > s\} . Therefore, (4.35),
(4.36) follow from the stochastic Gronwall lemma [32, Corollary 5.4b)] and (4.37) and
embedding L6(\BbbT 3) \lhook \rightarrow L\zeta (\BbbT 3) for \zeta \leq 6. We divide the proof of (4.37) into three steps.

Step 1: There exist \theta , c1 > 0 such that for all t\in [s,T ] and \Gamma as above,

1\Gamma \| u(k)2 (t)\| 2L2 + \theta 

\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma | \nabla u2| 2 dxdr\leq 1\Gamma \| u2(s)\| 2L2(4.39)

+ c1

\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma (u
2
2 + u1u

3
2)dxdr+\scrK (t) +\scrM 1(t),

where\scrM 1 is a continuous local martingale (which depends on k) such that\scrM 1(s) = 0.

As in (4.4), by Assumption 2.1(3) and applying the It\^o formula to t \mapsto \rightarrow \| u(k)2 (t)\| 2L2

it follows that, a.s. for all t\in [s,T ],

1\Gamma \| u(k)2 (t)\| 2L2 + \nu 2

\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma | \nabla u2| 2 dxdr(4.40)

\leq 1\Gamma \| u2(s)\| 2L2 + I1(t) + I2(t) +\scrM 1(t),

where \scrM 1(t) is a local continuous martingale such that \scrM 1(s) = 0 and

I1(t) := 2

\int t

s

\int 
\BbbT d

1[s,\tau k]\times \Gamma f2(\cdot , u)u2 dxdr,

I2(t) :=
\sum 
n\geq 1

\int t

s

\int 
\BbbT d

1[s,\tau k]\times \Gamma 

\left(  | gn,2(\cdot , u)| 2 + 2
\sum 
n\geq 1

| (bn,2 \cdot \nabla )u2| | gn,2(\cdot , u)| 

\right)  dxdr.

We estimate I1 and I2 separately. It is easy to see that a.s. for all t \in [s,T ] (using
(4.30)),

I1(t)\lesssim 
\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma (u
2
2 + u1u

3
2)dxdr+\scrK (t).

Moreover, by Assumption 4.10(4), one can check that also

I2(t)\lesssim 
\int t

s

\int 
\BbbT d

1[s,\tau k]\times \Gamma (1 + | \nabla u2| )N2(\cdot , u)1/2dxdr

\lesssim 
\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma (u
2
2 + u1u

3
2)dxdr+\scrK (t).

Hence, (4.39) follows by combining the previous estimates with (4.40).
Step 2: For each \varepsilon 0 > 0, there exists a local continuous martingale \scrM 2 (depending

on k) such that \scrM 2(s) = 0, and a.s. for all t\in [s,T ],\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma u1u
3
2 dxdr\leq 1\Gamma \| u2(s)\| 2L2 +C\varepsilon 0\scrK (t) +\scrM 2(t)(4.41)

+

\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma 

\Bigl[ 
C0u

2
2 + \varepsilon 0| \nabla u2| 2

\Bigr] 
dxdr.
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4909

Applying It\^o's formula to (u1, u2) \mapsto \rightarrow 
\int 
\BbbT 3 u1u2 dx gives that a.s. for all t\in [s,T ],

\int 
\BbbT 3

u
(k)
1 (t, x)u

(k)
2 (t, x)dx\leq 1\Gamma 

\int 
\BbbT 3

u1(s,x)u2(s,x)dx+

3\sum 
i=1

Ji(t) +\scrM 2(t),(4.42)

where \scrM 2(t) is a local continuous martingale such that \scrM 2(s) = 0, and

J1(t) := - 
\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma 

\Bigl[ 
(a1 \cdot \nabla u1) \cdot \nabla u2 + (a2 \cdot \nabla u2) \cdot \nabla u1

\Bigr] 
dxdr,

J2(t) :=

\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma 

\Bigl[ 
f1(\cdot , u)u2 + f2(\cdot , u)u1

\Bigr] 
dxdr,

J3(t) :=
\sum 
n\geq 1

\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma 

\bigl[ 
(bn,1 \cdot \nabla )u1 + gn,1(\cdot , u)

\bigr] \bigl[ 
(bn,2 \cdot \nabla )u2 + gn,2(\cdot , u)

\bigr] 
dxdr.

The first term on the RHS of (4.42) can be estimated as
\int 
\BbbT 3 u1(s,x)u2(s,x)dx\leq 

\| u1(s)\| 2L2 + \| u2(s)\| 2L2 a.s. on \Gamma . Next, we estimate the remaining terms. We begin
with J1. Since ai is bounded, it follows that for all \varepsilon 0 \in (0,1),

J1(t)\leq 
\varepsilon 0
2

\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma | \nabla u2| 2 dxdr+C\varepsilon 0\scrK (t).

Next, we estimate J2. From the definition of f = (fi)
2
i=1 (see (4.18)) and boundedness

of the coefficients \alpha i, \beta i (see Assumption 4.10(2)) we obtain that a.s. for all t\in [s,T ],

J2(t)\leq  - 
\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma u1u
3
2 dxdr+C0

\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma (1 + u21u
2
2 + u21 + u22)dxdr

(4.38)

\leq  - 
\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma u1u
3
2 dxdr+C0

\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma u
2
2 dxdr+C0\scrK (t).

Finally, to estimate J3, note that by the Cauchy--Schwarz inequality, for all t \in 
[s,T ] and \varepsilon 0 \in (0,1),

J3(t)\leq 
\varepsilon 0
2

\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma (| \nabla u2| 2 + \| (gn,2(\cdot , u))n\geq 1\| 2\ell 2)dxdr

+C\varepsilon 0

\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma (| \nabla u1| 2 + \| (gn,1(\cdot , u))n\geq 1\| 2\ell 2)dxdr

(i)

\leq \varepsilon 0
2

\int t

s

\int 
\BbbT 3

1[s,\tau k]\times \Gamma (u
2
2 + | \nabla u2| 2 + u1u

3
2)dxdr+C\varepsilon 0\scrK (t),

where in (i) we used Assumption 4.10(4) as well as (4.38).
Now (4.41) follows by combining the previous estimates with (4.42) and addition-

ally using that
\int 
\BbbT 3 u

(k)
1 (t, x)u

(k)
2 (t, x)dx\geq 0 a.s. on [s,T ] as u\geq 0 (see (4.30)).

Step 3: Proof of (4.37). Let c1 > 0 be as in (4.39). To prove (4.37), it is suffices
to use (4.41) with \varepsilon 0 = (2c1)

 - 1 in (4.39). Note that on the RHS of the correspond-
ing estimate the term 1

2

\int t
s

\int 
\BbbT 3 1[s,\tau k]\times \Gamma | \nabla u2| 2 dxdr can be absorbed on the LHS as\int \tau k

s

\int 
\BbbT 3 | \nabla u2| 2 dxdr\leq k a.s. on \Gamma by the definition of \tau k. This completes the proof of

(4.37).
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4910 ANTONIO AGRESTI AND MARK VERAAR

After these preparations, we now estimate the ugly part needed for the proof of
Theorem 4.11.

Boundedness of the ugly part. We show that for all 0< s< T <\infty ,

\scrE 22 := sup
t\in [s,\sigma \wedge T )

\| u2(t)\| 3L3 +

\int \sigma \wedge T

s

\int 
\BbbT d

| u2| | \nabla u2| 2 dxdr <\infty a.s. on \{ \sigma > s\} ,(4.43)

and for all \gamma > 0,

\BbbP (1\Gamma \scrE 22(s,T )>\gamma )\leq \psi (\gamma )
\bigl( 
\BbbE 1\Gamma \| u(s)\| 4L6 + 1

\bigr) 
.(4.44)

Indeed, we will deduce this from Lemma 4.3 with \zeta = 3 and j = 2.
First observe that by Assumption 4.10(4) on (s,\sigma )\times \{ \sigma > s\} \times \BbbT d it holds that

u2f2(\cdot , u)
2

+
1

4(\nu 2  - \varepsilon )

\left(  \sum 
n\geq 1

| bn,2| | gn,2(\cdot , u)| 

\right)  2

+
1

2
\| (gn,2(\cdot , u))n\geq 1\| 2\ell 2

\leq u2f2(\cdot , u)
2

+N2(u)

\leq 1

2

\bigl[ 
u1u

3
2 + \beta 1u1u2 + \beta 2u

2
2 + \beta 3u2

\bigr] 
+M

\bigl[ 
1 + (1 + u21)u

2
2 + u1u

3
2 + u41

\bigr] 
\leq M1 +M2| u| 2,

where we take M1 :=C1[s,\sigma \wedge T )(u
4
1 + 1) and M2 :=C1[s,\sigma \wedge T )(u1u2 + 1) for a suitable

constant C depending on \beta i and M .
We claim that M1 \in L1(s,T ;L3/2(\BbbT 3)) and M2 \in L2(s,T ;L3(\BbbT 3)). The assertion

for M1 is equivalent to u1 \in L4(s,\sigma \wedge T ;L6(\BbbT 3)) a.s., which is clear from the bound-
edness of the good part (see (4.31)), and moreover by (4.33) with \eta = 2/3, we see
that

\BbbE 1\Gamma \| M1\| L1(s,T ;L3/2(\BbbT 3)) \lesssim (1 +\BbbE 1\Gamma \| u1(s)\| 4L6).(4.45)

The required integrability of M2 follows from

\| u1u2\| L2(s,T ;L3) \leq 1\{ \sigma >s\} \| u1\| L\infty (s,\sigma \wedge T ;L6)\| u2\| L2(s,\sigma \wedge T ;L6)(4.46)

(i)

\lesssim 1\{ \sigma >s\} \| u1\| L\infty (s,\sigma \wedge T ;L6)\| u2\| L2(s,\sigma \wedge T ;H1)

(ii)
< \infty a.s.,

where in (i) we used the Sobolev embedding H1(\BbbT 3) \lhook \rightarrow L6(\BbbT 3), and in (ii) we used
(4.31) and (4.35). Moreover, using (4.33), and (4.36) with \eta = 2/3 in (4.46), we find
that

\BbbE 1\Gamma \| M2\| L2(s,T ;L3(\BbbT 3)) \lesssim 1 +\BbbE 1\Gamma sup
t\in [s,\sigma \wedge T )

\| u1(t)\| 4L6 +\BbbE 1\Gamma \| u2\| 4/3L2(s,\sigma \wedge T ;H1)(4.47)

\lesssim 1 +\BbbE 1\Gamma \| u(s)\| 4L6 .

From the above, Lemma 4.2, and Assumption 4.10(4), we see that Assumption 4.1
holds for \zeta = 3 and j = 2 with R2 = 0. Therefore, by Lemma 4.3, (4.43) holds.
Moreover, from (4.2), (4.45), and (4.47), we obtain that for all \gamma > 0, R\geq max\{ 4C,1\} 
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4911

\BbbP (1\Gamma \scrE 22(s,T )>\gamma )

\leq ReR

\gamma 
+ \BbbP 

\bigl( 
1\Gamma \| u2(s)\| 3L3 +C1\Gamma \| M1\| L1(s,T ;L3/2) \geq R

\bigr) 
+ \BbbP 

\bigl( 
C1\Gamma \| M1\| L1(s,T ;L3/2) +C1\Gamma \| M2\| L2(s,T ;L3) \geq R

\bigr) 
\lesssim 
e2R

\gamma 
+

\BbbE 1\Gamma \| u2(s)\| 3L3

R
+

\BbbE 1\Gamma \| M1\| L1(s,T ;L3/2)

R
+

\BbbE 1\Gamma \| M2\| L2(s,T ;L3)

R

\lesssim 
e2R

\gamma 
+

1+\BbbE 1\Gamma \| u2(s)\| 4L6

R
.

Taking R=max\{ log(\gamma 1/4),4C,1\} , this gives (4.44).
Proof of Theorem 4.11. By (4.31), (4.32), and (4.43), it holds that, for all 0< s<

T <\infty and i\in \{ 1,2\} ,

\scrE i(s,T ) := sup
t\in [s,\sigma \wedge T )

\| ui(t)\| 3L3 +

\int \sigma \wedge T

s

\int 
\BbbT d

| ui| | \nabla ui| 2 dxdr <\infty a.s. on \{ \sigma > s\} .

For i= 1, note that we used | u1| \leq | u1| 4 + 1.
Next, we will apply Theorem 2.5(2) with d = 3 and h0 = h = 3 (and thus \zeta 0 =

d(h - 1)
2 = 3) similarly as in Step 2 of Theorem 3.2. We first claim that for all \eta \in [0,1],

s > 0 and a.s.

ui \in L3/\eta (s,\sigma \wedge T ;L9/(3 - 2\eta )), i\in \{ 1,2\} .(4.48)

Fix i \in \{ 1,2\} , and observe that from (4.43) we see that vi := 1(s,\sigma \wedge T )| ui| 3/2 \in 
L\infty (s,T ;L2) \cap L2(s,T ;H1) a.s. By interpolation and the Sobolev embedding H1 \lhook \rightarrow 
L6, we find that

vi \in L\infty (s,T ;L2)\cap L2(s,T ;L6) \lhook \rightarrow L2/\eta (s,T ;L6/(3 - 2\eta )) for \eta \in [0,1],

which implies the claim by rewriting the integrability in terms of ui again.
Now let \delta 0 \in (1, 53 ) be such that Assumption 2.1(2) holds. Then one can readily

check that there exist q0 \in (3, 3
2 - \delta 0 ) and p0 > 2

\delta 0 - 1 \vee q0 such that 2
p0

+ 3
q0

= 1
and Assumptions 2.1(p0, q0, h0, \delta 0) and 2.2(p0, q0, h0, \delta 0) hold. Observe that by the
restriction on \delta 0 we have q0 \in (3,9). Hence, there exists \eta 0 \in (0,1) such that q0 =

9
3 - 2\eta 0

and therefore 2
p0

= 1 - 3
q0

= 2\eta 0
3 , and thus p0 = 3

\eta 0
. From (4.48) with \eta \in \{ 0, \eta 0\} it

follows that

\BbbP (s < \sigma < T ) = \BbbP 
\Bigl( 
s < \sigma < T, sup

t\in [s,\sigma )

\| u(t)\| L3 + \| u\| Lp0 (s,\sigma ;Lq0 ) <\infty 
\Bigr) 
= 0,

where in the last equality we applied Theorem 2.5(2) with h0 = d = 3 (and thus
d(h0 - 1)

2 = 3). Letting s \downarrow 0 and using \sigma > 0 a.s., we find that \BbbP (\sigma < T ) = 0. Letting
T \rightarrow \infty , we get \sigma =\infty a.s.

Finally, note that (4.28) follows from (4.33) and (4.44). Similarly, (4.29) for i= 2
follows from (4.44). For i = 1, it follows from (4.33) and (4.34) and the estimate
| u1| \leq | u1| 4 + 1.

Example 4.12 (stochastic Gray--Scott model). In the deterministic setting, the
Gray--Scott model has been proposed by P. Gray and S. Scott in [35, 36, 37] in the
study of autocatalytic reactions. Taking into account spatial diffusivity and small-
scale fluctuations, stochastic perturbations of the Gray--Scott model are of the form
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4912 ANTONIO AGRESTI AND MARK VERAAR

(2.1) with \ell = 2, F \equiv 0, and f1(\cdot , u) = - u1u22+\gamma 1u1+\eta 1 and f2(\cdot , u) = u1u
2
2+\gamma 2u2+\eta 2.

Here u1 and u2 denote the concentration of reactants in certain chemical reactions.
Finally, \gamma i, \eta i are P \otimes B(\BbbT d)-measurable maps to be determined experimentally.

It is easy to see that the stochastic diffusive Gray--Scott model is a special case
of the Brusselator system (4.18). Hence, under suitable assumptions on (a, b, g, u0),
global well-posedness for this model in d\in \{ 1,2,3\} follows from Theorems 4.9 and 4.11
as well.

5. Continuous dependence on initial data. The aim of this section is to
prove the continuity of global solutions of reaction-diffusion equations with respect
to u0 assuming (relatively weak) energy estimates. As we have shown in sections
3--4, the validity of such energy estimates depends on the fine structure of the SPDE
under consideration. However, they hold in many situations as we have seen in the
applications of sections 3--4.

As in section 2, let us consider the following system of SPDEs on \BbbT d with initial
data at time s\geq 0:\left\{           

dui  - div(ai \cdot \nabla ui)dt=
\Bigl[ 
div(Fi(\cdot , u)) + fi(\cdot , u)

\Bigr] 
dt

+
\sum 
n\geq 1

\Bigl[ 
(bn,i \cdot \nabla )ui + gn,i(\cdot , u)

\Bigr] 
dwnt ,

ui(s) = us,i,

(5.1)

where i\in \{ 1, . . . , \ell \} and \ell \geq 1 is an integer. Note that (5.1) coincides with (2.1) in the
case s= 0.

5.1. Main results. We start by formulating the main assumption used in this
section.

Assumption 5.1 (global energy estimate). Suppose the assumptions of Theo-
rem 2.4 are satisfied for (p, q, h, \delta ) and with \kappa c as in Assumption 2.2. Set q0 :=
d(h - 1)

2 \vee 2. Let \zeta 0 \in [q0,\infty ] be such that 2 - \delta  - d
q > - d

\zeta 0
, and let s0 \geq 0. We say that

Assumption 5.1 (s0, \zeta 0) holds if we have the following.
For all initial data such that

us0 \in L0
Fs0

(\Omega ;C\theta (\BbbT d;\BbbR \ell )) for some \theta > 0 and us0 \in L\zeta 0(\Omega \times \BbbT d;\BbbR \ell ),

there exists a global (p,\kappa c, \delta , q)-solution to (5.1), and for all T > s0 and \gamma > 0

\BbbP 

\Biggl( 
sup

t\in (s0,T ]

\| u(t)\| q0Lq0 \geq \gamma 

\Biggr) 
\leq \psi s0(\gamma )(1 +\BbbE \| us0\| 

\zeta 0
L\zeta 0

),

\BbbP 

\Biggl( 
max
1\leq i\leq \ell 

\int T

s0

\int 
\BbbT d

| ui| q0 - 2| \nabla ui| 2 dxdt\geq \gamma 

\Biggr) 
\leq \psi s0(\gamma )(1 +\BbbE \| us0\| 

\zeta 0
L\zeta 0

),

where \psi does not depend on \gamma and u and satisfies lim\gamma \rightarrow \infty \psi s0(\gamma ) = 0.
Moreover, given S \subseteq \BbbR \ell we say that Assumption 5.1(s0, \zeta 0) holds for S-valued

functions if the above is satisfied for all us0 with values in S.

Due to the estimates proved in sections 3--4 and a translation argument, all (sys-
tems of) SPDEs analyzed in these sections satisfy Assumption 5.1(s0, \zeta 0) for all s0 \geq 0
and some \zeta 0 \in [q0,\infty ], where in some cases we need to take S = [0,\infty )\ell . Moreover,
in all but one case, one can take \zeta 0 = q0. The exception is the 3D Brusselator of
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4913

subsection 4.3.2, where we need 6 = \zeta 0 > q0 = q = 3 (see (4.28)--(4.29)). In the latter
case, 2  - \delta  - d

q >  - d
\zeta 0

still holds, where without loss of generality, we can restrict

ourselves to \delta < 3
2 . In particular, the results below apply to all SPDEs considered in

the paper. Finally, an inspection of the following proofs shows that in Assumption 5.1
we may replace \BbbE \| us0\| 

\zeta 0
L\zeta 0

by \BbbE \| us0\| 
r0
L\zeta 0

, where r0 \in (0,\infty ) is an additional parameter
which can be chosen independently of \zeta 0.

Next, we formulate the main results of this section.

Theorem 5.2 (continuous dependence on initial data). Let the assumptions of

Theorem 2.4 be satisfied with q, p\geq d(h - 1)
2 \vee 2 and p\geq q. Let Assumption 5.1(s0, \zeta 0)

be satisfied for all s0 \in (0,\infty ) and some S \subseteq \BbbR \ell . Let u0 and (u
(n)
0 )n\geq 1 be S valued

and such that

u
(n)
0 \rightarrow u0 in L0

F0
(\Omega ;B

d
q - 

2
h - 1

q,p (\BbbT d;\BbbR \ell )).

Then there exist global (p,\kappa c, \delta , q)-solutions u and u(n) to (5.1) with initial data u0
and u

(n)
0 at time s= 0, respectively, and for all T \in (0,\infty ),

u(n) \rightarrow u in L0(\Omega ;C([0, T ];B
d
q - 

2
h - 1

q,p (\BbbT d;\BbbR \ell ))).

Note that the assumption q\geq d(h - 1)
2 \vee 2 implies that the critical space considered

in Theorem 5.2 has smoothness \leq 0. It is likely that the restriction p\geq d(h - 1)
2 \vee 2 can

be removed, but it does not lead to any serious limitations.
Next, we state a similar result for critical Lebesgue spaces under the further

restriction that Assumption 5.1(s0, \zeta 0) holds for s0 = 0 as well (which is the case in
all applications). Recall that Theorem 2.4 applies for p large enough (see [7, Remark
2.8(c)]).

Proposition 5.3 (continuous dependence on initial data in Lq). Let Assump-

tions 2.1(p, q, h, \delta ) and 2.2(p, q, h, \delta ) be satisfied with q= d(h - 1)
2 \vee 2 and for some \delta > 1,

p\geq q \vee 2
2 - \delta . Set \kappa := \kappa c := p

\bigl( 
1 - \delta 

2

\bigr) 
 - 1. Assume that Assumption 5.1(s, \zeta ) holds and

for all s \geq 0 and for some \zeta \in [q,\infty ], S \subseteq \BbbR \ell . Let u0, u
(n)
0 \in L0

F0
(\Omega ;L\zeta (\BbbT d;\BbbR \ell )) be

S-valued and such that

u
(n)
0 \rightarrow u0 in L0(\Omega ;L\zeta (\BbbT d;\BbbR \ell )).

Then there exist global (p,\kappa c, \delta , q)-solutions u and u(n) to (5.1) with initial data u0
and u

(n)
0 at time s= 0, respectively, and for all and T \in (0,\infty ),

u(n) \rightarrow u L0(\Omega ;C([0, T ];Lq(\BbbT d;\BbbR \ell ))).

Let us stress that u(n), u \in C([0, T ];Lq(\BbbT d;\BbbR \ell )), a.s. is part of the assertion in
the above. It does not follow from Theorem 2.4 because we only have Lq \subsetneq B0

q,p for
p\geq q.

In particular, Proposition 5.3 implies that limt\downarrow 0 u(t) = u0 in L0(\Omega ;Lq(\BbbT d;\BbbR \ell )).
As a consequence, the energy estimates of sections 3 and 4 extend to s= 0 for initial
data in L\zeta .

Corollary 5.4. The following energy estimates extend to s = 0 for the initial
data as stated:

(1) (3.1) and (3.2) with \Gamma =\Omega for u0 \in L\zeta (\BbbT d;\BbbR \ell ).
(2) (4.19) and (4.20) with \Gamma =\Omega for u0 \in L\zeta (\BbbT d;\BbbR 2).
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4914 ANTONIO AGRESTI AND MARK VERAAR

(3) (4.28) and (4.29) with \Gamma =\Omega for u0 \in L6(\BbbT 3;\BbbR 2).

Before turning to the proofs of the above results, we collect some observations.

Remark 5.5 (more on continuity in Lebesgue spaces). Suppose that the conditions

of Proposition 5.3 are satisfied (in particular, q = d(h - 1)
2 \vee 2). Let T > 0 and i \in 

\{ 1, . . . , \ell \} . Proposition 5.3 implies that limt\downarrow 0 ui(t) = u0,i in L0(\Omega ;Lq(\BbbT d)). As a
consequence, the following improvement can be obtained under further restrictions:

(a) If r0 > 0 and sups\in [0,T ]\BbbE \| ui(s)\| 
r0
Lq(\BbbT d) <\infty , then

lim
t\downarrow 0

u(t) = u0 in Lr(\Omega ;Lq(\BbbT d)) for all r \in (0, r0).

(b) If limsups\downarrow 0\BbbE \| ui(s)\| 
q

Lq(\BbbT d) \leq \BbbE \| u0,i\| qLq(\BbbT d) <\infty , then

lim
t\downarrow 0

ui(t) = u0,i in Lq(\Omega ;Lq(\BbbT d)).

Part (a) follows from [44, Theorem 5.12]. The condition is satisfied in many of the
applications.

To prove (b), note that by Fatou's lemma and the convergence in probability,

\BbbE \| u0,i\| qLq(\BbbT d) \leq lim inf
s\downarrow 0

\BbbE \| ui(s)\| qLq(\BbbT d) \leq limsup
s\downarrow 0

\BbbE \| ui(s)\| qLq(\BbbT d) \leq \BbbE \| u0,i\| qLq(\BbbT d).

Hence, lims\downarrow 0\BbbE \| ui(s)\| qLq(\BbbT d) = \BbbE \| u0,i\| qLq(\BbbT d) and the required result follows again

from [44, Theorem 5.12]. The condition in (b) is satisfied in the case of fully dissipative
systems discussed in section 3 in the case where Assumption 3.1(q) holds; cf. (3.32)
and Step 6 in the proof of Lemma 3.12 since \sigma =\infty a.s. by Theorem 3.2.

5.2. Proofs of Theorem 5.2, Proposition 5.3, and Corollary 5.4. We
begin by proving the following key lemma. The following should be compared with
[4, Proposition 4.5].

Lemma 5.6. Let the assumptions of Theorem 2.4 be satisfied; in particular, let
(p, \delta , q) satisfy Assumption 2.2 and \kappa c := p

\bigl( 
h
h - 1  - 

1
2 (\delta +

d
q )
\bigr) 
 - 1. Set q0 :=

d(h - 1)
2 \vee 2.

Let s0 \geq 0 be fixed, and suppose that Assumption 5.1(s0, \zeta 0) holds for some S \subseteq \BbbR \ell .
Fix

us0 , vs0 \in L0
Fs0

(\Omega ;C\theta (\BbbT d;\BbbR \ell )) for some \theta > 0 such that us0 , vs0 \in Lq0(\Omega \times \BbbT d;\BbbR \ell ).

Let u and v be the (p,\kappa c, \delta , q)-solution to (5.1) with S-valued initial data us0 and vs0 ,
respectively. Then, for all T > s, R > 0, there are constants CR and CT such that
\gamma > 0:

\BbbP 
\Bigl( 

max
i\in \{ 1,...,\ell \} 

sup
t\in [s,T ]

\| ui(t) - vi(t)\| q0Lq0 \geq \gamma 
\Bigr) 

(5.2)

\leq 2eR

\gamma 
\BbbE \| us0  - vs0\| 

q0
Lq0 +

\widetilde \psi s0(R)(1 +\BbbE \| us0\| 
\zeta 0
L\zeta 0

+\BbbE \| vs0\| 
\zeta 0
L\zeta 0

),

where \widetilde \psi s0 only depends on \psi s0 , T , q0, \nu i and d and satisfies limR\rightarrow \infty \widetilde \psi s0(R) = 0.

The tail estimate (5.2) is only useful if \BbbE \| us0  - vs0\| 
q0
Lq0 is very small. For instance,

this is the case if vs0 = u
(n)
s0 converges to us0 in Lq0(\Omega \times \BbbT d). After letting n\rightarrow \infty , we

can let R\rightarrow \infty to obtain a convergence result for the corresponding solutions.
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4915

Proof. By a translation argument, we can suppose s0 = 0. From Assumption 5.1
and arguing as in Step 2 of Theorem 3.2, we obtain global existence and uniqueness
for (5.1) with initial data u0 and v0. Moreover, by [7, Proposition 3.1], with large
integrability parameters (\widetilde p, \widetilde q), \delta = 1, and \kappa = 0, we find that u and v are in C([0, T ]\times 
\BbbT d;\BbbR \ell ) \cap L\widetilde p(0, T ;H1,\widetilde q(\BbbT d;\BbbR \ell )) a.s. Note that here we also used the compatibility
result [7, Proposition 3.5].

Let wi := ui  - vi and w0,i := u0,i  - v0,i for all i \in \{ 1, . . . , \ell \} . By It\^o's formula
applied to wi \mapsto \rightarrow \| wi\| q0Lq0 (and an approximation argument as in (3.28)), we have, a.s.
for all t\in [0, T ],

\| wi(t)\| q0Lq0 +
\nu iq0(q0  - 1)

2

\int t

0

\int 
\BbbT d

| wi| q0 - 2| \nabla wi| 2 dxds(5.3)

\leq \| w0\| q0Lq0 +C0

2\sum 
j=0

\int t

0

Jj ds+M(t),

where M is a continuous local martingale such that M(0) = 0, C0 is a constant
independent of u0, v0, and Jj : [0, T ]\times \Omega \rightarrow \BbbR for j \in \{ 0,1,2\} are given by

J0 :=

\int 
\BbbT d

| wi| q0 - 1| fi(\cdot , u) - fi(\cdot , v)| dx,

J1 :=

\int 
\BbbT d

| Fi(\cdot , u) - Fi(\cdot , v)| | w| q0 - 2| \nabla w| dx,

J2 :=
\sum 
n\geq 1

\int 
\BbbT d

| wi| q0 - 2| gn,i(\cdot , u) - gn,i(\cdot , v)| 2 dx.

Here and below we omitted the (t, x)-dependency for notational brevity.
Step 1: For all \varepsilon > 0 there exists C\varepsilon > 0 such that a.s. pointwise in [0, T ],

2\sum 
j=0

Jj \leq \varepsilon max
1\leq i\leq \ell 

\int 
\BbbT d

| wi| q0 - 2| \nabla wi| 2 dx

+C\varepsilon (1 + \| u\| q0+h0 - 1

Lq0+h0 - 1(\BbbT d;\BbbR \ell ) + \| v\| q0+h0 - 1

Lq0+h0 - 1(\BbbT d;\BbbR \ell ))\| w\| 
q0
Lq0 (\BbbT d;\BbbR \ell ),

where h0 := 1 + 2
dq0 \geq h and q0 =

d(h - 1)
2 \vee 2.

We begin by estimating J0. Assumption 2.1(4) and H\"older's inequality give

J0 \lesssim 
\int 
\BbbT d
(1 + | u| h0 - 1 + | v| h0 - 1)| w| q0 dx(5.4)

\lesssim (1 + \| u\| h0 - 1
Lq0+h0 - 1 + \| v\| h0 - 1

Lq0+h0 - 1)\| w\| q0Lq0+h0 - 1

\lesssim (1 + \| u\| h0 - 1
Lq0+h0 - 1 + \| v\| h0 - 1

Lq0+h0 - 1)
\bigl( 
max
1\leq i\leq \ell 

\| wi\| q0Lq0+h0 - 1

\bigr) 
.

Note that q0 + h0  - 1 = (d+2
2 )(h0  - 1) = d+2

d q0. Fix i \in \{ 1, . . . , \ell \} . By Sobolev
embedding and interpolation estimates, we find that with \theta = d

d+2 ,

\| wi\| q0Lq0+h - 1(\BbbT d) =
\bigm\| \bigm\| | wi| q0/2\bigm\| \bigm\| 2

L
2(d+2)
d

(5.5)

\lesssim 
\bigm\| \bigm\| | wi| q0/2\bigm\| \bigm\| 2H\theta 

\leq 
\bigm\| \bigm\| | wi| q0/2\bigm\| \bigm\| 2(1 - \theta )L2

\bigm\| \bigm\| | wi| q0/2\bigm\| \bigm\| 2\theta H1

\lesssim \| wi\| q0Lq0 + \| wi\| q0(1 - \theta )Lq0

\biggl( \int 
\BbbT d

| wi| q0 - 2| \nabla wi| 2 dx
\biggr) 2\theta 

.
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4916 ANTONIO AGRESTI AND MARK VERAAR

Since h0 - 1
1 - \theta = q0 + h0  - 1, the J0-part of Step 1 follows by combining (5.5) in (5.4)

with Young's inequality. To estimate J1, J2, note that by Assumption 2.1(4) and the
Cauchy--Schwarz inequality we have

J1 + J2 \leq 
\varepsilon 

4

\int 
\BbbT d

| wi| q0 - 2| \nabla wi| 2 dx+C\varepsilon 

\int 
\BbbT d
(1 + | u| h0 - 1 + | v| h0 - 1)| w| q0 dx.

Hence, we can apply the previous argument to estimate the last term in the above
estimate.

Step 2: Let (\psi 0, \zeta 0) be as in Assumption 5.1(s0, \zeta 0) with s0 = 0. Then there exists
a constant K > 0 depending on q0, h0, d such that for each z \in \{ u, v\} and all r > 0,

\BbbP (\| z\| q0+h0 - 1

Lq0+h0 - 1((0,T )\times \BbbT d;\BbbR \ell ) > r)\leq K\psi 0(r
\theta )(1 +\BbbE \| z0\| \zeta 0L\zeta 0 ),

where \theta = d
d+2 . We argue as in (5.5) with an additional integration in time and use

Young's inequality to obtain

\| ui\| q0Lq0+h0 - 1((0,T )\times \BbbT d) =
\bigm\| \bigm\| | ui| q0/2\bigm\| \bigm\| 2

L
2(d+2)
d ((0,T )\times \BbbT d)

\lesssim 
\bigm\| \bigm\| | ui| q0/2\bigm\| \bigm\| 2(1 - \theta )L\infty (0,T ;L2)

\bigm\| \bigm\| | ui| q0/2\bigm\| \bigm\| 2\theta L2(0,T ;H1)

\lesssim \| ui\| q0L\infty (0,T ;Lq0 ) +

\int T

0

\int 
\BbbT d

| ui| q0 - 2| \nabla ui| 2 dxds.

Now the claim of this step follows from Assumption 5.1(0, \zeta 0) and
q0+h0 - 1

q0
= 1

\theta .
Step 3: Conclusion. Combining the estimates of Step 1 in (5.3) and choosing

\varepsilon > 0 small enough, we find that

Xw(t) := max
i\in \{ 1,...,\ell \} 

\| wi(t)\| q0Lq0 + max
i\in \{ 1,...,\ell \} 

\nu iq0(q0  - 1)

4

\int t

0

\int 
\BbbT d

| wi| q0 - 2| \nabla wi| 2 dxds

\leq \| w0\| q0Lq0 +C\varepsilon 

\int t

0

(1 + au(s) + av(s))Xw(s)ds+M(t),

where az = \| z\| q0+h0 - 1

Lq0+h0 - 1(\BbbT d;\BbbR \ell ) for z \in \{ u, v\} . Therefore, by the stochastic Gronwall

lemma [32, Corollary 5.4b)] we obtain that for all \gamma > 0, \lambda > 0, R> 0

\BbbP (Xw(t)>\gamma )\leq eR

\gamma 
\BbbE (\| w0\| q0Lq0 \wedge \lambda ) + \BbbP (\| w0\| q0Lq0 >\lambda )

+ \BbbP 

\Biggl( 
C\varepsilon 

\int T

0

(1 + au(t) + av(t))dt >R

\Biggr) 
.

By Step 2 and Assumption 5.1 for each z \in \{ u, v\} and all r > 0, we can estimate

\BbbP 

\Biggl( \int T

0

az(t)dt > r

\Biggr) 
\leq K\psi 0(r

\theta )(1 +\BbbE \| z0\| \zeta 0L\zeta 0 ).

After setting r= R
2C\varepsilon 

 - T
2 , we obtain that

\BbbP 

\Biggl( 
C\varepsilon 

\int T

0

(1 + au(t) + av(t))dt >R

\Biggr) 
\leq 

\sum 
z\in \{ u,v\} 

\BbbP 

\Biggl( \int T

0

az(t)dt >
R

2C\varepsilon 
 - T

2

\Biggr) 
\leq K\psi 0(r

\theta )(1 +\BbbE \| u0\| \zeta 0L\zeta 0 +\BbbE \| v0\| \zeta 0L\zeta 0 ).
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4917

Therefore, taking \lambda = \gamma /eR we can conclude that

\BbbP (Xw(t)>\gamma )\leq 2eR

\gamma 
\BbbE \| w0\| q0Lq0 +K\psi 0(r

\theta )(1 +\BbbE \| u0\| \zeta 0L\zeta 0 +\BbbE \| v0\| \zeta 0L\zeta 0 ).

Hence, the required assertion is proved with \widetilde \psi 0(R) =K\psi 0(r
\theta ) =K\psi 0((

R
2C\varepsilon 

 - T
2 )
\theta ) for

R\geq C\varepsilon T and \widetilde \psi (R) = 1 otherwise.

We are ready to prove Theorem 5.2. The main idea is to combine local well-
posedness, say on [0, T0] for T0 > 0 (see, e.g., [7, Proposition 2.9]), and then to use
Lemma 5.6 on the time interval [t, T ] where 0< t< T0. The advantage is that on [t, T0]
we may use the instantaneous regularization of anisotropic weighted function spaces
(see, e.g., [2, Theorem 1.2] with positive weights) to go from the (possible) negative

smoothness of the space B
d
q - 

2
h - 1

q,p if q > d(h - 1)
2 to a space with positive smoothness so

that Lemma 5.6 is applicable.

Proof of Theorem 5.2. To economize the notation, we let \scrY p := B
d
q - 

2
h - 1

q,p . Let
us begin by noticing that, as Assumption 5.1(s, \zeta 0) holds for all s > 0, the SPDE
(5.1) has a global (p,\kappa c, \delta , q)-solution u for all u0 \in L0

F0
(\Omega ;\scrY p). To see this, recall

that the existence of a (p,\kappa c, \delta , q)-solution (u,\sigma ) follows from Theorem 2.4 with \sigma > 0
a.s. and that (2.4) holds. In particular, 1\{ \sigma >s\} u(s) \in L0

Fs
(\Omega ;C\theta ) for all \theta \in (0,1).

Now Assumption 5.1(s, \zeta 0) for all s > 0 and the proof of Step 2 of Theorem 3.2 show
that there exists a global (p,\kappa c, \delta , q)-solution v to (5.1) on [s,\infty ) with initial data
1\{ \sigma >s\} u(s). Moreover, v has the regularity stated in (2.3)--(2.4). Clearly, (u1\{ \sigma >s\} , \sigma \vee 
s) is a (p,\kappa c, \delta , q)-solution to (5.1) on [s,\infty ) as well. By maximality of the (p,\kappa c, \delta , q)-
solution v, we have v = u on [s,\sigma ). Let \beta 0 =

d
q  - 

2
h - 1 and \gamma 0 =

d
q +

2
p  - 

2
h - 1 . Then,

using the regularity of v and u= v on [s,\sigma ), we find that

\BbbP (s < \sigma < T ) = \BbbP 
\Bigl( 
s < \sigma < T, sup

t\in [0,\sigma )

\| v(t)\| L\zeta 0 <\infty 
\Bigr) 

\leq \BbbP 
\Bigl( 
s < \sigma < T, sup

t\in [s,\sigma )

\| u(t)\| \zeta 0 <\infty 
\Bigr) 
= 0,

where in the last step we used [7, Theorem 2.10(1)]. Letting T \rightarrow \infty and s \downarrow 0, we
find that \BbbP (0<\sigma <\infty ) = 0. Since \sigma > 0 a.s., we can conclude that \sigma =\infty .

Step 1: Reduction to the case where (u
(n)
0 )n\geq 1 are uniformly bounded as \scrY p-valued

random variables. In this step, we assume the statement of Theorem 5.2 holds for
bounded initial data. Let (u

(n)
0 )n\geq 1 be as in the statement of Theorem 5.2. Let \eta > 0.

Using Egorov's theorem, one can see that there exist an \Omega 0 \in F0 and a constant K
such that \BbbP (\Omega 0)> 1 - \eta and \| u(n)0 \| \scrY p \leq K on \Omega 0. In particular, \| u0\| \scrY p \leq K a.s. on
\Omega 0.

Let \widetilde u and \widetilde u(n) be the global (p,\kappa c, \delta , q)-solution to (2.1) with data 1\Omega 0
u0 and

1\Omega 0
u
(n)
0 , respectively. By localization (see [5, Theorem 4.7(4)]),\widetilde u= u and \widetilde u(n) = u(n) a.s. on [0,\infty )\times \Omega 0.

Thus,

\BbbP 

\Biggl( 
sup
t\in [0,T ]

\| u(t) - u(n)(t)\| \scrY p \geq \varepsilon 

\Biggr) 
\leq \BbbP 

\Biggl( 
sup
t\in [0,T ]

\| \widetilde u(t) - \widetilde u(n)(t)\| \scrY p \geq \varepsilon 

\Biggr) 
+ \BbbP (\Omega \setminus \Omega 0)

\leq \BbbP 

\Biggl( 
sup
t\in [0,T ]

\| \widetilde u(t) - \widetilde u(n)(t)\| \scrY p \geq \varepsilon 

\Biggr) 
+ \eta .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

4/
24

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



4918 ANTONIO AGRESTI AND MARK VERAAR

Since (1\Omega 0
u
(n)
0 )n\geq 1 is uniformly bounded, the assumption of Step 1 implies

limsup
n\rightarrow \infty 

\BbbP 

\Biggl( 
sup
t\in [0,T ]

\| u(t) - u(n)(t)\| \scrY p \geq \varepsilon 

\Biggr) 
\leq \eta .

Since \eta > 0 was arbitrary, this completes Step 1.
Step 2: Splitting argument. By Step 1, we may suppose that there is a constant

K such that \| u(n)0 \| \scrY p \leq K a.s. Therefore, un0 \rightarrow u0 in Lr(\Omega ;\scrY p) for all r \in [1,\infty ).
By [7, Proposition 2.9] with parameters (p,\kappa c, \delta , q), there exist T0,C0,N0 > 0 and

stopping times \sigma 0, \sigma 1, \sigma 
(n)
0 \in (0,\infty ) such that for all \gamma > 0, n\geq N0, and t\in [0, T0],

\BbbP 

\Biggl( 
sup
s\in [0,t]

\| u(s) - u
(n)
0 (s)\| \scrY p \geq \gamma , \sigma 0 \wedge \sigma (n)

0 > t

\Biggr) 
\leq C0

\gamma p
\BbbE \| u0  - u

(n)
0 \| p\scrY p ,(5.6)

\BbbP (\sigma 0 \wedge \sigma (n)
0 \leq t)\leq C0

\bigl[ 
\BbbE \| u0  - u

(n)
0 \| p\scrY p + \BbbP (\sigma 1 \leq t)

\bigr] 
.(5.7)

To exploit instantaneous regularization results for anisotropic spaces (see, e.g., [2,
Theorem 1.2]), we also use [7, Theorem 2.7] in another situation. Fix r > p\vee \zeta 0 so large
that 2 - \delta  - 2

r  - 
d
q > - d

\zeta 0
(recall that 2 - \delta  - d

q > - d
\zeta 0

by Assumption 5.1). The choice

of r and Sobolev embedding yield B
2 - \delta  - 2

r
q,r \lhook \rightarrow L\zeta 0 . Let \mu := r( h

h - 1  - 1
2 (\delta +

d
q )) - 1.

By Theorem 2.4 and [7, Remark 3.4 and (3.31)] with parameters (r,\mu , \delta , q) and [2,

Theorem 1.2], there exist T1,C1,N1 > 0 and stopping times \tau 0, \tau 1, \tau 
(n)
0 \in (0,\infty ) such

that for all \gamma > 0, n\geq N1, and t\in [0, T1],

\BbbE 
\Bigl[ 
1\{ \tau (n)

0 >t\} sup
s\in (0,t]

\bigl( 
s\mu \| u(n)(s)\| rL\zeta 0

\bigr) \Bigr] 
\leq C1,(5.8)

\BbbE 
\Bigl[ 
1\{ \tau 0\wedge \tau (n)

0 >t\} sup
s\in (0,t]

\bigl( 
s\mu \| u(s) - u

(n)
0 (s)\| rL\zeta 0

\bigr) \Bigr] 
\leq C1\BbbE \| u0  - u

(n)
0 \| r\scrY r ,

(5.9)

\BbbP (\tau 0 \wedge \tau (n)0 \leq t)\leq C1

\bigl[ 
\BbbE \| u0  - u

(n)
0 \| r\scrY r + \BbbP (\tau 1 \leq t)

\bigr] 
.(5.10)

Although the estimate (5.8) is not contained in the statement of [7, Theorem 2.7], it

readily follows from the choice of \tau 0 in its proof and the fact that supn\geq 1\BbbE \| u
(n)
0 \| r\scrY r <

\infty . Note also that we used the compatibility result of [7, Proposition 3.5] to ensure
that the solution provided by Theorem 2.4 applied with (r,\mu , \delta , q) coincides with u.

With the above-introduced notation, we can now give the assertion of the theorem.
To begin, let us set T\ast := T0 \wedge T1 and \varphi i := \sigma i \wedge \tau i for i\in \{ 0,1\} and \varphi (n) := \sigma 

(n)
0 \wedge \tau (n)0

for all n \geq 1. Fix t \in (0, T\ast ], \gamma > 0, and n \geq N0 \vee N1. For 0 \leq t1 \leq t2 \leq T and
\psi \in \{ \sigma , \tau ,\varphi \} , we write

I\psi t1,t2 := \BbbP 
\Bigl( 

sup
s\in [t1,t2]

\| u(s) - u(n)(s)\| \scrY p \geq \gamma , \psi 0 \wedge \psi (n)
0 > t

\Bigr) 
.

If t1 \leq t2 \leq t3, then I\psi t1,t3 \leq I\psi t1,t2 + I\psi t2,t3 and I\varphi t1,t2 \leq min\{ I\sigma t1,t2 , I
\tau 
t1,t2\} . Therefore,

from (5.6)--(5.7) and (5.10), we obtain

\BbbP 
\bigl( 

sup
t\in [0,T ]

\| u(t) - u(n)(t)\| \scrY p \geq \gamma 
\bigr) 
\leq \BbbP (\varphi 0 \wedge \varphi (n)

0 \leq t) + I\varphi 0,T

\leq \BbbP (\sigma 0 \wedge \sigma (n)
0 \leq t) + \BbbP (\tau 0 \wedge \tau (n)0 \leq t) + I\sigma 0,t + I\tau t,T

\leq C2(1 + \gamma  - p)\BbbE \| u0  - u
(n)
0 \| p\scrY p +C2\BbbE \| u0  - u

(n)
0 \| r\scrY r

+ \BbbP (\sigma 1 \leq t) + \BbbP (\tau 1 \leq t) + I\tau t,T .
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4919

Step 3: Estimating I\tau t,T . Let u and u(n) be the global (q,\kappa c, \delta , q)-solution to (5.1)

with initial data 1\{ \tau 0\wedge \tau (n)
0 >t\} u(t) and 1\{ \tau 0\wedge \tau (n)

0 >t\} u
(n)(t) at time t, respectively. By

localization (see [5, Theorem 4.7(4)]),

u= u and u(n) = u(n) both a.e. on [t,\infty )\times \{ \tau 0 \wedge \tau (n)0 > t\} .

Recall also that u(s), u(n)(s)\in C\theta a.s. for all \theta \in (0,1) and s > 0 by Theorem 2.4. Let
C be the embedding constant of Lq0 \lhook \rightarrow \scrY p (here we used that p\geq q0). Then we can
write, for all R> 0,

I\tau t,T \leq \BbbP 
\Bigl( 

sup
s\in [t,T ]

\| u(s) - u(n)(s)\| Lq0 \geq 
\gamma 

C

\Bigr) 
(5.2)

\leq 2eRCq0

\gamma q0
\BbbE 
\Bigl[ 
1\{ \tau 0\wedge \tau (n)

0 >t\} \| u(t) - u(n)(t)\| q0Lq0
\Bigr] 

+ \widetilde \psi t(R)\Bigl( 1 +\BbbE 
\Bigl[ 
1\{ \tau 0\wedge \tau (n)

0 >t\} \| u(t)\| 
\zeta 0
L\zeta 0

\Bigr] 
+\BbbE 

\Bigl[ 
1\{ \tau 0\wedge \tau (n)

0 >t\} \| u
(n)(t)\| \zeta 0

L\zeta 0

\Bigr] \Bigr) 
(5.8) - (5.9)

\leq 2eRCq0

\gamma q0

\Bigl[ 
\BbbE 
\bigl( 
1\{ \tau 0\wedge \tau (n)

0 >t\} \| u(t) - u(n)(t)\| rLq0
\bigr) \Bigr] q0r

+\Psi t(R)(1 + 2C
\zeta 0
r

1 )

\leq 2eRCq0

\gamma q0t(q0\mu )/r

\Bigl[ 
\BbbE 
\bigl[ 
1\{ \tau 0\wedge \tau (n)

0 >t\} sup
s\in (0,t]

\bigl( 
s\mu \| u(s) - u(n)(s)\| rLq0

\bigr) \bigr] \Bigr] q0r
+\Psi t(R)(1 + 2C

\zeta 0
r

1 )

(5.9)

\leq 2eRC
q0/r
1 Cq0

\gamma q0t(q0\mu )/r
\bigl[ 
\BbbE \| u0  - u

(n)
0 \| r\scrY r

\bigr] q0
r +\Psi t(R)(1 + 2C

\zeta 0
r

1 ),

where \Psi t(R) := t - (\zeta 0\mu )/r \widetilde \psi t(R) for R, t > 0.
Step 3: Conclusion. Collecting the previous estimates and letting n \rightarrow \infty , we

obtain

limsup
n\rightarrow \infty 

\BbbP 

\Biggl( 
sup
t\in [0,T ]

\| u(t) - u(n)(t)\| \scrY p \geq \gamma 

\Biggr) 
\leq \BbbP (\sigma 1 \leq t) + \BbbP (\tau 1 \leq t)

+\Psi t(R)(1 + 2C
\zeta 0
r

1 ).

Now first using limR\uparrow \infty \widetilde \psi t(R) = 0, and then limt\downarrow 0 \BbbP (\sigma 1 \leq t) = limt\downarrow 0 \BbbP (\tau 1 \leq t) = 0, we
obtain the desired convergence in probability.

Proof of Proposition 5.3.
Step 1: Continuity of u. We first prove that u\in L0(\Omega ;C([0, T ];Lq)). By localiza-

tion (see [5, Theorem 4.7(4)]), we may suppose that u0 \in Lq(\Omega ;Lq). Let (u(n)0 )n\geq 1 be

such that u
(n)
0 \rightarrow u0 in L\zeta (\Omega \times \BbbT d;\BbbR \ell ) and u(n)0 \in L\zeta F0

(\Omega ;C1) for all n \geq 1. Let u(n)

be the solution corresponding to initial value u
(n)
0 .

By Assumption 5.1(0, \zeta ) and Lemma 5.6, we find that

lim
m,n\rightarrow \infty 

\BbbP 

\Biggl( 
sup
t\in [0,T ]

\| u(n)(t) - u(m)(t)\| Lq \geq \gamma 

\Biggr) 
\lesssim T \psi 0(R)(1 + 2\BbbE \| u0\| \zeta L\zeta ).

Letting R\rightarrow \infty , it follows that (u(n))n\geq 1 is a Cauchy sequence in L0(\Omega ;C([0, T ];Lq))
and therefore it converges to some \widetilde u \in L0(\Omega ;C([0, T ];Lq)). Since u(n) \rightarrow u in
L0(\Omega ;C([0, T ];B0

q,p)) by Theorem 5.2, it follows that \widetilde u= u. This proves the required
continuity.
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4920 ANTONIO AGRESTI AND MARK VERAAR

Step 2: For all u0, v0 \in LqF0
(\Omega ;Lq(\BbbT d;\BbbR \ell )) and T,R > 0, the following estimate

holds:

\BbbP 

\Biggl( 
sup
t\in [0,T ]

\| u(t) - v(t)\| Lq \geq \gamma 

\Biggr) 
\lesssim T

CR
\gamma q

\BbbE \| u0  - v0\| qLq(5.11)

+\psi 0(R)(1 +\BbbE \| u0\| \zeta L\zeta +\BbbE \| v0\| \zeta L\zeta ),

where \psi 0 is as in Assumption 5.1(0, \zeta ).
The estimate (5.11) is an extension of part of the estimate (5.2). To prove it, we

need to get rid of the H\"older continuity assumption via an approximation argument.
Let (u

(n)
0 )n\geq 1 and (v

(n)
0 )n\geq 1 be such that u

(n)
0 \rightarrow u0 and v

(n)
0 \rightarrow v0 in L

q(\Omega ;Lq(\BbbT d;\BbbR \ell ))
and u

(n)
0 , v

(n)
0 \in LqF0

(\Omega ;C1). Let u(n) and v(n) be the solutions corresponding to the

initial data u
(n)
0 and v

(n)
0 .

By Lemma 5.6, estimate (5.11) holds for s= 0 with (u, v) replaced by (u(n), v(n)).
From the proof of Step 1, we obtain that u(n) \rightarrow u and v(n) \rightarrow v in L0(\Omega ;C([0, T ];Lq)).
Therefore, (5.11) follows by taking limits n\rightarrow \infty .

Step 3: The convergence assertion. As in Step 1 of Theorem 5.2, we may assume
u0 and u

(n)
0 in Lp(\Omega \times \BbbT d;\BbbR \ell ). To prove the convergence assertion, we can argue

similarly to Step 1 but now using (5.11).

It remains to prove Corollary 5.4.

Proof of Corollary 5.4. We only prove (1), as the others follow similarly. More
precisely, we only prove the following estimate:

sup
t\in [0,T ]

\BbbE \| u(t)\| \zeta 
L\zeta 

+\BbbE 
\int T

0

\int 
\BbbT d

| u| \zeta  - 2| \nabla u| 2 dxdt\leq N0(1 +\BbbE \| u0\| \zeta L\zeta ).(5.12)

The estimate (3.2) follows similarly. Recall that \ell = i= 1 in the setting of (1).

Fix u0 \in L\zeta F0
(\Omega \times \BbbT d). Choose (u

(n)
0 )n\geq 1 \subseteq L\zeta F0

(\Omega ;C1(\BbbT d)) such that u
(n)
0 \rightarrow u0

in L\zeta (\Omega \times \BbbT d). Let u(n) be the global (p,\kappa c, \delta , q)-solution to (5.1) with i= \ell = 1. By
the last assertion of Theorem 3.2, one sees that (5.12) holds with (u,u0) replaced by

(u(n), u
(n)
0 ). From Proposition 5.3, we see that up to extracting a subsequence, we

have u(n) \rightarrow u a.s. in C([0, T ];Lq(\BbbT d)), and in particular in L0(\Omega \times (0, T )\times \BbbT d).
Since

\bigm| \bigm| \nabla | u(n)| \zeta /2
\bigm| \bigm| 2 = \zeta 2

4 | u(n)| \zeta  - 2| \nabla u(n)| 2, by the above we see that vn = | un| \zeta /2
is a bounded sequence in L2(\Omega \times (0, T )\times \BbbT d). Therefore, it has a subsequence such
that vnk \rightarrow v weakly in L2(\Omega \times (0, T ) \times \BbbT d). Since we already know that u(n) \rightarrow u
in measure, it follows that v = | u| \zeta /2. By lower semicontinuity of the L2-norm in the
topology of weak convergence, we see that

\BbbE 
\int T

0

\int 
\BbbT d

\bigm| \bigm| \nabla | u| \zeta /2
\bigm| \bigm| 2 dxdt\leq lim inf

k\rightarrow \infty 
\BbbE 
\int T

0

\int 
\BbbT d

\bigm| \bigm| \nabla | u(nk)| \zeta /2
\bigm| \bigm| 2 dxdt

\leq lim inf
k\rightarrow \infty 

N0(1 +\BbbE \| u(nk)0 \| \zeta 
L\zeta 

) =N0(1 +\BbbE \| u0\| \zeta L\zeta ).

This gives the required estimate for the second term on the LHS of (5.12). For the
proof, for the first term fix t\in [0, T ]. Since (u(n)(t))n\geq 1 is bounded in L\zeta (\Omega \times \BbbT d), it
has a subsequence such that u(n)(t)\rightarrow \xi weakly L\zeta (\Omega \times \BbbT d). Since u(n)(t)\rightarrow u(t) in
L0(\Omega ;Lq(\BbbT d)), it follows that u(t) = \xi . Therefore, as before,

\BbbE \| u(t)\| \zeta 
L\zeta 

\leq \BbbE lim inf
k\rightarrow \infty 

\| u(nk)(t)\| \zeta 
L\zeta 

\leq lim inf
k\rightarrow \infty 

N0(1 +\BbbE \| u(nk)0 \| \zeta 
L\zeta 

) =N0(1 +\BbbE \| u0\| \zeta L\zeta ).
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4921

Appendix A. Generalized It\^o's formula. The next version of It\^o's formula
will be applied several times. The proof is analogous to the one of [21, Proposition
A.1], and it is omitted for brevity.

Lemma A.1 (generalized It\^o's formula). Let \xi : \BbbR \rightarrow \BbbR be a C2-function with
bounded derivatives up to second order. Fix 0< T <\infty , and let \tau be a stopping time
with values in [0, T ]. Assume that v0 : \Omega \rightarrow L2(\BbbT d) is F0-measurable and the following
hold:

\bullet \Phi := (\Phi j)
d
j=1 \in L2(0, T ;L2(\BbbT d;\BbbR d)) and \phi \in L1(0, T ;L2(\BbbT d));

\bullet (\psi n)n\geq 1 \in L2(0, T ;L2(\BbbT d; \ell 2)) a.s.;
\bullet \phi ,\Phi , and \psi n are progressively measurable.

Suppose that, a.s., v \in C([0, T ];L2(\BbbT d)), v \in L2(0, \tau ;H1(\BbbT d)), and v satisfies

dv= \phi (t)dt+ 1[0,\tau ]div(\Phi (t))dt+
\sum 
n\geq 1

\psi n(t)dw
n
t on [0, T ]\times \Omega , v(0) = v0,

both in H - 1(\BbbT d). Then, a.s. for all t\in [0, T ],\int 
\BbbT d
\xi (v(t))dx=

\int 
\BbbT d
\xi (v0)dx+

\int t

0

\int 
\BbbT d
\xi \prime (v(s))\phi (s)dxds

 - 
\int t

0

\int 
\BbbT d

1[0,\tau ]\xi 
\prime \prime (v(s))\nabla v(s) \cdot \Phi (s)dxds

+
\sum 
n\geq 1

\int t

0

\int 
\BbbT d
\xi \prime (v(s))\psi n dxdw

n
s +

1

2

\sum 
n\geq 1

\int t

0

\int 
\BbbT d
\xi \prime \prime (v(s))| \psi n(s)| 2 dxds.

Note that \nabla v \cdot \Phi \in L1((0, \tau )\times \BbbT d) a.s. due to the assumptions of Lemma A.1.

Appendix B. Proof of Lemma 3.5.

Proof of Lemma 3.5. Since all arguments are pointwise in (t,\omega ), we omit it from
the notation for convenience and just write \cdot instead.

Step 1: Estimate for F . Set \scrF (\cdot , x, u) :=
\int u
0
| y| \zeta  - 2F (\cdot , x, y)dy for u \in \BbbR . Since

(x, y) \mapsto \rightarrow F (\cdot , x, y) and (x, y) \mapsto \rightarrow \partial xjF (\cdot , x, y) are continuous, by the Leibniz integral

rule we have, for u\in C1(\BbbT d),

divx
\bigl[ 
\scrF (\cdot , x, u(x))

\bigr] 
= | u| \zeta  - 2F (\cdot , x, u(x)) \cdot \nabla u+

\int u(x)

0

| y| \zeta  - 2 divxF (\cdot , x, y)dy.

Since F and u are periodic, the integral over \BbbT d of the LHS vanishes, and therefore\bigm| \bigm| \bigm| \bigm| \int 
\BbbT d

| u(x)| \zeta  - 2F (\cdot , x, u(x)) \cdot \nabla udx
\bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbT d

\int u(x)

0

| y| \zeta  - 2 divxF (\cdot , x, y)dy dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 1

\zeta  - 1

\int 
\BbbT d

| u(x)| \zeta  - 1 sup
| y| \leq | u(x)| 

| divxF (\cdot , x, y)| dx

\leq \varepsilon 

\int 
\BbbT d

| u(x)| \zeta  - 2 sup
| y| \leq | u(x)| 

| divxF (\cdot , x, y)| 2 dx+C\varepsilon 

\int 
\BbbT d

| u(x)| \zeta dx,

where we used Young's inequality with \varepsilon > 0 arbitrary and C\varepsilon > 0.
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4922 ANTONIO AGRESTI AND MARK VERAAR

Step 2: Estimate for the product of b and g. Next, we estimate the product term
involving bn and gn using a similar idea. Set \scrG n(\cdot , x, u) :=

\int u
0
| y| \zeta  - 2gn(\cdot , x, y)dy for

u\in \BbbR . Then the Leibniz integral rule gives that

\partial xj
\bigl[ 
\scrG n(\cdot , x, u(x))

\bigr] 
= | u(x)| \zeta  - 2gn(\cdot , x, u(x))\partial ju(x) +

\int u(t,x)

0

| y| \zeta  - 2\partial xjgn(\cdot , x, y)dy.

Integrating by parts and arguing as before using the periodicity of b, \scrG n, and u, we
find that

 - 
\int 
\BbbT d

| u(x)| \zeta  - 2
\bigl[ 
(bn(\cdot , x) \cdot \nabla )u(x)gn(\cdot , x, u(x))

\bigr] 
dx

=

\int 
\BbbT d

div(bn(\cdot , x))\scrG n(\cdot , x, u(x))dx+
\int 
\BbbT d
bn(\cdot , x)

\int u(t,x)

0

| y| \zeta  - 2\nabla xgn(\cdot , x, y)dy dx.

Thus, \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbT d

| u(x)| \zeta  - 2
\sum 
n\geq 1

\bigl[ 
(bn(\cdot , x) \cdot \nabla )u(x)gn(\cdot , x, u(x))

\bigr] 
dx

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\int 
\BbbT d

\int | u(x)| 

 - | u(x)| 
| y| \zeta  - 2

\sum 
n\geq 1

| div(bn)(\cdot , x)| | gn(\cdot , x, y)| dy dx

+

\int 
\BbbT d

\int | u(x)| 

 - | u(x)| 
| y| \zeta  - 2

\sum 
n\geq 1

| bn(\cdot , x)| | \nabla xgn(\cdot , x, y)| dy dx

\leq \| (div(bn))n\geq 1\| L\infty (\BbbT d;\ell 2)

\int 
\BbbT d

\int | u(x)| 

 - | u(x)| 
| y| \zeta  - 2\| (gn(\cdot , x, y))n\geq 1\| \ell 2 dy dx

+ \| (bn)n\geq 1\| L\infty (\BbbT d;\ell 2)

\int 
\BbbT d

\int | u(x)| 

 - | u(x)| 
| y| \zeta  - 2 \| (\nabla xgn(\cdot , x, y))n\geq 1\| \ell 2 dy dx.

To estimate the last two terms for k \in \{ 0,1\} and any \delta > 0, we can write\int 
\BbbT d

\int | u(x)| 

 - | u(x)| 
| y| \zeta  - 2\| (\nabla k

xgn(\cdot , x, y))n\geq 1\| \ell 2 dy dx

\leq 2

\zeta  - 1

\int 
\BbbT d

| u(x)| \zeta  - 1 sup
| y| \leq | u(x)| 

\| (\nabla k
xgn(\cdot , x, y))n\geq 1\| \ell 2 dx

\leq \delta 

\int 
\BbbT d

| u(x)| \zeta  - 2 sup
| y| \leq | u(x)| 

\| (\nabla k
xgn(\cdot , x, y))n\geq 1\| 2\ell 2 dx+C\delta 

\int 
\BbbT d

| u(x)| \zeta dx,

where C\delta > 0 depends on \delta . Therefore, multiplying by the L\infty -norm of the b term or
its derivative, we can conclude that for every \varepsilon > 0\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbT d

| u(x)| \zeta  - 2
\sum 
n\geq 1

(bn(\cdot , x) \cdot \nabla )ugn(\cdot , x, u(x))dx

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq \varepsilon 

\sum 
k\in \{ 0,1\} 

\int 
\BbbT d

| u(x)| \zeta  - 2 sup
| y| \leq | u(x)| 

\| (\nabla k
xgn(\cdot , x, y))n\geq 1\| 2\ell 2 dx+Cb,\varepsilon 

\int 
\BbbT d

| u(x)| \zeta dx.
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DISSIPATIVE REACTION-DIFFUSION EQUATIONS 4923

Step 3: Conclusion. Therefore, we find that

a\nabla u \cdot \nabla u+ F (\cdot , u) \cdot \nabla u - uf(\cdot , u)
\zeta  - 1

 - 1

2

\sum 
n\geq 1

\bigl[ 
(bn \cdot \nabla )u+ gn(\cdot , u)

\bigr] 2
\geq a\nabla u \cdot \nabla u - 1

2

\sum 
n\geq 1

| (bn \cdot \nabla )u| 2  - uf(\cdot , u)
\zeta  - 1

 - 1

2

\sum 
n\geq 1

| gn\cdot , u)| 2  - R(\cdot , u)

\geq \nu | \nabla u| 2  - uf(\cdot , u)
\zeta  - 1

 - 1

2
\| (gn(\cdot , u)n\geq 1\| 2\ell 2  - R(\cdot , u),

where R(\cdot , u) = - F (\cdot , u) \cdot \nabla u+
\sum 
n\geq 1[(bn \cdot \nabla )ugn(\cdot , u)]. Therefore, to check Assump-

tion 3.1 we multiply by | u(x)| \zeta  - 2 and integrate over \BbbT d to obtain

\int 
\BbbT d

| u| \zeta  - 2

\left(  a\nabla u \cdot \nabla u+ F (\cdot , u) \cdot \nabla u - uf(\cdot , u)
\zeta  - 1

 - 1

2

\sum 
n\geq 1

\bigl[ 
(bn \cdot \nabla )u+ gn(\cdot , u)

\bigr] 2\right)  dx

\geq 
\int 
\BbbT d

| u| \zeta  - 2
\Bigl( 
\nu | \nabla u| 2  - uf(\cdot , u)

\zeta  - 1
 - 1

2
\| (gn(\cdot , u)n\geq 1\| 2\ell 2  - R(\cdot , u)

\Bigr) 
dx.

Now note that for every \varepsilon > 0\int 
\BbbT d

| u| \zeta  - 2R(\cdot , u)dx\leq C \prime 
b,\varepsilon 

\int 
\BbbT d

| u(x)| \zeta dx+ \varepsilon 

\int 
\BbbT d

| u(x)| \zeta  - 2 sup
| y| \leq | u(x)| 

| divxF (\cdot , x, y)| 2 dx

+ \varepsilon 
\sum 

k\in \{ 0,1\} 

\int 
\BbbT d

| u(x)| \zeta  - 2 sup
| y| \leq | u(x)| 

\| (\nabla k
xgn(\cdot , x, y))n\geq 1\| 2\ell 2 dx.

Using this together with the pointwise condition (3.9), Assumption 3.1 follows.
The final assertion concerning S-valued functions follows in the same way.
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