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discussions, and his thorough understanding of mechanical engineering, he was able to bring my research to a
much higher level.
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Introduction

When robots move, they generally induce reaction forces and reaction moments on their base, which
are generated by the inertia of the accelerating moving links. As the dynamic unbalance is induced by the
acceleration of bodies, these reaction forces and moments become even more considerable when robots move
at high speeds [1]. The dynamic unbalance could lead to numerous unwanted effects such as vibrations, noise,
wear, and fatigue problems, which all limit the full potential of the robotic arm [1]. When the robot is attached
to an unstable base, for example an aerial vehicle, dynamic unbalance could also lead to imprecision due to
movements of the base [2].

There are numerous applications in which dynamic unbalance could be of great concern, for which multiple
suitable solutions exist. For example, problems occur in large robotic arms. Due to its size and weight, the
reaction forces and moments become very large. In order to prevent the base of the robot from moving due
to this unbalance, a large concrete slab is built into the workspace floor [3]. Another method to reduce the
influence of vibrations caused by dynamic unbalance is to program rest in the motion of manipulators to wait
until vibrations have died out [4]. Other kinds of solutions focus on removing dynamic unbalance through the
design of manipulators, called dynamically balanced manipulators.

Dynamic balance could be categorized into two parts: force balance and moment balance. A mechanism
is said to be force balanced when it does not induce any resultant reaction forces on its base during motion.
Similarly, a mechanism is said to be moment balanced when it does not induce any resultant reaction moments
on its base during motion. When a linkage is both force and moment balanced, it is said to be dynamically
balanced.

Dynamically balanced mechanisms could solve problems in different sectors. In the example of large robotic
arms, dynamic balance could reduce the size of the reaction forces and moments on the base, and thereby the
amount of reinforced concrete needed to keep the robot in place.

Dynamically balanced mechanisms could especially be of great interest for robots that are attached to an
unstable base, for example a floating base such as in aerial manipulation. Due to the instability of the floating
base of the aerial vehicle, any motion of an unbalanced arm attached to it leads to perturbations in the position
of the base. Due to these induced perturbations, it is even harder to reach the desired end-effector position in
aerial manipulation.

Another case in which manipulators are attached to an unstable base is in stage lighting. In theatres, moving
lights are often hung on lightweight structures hanging from the roof by chains. When these lights move, they
generate enough momentum to swing the entire structure from which it is hanging. This leads to a loss in
precision of the lighted spot. Some solutions exist to balance these reaction forces and moments actively using
driven counter-rotations and moving masses like [5] and [6]. An interesting aspect of these solutions is that
not all degrees of freedom are balanced, but only the most important ones. Similar systems exist for cameras
hanging from cables [7].

Although all examples above are spatial robots, the dynamic balance of multi-degree-of-freedom linkages
that move spatially was only touched upon slightly [8]. To the best of the author’s knowledge, only three
examples exist for dynamically balanced spatial manipulators. These are the parallelepiped [9] (Figure 1.1a),
the compound four-bar [10] (Figure 1.1b), and the PAMINSA [11] (Figure 1.1c) manipulators. Regarding force
balanced linkages, the spatial pantograph linkage [12] (Figure 1.2) is promising, as its 6 DoF can be balanced
using only 2 counter masses.
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(a) 3 DoF Parallelepiped [9] (b) 6 DoF compound four-bar [10] (c) 6 DoF PAMINSA [11]

Figure 1.1: Dynamically balanced linkages with a spatial workspace

Figure 1.2: General spatial pantograph linkage [12]

Research goals

The focus of this thesis is on force and moment balanced manipulators with a spatial workspace. This is done
using the following two research goals:

1. Present the state-of-the-art regarding spatial dynamically balanced manipulators and compare them for
their use in aerial manipulation

2. Present novel designs of 3 DoF and 6 DoF manipulators based on the spatial pantograph linkage that use
fewer counter masses and moving links

Thesis Outline

This thesis will start with a literature survey into the existing dynamically balanced 6 DoF spatial manipulators
in chapter 2. In this paper, the requirements for aerial manipulators are set, and the existing manipulators are
evaluated with regards to these requirements. Additionally, the methods by which the dynamic balance of the
mechanisms is obtained are discussed.

In chapter 3 the designs of novel 3 DoF and 6 DoF force and moment balanced manipulators based on
the spatial pantograph linkage [12] are shown. The workspace, inverse kinematics, and balance conditions are
determined for the 3 DoF design. This knowledge is then used to synthesize a 6 DoF dynamically balanced
parallel manipulator which could be balanced by only 9 counter-masses and 9 counter-rotations. A reduction
of this manipulator, which is force balanced using only 6 counter masses, is also shown.

The results obtained in chapter 2 and 3 are discussed in chapter 4. Finally, the conclusions of this thesis are
presented in chapter 5. At the end of this thesis, appendices could be found which show in-depth knowledge
that could be useful in the design of dynamically balanced manipulators.
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Chapter 2

Comparison of various dynamically
balanced spatial mechanisms for their

use in aerial manipulation
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Abstract—This literature survey aims to answer the research
question ”Which reactionless spatial mechanisms exist and how do
they compare for aerial manipulation?”. Design constraints are set
for aerial manipulators, out of which the mass of the manipulator
is the main issue. The only three dynamically balanced spatial
mechanisms that can be found in literature are presented and
compared with regard to the design constraints that were set. This
shows a huge potential for partially decoupling the kinematics of
mechanisms which substantially simplifies the dynamics, possibly
leading to less complex balanced architectures.

Index Terms—dynamic balancing, spatial mechanism, aerial
manipulation

I. INTRODUCTION

The interest in aerial manipulation using unmanned aerial
vehicles (UAVs) is growing very fast [1]. This is motivated
by their possibility of performing certain tasks in hard-to-
reach places like bridges, wind turbines, and many more [2].
When using a robotic arm on an UAV, reaction forces and
moments are generated by the motion of the arm, which
causes perturbations in the position and motion of the UAV
[2]. These reaction forces and moments are called shaking
forces and shaking moments respectively. These forces are
especially considerable if mechanisms move at high speeds
[3]. Next to perturbations in position, these forces also cause
vibrations, noise, wear, and fatigue problems which limits the
full potential of the robotic arm [3]. However, because of the
unstable base of UAVs [4] perturbations in the position and
motion are of most interest for aerial manipulation.

To solve these problems, dynamically balanced (reaction-
less) mechanisms were introduced. These are mechanisms in
which inertial and geometric parameters are carefully chosen
such that the total system does not induce any shaking forces
and shaking moments on its base. For industrial applications
involving high-speed manipulations, balanced manipulators
would significantly improve the general performance and
accuracy of the machine [5]. To the best of the author’s
knowledge, the only research that was performed on using
dynamically balanced manipulators on UAVs was by Beacom
in 2021 on a 2 DoF manipulator.

A major drawback of dynamically balanced mechanisms
is that the balancing often leads to a large increase in mass
[7] which increases the actuator torque [8] which induces
the need for larger and thereby heavier actuators, increasing

the mass even more. Additionally, a higher mass makes the
manipulators less usable for aerial manipulators due to the
payload limitation they impose [2].

A large amount of research on dynamic balancing has
focussed on the synthesis and design of planar reactionless
mechanisms, but the dynamic balancing of multi-degree-of-
freedom mechanisms that move spatially was only touched
upon slightly [5]. However, due to their instability, unmanned
aerial vehicles (UAVs) show small oscillations in all degrees
of freedom (DoFs) [9]. This suggests the need for spatial
mechanisms for aerial manipulation to be able to compensate
for these oscillations.

This leads to the research question for this literature survey:
”Which reactionless spatial mechanisms exist and how do they
compare for aerial manipulation?”. In answering this question,
only completely balanced mechanisms will be investigated.
Although 6 DoF would be needed to compensate for all
disturbances [9], there will be no strict requirement for the
number of DoFs in order to include a larger number of
dynamically balanced spatial mechanisms in this literature
review.

This literature review will present a systematic comparison
of different existing spatial reactionless mechanisms with a
focus on their potential use in UAVs. First, the implied
definition of UAVs will be established and it will be stated to
which design constraints an aerial manipulator has to comply
to. Then, some fundamental knowledge is provided about the
balancing principles for spatial mechanisms. Afterwards, the
three examples of spatial reactionless mechanisms that can be
found in literature are presented. Finally, the examples will be
compared regarding their potential use in aerial manipulation
from which some conclusions are drawn.

II. UNMANNED AERIAL MANIPULATORS

In order to perform manipulations using an UAV, a proper
tool should be attached to it. Existing solutions can be roughly
split up into two categories. The first option is to attach a
gripper directly to a UAV, which is called a flying hand in
literature [1]. Another option is to not directly attach the
gripper to the UAV, but by means of a robotic arm instead.
This type is called an unmanned aerial manipulator (UAM).
An UAM mainly consists of the following elements [1]:

1) The floating base of the unmanned aerial vehicle (UAV);
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2) The robotic arm;
3) A gripper or a multi-fingered hand attached as the end-

effector of the arm;
4) Sensors such as cameras or laser scanners

This literature review will solely focus on the robotic arm of
the UAM.

A. Design constraints

In order to compare mechanisms from literature for their
use in aerial manipulation, the design constraints have to be
specified. According to Danko et al. (2015), the manipulation
task in unmanned aerial manipulators (UAVs) leads to the
following design constraints for the manipulator:

1) It must be able to compensate for the imprecision of the
UAV;

2) It must be dynamically faster than the UAV;
3) It must not interfere with the UAV during take-off,

landing, or flight.

The first two constraints concern the compensation of the
UAVs imprecision caused by perturbations from for example
air currents. Constraint 1 states that the workspace of the
manipulator should be large enough to compensate for the
perturbations in the UAV. Because UAVs show perturbations
in all DoFs [9], the manipulator’s workspace should also be
spatial in to compensate for all perturbations. It is insufficient
to have a large enough workspace to compensate for the per-
turbations. The manipulator should also be able to compensate
for these perturbations in the correct timescale. Therefore, the
manipulator should be faster than the perturbations as stated
in constraint 2.

The last constraint is of most interest for this literature re-
view. Besides introducing a size limitation of the manipulator,
it imposes that the manipulator should not deliver any reaction
forces to the UAV during operation. This enhances the need
for dynamically balanced manipulators. This constraint also
implies that the mass of the manipulator should be minimal,
due to the payload limitation of UAVs [2].

III. FUNDAMENTALS

In order have proper understanding of dynamic balancing,
the fundamentals will be explained in this section. Firstly,
some important definitions are explained and afterwards the
relevant balancing principles for spatial mechanisms are briefly
explained.

A mechanism is statically balanced if it has a constant
potential energy for the complete range of motion. This means
that no energy has to be delivered to the system to maintain
its position.

When a mechanism delivers no reaction forces to its base
during motion, it is said to be force balanced. Just like
statically balanced mechanisms, the potential energy of the
mechanism is constant. However, with force balance, it is not
possible to store energy in springs as this would not prevent
inertial forces from acting on the base of the mechanism.

The last type of balance is moment balance, which states
that a mechanism does not deliver any reaction moments to
the base of the mechanism.

When a mechanism does not deliver any reaction forces
or moments to its base while in motion, it is said to be
dynamically balanced or reactionless. This occurs if both the
conditions for the force and moment balance are met.

The conditions for dynamic balance could be calculated
in numerous ways. Each method will work, but some meth-
ods will be more efficient for certain mechanisms, therefore
authors use different approaches. The methods used in the
calculations for the mechanisms that will be discussed in this
literature survey will be briefly presented below.

A. Conservation of momentum

A straightforward method for computing the dynamic bal-
ance conditions is by the conservation of linear and angular
momentum. The linear momentum of a mechanism is defined
by the product of the mass and the velocity of the CoM (1).
Its derivative equals the reaction force on the CoM due to the
change in velocity of this CoM (2), which should be zero.
This implies that the CoM should have a constant velocity
or should be stationary in order to have zero reaction forces
on its base (force balanced). Although there are no reaction
forces on the base, there could be constant forces like gravity
acting on the base.

p = mv (1)

F = ṗ =
d

dt
(mv) = 0 (2)

For dynamic balance, the reaction moments on the base
should also be zero. These moments are equal to the time
derivative of the angular momentum as in (3). In order to
have a moment balanced mechanism, the angular momentum
should also be zero or constant.

M = Ḣ = 0 (3)

Only these equations (2, 3) have to be satisfied in order to
obtain a dynamically balanced mechanism [11].

B. Constant inertia tensor

Another method for obtaining dynamic balance conditions
for a mechanism is by observing that a balanced mechanism
globally behaves as a rigid body [12]: it has a constant CoM,
and it produces no shaking forces and shaking moments to
its base. When this condition is met a mechanism is said to
be dynamically decoupled e.g. motion of the mechanism does
not cause any reaction forces and moments on the base, and
forces and moments on the base of the mechanism also do
not induce any internal motion of the mechanism. A couple
of steps should be taken to calculate the balance conditions
using this method.

Firstly, the moment of inertia of each link should be
calculated around its CoM. Then the generalized parallel axis
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theorem [13] can be used to find the moment of inertia of each
link around the base. This generalization can be seen in (4)
in which I and I′ are the moment of inertia around the CoM
of the link and the base respectively. R represents the vector
from the CoM of the link to the base of the mechanism.

I ′ij = Iij +m(|R|2δij −RiRj) (4)

With these moments of inertia of the links around the base
and the rotation matrices of these links with respect to the
inertial frame, the total inertia tensor of the mechanism can
be calculated as in (5). In this tensor, the diagonal terms are
the moments of inertia, and the off-diagonal terms are the
products of inertia.

I =
n∑

i=1

QiIbiQ
T
i =



Ixx −Ixy −Ixz
−Ixy Iyy −Izz
−Ixz −Iyz Izz


 (5)

For a rigid body, the products of inertia around its CoM
are always zero, and the moments of inertia are invariant of
time. So, the conditions for a mechanism to be dynamically
decoupled, and thereby dynamically balanced, are that its
products of inertia are zero and its moments of inertia are
invariant of time and the configuration of the mechanism.

IV. DYNAMICALLY BALANCED SPATIAL MECHANISMS

A. Parallelepiped mechanism

The first dynamically balanced spatial mechanism that will
be discussed is the parallelepiped mechanism presented in
[14]. A screenshot of the CAD model of a leg of this
mechanism can be seen in Fig. 1.

The synthesis of this mechanism started off with balancing a
planar five-bar linkage with a parallelogram architecture. This
architecture could be balanced with only three counterweights
and two counter-rotations [14]. Then this structure was ex-
panded with another segment out of the plane of the planar
five-bar architecture to obtain a parallelepiped mechanism.
This mechanism needs six counter masses and three counter-
rotations for dynamic balance.

The balance conditions for this mechanism were derived
conservation of momentum method as described in Section
III-A.

In order to keep the necessary links parallel to have a
parallelepiped, a proper choice of joints is needed. Many
configurations are possible, but only two cases are investi-
gated in [14]. From this, it was observed that the balancing
conditions are identical for both configurations. Thereby, this
paper confirms that dynamic balancing conditions are only
dependent on geometric and inertial parameters and not on
the joints that determine the motion of the mechanism.

By using three of the mechanisms from Fig. 1 as legs
of a parallel manipulator, a 6 DoF dynamically balanced
spatial mechanism can be synthesized. However, as often in
balancing, this comes at the price of a large increase in the
mass and inertia of the mechanism.

Fig. 1: CAD model of a spatial reactionless 3-DoF mechanism
based on a parallelepiped [14]

The parallelepiped in Fig. 1 has 3 translational DoF. In
the practical example from [14], balancing of this mechanism
resulted in an increase of mass of about 12.5 times compared
to the unbalanced mechanism. However, the increase of the
mass depends heavily on the length of the counter mass arms.
The shorter the lengths of these arms, the greater the mass
increase of the system. Due to the use of active counter-
rotations, additional actuators are required, which will also
increase the mass of the manipulator.

B. Combination of four-bar linkages

The parallelepiped mechanism uses counter-rotations in
order to moment balance the spatial mechanism. For such link-
ages, complex mechanical transmissions or additional actua-
tors are needed for this design to work. To overcome this, Wu
and Gosselin (2004) have come up with a spatially balanced
mechanism that does not involve any counter-rotations.

The concept for this reactionless mechanism was initially
based on the research of Ricard and Gosselin (2000), in which
balancing conditions were developed for different kinds of
four-bar mechanisms. These balancing conditions were then
calculated again, but now with the constant inertia tensor
method from section III-B. It was found that the moment of
inertia Izz could be constant under the balancing conditions,
but Ixx and Iyy could not. However, it was observed that the
sum of these moments of inertia could be constant, which led
to the idea of a composite mechanism from Fig. 2.

For this composite mechanism, the authors found conditions
for which the inertia matrix of the total mechanism was
independent of the input angles. This resulted in a dynamically
decoupled building block for multi-DoF manipulators.

With this knowledge, a spatial 3 DoF mechanism was
synthesized. The first two DoFs were generated by attaching
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Fig. 2: Composite mechanism with a constant inertia tensor
[12]

two single four-bars to each other in the same plane. This could
be done because their moment of inertia Izz is constant, and
therefore it behaves as a rigid body for in-plane motion. Then
a composite mechanism as in Fig. 2, which is balanced for
spatial motion, was attached to these single four-bars. This
stacked mechanism (the leg from Fig. 3) has 3 DoF that are
not in the same plane, and therefore it is a spatial mechanism.

In order to synthesize a 6 DoF dynamically balanced spatial
mechanism, three stacked mechanisms as described above, are
used as legs in a parallel manipulator. A CAD drawing of the
synthesized mechanism can be seen in Fig. 3.

Fig. 3: CAD model of a reactionless spatial 6-DoF mechanism
based on a combination of four-bar linkages [12]

C. PAMINSA manipulator

In [15] a new family of partially kinematically decoupled
parallel manipulators was introduced, called PAMINSA. In
this research, it was tried to develop a fully decoupled parallel
manipulator. However, it was found that it was not possible to
develop a fully decoupled manipulator that retains the property
of parallel manipulators to be stiff while having a low mass
[15]. Therefore, the proposed manipulator is only partially
decoupled.

It was chosen to decouple the vertical movement of the ma-
nipulator from the other DoFs. This came from the notion that
the work of gravity is zero for horizontal motion, but is non-
zero for vertical motion [16]. Because not all the directions
are subjected to an equal amount of gravitational work, less
powerful actuators can be used for horizontal movements and
thereby reducing the total mass of the mechanism.

In order to decouple both motions, pantograph linkages
as shown in Fig. 4 were used. In this linkage, point Bi is
positioned vertically for the vertical motion of point Ci, and
point Ai is positioned horizontally for the horizontal motion
of point Ci. Then, three such legs were combined and attached
to a platform to obtain a 3 DoF spatial mechanism in which
the vertical motion is decoupled from the horizontal motion.

Fig. 4: Pantograph linkage [16]

Briot and Arakelian (2009) extended this research to syn-
thesize a dynamically balanced version of the PAMINSA. The
basis of this balanced mechanism was the PAMINSA-3D3L
(as described in [15]) of which drawings are shown in Fig.
5. The parallel structure of this mechanism has 3 translational
DoFs, and the serial wrist has 3 rotational DoFs, resulting
in a 6 DoF mechanism. Force balance of this mechanism was
achieved using counter masses and moment balance by optimal
control of the end-effector. It should be noted that the end-
effector operates as a counter-rotation for moment balance in
this manipulator; therefore, this manipulator only has 3 DoF
when balanced.

V. DISCUSSION

Like all other balanced manipulators in literature, the bal-
ancing of the spatial mechanisms described above came at the
cost of a substantial increase in mass, which makes them less
usable for aerial manipulation due to the payload limitation
of aerial vehicles [2]. High masses of the moving links
and counter-masses increase motor torques [8], and thereby
stronger and heavier motors are required, which leads to an
even larger increase in mass [10] of the mechanism.
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(a)

(b)

Fig. 5: Drawings of the PAMINSA manipulator that will be
balanced. (a) PAMINSA-3D3L with a 3 DoF serial wrist [17]
(b) Equivalent model for planar translation [17]

For balanced mechanisms, the total mass of the mechanism
depends heavily on geometric choices and especially the
length of moment arms. When longer moment arms are used,
the masses of the counter-masses could be lower. However, this
also leads to a decrease in rigidity, worsening the balancing
quality due to internal vibrations. The manipulators presented
in this paper were not optimized for low mass and proper
rigidity and were made for different workspaces. Therefore, it
is not possible to quantitatively compare these manipulators.

To the best of the author’s knowledge, the four-bar mecha-
nism (Fig. 3) is the only dynamically balanced manipulator
in literature in which both force and moment balance are
achieved without separate counter-rotations. Therefore no ad-
ditional actuators or gears are needed for moment balance, and
the 6 DoF mechanism is controlled using 6 actuators. However,
the complexity increased substantially next to a large increase
of the mass and footprint of the mechanism.

Comparing the parallelepiped with the four-bar mecha-
nism, the most visible difference is that the 6 DoF four-
bar mechanism consists of 6 more moving links than the 6
DoF parallelepiped mechanism. However, the parallelepiped
mechanism uses a total of 15 counter masses, and 9 counter-
rotations for moment balance that are driven by gears attached

to the links. Thereby only 6 actuators are needed to control
the linkage.

The parallelepiped has a very large footprint, just like
the four-bar mechanism. According to Wu (2003), the mass
and the footprint of both mechanisms could be reduced by
optimizing geometric parameters, which could make them
more usable for aerial manipulation. Another downside for
both manipulators is that, according to the equivalent mass
method, the design of the platform is restricted to a thin
symmetric platform when using three legs [8].

With the PAMINSA manipulator, it was tried to simplify the
kinematics of a spatial mechanism, and thereby its dynamics
and control, by kinematically decoupling the horizontal and
vertical motion of the manipulator. One of the benefits for
this decoupling was that there is no gravitational work for the
horizontal motion. However, when the manipulator is force
balanced, there is also no gravitational work in the vertical
direction due to the constant CoM of the manipulator.

Force balance of the PAMINSA was achieved using counter-
masses just like the parallelepiped and the four-bar mecha-
nisms. The total mechanism was also balanced in the same way
as the other mechanisms by combining three balanced legs
and including the platform with the equivalent mass method.
Because the platform of the PAMINSA is only subjected to
translational motion, a spatial platform can be included using
only three legs in the equivalent mass method instead of 4
as in [12, 14]. Moment balance of this linkage was achieved
by means of a serial wrist with three actuated rotations.
Because the motion of the wrist is needed to balance the
momentum of the system, the wrist does not add any DoFs,
and the PAMINSA is only balanced for translational motion.
Therefore, the PAMINSA uses six actuators for a 3 DoF
balanced mechanism, or six actuators for a 6 DoF unbalanced
mechanism. Although the balanced PAMINSA has fewer free
DoFs, its design is substantially less complex than the other
balanced manipulators.

VI. CONCLUSION

This literature survey showed that only three examples
exist for dynamically balanced spatial manipulators. These
are the parallelepiped [14], the compound four-bar [12], and
the PAMINSA [17] manipulators. These were evaluated with
regard to their potential use in aerial manipulation, in which
mass increase due to balancing was the most apparent issue.

All balanced mechanisms led to a huge increase in the
mass of the mechanism, and thereby none of the presented
mechanisms is usable for aerial manipulation. This is mainly
because of the addition of counter masses and an increased
complexity due to balancing.

Although the presented manipulators are not yet usable for
aerial manipulation, dynamically balanced spatial manipula-
tors could be very useful for aerial manipulation, because
they do not induce any perturbations to the base of the aerial
vehicle, which enables fast movements.
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Abstract—This article presents the design of novel 3 DoF and
6 DoF force and moment balanced spatial manipulators based
on the spatial pantograph linkage. It is shown how the general
spatial pantograph linkage can be constrained to a dynamically
balanced 3 DoF manipulator, which can also be applied as a leg
in a parallel 6 DoF manipulator. Three different designs for the 3
DoF linkage are presented: a force balanced manipulator using
2 counter masses, a dynamically balanced manipulators using
4 counter masses and 3 counter-rotations, and a dynamically
balanced manipulator using 3 counter masses and 3 counter-
rotations. The forward and inverse kinematics for the proposed
3 DoF manipulators are presented together with the workspace
boundaries. The dynamic balance conditions for this linkage are
derived using the conservation of linear and angular momentum,
and verified using the dynamic simulation software ADAMS. The
knowledge of the 3 DoF manipulators is used to synthesize three 6
DoF manipulators: a force balanced manipulator using 6 counter
masses, a dynamically balanced manipulator using 12 counter
masses and 9 counter-rotations, and a dynamically balanced
manipulator using 9 counter masses and 9 counter-rotations.
A physical demonstrator was built for the first dynamically
balanced 6 DoF manipulator, which shows the feasibility of the
proposed design.

Index Terms—Dynamic balancing, parallel linkage, spatial
linkage, reactionless, spatial pantograph

I. INTRODUCTION

When a robot moves, it generates reaction forces and
reaction moments on its base. These forces are especially
considerable if the robots move at high speeds [1]. The
existence of these forces in the base of a manipulator could
lead to unwanted effects such as vibrations, noise, wear and
fatigue problems, which all limit the full potential of the
robotic arm [1]. These problems will become even more
evident when the robotic arm is attached to an unstable base,
like in aerial manipulation [2].

There are multiple ways to overcome the effects of reaction
forces and moments. One way could be to heavily increase the
rigidity of the base to which the robotic arm is attached [3].
Other methods tend to remove reaction forces and moments
through the design of the linkage. These kinds of linkages
could be categorized into three categories: Force-Balanced,
Moment-Balanced, and Dynamically Balanced. A linkage is
said to be force-balanced when the sum of reaction forces on

its base is zero throughout its motion. Similarly, a linkage
is said to be moment-balanced when the sum of reaction
moments on its base is zero. When a linkage is both force
and moment balanced, it is said to be dynamically balanced.

A large amount of research concerning the dynamic bal-
ancing of linkage was performed on the synthesis and design
of planar linkages. However, the dynamic balance of multi-
degree-of-freedom linkages that move spatially has only been
touched upon slightly [4] since it is extremely challenging to
obtain practical results. To the best of the author’s knowledge,
only three examples of dynamically balanced spatial manipu-
lators exist. These are the parallelepiped [5], the compound
four-bar [6], and the PAMINSA [7] manipulators. Another
interesting linkage that is only force balanced is the spatial
pantograph linkage [8]. This linkage has 6 degrees of freedom
(DoF) and is balanced using only two counter masses.

The goal of this paper is to present three novel 3 DoF
spatial force and moment balanced linkages, which could be
used as legs to synthesize three 6 DoF spatial force and
moment balanced linkages. The proposed linkage is based on
the general spatial pantograph linkage presented by Van der
Wijk (2022).

First, the general spatial pantograph linkage will be con-
strained to a 3 DoF manipulator, so that it could be used as
a leg for a 6 DoF manipulator. For this proposed linkage,
the forward and backward kinematics are presented from
which the singularities and thereby the workspace boundaries
are calculated. Then, the dynamic balance conditions will
be determined using the conservation of linear and angular
momentum, of which the results are verified using the dynamic
simulation software ADAMS. Lastly, the conditions for using
the 3 DoF linkages as legs for parallel 6 DoF linkages will be
discussed, after which a physical demonstrator for the 6 DoF
dynamically balanced manipulator is presented.

II. KINEMATIC ANALYSIS

The general spatial pantograph developed by Van der Wijk
(2022) is a 6 DoF linkage in which all DoFs can be actuated
at the base [8]. Although this linkage has 6 DoFs, it is not
possible to independently control three rotational and three
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translational DoFs at the end-effector point A. However, if
constraints are applied to this linkage, it could be used as a
leg for a 6 DoF parallel linkage with the minimal number of
actuators. As can be verified using the Chebychev-Grübler-
Kutzbach criterion (Equation 1), the addition of a platform
adds 6 DoF, and the connection of this platform with the legs
retracts 9 DoF. In order to synthesize a 6 DoF linkage, the legs
should have 9 DoF in total, which results in 3 DoF per leg.
Therefore the general spatial pantograph will be constrained
to have 3 DoF instead of 6.

A schematic representation of the proposed linkage can be
seen in Figure 1a. In this linkage, link 2 is attached to the
base (point S) with a revolute joint which only allows for a
rotation around the inertia X-axis (θ3). Link 1 is a 2 DoF
joint that first rotates around the inertia Z-axis (θ1) and then
rotates around its body-fixed Y -axis (θ2). Links 1, 3, 5 and
7 have length a1, links 2, 4, 6 and 8 have length a1 and the
distance between point A′ and point A is a3. Because of the
equal lengths of opposing links and the addition of out-of-
plane links, the parallelogram shape is maintained throughout
the full motion of the linkage. Links 1 through 4 could have
non-concentric centres of mass (CoM’s) but these were left
out for clarity in the Figure.

The mobility M of this linkage could be calculated using
the Chebychev-Grübler-Kutzbach criterion for spatial mecha-
nisms,

M = 6n−
j∑

i=1

(6− fi) (1)

where n is the number of moving links, j is the number of
joints and fi is the degree of freedom of these joints. The
constrained spatial pantograph linkage consists of 8 moving
links (n = 8), 3 spherical joints (fs = 3), 9 universal
joints (fu = 2), and one revolute joint (fr = 1). This
results in M = −2. However, since only two out-of-plane
links are sufficient and already result in one overconstraint
[8], the addition of 2 more out-of-plane links results in a
linkage with 5 overconstraints. Thus the linkage has 3 DoF.
These overconstraints could be eliminated by replacing some
of the universal joints with spherical joints. However, the
overconstraints also add rigidity to the linkage and therefore
won’t be removed in this design.

A. Forward Kinematics

The forward kinematics of a linkage describes which end-
effector position is reached with a specified set of input angles.
Using the rotational directions from Figure 1a, the forward
kinematics solution for the end-effector equals:

pA =




(a1 + a3) cos(θ1) cos(θ2)
(a1 + a3) sin(θ1) cos(θ2) + a2 cos(θ3)

− (a1 + a3) sin(θ2) + a2 sin(θ3)


 (2)

These results were verified using quaternions (Appendix A)
and by comparing numerical results to a SolidWorks model.

B. Inverse Kinematics

The inverse kinematics of a linkage describe which in-
put angles are needed to reach a desired position with the
end-effector. Although Equation 2 seems fairly simple, no
analytical solution could be found by just setting Equation
2 equal to a numerical vector. This is the case because
multiple inverse kinematic solutions (postures [9]) exist for the
proposed linkage, and due to the non-linearity in the equation.

A geometric method was used to find solutions to the inverse
kinematics of the constrained spatial pantograph linkage. This
method uses the two known points in the inverse kinematic
problem; the base (Point S) and the desired end-effector
position (Point A). Next to that, it uses the fact that the link
lengths do not change during the motion of the linkage. Link 2
constrains point P1 such that it has to lie on a circle with radius
a2 in the yz-plane around point S. Also, link 3 constraints
point P1 such that is has to be on a sphere around point A
with radius a1 + a3. So, point P1 should be on one of the
intersection points between the black circle and the sphere as
shown with blue dots in Figure 2.

In order to find the intersection points between the black
circle and the coloured sphere in Fig. 2, the circle that is
formed by the intersection of the sphere with the yz-plane is
first calculated (red circle in Figure 2). The first step in doing
this is defining the goal position of point A as:

Agoal =
(
ax ay az

)⊺
(3)

For the proposed linkage, this vector can be split up in
respectively a component perpendicular to the yz-plane and
a component along this plane:

A⊥
goal =

(
ax 0 0

)⊺
(4)

A∥
goal =

(
0 ay az

)⊺
(5)

Vector A∥
goal defines the distance between the origin at S

and the centre of the circle slice (drawn in red in Fig. 2) of
the sphere on the yz-plane. The radius of this circle can be
calculated using Pythagoras’ Theorem with the radius of the
sphere and the perpendicular distance from the plane to the
centre of the sphere:

rslice =
√

(a1 + a3)2 − a2x (6)

The next step in solving the inverse kinematics is finding
the intersection points of the circles. In order to simplify
computations, the intersection points will first be calculated
as if the circles lie on the y-axis, and afterwards the solutions
are rotated back. The solution for when both circles would
be on the y-axis (dashed lines in Fig. 3) could be calculated
using

yintersection =
a22 − r2slice + d2

2d
(7)

in which d equals the distance between both circle centres,
d2 = a2y + a2z .
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(a) Kinematic model of the 3 DoF constrained spatial pantograph in which
point S as its base rotation point and point A as its end-effector point. Link
1 has two DoF motion capability (Yaw (θ1) around the inertia Z-axis, Pitch
(θ2)) around the body-fixed Y -axis, and Link 2 has one DoF motion capability
(Pitch (θ3) around the inertia X-axis).

(b) Mass parameters for the 3 DoF constrained spatial
pantograph linkage.

Fig. 2: Geometric approach for the inverse kinematics in which
all possible positions for point P1 from point A are depicted
by a sphere, and the possible positions for P1 from point S by
the black circle. Inverse kinematics solutions can be found at
the intersection points between the black circle and the sphere.

After rotating the circles back, the solutions for θ3 become:

θ3 = tan−1(
az
ay

) + cos−1(
yintersection

a2
) (8)

θ3 = tan−1(
az
ay

)− cos−1(
yintersection

a2
) (9)

These solutions are depicted in Figure 3 using thick blue lines.
After finding the solution for θ3, the solutions of the other

two angles could be easily found using Equation 2. With this
approach, it could be calculated that the linkage has four
possible working modes, which refers to two solutions per
intersection point between the circles. For the solutions of
one intersection point (the same value for θ3), the relation

Fig. 3: Slice of the yz-plane which is used to calculate the
solution for θ3 using the geometric approach for the inverse
kinematics. Point S is at (0, 0) and the possible positions for
point P1 are shown with blue circles.

between the first and second solution could be written as
θ1,2 = 180 + θ1,1 and θ2,2 = 180− θ2,1.

The inverse kinematics were also solved using a non-linear
least squares optimization, which can be found in Appendix
B.

C. Singularities

Singularities of a linkage are configurations in which no
cartesian velocity can be produced [9] or in which the linkage
is locally moveable although the actuators are locked [10].
The first kind is called a serial singularity and mathematically
means that the Jacobian of the linkage becomes rank deficient
[11], i.e. the determinant of the jacobian becomes zero. The
second kind is a parallel singularity and thus only occurs in
parallel mechanisms. For the constrained spatial pantograph
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linkage, this type of singularity will occur when the linkage
is stretched-out over the y-axis.

The determinant of the jacobian for the constrained spatial
pantograph linkage equals:

D = (a1 + a3)
2a2 cos(θ2) [sin(θ2) cos(θ3)

+ sin(θ1) cos(θ2) sin(θ3)]
(10)

Firstly, the configurations in which the determinant equals
zero are found in joint space. This is done by discretization
of the workspace for θ1 and θ2 between −π/2 and π/2 and
calculating solutions for θ3 by which the determinant becomes
zero. The results for the singularity surface in joint space
can be seen in Fig. 4. If this analysis were performed for
a larger domain, the shown singularity surface would repeat,
and planes can be seen when θ2 = π/2± nπ, but this is left
out for clarity in this Figure.

Fig. 4: Singularity surface in joint space for the constrained
spatial pantograph mechanism for −π/2 ≤ θ1 ≤ π/2,
−π/2 ≤ θ2 ≤ π/2 and −π ≤ θ3 ≤ π

After the singularity surface in joint space was calculated,
the results were transformed into cartesian space by filling in
the angles of the singularity configurations into Eq. 2. These
results can be seen in Figure 5, which shows half of the
singularity surface. The linkage is in a singular configuration
for each configuration in which end-effector point A intersects
the singularity surface.

D. Workspace Bounds

The last part of this kinematic analysis is the determina-
tion of the workspace of the constrained spatial pantograph
linkage, which defines all points that can be reached with
the manipulator. The singularity surface (as can be seen in
Figure 5) represents the points at which there is a direction
in which no cartesian velocity can be produced [9]. Because
point A cannot move through this surface, the singularity
surface equals the workspace boundary for the constrained
spatial pantograph linkage. The small cone shape around the
x-axis of Figure 5 is excluded from the workspace, i.e. points

Fig. 5: Positive x side of the singularity surface in cartesian
space for the constrained spatial pantograph mechanism

inside this region are not reachable with the constrained spatial
pantograph linkage. In this region, the sphere and the circle
as described in the geometric inverse kinematics method, do
not intersect; therefore, no solutions can exist.

Two more methods were used to calculate the workspace
boundaries, which can be found in Appendix D.

III. FORCE BALANCE

When the sum of the reaction forces on the base of a linkage
is zero during motion, it is said to be force balanced. There are
multiple ways to obtain conditions for force balance. One way
could be to calculate the total linear momentum of the linkage
and search for conditions for which this equation remains
zero during motion. Another method could be to calculate the
total CoM of the linkage and search for conditions in which
this CoM remains constant during motion. The force-balance
conditions for the general spatial pantograph linkage [8] could
be rewritten for the constrained spatial pantograph linkage in
Figures 1a and 1b as:

m1p1 +m4a1 +m3p3 +m5p5 +m6o1

+m7p7 +m8o1 = 0 (11)
m2p2 +m3a2 +m4p4 +m5o3 +m6p6

+m7o3 +m8p8 = 0 (12)
m1q1 +m3q3 = 0 (13)

m1q
′
1 +m3q

′
3 +m6o2 −m8o5 = 0 (14)

m2q
′
2 +m4q

′
4 −m5o4 +m7o6 = 0 (15)

In which q′i is the CoM offset in the positive z-direction and
qi is the CoM offset perpendicular to the z-direction and the
longitudinal axis of the link. These were left out for clarity in
Figure 1b because they will be set to in the moment balance
conditions.
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Next to that, there is one condition less than for the general
spatial pantograph. Due to the constraint on link 2, by which
it only allows for motion around the x-axis, the centre of mass
does not have to lie on the x-axis in order to achieve a constant
centre of mass.

A CAD model of the force balanced constrained spatial
pantograph linkage is shown in Figure 6. This linkage has 3
DoF that are balanced using only 2 counter masses.

Fig. 6: CAD model of the 3 DoF dynamically balanced
constrained spatial pantograph linkage

IV. MOMENT BALANCE

A linkage that does not induce any reaction moments on
its base is said to be moment balanced. This section will first
look at the moment balance for a 1 DoF link. Afterwards, the
moment balance for a 2 DoF link will be investigated, and
this knowledge will be combined to obtain moment balance
conditions for the constrained spatial pantograph linkage.

A. Moment Balance of a 1 DoF Joint

At first, the moment balance conditions for a 1 DoF link are
presented. Moment balance in such a link could be achieved
by using a linkage such as the inverted four-bar [6] or by
using counter-rotations [5]. The example 1 DoF link that will
be discussed here rotates around the x-axis and is balanced
using counter-rotations as it is the easiest method for moment
balance.

In order to balance a 1 DoF linkage, an inertia wheel
with exactly the same product of the angular velocity and
the moment of inertia around the rotation axis as the link
could be added with gears such that it rotates in the opposite
direction. Due to the symmetry of a wheel, it has zero products
of inertia. Therefore, all products of inertia, except for the one
perpendicular to the rotation axis, should be zero.

There are no constraints on the other moments of inertia
because the link does not rotate around these axes.

With the notion that the CoM of the link lies on the rotation
point due to its force-balance conditions, and the inertia of the

link also includes the inertia of the counter-mass, the moment-
balance conditions for a 1 DoF link are:

Ixx,CR = Ixx (16)
Ixy,CR = Ixy = 0 (17)
Ixz,CR = Ixz = 0 (18)

B. Moment Balance of a 2 DoF Joint

After balancing a 1 DoF joint, the balancing conditions for
a 2 DoF rotational joint will be investigated. Link 1 of the
constrained spatial pantograph linkage is such a link in which
firstly, a yaw rotation is executed around the inertial z-axis
(θ1) and afterwards, a pitch rotation around the body-fixed y-
axis (θ2). The goal is to balance both rotations passively by
just using counter-rotations.

1) Inertia Tensor Conditions: In order to moment-balance
the yaw rotation with a counter-rotation, all inertia values con-
cerning rotations around the inertial z-axis (the third column of
the rotated inertia tensor) should be independent of the value
of θ2. Otherwise, a very complex variable transmission would
be needed. In order to achieve a constant inertia tensor around
the z-axis, all values in the third column of the rotated inertia
tensor should be constant.

The rotation matrix for the pitch rotation could be written
as:

R =




cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)


 (19)

Then the third column of the rotated inertia (RIR⊺) tensor
is computed:

The value for the rotated inertia Iyz,1,rot equals:

Iyz,rot = Iyzcos(θ)− Ixysin(θ) (20)

From this, it can be concluded that Iyz = Ixy = 0.
The value for the rotated inertia Ixz,rot equals:

Ixz,rot = Ixz [cos
2(θ)− sin2(θ)]

+ (Izz − Ixx) sin(θ) cos(θ)
(21)

This results in the conditions Ixx = Izz and Ixz = 0. Lastly,
there will be looked at the value for Izz,rot:

Izz,rot = Ixx sin
2(θ) + Izz cos

2(θ)

−2 Ixz cos(θ) sin(θ)
(22)

With the conditions above, this value will be independent of
θ2. Therefore, the inertia conditions for a 2 DoF moment
balanced link rotating around its CoM (Force Balance) are:

Ixx = Izz (23)
Ixy = 0 (24)
Ixz = 0 (25)
Iyz = 0 (26)
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2) Counter-Rotation Dimension: Because a 2 DoF link is
balanced and a counter-rotation can only balance 1 DoF, two
counter-rotations are required. They have inertia tensors ICR2

and ICR1 for the Pitch and Yaw counter-rotation respectively.
At first, the pitch rotation will be balanced. This will be

done by adding a counter-rotation ICR2 to the link, which
will also experience the yaw motion, but in opposite direction.
This counter-rotation should compensate for the pitch motion
of the link while also having a constant inertia around the
inertial z-axis which results in the following conditions:

Iyy,CR2 = Iyy (27)
Ixy,CR2 = Ixy = 0 (28)
Ixz,CR2 = Ixz = 0 (29)
Iyz,CR2 = Iyz = 0 (30)
Ixx,CR2 = Izz,CR2 (31)

Next to these conditions, the CoM of the counter-rotation
should be on the inertial z-axis to remain force-balanced.
A displaced CoM would cause a nonzero linear momentum
and thereby, reaction forces on the base. Therefore, another
condition is that the x- and y-position of the CoM of the
counter inertia are zero.

The other counter-rotation will be used to balance the yaw
rotation of the link. This inertia also has to balance the motion
of the other counter-rotation. Because the link and the other
counter-rotation both do not have any products of inertia, the
products of inertia of this counter-rotation should also be zero.

Izz,CR1 = Izz + Izz,CR2 (32)
Ixy,CR1 = 0 (33)
Ixz,CR1 = 0 (34)
Iyz,CR1 = 0 (35)

3) Equivalent Inertia Method: Conditions 23 and 31 both
imply that the inertia around the body-fixed x-axis should
equal the inertia around the body-fixed z-axis. For the counter-
rotation, this is simple, because this is always true for a round
wheel. For the link itself, this is harder. The easiest way is to
place an exact copy of the link at a 90 degrees offset, but it
will be hard to meet the balance conditions for the constrained
spatial pantograph linkage later.

Another method could be to calculate shapes that could be
added to the link that adjust the inertia so that the inertia
conditions are met. This could be done with all kinds of
shapes, but it is now chosen to use cylinders.

The inertia for with density ρ and the variables from Figure
7 placed on link 1 could be calculated as follows:

Ixx,ei =
πρhr2ei

6
(12d2ei + 12deihei + 4h2ei + 3r2ei) (36)

Iyy,ei = Ixx,ei (37)

Izz,ei = πρheir
4
ei (38)

The conditions are met when:

Ixx + Izz,ei = Izz + Ixx,ei (39)

Fig. 7: Schematic representation of link 1 for the parameters
concerning the equivalent inertia method

These conditions were verified by simulating 2 DoF joint
that meets all the conditions using the dynamic simulation
software ADAMS. Results from this simulation can be found
in Appendix G.

C. Moment Balance of the Complete Linkage

In order to passively balance the constrained spatial pan-
tograph linkage, all link rotations or translations should have
linear relations with one of the input links (links 1 and 2).
This is true for all links except the out-of-plane links (link
5 through 8). The rotation of these links around their length
axis is dependent on all input angles, and shows non-linear
relations with these input angles. Therefore, it is impossible to
exactly balance the constrained spatial pantograph linkage, but
approximate balance is possible. In order to achieve approx-
imate balance, the inertia of the out-of-plane link around its
length axis should be as low as possible (because this rotation
cannot be compensated), and the inertia around its other two
axis should be equal. The moment of inertia around the two
axes perpendicular to the length axis will be described by Ii
in which i is the number of the out-of-plane link. Appendix E
elaborates further on the nonlinear relations of the out-of-plane
links.

In the previous two examples for the 1 DoF link and the
2 DoF link, the CoM’s had a constant distance to the base
of the linkage. This could be achieved by setting both p3 and
p4 to zero and thereby putting their CoMs in point P1 and P2

respectively, which would result in 4 countermasses. However,
similar to Foucault and Gosselin (2005), it is possible to
balance the linkage using only 3 counter-masses.

It was already stated in the example of a 1 DoF link that
all products of inertia should be zero except for the one in the
plane of rotation. For link 2 this means that Iyz,2 could be
nonzero. Because link 4 rotates similarly to link 2, the same
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also holds for link 4. Their other two products of inertia could
compensate for each other:

Ixy,2 + Ixy,4 = 0 (40)
Ixz,2 + Ixz,4 = 0 (41)

The same holds for link 1, with the difference that in this link,
no products of inertia sums could be nonzero due to its 2 DoF
motion. The products of inertia in the xz-plane should also
compensate for the masses of the out-of-plane links.

Ixy,1 + Ixy,3 = 0 (42)
Ixz,1 + Ixz,3 +m8o1o5 −m6o1o2 = 0 (43)

Iyz,1 + Iyz,3 = 0 (44)

There are two more conditions that the out-of-plane links
should fulfil regarding the mass properties:

m6p6o2 = m8p8o5 (45)
m5p5o4 = m7p7o6 (46)

From the conservation of angular momentum, the following
conditions are obtained:

Ixx,1 + Ixx,3 = Izz,1 +m1p
2
1 + Izz,3 +m3p

2
3

+m4a
2
1 +m5p

2
5 + I5 +m6o

2
1 −m6o

2
2 +m7p

2
7

+ I7 +m8o
2
1 −m8o

2
5 + Izz,θ2 − Ixx,θ2 (47)

m3p3a2 +m4p4a1 +m5p5o3 +m6p6o1

+m7p7o3 +m8p8o1 = 0 (48)

Iyy,θ2 = Iyy,1 + Iyy,3 +m1p
2
1 +m3p

2
3 +m4a

2
1

+m5p
2
5 + I5 +m6o

2
1 +m6o

2
2 +m7p

2
7

+I7 +m8o
2
1 +m8o

2
5 (49)

Izz,θ1 = Ixx,1 + Ixx,3 + Izz,θ2 + Izz,base (50)

Ixx,θ3 = Ixx,2 + Ixx,4 + I6 + I8 +m2p
2
2

+m3a
2
2 +m4p

2
4 +m5o

2
3 +m5o

2
4

+m6p
2
6 +m7o

2
3 +m7o

2
6 +m8p

2
8 (51)

With these conditions, it is possible to dynamically balance the
constrained spatial pantograph linkage with 3 countermasses
and 3 counter-rotations. A picture of the CAD model of the
dynamically balanced constrained spatial pantograph linkage
can be seen in Figure 8.

Different mechanisms are possible with the presented bal-
ance conditions. For example, Figure 9 shows a linkage that
could be balanced using only 3 countermasses. Removing the
countermass on link 4 reduces the size of the countermass
and equivalent inertia’s on link 1, but increase the size of the
countermass for link 2 and link 3.

A more elaborate calculation for the moment balance con-
ditions can be found in Appendix F.

Fig. 8: CAD model of the 3 DoF dynamically balanced
constrained spatial pantograph linkage

Fig. 9: CAD model of the alternative 3 DoF dynamically
balanced constrained pantograph linkage using only 3 coun-
termasses

V. VERIFICATION OF THE BALANCE CONDITIONS

In order to verify the balancing conditions, a simulation was
performed using the dynamic simulation software ADAMS. A
screenshot of the simulation model for the constrained spatial
pantograph can be seen in Figure 10 in which the counter-
rotation for θ1 is coloured cyan, the one for θ2 green and the
one for θ3 blue. The equivalent inertia masses are coloured red.
Because it is impossible to compensate for the roll rotation of
the out-of-plane links, it is important to make these links as
light and slim as possible to have a negligible moment of
inertia around its length axis. This is also beneficial for the
mass balance of the linkage, as with lower masses, smaller
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counter masses and inertia are needed. Because the masses
of the out-of-plane links will be low compared to the other
masses of the linkage, and the ADAMS model did not allow
for overconstraints, all the out-of-plane links were modelled
as massless and with zero inertia. The link lengths a1 and a2
were set to 80 mm, and a3 was set to 20 mm. The numerical
mass and inertia values can be found in Table I.

Fig. 10: Screenshot of the model used in the ADAMS simu-
lation in which the equivalent inertia masses are coloured red,
the counter-rotations for θ1 cyan, the counter-rotation for θ2
green and the counter-rotation for θ3 blue

The mass and CoM values were obtained from the Solid-
Works model with a density of 0.001 g/mm3, and afterwards,
values for the link masses and inertia’s were slightly adjusted
in order to satisfy the balance conditions with the maximum
precision from ADAMS. Torques were applied to the input
links with counter-torques of the same magnitude but opposite
direction to the counter-rotations. For the tests presented in this
article, the input torques in Nm were:

Tθ1 = 15 cos(3π t) (52)
Tθ2 = 10 cos(4π t) (53)
Tθ3 = 5 cos(5π t) (54)

Two tests were performed: one in which the counter-rotations
do not move, and one in which the counter-rotations are
moving in opposite direction of the links. For both tests, the
reaction forces and reaction moments were measured at the
base of the linkage. The results from these tests can be seen
in Figures 12 and 13 respectively. For both graphs, the reaction
forces at the base are equal because the presence of counter-
rotation does not attribute to the force balance of the linkage.
As a reference, the position of point A for the balanced case
is shown in Figure 11.
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Fig. 11: Position of the end-effector point A in the simulator
for the balanced case

The results demonstrate that the reaction moments in the
balanced case are very small compared to the unbalanced
case. The reaction moments do not exactly become zero, but
this is attributed to numerical integration errors and the finite
accuracy of the values that can be inputted into ADAMS.
When the step size of the integrator is changed, the near-zero
results change heavily while the other values remain identical,
which could also be attributed to numerical errors. More on
this can be found in Appendix H.

VI. SYNTHESIS OF A 6 DOF MOMENT BALANCED
LINKAGE

The 3 DoF dynamically balanced linkage as described in
this article is used to synthesize a 6 DoF parallel spatial
manipulator, which is dynamically balanced with 12 counter-
masses and 9 counter-rotations. A CAD drawing of this ma-
nipulator is shown in Figure 14, in which three symmetrically
placed dynamically balanced constrained spatial pantographs
are connected to a platform using spherical joints.

It is also possible to synthesize a 6 DoF dynamically bal-
anced linkage using the alternative design for the dynamically
balanced constrained spatial pantograph linkage from Figure 9.
With this linkage as legs, a 6 DoF manipulator was synthesized
using 9 counter-masses and 9 counter-rotations.

For both designs, only two of the three input angles have
to be actuated in each leg, so the full 6 DoF linkage could be
actuated using 6 actuators.

A. Inclusion of Platform in the Balancing Conditions

The configuration of each leg contributes to the orientation
of the platform. Therefore, it has no linear relation to one of
the input links, and it is not possible to include the inertia of
the platform in the balance conditions directly.

A solution to be able to include the platform into the
balance conditions is by using the equivalent mass method
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Fig. 12: Resultant reaction forces and moments at the base for the unbalanced case (no motion of the counter-rotations) of the
3 DoF constrained spatial pantograph linkage. These figures show very small resultant reaction forces due to the force balance,
but high resultant reaction moments.
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Fig. 13: Resultant reaction forces and moments at the base for the balanced case of the 3 DoF constrained spatial pantograph
linkage. These figures show very small deviations in the resultant reaction forces and moments that are due to the finite
precision that can be used in ADAMS.
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Link i mi (g) pi (mm) Ixx,i (g mm2) Iyy,i (g mm2) Izz,i (g mm2) Ixy,i (g mm2) Ixz,i (g mm2) Iyz,i (g mm2)

1 72.189210400 −7.96100000 109602.97490 144720.12045 41222.634010 0 0 100
2 18.034617473 −32.4543449 24455.789931 1601.9283804 24451.240450 0 0 0
3 7.0000000000 −3.61452800 221.69800000 15945.933000 15935.412000 0 0 0
4 7.5000000000 3.37355947 11764.840197 272.32959380 11676.603840 0 0 0
5 0 60 0 0 0 0 0 0
6 0 60 0 0 0 0 0 0
7 0 60 0 0 0 0 0 0
8 0 60 0 0 0 0 0 0

cr, θ1 601.90000000 not applicable 656393.45000 656393.45000 899457.40056 0 0 0
cr, θ2 352.11200000 not applicable 786633.25125 213332.68034 786633.25125 0 0 0
cr, θ3 138.85000000 not applicable 100101.57003 59836.108884 59836.108840 0 0 0
base 11.914791200 0 9828.9217313 8048.7220165 2999.4764105 0 0 0

TABLE I: Numerical values for the constrained spatial pantograph linkage used in the ADAMS simulation, the masses of links
5 through 8 were set to zero in order to neglect them

Fig. 14: CAD model of the 6 DoF dynamically balanced
manipulator using 3 DoF dynamically balanced constrained
spatial pantograph linkages as its legs. This manipulator uses
12 counter-masses and 6 counter-rotations to satisfy the bal-
ance conditions.

as described by Gosselin et al. (2004) to replace the platform
with three point masses. To ensure that the three point masses
are dynamically equivalent to the platform, three conditions
must be satisfied with the variables from Figure 16:

mp = mA,1 +mA,2 +mA,3 (55)
mpP = mA,1A1 +mA,2A2 +mA,3A3 (56)

Ip =
3∑

1

mA,i[(Ai · Ai)E3 − Ai ⊗ Ai] (57)

Condition 55 states that the total mass of the point masses
should equal the total mass of the platform. In condition 56, the
bold symbols are vectors defining the point in Figure 16, and
the conditions imply that the CoM of the three point masses
should be equal to the CoM of the platform. Condition 57
states that the inertia of the three point masses should equal

Fig. 15: CAD model of the alternative 6 DoF dynamically
balanced manipulator using dynamically balanced constrained
spatial pantographs with only 3 counter masses as its legs. This
manipulator uses 9 counter-masses and 9 counter-rotations to
satisfy the balance conditions.

the inertia of the platform, which is in practice the hardest
condition to fulfil.

One way to satisfy the conditions is to model the platform
to be infinitely thin such as in [6] and [5], but this is not a
feasible solution if the manipulator has to be built. Another
simple body that satisfies the inertia condition is a thin hoop,
but the solution will not be perfect when joints are attached
to this hoop. Because a perfect solution for the dynamic
equivalence of a platform replaced with 3 point masses does
not exist, it will be tried to approximate the inertia condi-
tion, thereby making the parallel manipulator approximately
balanced instead of perfectly balanced. An example of a
platform that approximates the balance conditions can be
seen in Figure 16. The point masses could be included in
point A of link 3 for each leg by m′

3 = m3 + mA,i and
p′3 = (m3p3 +mp(a1 + a3)/3)/m

′
3, and by using the parallel

23



axis theorem to obtain the new inertia tensor for link 3.

Fig. 16: CAD model of the platform for the 6 DoF parallel
manipulator that approximates the conditions for point mass
substitution

When the approximate balance by representing the platform
with 3 point masses is insufficient, the platform should be
represented by four point masses from which one is out-of-
plane with the other masses [4]. This would also mean that a
fourth arm is needed, which would increase the mass of the
manipulator even more.

B. Reduction to a 6 DoF Force Balanced Manipulator

It is also possible to use the 3 DoF Force Balanced linkage
(Figure 6) as legs for the 6 DoF mechanism. For this mecha-
nism, the third condition for point mass substitution (regarding
the inertia) does not apply. The approximate balance for the
out-of-plane links does also not apply for a force-balanced
linkage. Thereby, this mechanism is force balanced with only
6 counter-masses for a 6 DoF parallel manipulator. A CAD
drawing of this linkage can be seen in Figure 17.

Fig. 17: CAD model of the 6 DoF force balanced manipulator
using 3 DoF force balanced constrained spatial pantograph
linkages as its legs

C. Workspace analysis

The workspace of the parallel linkage was described using
the well-known constant-orientation workspace. In order to

determine this workspace, the already known workspace for a
single leg was used.

For each point of the workspace of a single leg, it was
checked if, with the prescribed orientation of the platform,
the other two attachment points of the platform are inside the
workspaces of the other two legs. By repeating this procedure,
a point cloud was obtained that shows the constant-orientation
workspace for the 6 DoF dynamically balanced manipulator.
This result can be seen in Figure 18. A contour of this
workspace at z = 0.24 can be seen in Figure 19.

Fig. 18: Constant-Orientation workspace for the 6 DoF parallel
constrained spatial pantograph linkage with link lengths of 80
mm
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Fig. 19: Contour at z = 0.24 mm for the constant-orientation
workspace for the 6 DoF parallel constrained spatial panto-
graph linkage with link lengths of 80 mm

D. Physical Demonstrator

A physical demonstrator for the dynamically balanced con-
strained spatial pantograph linkage, which can be seen in
Figure 20, was built to show the kinematics and the feasibility
of the proposed design. Because the goal of this demonstrator
is to show the kinematics and not to have a fully operating
robot, no actuators were attached. The demonstrator was built
using 3D printing techniques, and the dimensions of the
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countermasses, counter rotations, and the gears were chosen
so that the manipulator would be balanced if it was fabricated
with higher precision and solid materials.

Fig. 20: The physical demonstrator for the 6 DoF force and
moment balanced constrained spatial pantograph linkage that
was built which shows that the proposed designs are feasible

VII. DISCUSSION

As with other balanced manipulators in literature, force and
moment balance of the spatial pantograph linkage came at the
cost of substantial increases in mass and complexity due to the
addition of counter masses and counter rotations. However, no
optimization was executed in this article, so the total mass of
the linkage could probably be reduced.

One possible way to reduce the mass addition is by wisely
choosing the transmission ratios between the links and their
counter-rotations. By choosing a higher gear ratio, the counter-
rotation’s inertia, and thereby its mass, could be reduced.
However, this would lead to higher forces in the transmission,
which could lead to a loss in precision and an increase in the
backlash error.

Another way to optimize the mass addition of the linkage
is by the use of counter-rotating-counter-masses (CRCM) as
described in [14]. By doing this, the counter-rotation both
takes the function of the counter-mass and counter-rotation.
Another benefit is that the counter-rotation could be smaller
because it does not have to compensate for the spin angular
momentum of the counter-mass.

It should also be noted that although the linkage is said to
be dynamically balanced, internal forces may exist in the base
between the three legs. When some flexibility exists in the
base, this could lead to inaccuracies and problems with the
control of the manipulator. However, for this manipulator, the
base is assumed to be rigid.

In the simulation, the out-of-plane links were assumed to
be massless and with zero inertia. Because these links can be
made lightweight compared to the other links, adding mass and
inertia to these links would not heavily increase the dimensions

of the countermasses and counter-rotations. Dimensioning of
these links could be part of an optimization as described before
in this discussion.

As mentioned in the previous section, the platform of the
manipulator should fulfil certain conditions for the manipulator
to be dynamically balanced. Therefore, it is not possible with
the current design to have a variable payload. This was beyond
the scope of this work but could be an exciting topic for future
research.

VIII. CONCLUSION

This article presented force and moment balanced 3 DoF
and 6 DoF manipulators based on the spatial pantograph
linkage by Van der Wijk (2022). Three 3 DoF manipulators
were presented: a force balanced 3 DoF manipulator using 2
counter masses, a dynamically balanced 3 DoF manipulator
using 4 counter masses and 3 counter-rotations, and a dynam-
ically balanced 3 DoF manipulator using 3 counter masses
and 3 counter-rotations. For these 3 DoF manipulators, the
singularities were determined, resulting in the manipulator’s
torus shaped workspace. The balance conditions were obtained
using the conservation of linear and angular momentum, and
these conditions were verified by a simulation using the
dynamic simulation software ADAMS.

After calculation and verification of the balance conditions
for the 3 DoF constrained spatial pantograph linkage, this
knowledge was expanded to synthesize three spatial 6 DoF
force and moment balanced manipulators. The force balanced
6 DoF manipulator is balanced using only 6 counter masses,
the first dynamically balanced manipulator using 12 counter
masses and 9 counter-rotations, and the second dynamically
balanced manipulator using 9 counter masses and 9 counter-
rotations. A physical demonstrator was built for the first DoF
dynamically balanced manipulator to show the kinematics
of this linkage. To the best of the author’s knowledge, this
was the first demonstrator for a 6 DoF dynamically balanced
manipulator, which showed the feasibility of the proposed
design.
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Discussion

In chapter 2 of this thesis, a literature research was performed on the state-of-the-art for 6 DoF spatially
dynamically balanced manipulators, focussing on their potential use in aerial manipulation. The methods
for determining force and moment balance conditions were discussed, and design constraints were set for aerial
manipulators. It followed that only three designs of 6 DoF spatially dynamically balanced manipulators existed:
the compound four-bar [10], the parallelepiped [9], and the PAMINSA manipulator [11].

The compound four-bar manipulator consists of multiple inverted four-bar linkages stacked in series. These
individual four-bar linkages are moment balanced without counter-rotations and have a constant inertia for
in-plane rotation. Therefore, they act as a rigid body for planar translation and rotation. When placing a copy
of this linkage at a 90 degrees offset from the original linkage, a linkage is obtained which has a constant inertia
tensor and therefore acts as a rigid body for spatial motion. Two planar linkages are stacked to one spatial
linkage, resulting in a 3 DoF spatially dynamically balanced linkage. Three of these 3 DoF arms are then used
to obtain a 6 DoF spatially dynamically balanced manipulator without any counter-rotations.

The parallelepiped linkage was also designed by Wu and Gosselin. This linkage uses a planar pantograph as
its base, which is balanced using 3 counter masses and 2 counter-rotations. Perpendicular to this pantograph,
another parallelogram structure was added, resulting in a 3 DoF linkage. This linkage is balanced using 5 counter
masses and 3 counter-rotations. When using three of these 3 DoF linkages as legs, similar to the compound
four-bar linkage described above, a 6 DoF spatially dynamically balanced manipulator was synthesized which
is balanced using 15 counter masses and 9 counter-rotations.

The last existing spatially balanced manipulator was the PAMINSA manipulator by Briot and Arakelian
(2009). In this manipulator, the horizontal and vertical motions were decoupled with the idea of decoupling
the direction in which gravitational work is done. However, when this manipulator is force balanced, this does
not hold, as the CoM of the manipulator is constant and thus does not do any work. The manipulator is force
balanced using counter masses, and moment balance is achieved using a 3 DoF serial wrist attached as the
end-effector. Because this serial wrist is used for active moment balancing of the linkage, it is effectively just a
3 DoF spatial linkage. Therefore this linkage will not be taken into account further in this discussion.

In chapter 3 of this thesis, novel 3 DoF and 6 DoF spatially force and moment balanced linkages, based on the
spatial pantograph linkage, were introduced. The general spatial pantograph linkage, as presented by Van der
Wijk (2022), was firstly constrained such that it reduces from 6 DoF to a 3 DoF linkage. For the 3 DoF linkage,
the forward and inverse kinematics were solved, and the manipulator’s workspace was obtained by calculating
its singularities. Afterwards, the force and moment balance conditions for this linkage were calculated and
verified using ADAMS. This knowledge was extended to synthesize 6 DoF force and moment balanced linkages.
Compared to the state-of-the-art, these linkages use fewer moving links, fewer counter masses, and the used
counter masses are closer to the base of the linkage.

This discussion will elaborate further on some important points concerning spatial dynamic balance, and
recommendations for future research.

Leg-to-leg approach

The method of using balanced 3 DoF linkages as legs to synthesize 6 DoF dynamically balanced manipulators
is often referred to as the leg-by-leg approach. This method was used in synthesizing all the 6 DoF balanced
linkages described above.

28



One downside of this method is the complexity of including the platform, which is done using the equivalent
mass method. This method substitutes the platform with three point-masses which have: 1. the same total mass
as the platform, 2. the same CoM as the platform, and 3. the same inertia as the platform. When the platform
meets these conditions, the point-masses could be added to the end-effector points of the legs. However, it has
yet to be possible to have a non-planar platform that fulfils all these conditions. As stated by Wu (2003), a
solution might be to use four point-masses instead of three, but this would require an additional leg and thereby
additional mass.

A benefit of this method is that the balancing problem is divided into smaller problems, being the separate 3
DoF leg linkages. Using the Chebychev-Grübler-Kutbach criterion for spatial mechanisms, it could be calculated
that the addition of a platform (6 DoF) which is connected using 3 spherical joints (3 DoF each), leads to an
addition of -3 DoF to the manipulator. In order to obtain a 6 DoF manipulator, the legs should together have
9 DoF. Therefore, manipulators that are synthesized using a leg-by-leg approach will always have more internal
DoFs than DoFs at the end-effector.

Having more internal DoFs than DoFs at the end-effector might not seem to be a problem at first sight,
but the balancing of each DoF generally leads to an addition mass to the manipulator. Therefore, having
more internal DoFs will generally increase the total mass of the linkage. Finding solutions that do not need a
leg-by-leg approach might, if even possible, lead to more lightweight balanced manipulators.

Minimization of the number of counter masses

There are two important factors regarding the manipulator’s performance when adding counter masses: 1. the
number of counter masses should be minimized, and 2. the counter masses should be as close to the base as
possible. It is evident that a lower number of counter masses reduces the total weight of the manipulator.
Having counter masses at distal links leads to a significant increase in the moment of inertia of the link, and
this mass generally has to be balanced by other counter masses at the base. For balanced linkages stacked in
series, such as the compound four-bar linkage, balancing of counter masses also occurs, which further increases
the mass of the linkage. Therefore, it is preferable to balance parallel linkages such as the parallelepiped or the
constrained spatial pantograph.

Comparing the dynamically balanced constrained spatial pantograph linkage with the parallelepiped linkage
regarding the addition of counter masses, it can be seen that the first one uses 3 counter masses of which 2 are
located at the base, and the other one uses 5 counter masses of which 3 are located at the base. This difference
could be attributed to two factors regarding the kinematics of the linkage.

In the parallelepiped linkage, all links are connected using revolute joints; therefore, all links have 1 DoF
motion. In the 3 DoF constrained spatial pantograph linkage, there is also one link that has 2 DoF motion
capability. By having one link that moves with 2 DoF, both DoFs could be balanced by just 1 counter mass,
explaining one counter mass difference.

The special kinematics of the constrained spatial pantograph linkage could explain to other difference in
number of counter masses. During its motion, all links (except for the out-of-plane links) stay in a single plane.
Therefore, it is possible to use only 3 counter-masses for moment balance, as also explained in [13] for the planar
pantograph linkage. This simplification is impossible for the parallelepiped linkage as its links move in different
planes.

Minimization of the number of counter-rotations

As it is possible to use one counter mass for 2 DoF motion, one might also think to reduce the number of
counter-rotations is a similar fashion. However, there is one big difference between force and moment balance.
For force balance, the CoM of the total linkage has to remain constant during motion, which only concerns a
point in space. This allows one counter mass to balance 2 DoF motion; it can rotate with the link in all directions
while keeping the CoM of the link with the counter mass constant. As in the general spatial pantograph [12],
this is also possible for a 3 DoF link.

Moment balance does not only concern a point but also a rotation axis. The rotation axes of the link
and the counter-rotation always have to be parallel to balance the link. When these axes are not parallel,
angular momentum will arise around other axes, or additional counter-rotations have to be used to cancel this
momentum. Due to the, in general, different inertia values around the principal axes of a link, the order of
rotations is also of importance.

29



One special case in which it is possible to moment balance a 3 DoF link with one counter rotation is when
the link has equal inertia in all its principal axes. When this is the case, the counter rotation could be a sphere,
and the order of rotations would not matter, as the inertia around all principal axes is equal. However, for
the general case, it is assumed that it is not possible have a lower number of counter-rotations than rotational
DoFs.

The compound four-bar linkage is an example of a linkage that is dynamically balanced without any
counter-rotations. However, the four-bar linkage has only 1 DoF motion capability, but three moving links.
This linkage could therefore also be seen as a 1 DoF link with a counter linkage attached to it to compensate
for the generated angular moment, essentially taking the function of a counter-rotation.

Practical implementation

Although the manipulators presented in chapter 3 of this thesis improve the state-of-the-art in terms of their
number of counter-masses, the position of the counter masses, and the number of moving links, the practical
applications of such manipulators are still questionable. For high-demanding tasks in which reaction forces and
moments should be as low as possible, 6 DoF balanced manipulators could come into use. However, for most
tasks, balancing will probably add too much mass and complexity to the system.

In aerial manipulation, the reduction of the mass of the manipulator is crucial due to the payload limitation
of the aerial vehicle. Therefore, the constrained spatial pantograph linkage is a step forward, as it uses fewer
counter-masses than the state-of-the-art and could thereby be lighter. However, a lot of mass was still added
to satisfy the balance conditions. Therefore, the proposed manipulator will also not be well suited for aerial
manipulation.

Although the 6 DoF dynamically balanced manipulator is very complex, reduced versions of this manipulator
could find their way to practical applications. For some of the examples presented in the introduction of this
thesis, like the balancing of stage lights [6] or cameras attached to cable robots [7], the manipulators only move
with 2 DoF. This motion is similar to the 2 DoF link of the constrained spatial pantograph linkage. Thus,
knowledge from this thesis could be used to synthesize balanced solutions for these applications.

There may also be cases for which only force balance is sufficient. For such tasks, the 6 DoF force balanced
constrained spatial pantograph could be of good use, as it is force balanced using only 6 counter masses. Other
applications may lie in the reducing reaction forces and moments in cases for which they do not necessarily have
to be zero.

Recommendations for future work

The results in this thesis show improvements in the state-of-the-art on spatial dynamic balance, but there are
still some improvements possible in this research area.

In the current ADAMS simulation, which was used to verify the balance conditions, it was not possible to
include the mass and inertia of the out-of-plane links, as the software did not allow for overconstraints. Although
the author is confident that the conditions presented in this thesis are correct, it would be good to simulate the
manipulator, including all the out-of-plane links. A further improvement in this direction is to simulate the 6
DoF linkage to see the result of the roll rotations of the out-of-plane links and the approximation made in the
inclusion of the platform.

There are also some improvements that could be made in the design of the constrained spatial pantograph
linkage. These could be improvements such as combining the functions of the counter masses and counter-rotations
presented by Herder and Gosselin (2004), or performing an optimization of the mass and length parameters of the
linkage. Other improvements could be in the design of the joints to increase the workspace of the manipulator.
The improved design could then be fabricated with high precision such that tests could be performed.

Lastly, control of the constrained spatial pantograph linkage could be an exciting research topic. Due to its
spatial motion and the coupling of the three arms to the platform, controlling this linkage to perform specified
trajectories would be a great challenge.
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Conclusion
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Conclusion

In chapter 2 of this thesis, it was found that only three designs for spatial 6 DoF dynamically balanced
manipulators exist: the parallelepiped [9], the compound four-bar [10] and the PAMINSA [11]. Another
promising design is the spatial pantograph linkage [12], as this linkage has 6 DoF motion capability and is
force balanced using only 2 counter masses. These linkages were compared concerning their potential use in
aerial manipulation, from which it was concluded that none of them was useable yet for aerial manipulation as
the balancing led to a significant increase in mass and complexity of the manipulators.

In chapter 3, a systematic study on novel 3 DoF and 6 DoF force and moment balanced manipulators was
conducted. This study started with constraining the general spatial pantograph from 6 DoF to 3 DoF, so that
it could be used as a leg for a parallel 6 DoF manipulator. For the 3 DoF linkages, the forward and inverse
kinematics were obtained next to the singularities, resulting in the manipulator’s torus-shaped workspace. The
force and moment balance conditions were obtained using the conservation of linear and angular momentum
and were verified using the dynamic simulation software ADAMS. Three possible designs that fulfil the balance
conditions were presented: (1) a force balanced 3 DoF manipulator that is balanced by 2 counter masses, (2) a
dynamically balanced 3 DoF manipulator that is balanced by 4 counter masses and 3 counter-rotations, and (3)
a dynamically balanced 3 DoF manipulator that is balanced by 3 counter masses and 3 counter-rotations. Each
of the 3 DoF linkages was used to synthesize a 6 DoF parallel manipulator resulting in three other designs: (4)
a force balanced 6 DoF manipulator which is balanced by 6 counter masses, (5) a dynamically balanced 6 DoF
manipulator which is balanced by 12 counter masses and 9 counter-rotations, and (6) a dynamically balanced
6 DoF manipulator which is balanced by 9 counter masses and 9 counter-rotations. For the first dynamically
balanced 6 DoF manipulator, a demonstrator was made, which showed the feasibility of the proposed design.

With the novel manipulators presented in this thesis, improvements are made regarding the state-of-the-art
in the number of moving links, the number of counter masses, and by keeping counter masses close to the base
of the linkage. Additionally, new knowledge is presented regarding the balancing of 2 DoF links. This thesis
was the first to build a physical demonstrator of a 6 DoF balanced linkage to show its feasibility and provide
inside into the motion of such linkages.

Before dynamically balanced linkages, as presented in this thesis, could be used in practical situations, a lot
of optimization is needed. This might be in optimizing mass and length parameters, but also in reducing the
added mass by combining the counter mass and the counter-rotation as in [14]. Concerning aerial manipulation,
there is still a long way to go as the designs presented in this thesis still add too much mass and complexity.
However, more short-term applications might be better off by using knowledge from this thesis to make lower
DoF robotics, such as the passive balancing for 2 DoF links, or robotics that are only force balanced.
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Kinematic description of the constrained spatial pantograph linkage

using quaternions and a comparison to the Euler method

1 Kinematic description using Quaternions

In order to check the kinematic description using Euler Angles, the same description was made using Quaternions.
Quaternions are based on axis-angle rotations, which state that any rotation in three-dimensional space can be
represented by a rotation about a fixed axis at a given angle [1]. With quaternions, the axis-angle parameters are
described as a 4-dimensional vector with unit length in the following form:

q =

(
q0
q

)
(1)

In which

q0 = cos(
θ

2
), q =



q1
q2
q3


 = sin(

θ

2
)u (2)

Because the spatial pantograph has 6 DoF, two quaternions are needed to describe its configuration. Just like with
the Euler Angles description, the quaternion for link 3 is equal to the quaternion for link 1, and the quaternion for
link 4 is equal to the one for link 2 because they move parallel.

2 Comparison between the Euler angles and the Quaternion approach

The method using Euler Angles is more intuitive compared to the one using Quaternions. With Euler angles, it is
easy to visualize how the links are moving, whilst this is all done in maths using the quaternion approach. Results
from both methods with equal input angles are plotted in Figure 1 and give the same results. The results were also
checked with a SolidWorks model and can therefore be assumed to be correct.

With both methods, it was impossible to find eccentric Centre of Mass positions for the out-of-plane links. This
is due to the dependency of all input angles on the roll angle of each out-of-plane link which will also be shown
in another appendix. However, it was already shown by van der Wijk (2022) that the force balance conditions do
not allow for eccentric CoM positions of the out-of-plane links. Therefore, the on-axis CoM position calculation
satisfies.
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Figure 1: Visualization of the spatial pantograph using Euler Angles and Quaternions respectively
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Solution for the inverse kinematics using a Gauss-Newton optimization

process and a comparison to the geometric method

A widely used method for solving the inverse kinematics of a linkage is to use optimization. In this method, a
constraint equation is formulated which should equal zero for all valid solutions. An optimization process is then
used to minimize the value of the constraint equations up to a specified tolerance to solve the inverse kinematics.
In this appendix, a Gauss-Newton process is used as the optimization process.

1 Linearized Gauss-Newton Process

In the process of finding a solution to the inverse kinematics problem with a linearized Guass-Newton process, we
start with defining a constraint-vector C that equals zero when all the constraints are fulfilled. This vector is the
difference between the position for point A with the current input variables and the wanted position for point A;

C = pA − s =




(a1 + a3) cos(θ1) cos(θ2) − sx
(a1 + a3) sin(θ1) cos(θ2) + a2 cos(θ3) − sy

− (a1 + a3) sin(θ2) + a2 sin(θ3) − sz


 = 0 (1)

With the equation C = 0, a constraint surface can be drawn on which the solution must be in order to be a valid
solution. There are infinitely many ways to reach the constraint surface from a given point, but it is proposed to
use the direction in which the distance to the constraint surface is minimal. This could be mathematically written
down as a non-linear constrained least-square problem [1].

The Gauss-Newton method is an iterative method for solving non-linear constrained least-squares problems as
described above [1]. In this method, a vector q is used to describe the nearest set of input angles that fulfil the
constraints, q̄ as the current set of input angles and ∆q as the distance between these two points. The relation
between these points could be written as follows;

q = q̄+∆q (2)

We can fill in this expression into the constraint expression leading to;

C(q) = C(q̄+∆q) = C(q̄) +C,q ∆q = 0 (3)

in which C,q represents the jacobian of the constraint vector.
We want the vector ∆q in the direction in which the gradient of the constraint vector is the greatest, because

this represents the shortest distance to the constraint surface for a linear system. With this, we can write the
following equation [1]; (

E CT
,q

C,q 0

)(
∆q
µ

)
=

(
0

−C(q̄)

)
(4)

in which C(q̄) is the error in fulfilling the constraints. Then, if the linearised constraints are independent, we can
solve for ∆q;

∆q = CT
,q (C,qC

T
,q)

−1C(q̄) (5)

The greatest part of this expression could be written as the Moore-Penrose pseudo-inverse, which gives the least
square solution of the problem [1];

C+
,q = CT

,q (C,qC
T
,q)

−1 (6)
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2 Using the Gauss-Newton Process for the Non-Linear Constraint
Problem

Because the Gauss-Newton method, as described above, minimizes the linearized problem, it will most of the time
not reach the wanted position immediately with non-linear problems. Therefore, this process is iteratively repeated
until the solution to the problem is found.

The search stops if either a set of input values is found that lies on the constraint surface or when the defined
maximum number of iterations is exceeded. It is known that convergence to a feasible point is not guaranteed for
the Gauss-Newton process. For some end-effector points of the manipulator it was observed that, although the
point was inside the workspace, no solution was found and the algorithm converged to an infeasible point. In order
to solve this problem, multiple initial guesses were used before a point was considered infeasible. These were later
checked and shown to be equal to the results of the geometric method.

By discretization of the possible workspace, the workspace of the constrained spatial pantograph mechanism
could be computed by checking if solutions exist for each point. This is done in Figure 1 for the domain −80 ≤
x ≤ 80, −160 ≤ y ≤ 160, −160 ≤ z ≤ 160 mm, and plotting a red dot whenever no inverse-kinematic solution
exists and a black cross when there is a solution. In order to verify the results, the singularity surface that will
be discussed later is plotted in the same figure. By refining the mesh of the test points, the workspace boundaries
could be found. However, this process takes very long, will need a high resolution to obtain accurate solutions and
needs a method to transfer the point cloud into a workspace boundary surface. Therefore, this method is not very
well suited for obtaining the workspace boundaries.

Figure 1: Basic workspace analysis using the Gauss-Newton inverse kinematics method

40



3 Comparison Between the Geometric and the Gauss-Newton Inverse
Kinematic Solutions

After both methods for solving the inverse kinematics were defined, they will be compared. First of all, it needs to
be stated that both methods result in proper solutions to the inverse kinematics. They reach the desired end-point,
and both methods give equal results regarding the feasibility of certain solutions (results in the same workspace).

A remark that has to be made for both methods is that they do not necessarily result in practically feasible
configurations. Some configurations will not be possible due to mechanical interference in the mechanism. With the
Gauss-Newton method, this can be steered by providing different initial conditions, resulting in another solution for
the desired point A. However, to do this properly, one should already have a rough understanding of the joint angles
for the desired output position. With the geometric method, results can be steered by choosing another solution
because the solutions for all working modes can easily be calculated. Therefore, an algorithm to find mechanically
feasible configurations is easier to achieve using the geometric approach.

Another important aspect of each method is the time needed to find the inverse kinematic solution for a given
point A. In order to compare this, both methods were programmed to find inverse kinematics solutions for the
domain −80 ≤ x ≤ 80, −160 ≤ y ≤ 160, −160 ≤ z ≤ 160 mm with a step size of 40 mm in each direction, resulting
in a point cloud with 405 equally spaced points. Both methods were tasked to determine if inverse kinematics
solutions exist for all the points, and this was then timed. Both methods agreed with all the points on whether
inverse kinematics solutions exist.

The Gauss-Newton method took 14.3 seconds to calculate solutions for all the points, resulting in 0.0354 seconds
per point on average. The Geometric method took 0.0417 seconds to calculate inverse kinematics solutions for all
the points, which equals an average of 0.1031 milliseconds per point. This means that the geometric is around 350
times faster than the Gauss-Newton method, and thereby is a more suitable candidate for finding inverse kinematics
solutions.

Although the geometric method is faster and provides more insight into the mechanism, the main advantage
of the Gauss-Newton method is that it is a more general method. For setting up the geometric method, a lot of
insight is needed, which is often more complex than it seems. Next to that, specific kinematic equations need to
be solved in order to obtain solutions. With the Gauss-Newton method, only the constraint vector containing the
joint constraints of the mechanism is needed, which is easy to set up for each system. Thereby the Gauss-Newton
method is easier to use.
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Methods to calculate the workspace boundaries for the constrained

spatial pantograph linkage

Although a singularity analysis suffices to obtain the workspace boundary of the constrained spatial pantograph
linkage, two other methods were used to calculate the workspace boundaries. These will be discussed in this
appendix.

1 Discretization methods

A way to obtain the workspace of the constrained spatial pantograph is by discretization. This involves discretizing
a domain in cartesian space and determining for each point if inverse kinematic solutions exist. The workspace
boundaries can then be determined using interpolation. However, finding all valid points takes quite a lot of
time, and it is hard to interpolate the points to plot the workspace boundaries. Additionally, this method only
approximates the workspace and does not find exact solutions.

The advantage of this method is that no kinematic model has to exist for the manipulator, which is very useful
for complex kinematic situations like in the 6 DoF parallel linkage with constrained spatial pantographs as legs. The
inverse kinematics for each leg could be solved, but it is very hard or even impossible to find the inverse kinematic
solution for the complete linkage. In such complex cases, discretization methods could be of great use.

2 Geometric method

Another method for determining the workspace is based on the geometric approach for the inverse kinematics. This
method makes use of the two known points in the inverse kinematics problem: de base (point S), and the desired
end-effector position (point Agoal). Around point S, a circle in the yz-plane is drawn, which shows all possible
positions for point P1 due to link 2. Around point Agoal a sphere is drawn, which defines all possible positions for
P1 due to link 3.

The geometric method searches for inverse kinematic solutions by finding intersection points between the black
circle and the sphere, as shown in Figure 1. When Agoal is inside the workspace, there are always two intersection
points between the circle and the sphere. On the workspace boundary, the sphere touches the yz-plane, resulting
in only one intersection point. Outside the workspace, there are no intersection points because either the sphere
does not intersect the yz-plane, or the slice of the sphere on the yz-plane is inside the circle. From this, it can be
concluded that the boundary of the workspace is always at a distance a1 + a3 from the black circle in Fig. 1.

In Figure 2, the geometric method for obtaining the workspace is shown. The black circle represents the possible
points P1 due to the rotation of link 2, exactly as in Figure 1. The red circle represents the workspace boundaries
for a plane perpendicular to the plane of the black circle. In this way, the workspace boundaries can be determined
for each value of θ3.

By rotating the red circle along the inertial x-axis, the total workspace of the manipulator could be obtained.
This is shown in Figure 3. This workspace is equal to the workspace obtained using the singularity surface. However,
calculations are faster, and a finer mesh could be chosen.
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Figure 1: Geometric approach for the inverse kinematics in which the intersection between a circle and a sphere is
calculated to solve the inverse kinematics

Figure 2: Schematic representing how the workspace can be drawn using the geometric method
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Figure 3: Workspace of the constrained spatial pantograph using the geometric method
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Visualization of inverse kinematics solutions of the 3 DoF and 6 DoF

constrained spatial pantograph linkage using MATLAB apps

In order to verify the inverse kinematics and the workspace analysis, apps were built in which the end effector
point could be chosen, and a possible posture that reaches the end effector point is shown. Next to the verification
purpose, these apps also give insight into how different points could be reached.

In this appendix, we will first discuss the app made for the 3 DoF constrained spatial pantograph linkage, after
which the app for the 6 DoF linkage is discussed. Both apps were built using the MATLAB App Designer.

1 App concerning the 3 DoF linkage

The 3 DoF constrained spatial pantograph linkage has three input angles that can be controlled to reach a position
with its end-effector point. Therefore, in this app, the translational position of the end-effector point could be set
as an input. With this input position, a non-linear gauss-newton optimization is used to solve for a set of input
angles, which is shown in the table in Figure 1. Furthermore, the calculated result is plotted with the goal position
marked with a red circle. A screenshot of the app concerning the 3 DoF constrained spatial pantograph can be seen
in Figure 1.

Lastly, it is also possible in this app to choose the configuration of the linkage, which changes the position of
the counter-masses as described in the force balanced general spatial pantograph by van der Wijk (2022).

Figure 1: Screenshot of the app concerning the inverse kinematics of the 3 DoF constrained spatial pantograph
linkage

47



2 App concerning the 6 DoF parallel manipulator

After the app for the 3 DoF linkage was built, this was extended for the 6 DoF linkage. A screenshot of this app
can be seen in Figure 2. In this app, the following input parameters can be set by the user:

1. The position and orientation of the platform;

2. The radius of the platform;

3. The radius of the circle to which the base of each leg is attached, shown as a striped black circle in Figure 2;

4. The vertical rotation of the base of each platform, named Alpha1, Alpha2 and Alpha3.

5. The configuration of the legs, which changes the position of the counter-masses as described in [1].

In order to solve the inverse kinematics, we will start by taking the difference between the attachment point on
the platform and the base for a leg. This vector is then rotated back with the rotation angle of the leg (Alpha) such
that the problem becomes equal to the original inverse kinematic problem described in the paper. This problem is
then solved using the geometric method. With this solution for the input angles, the linkage is rotated with the
prescribed rotation of the leg and is plotted afterwards. This process was repeated for each leg.

When no inverse kinematic solution exists, the legs are not plotted, and there is a text shown on the plot that
no solution exists.

Figure 2: Screenshot of the app concerning the inverse kinematics of the 6 DoF parallel mechanism consisting of
constrained spatial pantograph linkages
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Non-linear relations between the rotations of the input links and the roll

rotation of the out-of-plane links

Linkages could be moment balanced actively, by using inertia wheels attached to actuators, or passively, by
attaching an inertia wheel to one of the links using a transmission. In passive balance, the inertia wheel rotates in
the opposite direction of the link to cancel the angular momentum generated by the mechanism. For practically
feasible mechanisms, all links should have a linear relation with one of the input links. Otherwise, a complex
transmission that exactly follows the mechanism’s non-linearity is needed to balance the mechanism passively. In
this appendix, the relation between the input links and the out-of-plane links is investigated.

As stated in the paper, it was not possible to calculate the orientation of the out-of-plane links with the Euler
Angles or Quaternion approach. Therefore another method was found to calculate this orientation, which will be
demonstrated for link 6 in this appendix.

Due to the way the universal joint is assembled, the body-fixed z-axis of link 6 should be perpendicular to the
plane spanned by point P1 and P2. This direction can be found by taking the cross product:

z6 = ∥P2 ×P1∥ (1)

Then, the body-fixed y-axis should be along the length-axis of the link, which can be calculated as follows:

y6 =




0
cos(θ3)
sin(θ3)


 (2)

Lastly, we know that the x-axis should be perpendicular to both the z-axis and the y-axis so we can calculate the
x-axis as:

x6 = ∥y6 × z6∥ (3)

Writing this out as a formula results in very complex equations, so it was chosen to just plot the relations between
different input angles and the roll rotation of link 6. The base values for the input angles were:

θ1 = 45deg (4)

θ2 = 10deg (5)

θ3 = 22.5 deg (6)

For each plot, one of the angles was changing their value between 0 and 90 degrees. The results can be seen in
Figures 1, 2 and 3. In these figures it is visible that all input angles influence the roll angle of link 6, and all these
relations are non-linear. Therefore, passive moment balance is not possible for the current design of the linkage.

Several solutions may exist to overcome this problem. Probably choices for the joints in point P1 and P2 exist
such that the out-of-plane links are no longer needed. A second possible solution may be to construct the out-of-
plane links in such a way that the inertia around its length axis is negligible, such as with a slender rod. When
the inertias around the other two axes are identical, it is possible to take the other two rotation axes into account,
as shown in the paper. The disadvantage of this solution is that the constrained spatial pantograph linkage is only
balanced approximately. However, having out-of-plane links is expected to increase the rigidity of the mechanism
compared to the other solution described above which may be beneficial.
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Figure 1: Influence of θ1 on the roll angle of link 6
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Figure 2: Influence of θ2 on the roll angle of link 6
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Figure 3: Influence of θ5 on the roll angle of link 6
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Detailed solution for the Moment Balance of the Constrained Spatial

Pantograph

1 Moment Balance

A linkage is said to be moment balanced when the linkage’s total angular momentum is independent of the input
angles and velocities. Angular momentum could be split up into two parts. Firstly the orbital angular momentum,
which describes the angular momentum generated by moving the Centre of Mass (CoM) of a link along a circular
trajectory. This value could be calculated by taking the cross product between the CoM position and the linear
momentum of the link.

The second part of angular momentum is called spin angular momentum, which describes the angular momentum
generated by rotating a link around its centre of mass.

2 Rotation matrices and angular velocity vectors

Before we start calculating the different angular momentum values, we first need to define some rotation tensors
and vectors defining the direction of the angular velocity of the links.

Firstly, the rotation tensors for link 1 are defined. The rotation of link 1 is split up into a pitch motion around
the body-fixed y-axis, and a yaw motion around the inertia z-axis:

Ryaw,1 =



cos(θ1) − sin(θ1) 0
sin(θ1) cos(θ1) 0

0 0 1


 (1)

Rpitch,1 =




cos(θ2) 0 sin(θ2)
0 1 0

− sin(θ2) 0 cos(θ2)


 (2)

Then, the angular velocities and their directions can be specified. The yaw-motion of link 1 is described using θ1
and is directed along the inertial z-axis.

ω1 =




0
0

θ̇1


 (3)

The pitch motion of link 1 is around the body-fixed y-axis and is described using θ2. The fact that this is a
body-fixed vector is denoted by superscript B.

Bω2 =




0

θ̇2
0


 (4)

Lastly, the pitch rotation of link 2 is around the inertial x-axis and described by θ3.

ω3 =



θ̇3
0
0


 (5)
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3 Angular Momentum of the Different Parts

With the rotation tensors and the angular velocity vectors described above, the angular momentum of the counter-
inertia’s could be written down. Due to the force-balance conditions, the counter-rotations should be either attached
to the base or axisymmetric to it. Therefore, these counter-rotations do not have any orbital angular momentum.

Lθ1 = −Iθ1ω1 (6)

Lθ2 = Ryaw,1Rpitch,1Iθ2R
T
pitch,1R

T
yaw,1ω1 −Ryaw,1Rpitch,1Iθ2ω2 (7)

Lθ3 = −Iθ3ω3 (8)

For each link, the CoM position ri is calculated from which the linear momentum could easily be obtained using
the following formula:

pi = miṙi (9)

This linear momentum could be used to calculate the orbital angular momentum for each link:

Lorbit,i = ri × pi (10)

The calculation of the spin angular momentum differs per link, because not every link has the same Degrees of
Freedom (DoF). For link 1 and 3, the spin angular momentum could be calculated as follows:

Lspin,i = Ryaw,1Rpitch,1IiR
T
pitch,1R

T
yaw,1ω1 +Ryaw,1Rpitch,1Iiω2 (11)

For link 2 and 4, the spin angular momentum is calculated by:

Lspin,i = Iiω3 (12)

4 Total Angular Momentum

By summing the angular momentum of all the links, the total angular momentum of the linkage could be obtained.
In these calculations, all links are assumed to have concentric CoM positions. This is because it was observed that
the linkage is not balanceable with non-concentric CoM positions, and adding the non-concentric terms decreases
the readability of the equations.

The total angular momentum of the linkage could be written as:

Lx = [A sin(θ1) sin(θ2)− C sin(θ1) cos(θ2) + L cos(θ1)sin(θ2)sin(θ3)

+G cos(θ1) sin(θ2) cos(θ2)− F cos(θ1) cos(θ2) sin(θ3) + 2(B +K) cos(θ1) cos(θ2)
2

+M cos(θ1) cos(θ2) cos(θ3)− (B +K) cos(θ1)]θ̇1

+[F sin(θ1) sin(θ2) sin(θ3)−M sin(θ1) sin(θ2) cos(θ3) + L sin(θ1) cos(θ2) sin(θ3)−H sin(θ1)

+C cos(θ1) sin(θ2) +A cos(θ1) cos(θ2)− F cos(θ2) cos(θ3) + L cos(θ2) cos(θ3)−M cos(θ2) sin(θ3)]θ̇2

+[−L sin(θ1) sin(θ2) cos(θ3) +M sin(θ1) cos(θ2) sin(θ3) + L cos(θ2) sin(θ3)

+F sin(θ1) cos(θ2) cos(θ3)− F sin(θ2) sin(θ3) +M sin(θ2) cos(θ3) + I]θ̇3

(13)

Ly = [L sin(θ1) sin(θ2) sin(θ3) +G sin(θ1) sin(θ2) cos(θ2)− F sin(θ1) cos(θ2) sin(θ3)

+2(B +K) sin(θ1) cos(θ2)
2 +M sin(θ1) cos(θ2) cos(θ3)− (B +K) sin(θ1)−A cos(θ1) sin(θ2)

+C cos(θ1) cos(θ2)]θ̇1

+[C sin(θ1) sin(θ2) +A sin(θ1) cos(θ2)− F cos(θ1) sin(θ2) sin(θ3) +M cos(θ1) sin(θ2) cos(θ3)

+L cos(θ1) cos(θ2) sin(θ3) +H cos(θ1)]θ̇2

+[L cos(θ1) sin(θ2) cos(θ3) +M cos(θ1) cos(θ2)− F cos(θ1) cos(θ2) cos(θ3) +D]θ̇3

(14)
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Lz = [−L sin(θ1) sin(θ2) cos(θ3) +M sin(θ1) cos(θ2) sin(θ3) + F sin(θ1) cos(θ2) cos(θ3)

−(B +K) sin(2θ2) +G cos(θ2)
2 + J ]θ̇1

[M cos(θ1) sin(θ2) sin(θ3) + F cos(θ1) sin(θ2) cos(θ3)−A sin(θ2) + L cos(θ1) cos(θ2) cos(θ3)

+C cos(θ2)]θ̇2

+[L cos(θ1) sin(θ2) sin(θ3)− F cos(θ1) cos(θ2) sin(θ3) +M cos(θ1) cos(θ2) cos(θ3) + E]θ̇3

(15)

In which

A = Ixy,1 + Ixy,3 (16)

B = Ixz,1 + Ixz,3 (17)

C = Iyz,1 + Iyz,3 (18)

D = Ixy,2 + Ixy,4 (19)

E = Ixz,2 + Ixz,4 (20)

F = m3p3a2 +m4p4a1 +m5p5o3 +m6p6o1 +m7p7o3 +m8p8o1 (21)

G = Izz,1 − Ixx,1 +m1p
2
1 + Izz,3 − Ixx,3 +m3p

2
3 +m4a

2
1 +m5p

2
5 +m6o

2
1 −m6o

2
2 +m7p

2
7

+m8o
2
1 −m8o

2
5 + Izz,θ2 − Ixx,θ2 (22)

H = Iyy,1 + Iyy,3 +m1p
2
1 +m3p

2
3 +m4a

2
1 +m5p

2
5 +m6o

2
1 +m6o

2
2 +m7p

2
7 +m8o

2
1 +m8o

2
5 − Iyy,θ2 (23)

I = Ixx,2 + Ixx,4 +m2p
2
2 +m3a

2
2 +m4p

2
4 +m5o

2
3 +m5o

2
4 +m6p

2
6 +m7o

2
3 +m7o

2
6 +m8p

2
8 − Ixx,θ3 (24)

J = Ixx,1 + Ixx,3 + Izz,θ2 + Izz,base − Izz,θ1 (25)

K = m8o1o5 −m6o1o2 (26)

L = m8p8o5 −m6p6o2 (27)

M = m5p5o4 −m7p7o6 (28)

5 Moment Balance

In order to obtain a moment balanced linkage, the angular momentum of the linkage should be independent of the
input angles and angular velocities. Therefore, the linkage is moment balanced when all terms (A through M) are
equal to zero.
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Appendix G

Simulation of a dynamically balanced 2
DoF joint using ADAMS
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Simulation of a dynamically balanced 2 DoF joint using ADAMS

In the paper, the design conditions for a dynamically balanced 2 DoF joint were obtained. These state that
the links should be symmetrical about all planes, and the inertia around the length axis and the other axis in the
rotation plane have to be equal. Then, the angular momentum could be compensated for by two counter-rotations.
The conditions are:

p1 = 0 (1)

Ixx,1 = Izz,1 (2)

Iyy,θ2 = Iyy,1 (3)

Ixx,θ2 = Izz,θ2 (4)

Izz,θ1 = Izz,1 + Izz,θ2 (5)

1 Computation of the variables

In order to satisfy the inertia conditions for the link, the equivalent inertia method was used. With this method,
two masses which have the same values for Ixx and Izz as the initial link are added (the red masses in Fig. 1).
The conditions for zero products of inertia were satisfied by making the links symmetrical along the body-fixed
xz-plane.

In order to compensate for the momentum generated by the pitch motion, two counter-inertia’s were added to
the frame (green parts in Fig. 1), such that its centre of mass lies on the z-axis. This is a necessary condition as
the force balance conditions are not met otherwise.

The moment-balance for the yaw motion was performed using a single counter inertia at the base (cyan part in
Fig. 1).

In this model, all parts are made of the same material and thus have the same inertia. The numerical values
used in this simulation can be found in Table 1.

Link i mi (g) Ixx,i (g mm2) Iyy,i (g mm2) Izz,i (g mm2)

1 16.5005 9354.88 18050.1483 9354.88
cr, θ1 102.1033 37258.2767 37258.2767 62538.309
cr, θ2 57.7605 50183.9549 18050.1483 50183.9549
base 11.9148 9828.9217 8048.722 2999.4764

Table 1: Numerical values for the simulation of the dynamically balanced 2DoF joint

2 Simulation results

The 2 DoF link was tested using the dynamic simulation software ADAMS, of which a screenshot can be seen in
Figure 1. In this simulation the following input torques in Nmm were used:

Tθ1 = 10 cos(2π t) (6)

Tθ2 = cos(2π t) (7)
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Figure 1: Screenshot of the ADAMS simulation for the 2 DoF dynamically balanced joint

The test results without counter-rotations can be seen in Figure 2. The results of the balanced test with counter-
rotations can be seen in Figure 3.
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Figure 2: Reaction forces and moments for the unbalanced case with θ1 = 30 sin(2π t) and θ2 = 50 sin(2π t) degrees
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Figure 3: Reaction forces and moments for the balanced case with θ1 = 30 sin(2π t) and θ2 = 50 sin(2π t) degrees

For both tests, the reaction force graphs are similar. This is in line with the expectation because the counter-
inertia’s should not have any influence on the force balance of the joint.

It is clearly visible that the reaction moments reduced significantly with the inclusion of the counter-rotations.
In the balanced case, these reaction moments are almost constant. The non-zero elements could be attributed to
numerical errors due to the finite number of decimals used in ADAMS and to numerical integration errors. With
these results, the theory regarding the moment balance of a 2 DoF link can be assumed to be correct.
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Appendix H

Simulation inaccuracies using ADAMS
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Simulation inaccuracies using ADAMS

As can be seen in the ADAMS simulation results, a significant amount of noise is present in the results. In this
appendix, the errors will be investigated, and we will estimate if the errors could be attributed to numerical errors.

1 Experiment 1: Setting all input angles to zero

In the first experiment, the values of θ1, θ2 and θ3 are set to be zero using the motion tab in ADAMS. The mass
parameters are calculated using MATLAB and imported into ADAMS with the highest possible number of decimals.
The resulting graphs for the CoM positions can be seen in Figure 1. At first glance, this seems like a perfect force
balance solution, but there are some inaccuracies.
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Figure 1: Simulation results for the CoM position of the linkage when the input angles are set to 0 degrees

Although the design variables were calculated to result in a total CoM position at the origin ([0, 0, 0]), the
simulation results are not exactly zero, but a near-zero constant value in the order of 10−29 to 10−6. When
changing the stepsize for integration, the size of these non-zero values do also change.
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2 Experiment 2: No input torques for different stepsizes

In the second experiment, the input torques are set to zero. Firstly with a stepsize of 4 ms and afterwards with a
stepsize of 1 ms. For a perfectly force balanced linkage, both should result in constant CoM positions. The results
from these experiments can be seen in Figures 2 and 3 respectively.
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Figure 2: Noise in the CoM positions when no torques are applied to the linkage with a stepsize of 4ms

3 Discussion

For a perfectly balanced linkage, Figures 1, 2 and 3 should be identical. However, this is clearly not the case. Next
to that, when alternating the stepsize of a linkage that should experience no motion (because it is force balanced
and experiences no input torques), the results for the CoM positions change. These Figures suggest that these
errors are due to numerical inaccuracies, most likely due to the finite number of decimals that can be inputted into
ADAMS and to round-off errors. This explanation was also used for the simulation of the parallelepiped linkage in
[3]

Another explanation for the noise in the moment balanced linkage could be the use of a coordinate projection
method as described in [1]. During dynamic simulations, it commonly happens that after an integration step, the
constraints are no longer satisfied. Using a coordinate projection method, the integration results of the last step are
mapped back onto the constraint surface to meet the constraints. Using this process slightly changes the acceleration
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Figure 3: Noise in the CoM positions when no torques are applied to the linkage with a stepsize of 1ms

values for the links in the simulation results, but probably not the acceleration values of the counter-rotations, as
for most of them their CoM does not move. This could lead to a little unbalance in the results.

It was also observed that this noise mainly occurs at near-zero values. When looking at the reaction moments
around the y-axis of the balanced results, as presented in the paper, the value of the reaction moment is constant
(minimal and maximal values are equal according to MATLAB). However, noise is observed when changing the mass
of the counter-rotation for θ3 to zero and thereby giving near-zero values to Ty. This suggests that the integration
method does not perform well for near-zero values.

Lastly, the numerical noise could be explained by the used integration method. The default integration method
that is used by ADAMS is a GSTIFF method. This method uses a variable stepsize and a variable order during
integration. The GSTIFF is a fast and accurate method for computing displacements for a wide range of motion
analysis problems [2]. Another available method in ADAMS is the WSTIFF method, which is comparable to
the GSTIFF method. The main difference between these methods is that in the GSTIFF method coefficients are
calculated assuming a constant step size, whereas WSTIFF coefficients are a function of the stepsize [2]. If the
stepsize is suddenly changed during integration, an error is introduced when using the GSTIFF method, while
WSTIFF could handle these situations without loss in accuracy.

By experimenting in ADAMS, the GSTIFF method showed large peaks and noise in the results, whereas the
WSTIFF method resulted in smooth curves. Therefore, it was chosen to use the WSTIFF method for all the
integrations.
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4 Conclusion

It was observed that the noise present in the integration results is most likely due to numerical errors during
integration. However, some steps could be taken to reduce the size of the noise:

1. Insert all values with the maximum number of digits possible. This reduces inaccuracies in the simulation
results due to a difference in precision between ADAMS and the MATLAB calculations for satisfying the
balancing constraints.

2. Choose a proper integrator for the system. The WSTIFF integrator showed to work better than the standard
GSTIFF integrator for the constrained spatial pantograph linkage.

3. Reduce the maximum error tolerance in the integration settings. The smallest possible setting is 1E − 10.

4. Choose a proper stepsize for the integration. Smoother results are generally obtained with smaller stepsizes,
but these simulations take longer to run.

Although the amount of noise could be reduced with the tips stated here, numeric integration always comes
with some inaccuracies. Therefore, we can still assume the dynamic balance conditions to be correct.
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linkage

65



Detailed solution for the force and moment balance of compound

four-bar linkage

1 Introduction

This appendix is meant to give an in-depth explanation for the work done on the dynamically balanced compound
four-bar mechanism. The methods and work in this document are based on the work of Berkof and Lowen (1969,
1971) on the dynamic balancing of four-bar mechanisms, and the work of Wu (2003) on the dynamic decoupling of
four-bar mechanisms.

Compared to the different papers cited above, the benefit of this appendix are that the same notation is used
throughout the whole calculation, and all the in-between steps are also shown which is often not possible in a paper.

2 Single fourbar prerequisites

In order to obtain dynamic balance conditions for the single four-bar, one should have a clear understanding of
the kinematics of this linkage. This section will present a description of all parameters, and the essential geometric
relations.

The four-bar mechanism that will be investigated, including the definitions for the used angles, can be seen in
Fig. 1. Note that the angle ψ′

2 is not correctly shown, and the arrow should stop at r′2.

Figure 1: Schematic of a four-bar mechanism [4]

Instead of using all the link lengths as variables, we will use their ratio with L2 as variables to simplify equations
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later on. These ratios will be used as follows:

µ1 =
L1

L2
, µ2 =

L3

L2
, µ3 =

d

L2
(1)

2.1 Useful identities

The four-bar mechanism has complex geometric relations between the angles of the different links because it is a
closed-loop linkage. In order to make equations more insightful, it is often helpful to use geometric identities.

These identities were calculated by expanding the expression on the left-hand side and then substituting the
geometric constraint relation (Eq. 7) of a four-bar mechanism. This resulted in the following identities:

cos(θ1 − θ2) = τ2 − µ1

sin(θ1 − θ2) = τ1

sin(θ3 − θ2) = τ3

(2)

In which τ1 and τ2 could be written as follows using the geometric conditions of a four-bar that are written down
in Eq. 7.

τ1 = µ2sin(θ1 − θ3) + µ3sin(θ1)

τ2 = µ2cos(θ1 − θ3) + µ3cos(θ1)

τ3 = µ1 sin(θ1 − θ3) + µ3 sin(θ3)

(3)

2.1.1 Freudenstein Equation

Another useful equation for four-bar mechanisms is the Freudenstein equation from [5]. The calculation of this
equation started with writing the relation between the links in the following vector form.

rP2/P1
= rP1/P3

+ rP3/P ′
2
− rP1/P2

(4)

With this vector form, it could be easily realized that the square of both sides should also be equal.

(rP2/P1
)2 = L2

2 = (rP1/P3
+ rP3/P ′

2
− rP1/P2

)2 (5)

By filling in the vectors in Eq. 5 for the other links, the Freudenstein equation could finally be obtained:

µ2
1 + µ2

2 + µ2
3 − 1 = 2µ1 µ2cos(θ1 − θ3) + 2µ1 µ3 cos(θ1)− 2µ2 µ3 cos(θ3) (6)

2.2 Geometric relations

In order to express all the equations in this appendix in a minimal set of coordinates (depending only on θ1 and
θ̇1), the relation between the different angles has to be found. For the geometrics of the single four-bar mechanism,
the following constraint equations must hold:

µ1 cos(θ1) + cos(θ2) = µ2 cos(θ3) + µ3

µ1 sin(θ1) + sin(θ2) = µ2 sin(θ3)
(7)

With this relation θ3 could be written in terms of θ1 and θ2 in the following way

cos(θ3) =
cos (θ2)− µ3 + µ1 cos (θ1)

µ2

sin(θ3) =
sin (θ2) + µ1 sin (θ1)

µ2

(8)

When substituting this into the trigonometric identity cos2(θ3) + sin2(θ3) = 1 the following results can be found
for sin(θ2):

sin(θ2) = −H− µ3 cos (θ2)− µ1 µ3 cos (θ1) + µ1 cos (θ1) cos (θ2)

µ1 sin (θ1)
(9)
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In which

H =
1

2
(µ2

1 − µ2
2 + µ2

3 + 1) (10)

Then all that is left is to find an expression for cos(θ2) in terms of θ1. When using the trigonometric relation
cos2(θ2) + sin2(θ2) = 1 an equation in the following form can be obtained:

A2 cos
2(θ2) +A1 cos(θ2) +A0

µ2
1(cos

2(θ1)− 1)
= 0 (11)

In which
A2 = −µ1

2 + 2 cos (θ1) µ1 µ3 − µ3
2

A1 = 2µ1
2 µ3 cos

2 (θ1)− 2µ1 µ3
2 cos (θ1)− 2Hµ1 cos (θ1) + 2Hµ3

A0 = −H2 + 2Hµ1 µ3 cos (θ1)− µ1
2 µ3

2 cos2 (θ1)− µ1
2 cos2 (θ1) + µ1

2

(12)

Using the abc-formula, the following result can be obtained for cos(θ2):

cos(θ2) =
−A1 + ϵ∆

2A2
(13)

in which ϵ is dependent on the assembly mode of the four-bar and has a value of either 1 or −1. More on that will
follow in the next subsection. The value for ∆ in the formula above can be written as:

∆ =
√
A2

1 − 4A2A0 (14)

Simplification of this equation in MATLAB results in the following expression:

∆ = 2µ1

√(
cos (θ1)

2 − 1
)
(H2 − 2Hµ1 µ3 cos (θ1) + µ1

2 µ3
2 cos2 (θ1)− µ1

2 + 2µ1 µ3 cos (θ1)− µ3
2) (15)

2.2.1 Assembly modes of the four-bar mechanism

As said above, the value of ϵ in Eq. 13 determines the assembly mode of the four-bar mechanism. There are two
possible values for ϵ: 1 or −1. These are depicted in Fig. 2 and 3, respectively.

2.2.2 Simplification of the root of ∆

The root in the expression of ∆ makes computation very difficult. Therefore it is necessary to simplify the expression
of this root. This will be done in two ways in this section.

Extracting the cos2(θ1) term from the root

One way to simplify the root of ∆ is by replacing the (cos2(θ1)− 1) term with −sin2(θ1) and extracting this from
the root. This results in the following expression for ∆:

∆ = 2µ1 sin (θ1)
√

−H2 + 2Hµ1 µ3 cos (θ1)− µ1
2 µ3

2 cos2 (θ1) + µ1
2 − 2µ1 µ3 cos (θ1) + µ3

2

= 2µ1 sin (θ1) ξ
(16)

We will call this simplification of ∆ solution set CP0

Writing ∆ as an exact square

Another way to simplify ∆ is to write it as an exact square (
√
A2 = |A|) such that the square root is eliminated.

We will start by writing ∆ in the form
∆ =

√
Ω (17)
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Figure 2: Assembly mode for ϵ = 1

0 0.5 1 1.5 2 2.5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fourbar with mode  = -1

Figure 3: Assembly mode for ϵ = −1

In which Ω could be written as a polynomial in the form

Ω = µ2
1(b4cos

4(θ1) + b3cos
3(θ1) + b2cos

2(θ1) + b1cos(θ1) + b0) (18)
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In which
b4 = 4µ2

1µ
2
3

b3 = −8µ1µ3(H − 1)

b2 = 4H2 − 4µ2
1µ

2
3 − 4µ2

1 − 4µ2
3

b1 = 8µ1µ3(H − 1)

b0 = −4H2 + 4µ2
1 + 4µ2

(19)

Let’s suppose that we can write this equation of Ω in the following form that would simplify ∆ tremendously

Ω = (a2cos
2(θ1) + a1cos(θ1) + a0)

2 (20)

Expansion of Eq. 20 results in

Ω = a2
2 cos (θ1)

4
+ (2 a1 a2) cos (θ1)

3
+
(
a1

2 + 2 a0 a2
)
cos (θ1)

2
+ (2 a0 a1) cos (θ1) + a0

2 (21)

So in order to write Eq. 18 in the form of Eq. 20 the following equations must hold:

b4 = a22

b3 = 2a1a2

b2 = a21 + 2a0a2

b1 = 2a0a1

b0 = a20

(22)

By comparing Eq. 18 and 21, the coefficients from Eq. 20 can be found. The equation with b4 leads to:

a2 = 2µ1µ2 (23)

The negative form of this solution is also possible but is redundant because the equation will be squared, after
which the square root is taken, resulting in the absolute value of the equation.

With the next equation, we can find:

a1 = 2(1−H) = −µ1
2 + µ2

2 − µ3
2 + 1 (24)

Then the other equations can be used to find the expression for a0 and the conditions for the link lengths.
The equation with b2 results in the following expression for a0

a0 = −µ1
2µ3

2 + µ2
2

µ1µ3
(25)

The equation with b1 results in the following expression for a0

a0 = −2µ1µ3 (26)

Equating Eq. 25 and 26 results in
µ2 = µ1µ3 (27)

The equation with b0 is very long and complex and will therefore not be shown here. In order to have this equation
satisfy Eq. 25 and 26 two conditions are possible:

µ3 = 1 (28)

µ1 = 1 (29)

This results in two possible solution sets. The first one is called M4-F-CP1 in [4]:

L2 = d

L1 = L3

a2 = 2µ1 = 2µ2

a1 = 2(1−H) = 0

a0 = −2µ1 = −2µ2

(30)
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The second one (M4-F-CP2 in [4])
L2 = L1

L3 = d

a2 = 2µ3 = 2µ2

a1 = 2(1−H) = 0

a0 = −2µ3 = −2µ2

(31)

With these sets of constraints, two solutions for ∆ can be written. The absolute value signs can be eliminated from
the equation by realizing that cos2(θ1) ≤ 1, and the two solution sets can be written as follows:

∆CP1 = 2µ2
2|cos2(θ1)− 1| = 2µ2

2[1− cos2(θ1)] (32)

∆CP2 = 2µ2|cos2(θ1)− 1| = 2µ2[1− cos2(θ1)] (33)

2.3 Kinematic relations

By taking the time derivative of these constraint equations, relations between the angular velocities can be found.
This leads to the following relation

θ̇2 = −θ̇1
L1 (cos (θ1) sin (θ3)− cos (θ3) sin (θ1))

L2 (cos (θ2) sin (θ3)− cos (θ3) sin (θ2))

θ̇3 = −θ̇1
L1 (cos (θ1) sin (θ2)− cos (θ2) sin (θ1))

L3 (cos (θ2) sin (θ3)− cos (θ3) sin (θ2))

(34)

This could be rewritten to

θ̇2 = −θ̇1
L1 sin (θ1 − θ3)

L2 sin (θ2 − θ3)

θ̇3 = −θ̇1
L1 sin (θ1 − θ2)

L3 sin (θ2 − θ3)

(35)

Using the geometric conditions from Eq. 7 and by assigning variable names, the kinematic conditions could be
simplified to

θ̇2 =
µ1

τ3
sin(θ1 − θ3) θ̇1

θ̇3 =
µ1τ1
µ2τ3

θ̇1
(36)
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3 Force balancing

Force balance conditions were calculated in [1] using the method of linearly independent vectors. In [6], this was
calculated by calculating the CoM position of the total mechanism, and searching for conditions for which this
position is constant.

The conditions calculated in these papers are only sufficient and not necessary, meaning that these calculations
lead to superfluous constraints. This is because they do not express the CoM expression in a minimal set of
coordinates. Because the mechanism only has 1 DoF, the equation should be expressed using 1 independent
variable. However, they use both θ1 and θ2 as variables in their equations.

3.1 Constant Centre of Mass

The force acting on the base of a mechanism is equal to the time derivative of the linear momentum in that system,
as can be seen in the following equation

F = ṗ =
d

dt
(mv) = 0 (37)

In order to have zero reaction forces, the velocity of the CoM should be constant or zero. Because it is not feasible
to have a mechanism in which the CoM has a constant linear velocity, it can be stated that the CoM should be
at a constant point in space. The conditions to have a constant position of the CoM can be calculated in two
ways. Firstly the method of linearly independent vectors as in [1] will be explained, and afterwards a vector-based
method.

For both methods, the CoM of a four-bar mechanism as depicted in Fig. 1 could be calculated using Eq. 38.

rs =
1

m1 +m2 +m3

3∑

i=1

miri =
1

Mtot

3∑

i=1

miri (38)

In this equation vector r represents a vector from the origin to the CoM of each link.

3.1.1 Method of linearly independent vectors

This section will briefly discuss the method of linearly independent vectors. This method is used in [1] to obtain
the force balance conditions.

The position vectors of the individual link CoMs could be written as follows

r1 = r1e
i(θ1+ψ1)

r2 = L1e
iψ1 + r2e

i(θ2+ψ2)

r3 = de1 + r3e
i(θ3+ψ3)

(39)

Substituting this into Eq. 38 results in an equation that is linearly dependent. Berkof and Lowen(1969) claim that
this equation could be made linearly independent by including the loop closure equation (Eq. 7). However, the
equation is still dependent on θ1 and θ3 which have linearly dependent terms. As also claimed in [4], the obtained
conditions are sufficient but not necessary!

These conditions are discussed here because they are used in other literature. The conditions found with this
method are:

m1r1 = m2r
′
2µ1

m3r3 = m2r2µ2

ψ1 = ψ′
2

ψ3 = ψ2 + π

(40)

3.1.2 Vector-based method

The method presented here was also used in [6]. However, they only found sufficient conditions in that paper
because they did not express Eq. 38 in a minimal set of coordinates.
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The CoM coordinates for this method are:

x1 = r1 cos (ψ1 + θ1)

y1 = r1 sin (ψ1 + θ1)

x2 = r2 cos (ψ2 + θ2) + µ1L2 cos (θ1)

y2 = r2 sin (ψ2 + θ2) + µ1L2 sin (θ1)

x3 = r3 cos (ψ3 + θ3) + µ3L2

y3 = r3 sin (ψ3 + θ3)

(41)

Filling in these coordinates into Eq. 38 leads to the following expression

rs =
1

Mtot

(
(r1 cos (ψ1 + θ1)) m1 + (r2 cos (ψ2 + θ2) + µ1L2 cos (θ1)) m2 + (µ3L2 + r3 cos (ψ3 + θ3)) m3

(r1 sin (ψ1 + θ1)) m1 + (r2 sin (ψ2 + θ2) + µ1L2 sin (θ1)) m2 + (r3 sin (ψ3 + θ3)) m3

)

(42)
By using the closed loop constraint equation to express cos(θ2) and sin(θ2) in other angles the CoM coordinate
vector could be rewritten to

rs =
1

Mtot

(
A1 cos (θ1) +A2 sin (θ1) +A3 cos (θ3) +A4 sin (θ3) +A5

B1 cos (θ1) +B2 sin (θ1) +B3 cos (θ3) +B4 sin (θ3) +B5

)
(43)

In which

A1 = µ1L2m2 +m1 r1 cos (ψ1)−m2 µ1 r2 cos (ψ2) = RP3

A2 = µ1m2 r2 sin (ψ2)−m1 r1 sin (ψ1) = −RP1

A3 = m3 r3 cos (ψ3) + µ2m2 r2 cos (ψ2) = RP4

A4 = − (m3 r3 sin (ψ3) + µ2m2 r2 sin (ψ2)) = −RP2

A5 = µ3L2m3 +m2 µ3 r2 cos (ψ2)

B1 = m1 r1 sin (ψ1)− µ1m2 r2 sin (ψ2) = RP1

B2 = µ1L2m2 +m1 r1 cos (ψ1)− µ1m2 r2 cos (ψ2) = RP3

B3 = m3 r3 sin (ψ3) + µ2m2 r2 sin (ψ2) = RP2

B4 = m3 r3 cos (ψ3) + µ2m2 r2 cos (ψ2) = RP4

B5 = m2 µ3 r2 sin (ψ2)

(44)

It can be seen that the coefficients in Eq. 44 are almost identical for the x- and y-equation. These are also equations
54 till 7 in [4].

In the papers from [1] and [6], all coefficients from Eq. 44, except for A5 and B5, were set to zero for force
balance. This leads to the set of constraints as presented before in Eq. 40. However, in this set, they are written
as:

RP1 = m1 r1 sin (ψ1)− µ1m2 r2 sin (ψ2) = 0

RP2 = m3 r3 sin (ψ3) + µ2m2 r2 sin (ψ2) = 0

RP3 = µ1L2m2 +m1 r1 cos (ψ1)− µ1m2 r2 cos (ψ2) = 0

RP4 = m3 r3 cos (ψ3) + µ2m2 r2 cos (ψ2) = 0

(45)

The solution set M4 then becomes:
ϵ = ±1

RP1 = 0

RP2 = 0

RP3 = 0

RP4 = 0

(46)

These conditions are determined using a set of equations that is not linearly independent. Thereby the found
conditions are sufficient but not necessary. Therefore, another method for finding the constraints is needed.
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3.1.3 Vector-based method with a simplification of ∆

Force balance conditions for M4-F-CP0

Case CP was first investigated to find new balance conditions. The equations are very elaborate and do not give
new insights. Therefore, they will not be shown here. The solution set found with simplification CP0 for ∆ was:

ϵ = ±1

∆ = 2µ1 sin(θ1) ξ

ψ2 = nπ

RP1 = 0

RP2 = 0

RP3 = 0

RP4 = 0

(47)

This solution set is a subset from Eq. 46 and therefore, we will not look further into this solution. As will be seen
later, the constraint ψ2 = nπ will also follow from the moment balance of solution set M4 later on.

Force balance conditions for M4-F-CP1

In this solution set, the conditions are L1 = L3 and L2 = d. This means that, when in upright mode (ϵ = −1),
the four-bar becomes a parallelogram mechanism. Thereby, all links are rotating in the same direction during
movement, and by intuition we can see that no moment balance is possible without counter-rotations in this mode.
Therefore, this solution set only works for ϵ = 1. Filling in the conditions from Eq. 30 and the simplification from
Eq. 32 into the equation for the CoM (Eq. 38) leads to an expression in the following form:

ȳCP1 =
A30cos

3(θ1) + [A21sin(θ1) +A20] cos
2(θ1) + [A11sin(θ1) +A10] cos(θ1) +A01sin(θ1) +A00

Mtotsin(θ1)(µ2
2 − 2µ2cos(θ1) + 1)

(48)

In which
A30 = 2µ2RP3

A21 = −2µ2RP1

A20 = (1− µ2
2)RP4 − (1 + µ2

2)RP3

A11 = (1 + µ2
2)RP1 + (1 + µ2

2)RP2 − 2µ2m2r2 sin(ψ2)

A10 = −2µ2RP3

A01 = −2µ2RP2 +m2r2 sin(ψ2)(µ
2
2 + 1)

A00 = (1 + µ2
2)RP3 + (µ2

2 − 1)RP4

(49)

From which the coefficients RP1, RP2, RP3 and RP4 are identical to these terms in Eq. 45, using the conditions
from Eq. 30.

To have ȳCP1 constant for any value of θ1, the nominator of Eq. 48 has to be zero, or the denominator should be
infinite. Due to the presence of sin(θ1) in the denominator, it could not be infinite for all values of θ1, and therefore
the nominator should be zero. This could be done by setting all the coefficients to zero. Thereby ψ2 should be set
to be nπ to have all equations equal to zero. So the conditions are:
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ϵ = 1

L1 = L3

L2 = d

∆ = 2µ2
2[1− cos2(θ1)]

ψ2 = nπ

RP1 = 0

RP2 = 0

RP3 = 0

RP4 = 0

(50)

With these conditions, the mechanism also has a constant x-position of the CoM.

Force balance conditions for M4-F-CP2

Now we will look into the force balance conditions using the simplification for ∆ using solution set M4-F-CP2.
When writing out the y-position of the CoM of the mechanism, again an equation in the form of Eq. 48 is

obtained. However, now the coefficients are:

A30 = 2µ2RP3 + (1− ϵ)RP4

A21 = (ϵ− 1)RP2 − 2µ2RP1

A20 = µ2(ϵ− 1)RP4 − (1 + µ2
2)RP3

A11 = (1 + µ2
2)RP1 + 2µ2m3r3 sin(ψ3)

A10 = (ϵ− 1)RP4 − 2µ2RP3

A01 = (1− ϵ)RP2 −m3r3 (µ
2
2 + 1) sin(ψ3)

A00 = (1 + µ2
2)RP3 + (1− ϵ)µ2RP4

(51)

Again, the coefficients RP1, RP2, RP3 and RP4 are identical to these terms in Eq. 45, using the conditions from
Eq. 31.

In Eq. 51, in all equations that contain RP2 or RP4, they are multiplied by (ϵ − 1). So in order to get these
parts of the equations to zero, we can either set ϵ = 1 or RP2 = RP4 = 0.

With ϵ = 1 we get the following solution set M4-F-CP2a:

ϵ = 1

L2 = L1

L3 = d

∆ = 2µ2[1− cos2(θ1)]

ψ3 = nπ

RP1 = 0

RP3 = 0

(52)
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The other solution set M4-F-CP2b is:
ϵ = ±1

L2 = L1

L3 = d

∆ = 2µ2[1− cos2(θ1)]

ψ3 = nπ

RP1 = 0

RP2 = 0

RP3 = 0

RP4 = 0

(53)
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4 Moment Balance

In the last section, conditions for force balancing were found. This section will focus on the moment balance of the
four-bar mechanism, i.e. the conditions for which the four-bar does not induce any reaction moments to its base
during motion. In order to obtain these conditions, we will start with a simplification of the angular momentum
equation, after which we will extract the conditions for which the total angular momentum of the mechanism
vanishes.

4.1 Angular Momentum

The derivation is based on [2], but written according to the variables used in Fig. 1. The total angular momentum of
a mechanism consists of two parts. Firstly, the angular momentum generated by moving the CoMs of the mechanism
in a circular trajectory with respect to the origin, the orbital angular momentum. Secondly, the angular momentum
generated by the rotation of the links, the spin angular momentum. This is written down in equation 54.

Ho =
3∑

i=1

(ri ×miṙi +mik
2
i θ̇i) (54)

For a planar mechanism this could be rewritten in a scalar form:

Ho =

3∑

i=1

Hi =

3∑

i=1

mi(xiẏi − yiẋi + k2i θ̇i) (55)

In this equation, xi and yi are the coordinates for the CoMs of the individual links with respect to the origin,
which is at P1 in the four-bar mechanism. These coordinates can be seen in Eq. 41.

When filling in these coordinates into Eq. 55, the following equation is obtained

Ho =
(
m2

(
L1

2 + r2 cos (ψ2 − θ1 + θ2) L1

)
+m1

(
k1

2 + r1
2
))
θ̇1

+
(
m2

(
k2

2 + r2
2 + L1 cos (ψ2 − θ1 + θ2) r2

))
θ̇2

+
(
m3

(
k3

2 + r3
2 + d cos (ψ3 + θ3) r3

))
θ̇3

(56)

This equation is not very insightful yet. Therefore it will be rewritten using the identities from Eq. 2. With these
identities, the angular momentum can be written as

Ho =
(
L1

2m2 + k1
2m1 +m1 r1

2 + L1m2 r2 τ1 sin (ψ2)− L1m2 r2 cos (ψ2) (µ1 − τ2)
)
θ̇1

+
(
k2

2m2 +m2 r2
2 + L1m2 r2 τ1 sin (ψ2)− L1m2 r2 cos (ψ2) (µ1 − τ2)

)
θ̇2

+
(
k3

2m3 +m3 r3
2 + dm3 r3 cos (ψ3) cos (θ3)− dm3 r3 sin (ψ3) sin (θ3)

)
θ̇3

(57)

To rewrite this expression, the following kinematic relation is used (see Fig. 1)

r2cos(ψ2) = L2 + r′2cos(ψ
′
2) (58)

With this relation, and by rearranging the expression, equation 57 could finally be written to

Ho = θ̇1
(
m1

(
k1

2 + r1
2
)
− L1m2 µ1 r

′
2 cos (ψ′

2)
)

+ θ̇2m2

(
k2

2 + r2 (r2 − L2 cos (ψ2))
)

+ θ̇3m3

(
k3

2 + r3 (r3 − L3 cos (ψ3))
)
+ V +W

(59)

In which the variables V and W are:

V = cos (ψ2)

(
L1 θ̇2m2 r2

(
τ2 − µ1 +

1

µ1

)
+ L1 θ̇1m2 r2 τ2 +

θ̇3m3 r3 cos (ψ3) (L3 + d cos (θ3))

cos (ψ2)

)
(60)

W = sin (ψ2)

(
L1m2 r2 τ1

(
θ̇1 + θ̇2

)
− d θ̇3m3 r3 sin (ψ3) sin (θ3)

sin (ψ2)

)
(61)
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Using the force balance conditions from Berkof and Lowen

In this section, the moment balance solution will be worked out using the force balancing conditions as stated in
[1]. These force balance conditions are shown in Eq. 40

These conditions are not calculated using a minimal set of coordinates, and are thereby sufficient but not
necessary for a statically balanced mechanism. However, they will be used to follow the calculations in other
reports more easily.

Simplification of V

Filling in the condition from Eq. 40 into Eq. 60 leads to the following expression:

V = m2L2r2cos(ψ2)[µ1τ2θ̇1 + (µ1τ2 − µ2
1 + 1)θ̇2 − (µ2 + µ3 cos(θ3))µ2θ̇3] = V1 V2 (62)

For shorter writing, this expression will be split up in V1 and V2 in which V2 is the part between the square brackets.
Filling in the kinematic relations (Eq. 34) leads to the following expression

V2 = [µ1τ2θ̇1 + (µ1τ2 − µ2
1 + 1)

µ1

τ3
sin(θ1 − θ3) θ̇1 − (µ2 + µ3 cos(θ3))

µ1τ1
τ3

θ̇1] (63)

V2
τ3
µ1

= [τ2τ3 + (µ1τ2 − µ2
1 + 1) sin(θ1 − θ3)− (µ2 + µ3 cos(θ3))τ1] θ̇1 (64)

Writing out the terms τ1, τ2 and τ3 as in Eq. 3 and rearranging the equation leads to

V2
τ3

µ1θ̇1
=[2µ1µ2cos(θ1 − θ3) + 2µ1µ3cos(θ1)− µ2µ3cos(θ3) + 1− µ2

1 − µ2
2] sin(θ1 − θ3)

+ [µ2µ3cos(θ1 − θ3) + µ2
3cos(θ1)] sin(θ3)

− [µ2
3cos(θ3) + µ2µ3]sin(θ1)

(65)

Now we want to write everything in terms of sin(θ1− θ3). This could be done by rewriting in the following way:

µ2
3[cos(θ1)sin(θ3)− cos(θ3)sin(θ1)] = −µ2

3sin(θ1 − θ3) (66)

µ2µ3[cos(θ1 − θ3)sin(θ3)− sin(θ1)]

=µ2µ3[cos(θ1)cos(θ3)sin(θ3) + sin(θ1)sin(θ3)
2 − sin(θ1)]

=µ2µ3[cos(θ1)cos(θ3)sin(θ3) + sin(θ1)(1− cos2(θ3)− 1)]

=µ2µ3[−sin(θ1 − θ3)cos(θ3)]

(67)

With Eq. 66 and 67, Eq. 65 could finally be rewritten to

V2
τ3

µ1θ̇1
=[2µ1µ2cos(θ1 − θ3) + 2µ1µ3cos(θ1)− 2µ2µ3cos(θ3) + 1− µ2

1 − µ2
2 − µ2

3] sin(θ1 − θ3) (68)

When comparing this result with the Freudenstein Equation (6) it can be seen that with these force-balance
conditions, V simplifies to

V = 0 (69)

Simplification of W

After substituting the force balance conditions from Eq. 40 and including the kinematic constraints from Eq. 34
the expression for W from Eq. 61 becomes

W = L2m2r2µ1τ1sin(ψ2)[τ3 + µ3sin(θ3) + µ1sin(θ1 − θ3)]
θ̇1
τ3

(70)

When comparing this with the expression for τ3 from Eq. 3 the expression between the square brackets could be
rewritten to 2τ3 which finally results in

W = 2L2m2r2µ1τ1sin(ψ2)θ̇1 (71)
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Final simplified angular momentum equation

With the results obtained by the simplification of V and W , and substituting the force balance conditions of Eq.
40 into Eq. 59, one finally obtains that

Ho =

3∑

i=1

mi(k
2
i + r2i − Liricos(θi)) θ̇i + 2L1m2r2sin(ψ2)sin(θ1 − θ2)θ̇1 (72)

Which can be written more compactly in the following way:

Ho =

3∑

i=1

Iiθ̇i + Iasin(θ1 − θ2)θ̇1 (73)

In which
Ii = mi (k

2
i + r2i − riLicos(ψi)) (74)

Ia = 2m2L2r2µ1sin(ψ2) (75)

This equation is also used to calculate dynamic balance conditions in [4]. Although Ia and Ii have the same
units as moment of inertia, it should not be mistaken to be moment of inertia. It is just a name for a random
variable that is independent of the configuration of the mechanism.

Important note: Due to the force balancing conditions used in the simplification of the angular momentum
function, this simplification is only valid for solution set M4, M4-F-CP0, M4-F-CP1, and M4-F-CP2b. So, it is not
valid for M4-F-CP2a.

4.2 Moment balance for solution set M4

4.3 Moment balance for solution set M4-F-CP0

The simplified angular momentum equation (Eq. 72) could be expressed in a minimal set of coordinates using the
expressions found in section 2.2 and 2.3. This results in the following expression for the angular momentum in a
minimal set of coordinates

H0 = [
Jn
Jd

] θ̇1 (76)

In which

Jn =
3∑

s=0

1∑

t=0

1∑

u=0

js,t,ucos
s(θ1)sin

t(θ1)ξ
u (77)

Jd = 2 ϵ ξ
(
µ1

2 − 2 cos (θ1) µ1 µ3 + µ3
2
)

(78)

In which
j3,0,0 = Ia µ1

2 µ3
3

j2,0,0 = −Ia µ1 µ3
2
(
µ1

2 + 2H− 2
)

j1,1,1 = −2 Ia ϵ µ1 µ3
2

j1,1,0 = −4µ1
2 µ3

2 (I2 − I3)

j1,0,1 = −2 ϵ µ1 µ3 (2 I1 + I2 + I3)

j1,0,0 = Ia µ3

(
H2 + 2Hµ1

2 − 3µ1
2 − µ3

2
)

j0,1,1 = 2H Ia ϵ µ3

j0,1,0 = 4µ1 µ3

(
I2 µ1

2 + I2 µ3
2 −H I2 −H I3

)

j0,0,1 = 2 ϵ
(
I1 µ1

2 + I2 µ1
2 + I1 µ3

2 + I3 µ1
2
)

j0,0,0 = Ia µ1

(
−4H2 + 4µ1

2 + 4µ3
2
)

(79)

For moment balance, Jn should be zero for all values of θ1. This could be achieved by setting all terms in Eq.
79 to zero. This is a necessary and sufficient condition according to [4] because all terms in Eq. 77 are linearly
independent. This also holds for the terms with ξ due to the square root sign. Setting these equations to zero leads
to two possible solution sets:
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M4-F-CP0-I

Ia = 0

I2 = I3

I1 = −I3
I1 = 0

(80)

M4-F-CP0-II

Ia = 0

I2 = I3

I1 = −I3
µ2 = 1

µ1 = µ3

(81)

In [4] it is claimed that these solutions are possibly not force balanced. However, in the calculations for this
document, these conditions were readily included. So, these solutions only have to be checked for physical consis-
tency. However, it should be checked that the conditions for moment balance also satisfy the conditions for force
balance.

In both solutions, Ia has to be zero. This equation could become zero in the following ways

r2 = 0 (82)

ψ2 = 2nπ (83)

ψ2 = (2n+ 1)π (84)

4.3.1 Check for solution set M4-F-CP0-I

For solution set M4-F-I, r2 = 0 is not a valid solution because this would lead to the equation I2 = m2k
2
2 = 0,

which is not physically possible because a mass could not have a zero radius of gyration.
Filling in ψ2 = (2n+1)π into Eq. 74 results in I2 = m2(k

2
2 + r

2
2 +L2r2) = 0 which also has no physical solution.

The last solution (ψ2 = 2nπ) would be a possible solution by looking at I2. However, filling in this solution into
the equations for I3 and RP4 leads to:

I3 = m3 [k
2
3 + r23 − r3L2µ2 cos(ψ3)] = 0

RP4 = m3r3 cos(ψ3) + µ2m2r2 = 0
(85)

These equations clearly show an inconsistency because the cosine should be positive in the first equation, while in
the second equation, this same cosine should be negative. Therefore, M4-F-CP0-I is not a valid solution set!

4.3.2 Check for M4-F-CP0-II

The condition that Ia should be zero results in the same option as in solution set M4-F-I. As also stated in [4], the
solutions from Eq. 82 and 84 leads to an incompatibility in the force balance conditions. The solution in Eq. 83 is
the only valid solution.

The last conditions from Eq. 81 could be rewritten as L3 = L2 and L1 = d. With this, we could rewrite the
force balance conditions from Eq. 40 as follows:

r3 =
m2r2
m3

ψ3 = ψ2 + π
(86)

With a little bit of rewriting, the second condition could be written as I2 = −I1, which leads to the condition:

k2 =

√
−m2r22 − I1

m2
(87)
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In the same way, the condition I3 = −I1 leads to

k3 =

√
−m2

2r
2
2 −m3I1
m2

3

(88)

In order to not have any imaginary parts due to the minus sign in the square roots for k2 and k3, I1 should be
negative. This could only be achieved when ψ1 is a multiple of π. Due to inconsistencies with other solutions as
described in [4], the only valid solution for ψ1 is 2nπ. Substitution of this into the static balance conditions leads
to

r2 =
L2(L1m2 +m1r1)

L1m2
(89)

So, the total set of dynamic balance conditions for solution set M4-F-II is:

ϵ = ±1

L1 = d

L2 = L3

r2 =
L2(L1m2 +m1r1)

L1m2

r3 =
m2r2
m3

k2 =

√
−m2r22 − I1

m2

k3 =

√
−m2

2r
2
2 −m3I1
m2

3

ψ1 = 0

ψ2 = 0

ψ3 = π

(90)

4.4 Moment balance for solution set M4-F-CP1

In this section, the conditions from Eq. 30 for having ∆ as an exact square will be used in the simplified angular
momentum equation from Eq. 72. This results in the following expression for the angular momentum in a minimal
set of coordinates

H0 = [
Jn
Jd

] θ̇1 (91)

In which

Jn =

1∑

s=0

1∑

t=0

js,tcos
s(θ1)sin

t(θ1) (92)

Jd = ϵ [µ2
2 − 2µ2 cos(θ1) + 1] (93)

In which
j1,0 = −2µ2 (I1 + I2)

j0,1 = Ia (1− µ2
2)

j0,0 = I1 − I3 + µ2
2 (I1 + 2I2 + I3)

(94)

As mentioned before, Jn should be zero for a moment balanced mechanism. This results in three possible solution
sets:
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M4-F-CP1-I

Ia = 0

I1 = 0

I2 = 0

I3 = 0

(95)

M4-F-CP1-II

Ia = 0

I2 = −I1
I3 = I1

(96)

M4-F-CP1-III

µ2 = 1

I2 = −I1
(97)

Check for solution set M4-F-CP1-I

At first sight, this solution set looks feasible. However, due to the same reasons as described in Section 4.3.1 for
solution set M4-F-I, this solution set has no physical solution.

Check for solution set M4-F-CP1-II

In this solution set, we again have the same three options to set Ia to zero:

r2 = 0

ψ2 = 2nπ

ψ2 = (2n+ 1)π

(98)

With the solution r2 = 0, it follows from RP2 and RP4 that r3 = 0. Then it follows from RP1 and RP3 that ψ1 = π,
because when r2 would be zero it would be impossible to set equation RP3 to zero otherwise. With these obtained
solutions, we can fill in the second constraint:

I2 = m2k
2
2 = −m1 [k1

2 + r12 + µ1r1L2] = −I1 (99)

This equation clearly has no physical solutions. Therefore, the solution r2 = 0 is not valid.
We will now look at the other two solutions by stating that ψ2 = nπ. From RP2 and RP4 it follows that

ψ3 = ψ2+π and r3 = µ2m2r2
m3

. Then we will use the equation RP4 = 0 to rewrite the last two conditions to I2 = −I3
which finally leads to:

m2(k
2
2 + r22) +m3(k

2
3 + r23) = m2r2L2 cos(ψ2)(1− µ2

2) (100)

Because all the terms on the left side are positive, it is clear that cos(ψ2) > 0 and therefore ψ2 = 0. With the last
found conditions, it follows that ψ3 = π.

In order to find a value for ψ1 we will look at RP1 = 0. From this, three possible solutions can exist:

r1 = 0

ψ1 = 2nπ

ψ1 = (2n+ 1)π

(101)

The solution r1 = 0 leads to an inconsistency in the constraint I2 = −I1, which will finally become m2k
2
2 = −m1k

2
1

which has no physical solution.
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In order to find which of the other two solutions for ψ1 is valid, we will rewrite RP1 and RP3 using Eq. 58:

RP1 = m1r1 sin(ψ1)− µ1m2r
′
2 sin(ψ

′
2) = 0

RP3 = m1r1cos(ψ1)− µ1m2r
′
2 cos(ψ

′
2) = 0

(102)

Because ψ2 = 0, it holds that ψ′
2 = π as long as L2 > r2. By looking at the equation for RP3 we find that ψ1 = π.

This finally leads to the following conditions in solution set M4-F-CP1-II:

ϵ = 1

L1 = L3

L2 = d

ψ1 = π

ψ2 = 0

ψ3 = π

r2 = L2 −
m1r1
µ1r2

r3 =
µ2m2r2
m3

k2 =

√
m2r2(L2 − r2)− I1

m2

k3 =

√
−m3r3(µ2L2 + r3) + I1

m3

(103)

Which is equal to Case II in [3], except for the sign of ϵ.

Check for solution set M4-F-CP1-III

In this solution set, all link lengths are equal, and thereby µ1 = µ2 = µ3 = 1. Additionally, this set imposes no
conditions on the inertia of link 3. From reasoning, it can be concluded that this could not be a valid solution
set. In a dynamically balanced mechanism, inertias and masses have to be carefully chosen such that all the links
compensate for each other’s moment of inertia. There could be no possibility for which a mechanism is balanced
for each value of k3 except for a mechanism in which this link does not rotate.

4.5 Moment balance for solution set M4-F-CP2a

In this section, the conditions from Eq. 52 are used to write ∆ as an exact square. This results in the following
equation for the angular momentum of the mechanism:

Ho = (I1 + I2)θ̇1 (104)

This could be set to zero by having the constraint I2 = −I1. However, just like in case M4-F-CP1-III, this set will
have no physical solution.

4.6 Moment balance for solution set M4-F-CP2b

In this section, we will write ∆ as an exact square using the conditions from Eq. 53. This will result in the following
equation for the total angular momentum of the mechanism:

H0 = [
Jn
Jd

] θ̇1 (105)

In which

Jn =
1∑

s=0

1∑

t=0

js,tcos
s(θ1)sin

t(θ1) (106)
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Jd = ϵ [µ2
2 − 2µ2 cos(θ1) + 1] (107)

In which
j1,1 = Iaµ

2
2(1− ϵ)

j1,0 = −µ2[I2 − I3 + ϵ(2I1 + I2 + I3)]

j0,1 = Iaµ2(ϵ− 1)

j0,0 = ϵ(I1 + I2 + I3 + µ2
2I1) + µ2

2I2 − I3

(108)

With these equations, a couple of solutions can be found:

M4-F-CP2b-I

ϵ = 1

I2 = −I1
(109)

M4-F-CP2b-I

ϵ = ±1

Ia = 0

I3 = −I1
I2 = I1

(110)

Check for solution set M4-F-CP2b-I

Just like solution set M4-F-CP1-III and M4-F-CP2a, this solution will not have a physical solution because there
are no conditions for I3.

Check for solution set M4-F-CP2b-II

We will start off by looking at the constraint Ia = 0. Just like before, this results in the possible solutions

r2 = 0

ψ2 = 2nπ

ψ2 = (2n+ 1)π

(111)

With the static constraints, r2 = 0 would result in conditions ψ1 = π and r3 = 0. When putting this into the
constraint I3 = −I1 we obtain

m3k
2
3 = −m1[k

2
1 + r21 + µ1r1L2] (112)

Which clearly has no physical solution because the left-hand side will always be positive while the right-hand side
will always be negative.

With the other two solutions for ψ2 we can still obtain the following from RP2 and RP4:

ψ3 = ψ2 + π

r3 =
µ2m2r2
m3

(113)

With the condition I2 = I1 we can write the solution

k2 =

√
m2r2(L2cos(ψ2)− r2) + I1

m2
(114)

With the condition I3 = −I1 we can write the solution

k3 =

√
m3r3(µ2L2 cos(ψ3)− r3)− I1

m3
(115)
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Filling in these expressions with the second solution from Eq. 111 (ψ2 = 0) we obtain

k2 =

√
m2r2(L2 − r2) + I1

m2

k3 =

√
−m3r3(µ2L2 + r3)− I1

m3

(116)

In order to have a physical value for k3, I1 should be negative, which could only be the case if ψ1 = 0. Filling in
this finding into RP3 leads to

r2 = L2 +
m1r1
m2

(117)

Which would result in an inconsistency because I3 should be negative in the equation for k3, but positive in the
equation for k2.

From RP1 and RP3 and the third solution from Eq. 111 (ψ2 = π) we find:

ψ1 = π

r2 =
m1r1
m2

− L2
(118)

Which are also consistent with the other equations. This leads to the total solution set for M4-F-CP2b-II:

ϵ = ±1

L2 = L1

L3 = d

ψ1 = π

ψ2 = π

ψ3 = 0

r2 =
m1r1
m2

− L2

r3 =
µ2m2r2
m3

k2 =

√
−m2r2(L2 + r2) + I1

m2

k3 =

√
m3r3(µ2L2 − r3)− I1

m3

(119)

Which is equal to case III in [3].
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5 Dynamic decoupling

A dynamically balanced mechanism does not induce any reaction forces on its base during motion. For a dynamically
decoupled mechanism, this also holds, but also the opposite. When forces are applied to the base of a dynamically
decoupled mechanism, it does not change its configuration. This property could be used to generate additional
degrees of freedom by adding dynamically decoupled mechanism. This is for example done in [3].

5.1 Moment of inertia of a single link

For the inertia tensors of the individual links, it is assumed that the links are symmetric around their length axis,
and thereby have zero products of inertia. The inertia tensor of the first link thereby is:

Ic,1 =



Ixx,1 0 0
0 Iyy,1 0
0 0 Izz,1


 (120)

The other inertia tensors have the same form, but with their own inertias around their principal axes.
In order to find conditions for the reactionless property of a mechanism, we have to express the total inertia of

all links together around 1 point. In this point, the inertia tensor should not be dependent on the configuration in
the mechanism in order for the mechanism to be reactionless. Therefore, we need to express the moment of inertia
of each link around the origin (point P1 in Fig. 1). This could be done using the parallel axis theorem.

5.1.1 Parallel axis theorem

With the parallel axis theorem, the inertia of a body could be calculated around another point than its centre of
mass. Firstly, we define a vector Ri, which is a vector from the centre of mass of the link to the point P1. The
moment of inertia of a link around P1 could then be calculated using:

IP1,i = Ic,i +mi[(Ri ·Ri)E3 −Ri ⊗Ri] (121)

In which E3 is a 3× 3 identity matrix.
All inertia tensors should also be expressed in the same coordinate system before they can be added. On has the

choice to either do the parallel axis theorem calculations in the body-fixed frame and afterwards apply a rotation
matrix, or to immediately express the vector Ri in the inertial coordinate frame. It differs per link what the easiest
choice is. In the following calculations, a prefix B refers to the body-fixed frame of the respective link, and N to
the inertia frame.

Link 1

BR1 =



−r1
0
0


 Q1 =




cos (ψ1 + θ1) − sin (ψ1 + θ1) 0
sin (ψ1 + θ1) cos (ψ1 + θ1) 0

0 0 1


 (122)

N IP1,1 = Q1[Ic,1 +m1[(R1 ·R1)E1 −R1 ⊗R1]]Q
T
1 (123)

Link 2

NR2 =




−r2 cos (ψ2 + θ2)− L2 µ1 cos (θ1)
−r2 sin (ψ2 + θ2)− L2 µ1 sin (θ1)

0


 Q2 =




cos (ψ2 + θ2) − sin (ψ2 + θ2) 0
sin (ψ2 + θ2) cos (ψ2 + θ2) 0

0 0 1


 (124)

N IP1,2 = Q2Ic,2Q
T
2 +m2[(

NR2 ·N R2)E3 −N R2 ⊗N R2] (125)
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Link 3

NR3 =




−L2 µ3 − r3 cos (ψ3 + θ3)
−r3 sin (ψ3 + θ3)

0


 Q3 =




cos (ψ3 + θ3) − sin (ψ3 + θ3) 0
sin (ψ3 + θ3) cos (ψ3 + θ3) 0

0 0 1


 (126)

N IP1,3 = Q3Ic,3Q
T
3 +m2[(

NR3 ·N R3)E3 −N R3 ⊗N R3] (127)

5.2 Moment of inertia of the total mechanism around P1

With the calculations above, the total inertia of the mechanism around P1 could be expressed as:

N Itot =
N IP1,1 +

N IP1,2 +
N IP1,3 (128)

This inertia tensor should be independent of the configuration in order to have a dynamically decoupled mechanism.

5.3 Dynamic decoupling conditions

5.3.1 Dynamic decoupling around the Z-axis

We will start by looking at the conditions for the mechanism to be decoupled in-plane. This means that the inertia
around the Z-axis should be independent of the configuration, and thereby should not contain values of θi.

From Eq. 128 we find:

N Izz = Ic + 2L2m2 µ1 r2 cos (ψ2 − θ1 + θ2) + 2L2m3 µ3 r3 cos (ψ3 + θ3) (129)

In which
Ic = m2 L2

2 µ1
2 +m3 L2

2 µ3
2 +m1 r1

2 +m2 r2
2 +m3 r3

2 + Izz,1 + Izz,2 + Izz,3 (130)

This equation could be rewritten in the form:

N Izz = Ic +Acos(ψ2) +B sin(ψ2) + C cos(ψ3) +Dsin(ψ3) (131)

In this equation, θ2 and θ3 are substituted using the geometric relations. Therefore this equation is only dependent
on θ1. The expressions for A,B,C,D can be found in [7] but are left out in this document due to their complexity.

Due to the existence of both sin(θ1) and cos(θ1) in the numerator and denominator of B and D, these terms
could not be set to zero. Therefore we obtain that sin(ψ2) = 0 and sin(ψ3) = 0. With the leftover part of the
expression, we can rewrite to:

N Izz = Ic +Acos(ψ2) + C cos(ψ3) (132)

This leads to an expression in the form:

N Izz = Ic +
B2 cos

2(θ1) +B1 cos(θ1) +B0

µ2 (µ2
1µ

2
3 − 2µ1µ3cos(θ1))

(133)

We want to rewrite this into the form below in which A2 = A0 = 0 for a dynamically decoupled mechanism:

N Izz = Ic + (A2cos(θ1) +A1) +
A0

µ2
1 + µ2

3 − µ1µ3cos(θ1)
(134)

These could be rewritten into each other using the following expression:


1 µ2

1 + µ2
3 0

0 −2µ1µ3 µ2
1 + µ2

3

0 0 −2µ1µ3





A0

A1

A2


 = µ2



B0

B1

B2


 (135)

Variable A2 consists of some constant values multiplied with m3r3cos(ψ3) +m2µ2r2cos(ψ2), which is equal to RP 4
from Eq. 45. So, if the mechanism is force balanced, the mechanism will (in combination with the other conditions
obtained in this section) have a constant inertia around the z-axis and will therefore be decoupled around the Z-axis.
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We will use the following conditions (valid for M4-F-II and M4-F-CP1-II):

ψ2 = 0 (136)

ψ3 = π (137)

r3 =
µ2m2r2
m3

(138)

5.3.2 Dynamic decoupling around the X-axis

After obtaining the conditions for dynamic decoupling around the Z-axis, we will now look into the dynamic
decoupling conditions around the X-axis. The inertia around the X-axis is in the form:

N Ixx =
B4 cos

4(θ1) +B3 cos
3(θ1) +B2 cos

2(θ1) +B1 cos(θ1) +B0

4m3µ2
2 (µ

2
1 + µ2

3 − 2µ1µ3cos(θ1))2
(139)

In the same way as we did for the inertia around the Z-axis, we want to rewrite this expression in a simpler form.
For this case:

N Ixx = A4 cos
2(θ1) +A3 cos(θ1) +A2 +

A1

V − 2Ucos(θ1)
+

A0

(V − 2Ucos(θ1))2
(140)

In which

U = µ1µ3 V = µ2
1 + µ2

3 (141)

The coefficients of both equations are related to each other with the following equation:




1 V V 2 0 0
0 −2U −4U V V 2 0
0 0 4U2 −4U V V 2

0 0 0 4U2 −4U V
0 0 0 0 4U2







A0

A1

A2

A3

A4




= 4m3µ
2
2




B0

B1

B2

B3

B4




(142)

The mechanism is dynamically decoupled around the x-axis if A4 = A3 = A1 = A0 = 0. Solving using MATLAB
results in:

Ixx,1 = m2 L2
2 µ1

2 −m2 r2 L2 µ1
2 +m1 r1

2 + Iyy,1

Ixx,2 = m2r
2
2 − L2m2r2 + Iyy,2

Ixx,3 = Iyy,3 +
m2

2 µ2
2 r2

2 + L2m3m2 µ2
2 r2

m3

(143)

With these solutions, the total Inertia tensor from Eq. 128 becomes a principal inertia tensor that is independent
of the configuration of the mechanism.

Given these results, it may seem possible for a single planar four-bar linkage to have a constant spatial inertia
tensor while in motion. However, from the balancing conditions for M4-F-CP1-II (where r2 < L2), one can write

|Ixx,2 − Iyy,2| − Izz,2 = Izz,1 +m1r1(r1 + L1) > 0 (144)

i.e.,
|Ixx,2 − Iyy,2| > Izz,2 (145)

Clearly, this is impossible since the difference between any two components must be smaller than or equal to the
third one for the three principal moments of inertia of a rigid body.

5.3.3 Planar dynamic decoupling

From the material stated in this appendix, it could be concluded that a dynamically balanced mechanism is also
dynamically decoupled for planar motion in the x-y plane. However, this is only true for motion within this plane.
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6 Conclusion

With the calculations presented in this appendix, the following dynamically balanced mechanisms were found.
These are also dynamically decoupled for planar motion in the xy-plane, but not for motion outside of this plane.

6.1 M4-F-II

Figure 4: Balanced solution M4-F-II

ϵ = ±1

L1 = d

L2 = L3

ψ1 = 0

ψ2 = 0

ψ3 = π

r2 = L2 +
m1r1
m2

r3 =
m2r2
m3

k2 =

√
−m2r22 − I1

m2

k3 =

√
−m2

2r
2
2 −m3I1
m2

3

(146)

89



Figure 5: Balanced solution M4-F-CP1-II

6.2 M4-F-CP1-II

ϵ = 1

L1 = L3

L2 = d

ψ1 = π

ψ2 = 0

ψ3 = π

r2 = L2 −
m1r1
µ1r2

r3 =
µ2m2r2
m3

k2 =

√
m2r2(L2 − r2)− I1

m2

k3 =

√
−m3r3(µ2L2 + r3) + I1

m3

(147)
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Figure 6: Balanced solution M4-F-CP2b-II [3]

6.3 M4-F-CP2b-II

ϵ = ±1

L2 = L1

L3 = d

ψ1 = π

ψ2 = π

ψ3 = 0

r2 =
m1r1
m2

− L2

r3 =
µ2m2r2
m3

k2 =

√
−m2r2(L2 + r2) + I1

m2

k3 =

√
m3r3(µ2L2 − r3)− I1

m3

(148)
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7 Towards spatially balanced mechanisms

With the knowledge described in this document, it is possible to build multi-DoF mechanisms that only exhibit
planar movements.

In [3], the author found that although no physically possible conditions exist that make N Ixx and N Iyy indepen-
dent of the configuration, the sum of these inertias could be independent of the configuration. So, if two four-bar
mechanisms are added orthogonally, a dynamically decoupled mechanism for spatial motion could be obtained. An
example of the M4-F-CP1-II four-bar can be seen in Fig. 7.

Figure 7: Spatially dynamically decoupled mechanism that consist of two four-bar mechanisms [3]

When using the structure from Fig. 7 as a building block, spatially dynamically balanced mechanisms could
be synthesized. In the example from Fig. 8 two M4-F-CP1-II four-bar mechanisms are stacked after each other to
obtain a 2 DoF planar mechanism. At the end of this planar mechanism, a spatially decoupled mechanism is added
(Fig. 7) to obtain a leg with 3 DoF. Finally, three such legs are added to a platform to obtain a 6 DoF spatially
dynamically balanced mechanism.

Figure 8: 6 DoF dynamically balanced mechanism
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