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Majorana zero modes can appear at the wire ends of a one-dimensional topological superconductor and
manifest themselves as a quantized zero-bias conductance peak in the tunneling spectroscopy of normal-
superconductor junctions. However, in superconductor-semiconductor hybrid nanowires, zero-bias conductance
peaks may arise owing to topologically trivial mechanisms as well, mimicking the Majorana-induced topological
peak in many aspects. In this work, we systematically investigate the characteristics of zero-bias conductance
peaks for topological Majorana bound states, trivial quasi-Majorana bound states and low-energy Andreev bound
states arising from smooth potential variations and disorder-induced subgap bound states. Our focus is on the
conductance peak value (i.e., equal to, greater than, or less than 2e2/h), as well as the robustness (plateau-
or spike-like) against the tuning parameters (e.g., the magnetic field and tunneling gate voltage) for zero-bias
peaks arising from the different mechanisms. We find that for Majoranas and quasi-Majoranas, the zero-bias
peak values are no more than 2e2/h, and a quantized conductance plateau forms generically as a function of
parameters. By contrast, for conductance peaks due to low-energy Andreev bound states or disorder-induced
bound states, the peak values may exceed 2e2/h, and a conductance plateau is rarely observed unless through
careful postselection and fine-tuning. Our findings should shed light on the interpretation of experimental
measurements on the tunneling spectroscopy of normal-superconductor junctions of hybrid Majorana nanowires.

DOI: 10.1103/PhysRevB.103.214502

I. INTRODUCTION

Majorana zero modes (MZMs), which are the fundamen-
tal non-Abelian units for topological quantum computing,
[1–5] have been extensively studied in experiments on
superconductor-semiconductor (SC-SM) hybrid nanowires
over the past decade [6–24]. Owing to the improved sample
quality of hybrid nanowires, several hallmarks of Majorana
zero modes have been observed in tunneling conductance
spectroscopy measurements, even the apparent quantized
zero-bias conductance peak (ZBCP). Recently, Refs. [12,18]
have shown an almost-quantized conductance of 2e2/h with
plateaus robust against the Zeeman field or the gate voltage
to some degree. However, these experiments are inconclusive
to confirm the MZMs due to the lack of the manifestation
of other hallmarks of MZMs, which should be accompanied
by the observation of the quantized ZBCP at the topological
quantum phase transition (TQPT), such as the bulk gap clos-
ing and reopening features [25,26] and the growing Majorana
oscillations with increasing magnetic field strength [27]. Also,
no nonlocal correlation measurements have been reported as
expected for a topological state. Therefore, it is necessary to
understand the origin of the plateau in the conductance data
before making any conclusions.

*These authors contributed equally to this work.

MZMs can induce a quantized conductance of 2e2/h
[28–31] in a long wire due to perfect Andreev reflection in
the local conductance measurement in the tunneling spec-
troscopy experiment. However, this “quantized conductance
of 2e2/h” is only a necessary condition but not a sufficient one
to deduce the topological MZM. Many other mechanisms can
also trivially induce seemingly quantized ZBCPs arising from
subgap Andreev bound states (ABSs) [32–41]. For example,
inhomogeneous chemical potential and random disorder are
common mechanisms that may induce the trivial ABS with
∼2e2/h ZBCPs [40]. However, unlike the robust topologi-
cal MZM-induced quantized ZBCPs, these trivial ZBCPs are
usually either unstable or unquantized. An important issue in
this context is the extent to which these trivial ZBCPs could
accidentally produce, perhaps through some fine-tuning of
parameters, somewhat stable-looking 2e2/h apparent quan-
tization, consequently misleading the experimentalists into
thinking that topological MZMs might have been observed.
The crucial question is whether one can assert that the ob-
servation of a fine-tuned apparently stable quantized ZBCP
automatically implies the existence of topological MZMs.

The answer to this question turns out to be negative.
The inhomogeneous smooth confining potential is a typi-
cal counterexample that can manifest trivial stable quantized
ZBCPs with a nonzero probability given appropriate param-
eters. Namely, although the hybrid nanowire is topologically
trivial deep inside its bulk, the barrier-like confining poten-
tial near the wire end serves as a domain wall for the two
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spin-polarized channels and induces a Majorana at the domain
wall for each channel. Owing to the smoothness of the inho-
mogeneous potential, despite the overlapping wave functions,
the two Majoranas do not couple with each other effectively,
thus forming a near-zero-energy fermionic quasi-Majorana
zero mode [36,39,42]. The nonlocality of Majoranas is not
preserved in such a situation; the two Majoranas can both
couple to the same normal lead at the end of the nanowire.
Therefore, it manifests a robust ZBCP with the conductance
slightly below the theoretical quantized value of 2e2/h. Even
if quasi-Majoranas are not the topological MZM, if the exper-
imentalists observe such robust ZBCP with the conductance
slightly below 2e2/h, it is still a positive development be-
cause it may indicate the real MZMs are not far away—one
only has to reduce the inhomogeneity along the nanowire to
separate the two overlapping MZMs in order to see the topo-
logical MZMs. In addition, finite temperature and dissipation
in experiments cause an inevitable broadening, which lowers
the conductance peak. Therefore, it is conceivable that the
expected topological ZBCP has a robust conductance peak
that is slightly below 2e2/h because of broadening, even if
it is purely induced by the real MZM. In this sense, it may
not be too worrisome to observe a robust plateau with the
conductance slightly below 2e2/h in experiments. Such a peak
may arise from topological MZMs or quasi-MZMs, and the
quasi-MZMs should generate topological MZMs if the two
overlapping MZMs can be spatially separated.

However, what if the observed conductance is slightly
above 2e2/h? Is it possible that an inhomogeneous-potential-
induced robust ZBCP with conductance slightly above 2e2/h
could arise from trivial quasi-MZMs? In this work, we show
that it is, in principle, possible to find trivial ZBCPs induced
by an inhomogeneous potential that have conductances above
2e2/h, but they are all in the form of spikes and not robust as a
function of parameters. We discuss two such explicit examples
of the inhomogeneous potential and find that they are both
dip-like inhomogeneous potentials (i.e., a potential well rather
than a potential barrier, which we call a “dip” throughout) in
contrast to the barrier-like smooth confining potential which
can induce a robust plateau that may have a conductance
slightly below 2e2/h. Therefore, this finding leads to the fact
that, if the observed ZBCP manifests a robust conductance
plateau that is slightly above 2e2/h, it is very unlikely to be
induced by the inhomogeneous potential, irrespective of the
shape—barrier or dip—because, otherwise, its conductance
should be below 2e2/h or in the form of spikes instead of a
robust plateau. Such a “spiky” ZBCP rises quickly to 4e2/h
and then falls rapidly to almost zero without manifesting
any stability as a function of parameters in contrast to the
robust 2e2/h (or slightly below it) ZBCP often induced by
the barrier-type potential inhomogeneity. We establish that a
ZBCP plateau slightly above 2e2/h cannot, therefore, arise
from quasi-MZMs or topological MZMs which would pro-
duce ZBCPs at or slightly below 2e2/h.

Finally, we show that even if such a robust plateau with
a conductance above 2e2/h cannot be induced by the inho-
mogeneous potential, it does not preclude the possibility of a
robust plateau with a conductance above 2e2/h arising from
other mechanisms. We show that such a scenario may occur
in the presence of on-site random disorder in the chemical

potential through postselections of the random configuration.
Here postselections means that only about 8% of the disorder
realizations in our simulation give rise to a robust conductance
plateau above 2e2/h, and it is only after carrying out the
simulations we know which disorder configurations produce
the desired outcome of 2e2/h peaks—there is no way to know
the outcome beforehand. However, even if we allow careful
fine-tuning of the random configuration, the robustness is still
delicate. Unlike the inhomogeneous smooth confining poten-
tial, which can manifest a robust conductance plateau (but not
above 2e2/h) in a large region of the parameter space, the
robust region induced by the random disorder is rather limited:
It is robust only against a small range of energy interval of the
Zeeman field and is not robust against all the gate voltages,
e.g., it may manifest robustness against the Zeeman field to
some degree, but it becomes uncontrollable when the tunnel-
ing gate voltage is tuned. Therefore, if such a plateau with the
conductance above 2e2/h occurs in the laboratory, it indicates
that the observed ZBCP cannot be the bad ZBCP induced by
inhomogeneous potential, as introduced in Ref. [40]; instead,
it must be the ugly ZBCP arising from disorder, and such a
ZBCP with a value above 2e2/h is unlikely to be very robust.
It is significant in this context to point out that the recent ex-
periments [12,18] reporting 2e2/h conductance quantization
invariably find a conductance slightly above 2e2/h indicating
that the current experimental nanowires are disorder-limited.

It may be useful to point out that all experimental re-
ports of the observation of zero-bias peaks, and particularly,
ZBCPs with ∼2e2/h conductance, involve extensive postse-
lection and fine-tuning. Only a few samples show ZBCPs in
narrow ranges of experimental gate voltages, tunnel barriers,
and magnetic fields, and the experimental procedure is to post-
select these few samples (∼2%–3% success rates typically)
and then fine-tune gate voltages and tunnel coupling in order
to find approximate 2e2/h, and then report those peaks in the
experimental papers. Most of the tunneling conductance mea-
surements on most nanowires simply fail to produce anything
notable, and the experimental protocol is to do postselection
and fine-tuning to find ZBCPs which are publication-worthy.
Our theoretical procedure of postselecting disorder configura-
tion to find 2e2/h ZBCPs is thus consistent with the current
experimental protocol. Also, experimentally, the inhomoge-
neous potential is unintentional and hence unknown, often
arising from accidental quantum dots formed at the nanowire
ends or unintentional inhomogeneous potentials arising from
applied gate voltages during fine-tuning. Thus, our using and
fine-tuning model inhomogeneous potentials in order to fine-
tune and postselect desirable ZBCPs is also consistent with
the current experimental protocol. It is of course entirely
possible that such protocols lead to considerable confirmation
bias in the experiments since one knows precisely what one
is looking for and is fine-tuning and postselecting to find
theoretically predicted ZBCPs of the correct magnitude.

The remainder of the paper is organized as follows. In
Sec. II we introduce the Hamiltonian of the SC-SM hybrid
nanowire, and how the inhomogeneous and disorder potentials
are modeled. In Sec. III we present our main results of the
robust (almost-) quantized conductance plateau in the pres-
ence of the inhomogeneous potential in 1D single-subband
nanowire and also in the more realistic 3D model using the
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FIG. 1. Schematics for the 1D NS junction model (a) of a pristine
wire; (b) in the presence of Gaussian inhomogeneous potential; (c) in
the presence of sinusoidal potential; (d) in the presence of random
disorder. Vg is the potential barrier at the NS junction.

Thomas-Fermi-Poisson method. In Sec. IV we present the
opposite scenario, where the conductance does not manifest
the robustness and becomes arbitrary in the presence of the
dip-like inhomogeneous potential. In Sec. V we show the
conductance spectra in the presence of random disorder. We
discuss the implication of our results in Sec. VI. We conclude
in Sec. VII. For completeness, we also provide two movie files
showing the results of our simulations while scanning system
parameters [43].

II. MODEL AND METHOD

In much of this work, we model a finite-length
superconductor-semiconductor hybrid nanowire using the 1D
minimal model, as shown schematically in Fig. 1. The cor-
responding Bogoliubov–de Gennes (BdG) Hamiltonian is
[44–47]

H = 1

2

∫ L

0
dx�̂†(x)HBdG�̂(x),

HBdG = Hpristine + HV,

Hpristine = HSM + HZ + HSC

=
(
− h̄2

2m∗ ∂2
x −iα∂xσy−μ

)
τz+EZσx −γ

ω + 	0τx√
	2

0−ω2
,

HV = V (x)τz (1)

under the basis of �̂ = (ψ̂↑, ψ̂↓, ψ̂
†
↓,−ψ̂

†
↑ )ᵀ. Here Hpristine is

the Hamiltonian for a pristine Majorana nanowire in which all
the physical parameters are spatially homogeneous, while HV

represents the potential inhomogeneity inside the nanowire. L
is the length of the hybrid nanowire. We describe each term in
the Hamiltonian below.

A. Pristine nanowire

The Hamiltonian for the pristine nanowire is Hpristine =
HSM + HZ + HSC in Eq. (1). HSM describes the bare spin-
orbit-coupled semiconducting nanowire, with m∗ being the
effective mass of the conduction band electrons, α the strength
of the Rashba spin-orbit coupling, and μ the chemical po-
tential. �σ and �τ are vectors of Pauli matrices acting on the
spin and particle-hole spaces, respectively. HZ describes the
induced Zeeman splitting due to an externally applied mag-
netic field parallel to the nanowire, with the field strength EZ .
HSC describes the superconducting proximity effect induced
by a conventional s-wave superconductor. The frequency-
dependent self-energy term in HSC is obtained by integrating
out the degrees of freedom in the parent superconductor, with
γ being the SC-SM interfacial coupling strength producing
the proximity effect, and 	0 being the pairing potential of
the parent superconductivity. Note that here we ignore the
Zeeman-field dependence of the parent superconducting gap
because such dependence does not affect the eigenenergies,
eigenwavefunction, and conductance near zero bias, and also
because we want the topological ZBCP to appear at high
magnetic fields. Near zero energy (ω → 0), the induced super-
conducting gap is γ τx. In the numerical calculations, unless
otherwise stated, we choose the parameters corresponding
to the InSb-Al hybrid nanowire: [48] m∗ = 0.015me (me is
the rest electron mass), μ = 1 meV, 	0 = 0.2 meV, α = 0.5
eVÅ, γ = 0.2 meV, nanowire length L = 3 μm, and phe-
nomenological tunneling barrier height Vg = 10 meV, and
assume the zero-temperature limit. Our generic conclusions
should not depend on the choice of these parameters at all.

B. Potential inhomogeneity

The effect of potential inhomogeneity inside the hybrid
nanowire is described by HV in Eq. (1). In realistic junction
devices, such an inhomogeneity may arise from the effect
of gates controlling various voltages in the hybrid nanowire,
from charge impurities, or unintentional disorders due to
imperfect sample quality. There could also be unintentional
effective quantum dots at the wire ends creating an inhomo-
geneous potential. Although the precise profile of the potential
inhomogeneity is not known a priori, here, without loss
of generality, we consider three different types of potential
profiles, representing the typical scenarios for the potential
inhomogeneity in realistic devices.
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The first scenario for the potential inhomogeneity is a
Gaussian-like profile near the NS junction:

V (x) = Vmax exp

(
− x2

2σ 2

)
(2)

with σ being the width, and Vmax the peak of the inhomo-
geneity, as shown in Fig. 1(b). Note that the potential V (x)
acts as a confinement potential barrier when Vmax > 0, while
it becomes a potential dip when Vmax < 0. Confinement- or
dip-like potential profiles have qualitatively different effects
on the conductance spectroscopy of the NS junction.

In the second scenario, we consider a sinusoidal-function-
like potential profile near the NS junction:

V (x) = Vmax cos

(
xπ

2σ

)
θ (σ − x)

− V ′
max sin

(
x − σ

σ ′ π

)
θ (x − σ )θ (σ + σ ′ − x), (3)

where θ (x) is the Heaviside step function. The sinusoidal po-
tential contains barrier-like and dip-like parts simultaneously,
as shown in Fig. 1(c). Vmax and σ denote the height and width
of the barrier-like potential, while V ′

max and σ ′ represent the
depth and width of the dip-like potential.

The third scenario is a disorder-induced random potential

V (x) = Vimp(x),

〈Vimp(x)〉 = 0,

〈Vimp(x)Vimp(x′)〉 = σ 2
μδ(x − x′). (4)

Here Vimp(x) is a short-ranged random potential drawn from
an uncorrelated Gaussian distribution with zero mean and
standard deviation σμ. Note that the numerical results, in-
cluding the disorder-induced random potential, are based on
one particular configuration of Vimp(x), as shown in Fig. 1(d),
without ensemble average. Note that while Eqs. (2) and (3)
are deterministic and smooth, the disorder potential defined
by Eq. (4) is random and hence nondeterministic, distinguish-
ing the smooth inhomogeneous potential from the nonsmooth
random disorder potential. We add that in the current work,
we focus on only the fluctuations in the chemical potential and
neglect such a fluctuation in other physical parameters like su-
perconducting pairing potential, Zeeman field, and spin-orbit
coupling strength, because the disorder effect in the chemical
potential is the most representative one and is believed to
dominate in realistic experiments.

We mention that the disorder strength discussed in this
paper should not be too large compared to the chemical po-
tential μ because, otherwise, it cannot be properly described
by the BdG Hamiltonian in (1). Instead, such a strong disorder
regime should be studied using the framework of random ma-
trix theory in class D ensemble [49–54]. Topological MZMs
do not exist at all in such highly disordered systems, and we
do not study strong disorder in the current work.

C. Numerical method

To numerically calculate the conductance spectra of the
NS junction, we apply the Python scattering matrix transport
package KWANT [55]. Following the standard procedure, we
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b
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)

(a) (b)
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0 1
EZ (meV)

0
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2
/
h
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Vbias=0

0 1 2 3
Vmax (meV)
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FIG. 2. (a) NS conductance as a function of EZ and Vbias for a 1D
nanowire subject to a Gaussian inhomogeneous potential near the NS
junction. The height and width of the potential are Vmax = 1.2 meV
and σ = 0.4 μm, respectively. The red dashed vertical line indicates
TQPT. The lower panel shows the corresponding line cut for the
conductance at zero bias. (b) Conductance as a function of Vmax and
Vbias at a fixed Zeeman field EZ = 0.8 meV [labeled as the green
line in (a)]. The lower panel shows the line cut of the conductance at
zero bias as a function of the potential height. The trivial zero-bias
conductance shows a stable plateau as a function of both the Zeeman
field strength and the smooth potential height, with its maximal value
being less than or equal to 2e2/h.

first discretize the continuum Hamiltonian in Eq. (1) into a
tight-binding model and then calculate the corresponding S
matrix and the conductance as a function of Zeeman field and
chemical potential (or gate voltage).

III. SMOOTH-POTENTIAL-INDUCED ZERO-BIAS
CONDUCTANCE PEAKS

In this section, we focus on the situation where a smooth
confinement potential is present near the NS junction induc-
ing a quasi-Majorana bound state in the topologically trivial
regime [36,39,42]. We analyze the features of the quasi-
Majorana-induced ZBCP and discuss how to distinguish it
from the topological Majorana counterpart. Furthermore, we
perform a self-consistent Thomas-Fermi-Poisson calculation
of the electrostatic potential in realistic 3D devices and show
that a smooth confinement potential and the induced quasi-
Majorana bound state are likely to appear in realistic devices
in a smooth potential.

A. Basic properties of smooth-potential-induced ZBCPs

We first investigate the basic properties of the smooth-
potential-induced ZBCPs. The smooth potential has a
Gaussian-function profile with the spatial width being fixed
at σ = 0.4 μm, which is roughly 10% of the wire length. In
Fig. 2 we show the calculated conductance as a function of
both the Zeeman field strength EZ and smooth potential height
Vmax.

Figure 2(a) shows the tunnel conductance as a function
of the bias voltage Vbias and the field strength EZ at a fixed
smooth potential height Vmax = 1.2 meV. The notable feature
in Fig. 2(a) is a stable conductance plateau of 2e2/h within
the range of 0.8 meV < EZ < 1.02 meV. Such a conductance
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plateau is induced by the topologically trivial quasi-Majorana
because the field strength is less than the critical value EZc =√

μ2 + γ 2 = 1.02 meV for TQPT (labeled as the red dashed
line). Furthermore, as indicated in the lower panel of Fig. 2(a),
the smooth-potential-induced trivial conductance plateau at
zero bias is quite stable as a function of EZ and is even
more stable than the Majorana-induced counterpart for EZ >

1.02 meV. For Majorana bound states (MBS), the two Majo-
ranas at the opposite ends of the nanowire overlap and cause
oscillation in the ZBCP, while for quasi-Majoranas, both MBS
are formed at one wire end overlapping strongly with each
other (see Fig. 10 in the Appendix).

This smooth-potential-induced quantized trivial zero-bias
peak is stable not only against the Zeeman field strength
but also against the potential height. In Fig. 2(b) we plot
the conductance as a function of the potential height Vmax,
with the field strength being fixed at EZ = 0.8 meV less
than the critical strength. We see that a stable and quantized
zero-bias conductance plateau is present between 1 meV <

Vmax < 1.8 meV. It is due to the quasi-Majorana state induced
by the smooth confinement potential. When the potential
height is small (Vmax < 1 meV), the potential becomes flat
and is no longer confining. Then the quasi-Majorana gaps
out and the zero-bias conductance peak moves to finite bias
as shown in Fig. 2(b). On the other hand, when the barrier
is large (Vmax > 1.8 meV), the confinement potential serves
as a strong tunnel barrier. Then the high barrier reduces the
junction transparency suppressing the tunnel conductance to
zero. Therefore we show here that a stable trivial quantized
zero-bias conductance plateau at 2e2/h is not an exclusive
signature of real MZMs; it may also be falsely mimicked
by the trivial quasi-Majoranas in the presence of a smooth
confinement potential with suitable parameters. Note that at
finite temperatures, the ZBCP will have a conductance slightly
lower than 2e2/h [56].

B. Distinguishing between real and quasi-MZMs by
correlation measurements

We now consider a correlation measurement in the
three-terminal setup [57–59] for distinguishing between real
topological MZMs and trivial quasi-Majorana bound states.
The correlation measurement can detect the nonlocality of the
bound-state wave function. For Majorana bound states, a pair
of Majoranas appear at both ends and manifest themselves
simultaneously as quantized zero-bias peaks in the tunnel-
ing spectroscopy. By contrast, quasi-Majoranas guarantee the
conductance peak at only one wire end because its wave func-
tion is localized only at that end. To illustrate this correlated
scheme, we consider three different scenarios: (1) a pristine
nanowire, (2) a wire with a smooth potential on the left end,
and (3) a wire with smooth potentials on both ends. The
calculated left- and right-end conductance results are shown
in Fig. 3.

The top row of Fig. 3 shows the topological Majorana
conductance of a pristine nanowire, where the left and right
conductance spectra are identical. The ZBCPs appear above
the same value of Zeeman field strength (EZ = EZc) at the two
ends thus showing perfect correlation, because both ends of
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FIG. 3. The correlation measurements for three different physi-
cal scenarios. Here the conductance is measured as a function of the
bias voltage and the strength of the Zeeman field. The left and right
columns show the left-end conductance GL and right-end conduc-
tance GR. (a, b) A pair of MZMs with one MZM being localized
at each end. (c, d) One smooth-potential-induced quasi-Majorana
bound state at the left end and one MZM at the right end. The
smooth potential at the left end of the nanowire has the parameter
of (σ,Vmax) = (0.4 μm, 1.2 meV). (e, f) Two quasi-Majorana bound
states, with one at each end of the nanowire. The smooth potentials
near the two ends are slightly different. The left potential has the
parameters of (σ,Vmax) = (0.4 μm, 1.2 meV), and the right one has
the parameters of (σ,Vmax) = (0.3 μm, 1.5 meV).

the nanowire are occupied by the real MBS above the TQPT
(labeled as the red dashed line).

In the middle row of Fig. 3, we show the conductance
for a nanowire in the presence of a smooth confinement po-
tential localized only at the left wire end and the other end
free of any inhomogeneity. In the weak field regime below
TQPT (EZ < EZc = 1.02 meV), a stable essentially quantized
zero-bias conductance plateau of 2e2/h appears only in the
left conductance results [see Fig. 3(c)], while no ZBCP is
observed in the right conductance [see Fig. 3(d)]. This is be-
cause the localized quasi-Majorana bound state below TQPT
appears only at the left end in this scenario of the inhomoge-
neous potential. However, when the Zeeman field strength is
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FIG. 4. The stability of conductance peaks against the Zeeman
field. (a) The conductance for a smooth potential-induced quasi-
MZM, which is quite stable against the Zeeman field. Refer to
Fig. 2(a) for the parameters. (b) The conductance for a real MZM in
the pristine nanowire. The zero-bias conductance shows prominent
oscillations between 0 to 2e2/h as a function of the Zeeman field
strength, owing to the wave function overlap between two Majorana
zero modes at the opposite ends of a finite-length nanowire.

above the critical value, the whole nanowire becomes topolog-
ical, and a perfect end-to-end correlation between the left and
right conductance spectroscopies appears. This means that
whenever a quasi-Majorana situation appears below TQPT,
increasing the magnetic field must necessarily lead to the
topological MZMs at higher field strength. There is no ex-
perimental report of such an observation in the literature.

In the third scenario, two slightly different smooth confine-
ment potentials are present at the left and right wire ends,
inducing quasi-Majoranas at each wire end in the topologi-
cally trivial regime below TQPT. As shown in the bottom row
of Fig. 3, although zero-bias conductance peaks are observed
in both the left and right tunnel conductance individually
below TQPT, they are not correlated, e.g., the values of EZ

at which ZBCP starts to emerge at the two ends are different.
This is because these ZBCPs at EZ < EZc are induced by
quasi-Majoranas, the properties of which depend sensitively
on the details of the smooth confinement potential. For topo-
logical MZMs [Fig. 3(a)], correlated ZBCPs appear at the
same EZ for both ends, which is the TQPT point.

C. Distinguishing between real and quasi-MZMs by stability
against Zeeman field

We now consider another method for distinguishing be-
tween real and quasi-Majorana bound states; which is, by
testing the stability of conductance quantization at zero bias
against the Zeeman field strength. In a realistic topological
Majorana nanowire, due to the finite-size effect, the wave
functions of the two localized Majorana bound states at both
ends overlap and lead to an oscillation of the zero-bias con-
ductance peak as a function of the increasing Zeeman field
strength. By contrast, for topologically trivial quasi-Majorana
bound states, since its wave function is localized at one end of
the nanowire, the corresponding zero-bias conductance peak
does not show oscillatory behaviors. In Fig. 4 we present
the conductance calculations for both trivial quasi-Majoranas

(left panels) and topological Majorana bound states (right
panels). The ZBCP induced by the topological MBS in
Fig. 4(b) oscillates prominently above TQPT with the Zeeman
field strength (EZ > 1 meV), and the oscillation amplitude
increases with the increasing field strength. By contrast, as
shown in Fig. 4(a), the ZBCP induced by the trivial quasi-
Majorana bound state is stable against the field strength. There
are no detectable variations in the quantized conductance
plateau in the range of 0.6 meV < EZ < 1.02 meV. Therefore
the observation of an increasing oscillation in ZBCP with the
Zeeman field strength can support the presence of Majorana
bound states over quasi-Majorana bound states in the hybrid
nanowire [27]. In some situations where smooth potential and
q-MZMs appear on both sides of the nanowire, as discussed in
the previous subsection, the ZBCP induced by q-MZM would
also oscillate [see Figs. 3(e) and 3(f)]. But the oscillation
amplitude is still much smaller than the MBS ZBCPs, because
q-MZMs form in the much weaker Zeeman field regime. This
also necessitates the presence of q-MZMs on both ends of the
wire, which cannot be ruled out but is not a generic situation.

D. Conductance for realistic 3D NS junctions

In this subsection, we go beyond the 1D minimal model
and consider the realistic 3D NS junction, focusing on
whether the smooth confinement potential and the induced
quasi-Majorana bound state can appear in realistic device ge-
ometries with realistic gate voltage values. Instead of adding
the potential profile manually simply as a model potential term
V (x) in Eq. (1), we now calculate the electrostatic potential
profile inside the nanowire by solving the 3D Thomas-
Fermi-Poisson equation self-consistently, including all the
ingredients in a typical NS junction device—the dielectric
layers, the metallic aluminum layer, the normal lead, and the
gates. As we will show, when the values of the gate voltages
are appropriately chosen, a smooth confinement potential can
appear near the junction, giving rise to a quasi-Majorana-
induced ZBCP in the 3D realistic device at a finite magnetic
field. This also provides a justification for the effective 1D
model of Eq. (1).

The model system, as shown in Fig. 5, represents a typ-
ical NS junction device in the laboratory, and is used here
for the electrostatic potential calculation. The self-consistent
Thomas-Fermi-Poisson equation is [60–65]

∇ · [εr (r)∇φ(r)] = −ρ[φ(r)]

ε0
, (5)

with φ being the electrostatic potential, and εr (ε0) the relative
(vacuum) permittivity. ρ is the charge density of the mobile
electrons in the InSb semiconducting nanowire, which in the
Thomas-Fermi approximation is

ρe(φ) = − e

3π2

[
2m∗eφθ (φ)

h̄2

]3/2

, (6)

where m∗ = 0.015 me and θ (x) is the Heaviside step function.
We did not include any free holes in the valence band within
the Thomas-Fermi approximation because they are irrelevant
in the parameter regime of gate voltages in this work, where
the Fermi level is always in the conduction band. The effects
of gates are included as Dirichlet boundary conditions inside
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FIG. 5. The schematic of the first 400 nm of the 3D NS junction.
Top panels (left to right): view from the normal lead end, from the
side, and from the hybrid nanowire end. Middle panel: view from
the top. The in-plane x, z directions and out-of-plane y direction are
shown on the left. Bottom panel: the view of band edge profile (gray)
focuses on the first 400 nm of the wire, where the inhomogeneity is
prominent.

the gate regions, with the potential values being fixed as the
gate voltages.

After obtaining the electrostatic potential inside the semi-
conducting nanowire, we turn to the quantum mechanical
problem by calculating the band edge profile and the con-
ductance in the 3D NS junction. The BdG Hamiltonian for
conductance calculation is as follows:

H3D =
[

− h̄2

2m∗
(
∂2

x + ∂2
y + ∂2

z

) + αR(−i∂xσz + i∂zσx )

− eφ(r)

]
τz + EZσx + 	(r)τx. (7)

Here αR = 0.3 eVÅ is the strength of the spin-orbit coupling,
and the spin-orbit field is pointing along the y direction.
φ(r) is the 3D electrostatic potential profile obtained from
the Thomas-Fermi-Poisson self-consistent calculation. 	(r)
is the induced superconducting gap in the regions covered
by the aluminum layer. Note that here we have not included
all the 3D effects, e.g., the orbital effect of the magnetic
field, spatial dependence of the spin-orbit coupling strength,
because they would depend rather sensitively on unknown
experimental details varying from sample to sample (e.g., the
precise magnetic field direction, the precise Al coating on
the nanowire, various asymmetric voltages, etc.). Our goal is
generic physics, not the simulation of a specific device, which
does not vary greatly from sample to sample.

Figure 6(a) shows the calculated conductance as a func-
tion of the field strength and the bias voltage for the 3D
NS junction with a particular set of device parameters. The
electrostatic potential profile is fixed for Fig. 6(a) with the gate
voltages being VAl = 17.5 mV (band offset between InSb and
Al), Vsupergate = 26 mV, Vtunnel = 12 mV, Vlead = 27 mV, and
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FIG. 6. The conductance for realistic 3D NS junctions. Here the
electrostatic potential profile is numerically calculated using the self-
consistent Thomas-Fermi-Poisson method. (a) NS conductance as a
function of EZ and Vbias with the tunnel gate being fixed at Vtunnel =
12 mV. The lower panel of (a) shows the zero-bias conductance as
a function of the Zeeman field strength. The TQPT is labeled by the
red dashed vertical line. (b) NS conductance as a function of Vtunnel

and Vbias with the Zeeman field being fixed at EZ = 1.8 meV. The
lower panel of (b) shows the zero-bias conductance as a function
of the tunnel gate voltage. Note that the strong similarity between
this figure and Fig. 2 indicates that the physical scenario of smooth
potential-induced ZBCP is possible in realistic situations and that
simulation based on the 1D effective model is a good approximation
for the 3D model in the single-subband limit.

Vbackgate = 0. We further visualize the 3D electrostatic poten-
tial by plotting the 1D band edge profile in the vicinity of the
junction along the wire axis in the bottom panel of Fig. 5. The
band edge profile is for the lowest subband in the nanowire,
that is, the hybrid nanowire is in the single-subband limit.
Note that a smooth confinement potential is naturally present
between 100 nm < x < 300 nm, owing to the combined effect
of the tunnel gate, the InSb-Al band offset, and the supergate
above the nanowire. The smooth potential here is present by
virtue of the electrostatics of the 3D NS junction without
having to be put in manually as a model potential as in the
effective 1D model of Eq. (1). The nanowire is 3 μm in total
length, and the potential value reaches an asymptotic value for
x > 400 nm; that is, we take φ(x > 400 nm, y, z) = φ(x =
400 nm, y, z). So the smooth potential extends over roughly
10% of the wire near the tunnel junction end. In Fig. 6(a) a
quasi-Majorana-induced nearly-quantized zero-bias conduc-
tance peak appears in the trivial regime (to the left of the red
dashed line), due to the presence of the smooth confinement
potential. The stable quantized zero-bias conductance peak
becomes oscillatory after the nanowire enter the topological
phase at a stronger Zeeman field (to the right of the red
dashed line). We then fix the strength of the Zeeman field
at EZ = 1.8 meV, which is below the TQPT, such that the
ZBCP is now induced by the quasi-Majorana bound state and
sweep the voltage of the tunnel gate. The resulting conduc-
tance profile as a function of the tunnel gate voltage is shown
in Fig. 6(b). Note that the quasi-Majorana-induced ZBCP
is stable and nearly quantized only in the regime 10 mV <

Vtunnel < 20 mV. Outside this range of tunnel gate voltages,
the confinement potential at the junction is either too sharp
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or too flat to induce a quasi-Majorana bound state. Figure 6,
therefore, shows that a smooth confinement potential is indeed
possible in a realistic 3D NS junction device with appropri-
ate gate voltage values and that such potential can induce a
quasi-Majorana bound state with a stable almost-quantized
ZBCP in the tunneling spectroscopy. Thus, the observation of
a “stable” and “quantized” ZBCP is not sufficient to establish
the existence of topological MBS in the system.

Another important finding here is that the conductance pro-
files obtained from 3D simulations (Fig. 6) closely resemble
those from the effective 1D model (Fig. 2), especially the
conductance line cuts at zero bias. This indicates that the 1D
minimal model is a good approximation of the 3D realistic
nanowire model when the nanowire is in the single-subband
limit. This justifies all the calculations using the 1D minimal
model in this and other previous works. Given the very high
computational cost of the 3D simulations and the relative
simplicity of the 1D calculations, it makes sense to base con-
ductance calculations on the 1D model.

IV. DIP-POTENTIAL-INDUCED ZERO-BIAS
CONDUCTANCE PEAKS

In this section, we consider, within the 1D effective model
of Eqs. (1)–(3), a quantum-dot-like potential near the NS
junction, i.e., a dip in the potential, rather than the smooth
barrier-like potential considered above. We focus on the peak
values and the conductance robustness of the induced ZBCPs.
In particular, the quantum dot considered here is either a
Gaussian-function potential with a negative amplitude (a dip
in the potential profile) or a sinusoidal-function potential
(armchair-like potential profile), as shown in Figs. 1(b) and
1(c). Under these conditions, low-energy Andreev bound
states appear inside the potential inhomogeneity near the
end of the hybrid nanowire at a finite strength of the Zee-
man field. These trivial Andreev bound states can induce
(near-) zero-bias conductance peaks, mimicking topological
Majorana bound states. However, a major difference between
Andreev and Majorana bound states for the dip potential is
that the zero-bias conductance profiles of trivial peaks are
sharp spike-like in the parameter space, e.g., in EZ or μ,
and the peak values may exceed 2e2/h in extremely narrow
ranges of parameters, while those of topological peaks are
plateau-like with peak values never more than 2e2/h.

Figure 7(a) shows the calculated ABS-induced trivial con-
ductance as a function of bias voltage and Zeeman energy.
The quantum-dot potential is dip-like with depth Vmax =
−1.1 meV, linewidth σ = 0.5 μm, and the bulk chemical
potential μ = −1 meV. A zero-bias conductance peak forms
in the trivial regime 0.45 meV � EZc � 1 meV, owing to
the quantum-dot-induced Andreev bound states near the NS
junction. The zero-bias conductance peak oscillates as the
strength of the Zeeman field increases, somewhat resembling
the Majorana-induced peak oscillation [Fig. 4(b)]. However,
at EZ ≈ 0.46 meV, the value of the zero-bias conductance
peak exceeds 2e2/h, which is a unique feature that dis-
tinguishes these dot-induced trivial ABSs from topological
MBSs. We also calculate the conductance as a function of the
dot potential amplitude Vmax at a fixed Zeeman field strength,
which qualitatively models the tunnel-gate-dependence of
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FIG. 7. The conductance for dip-like potential-induced Andreev
bound states. One generic feature of the conductance in this physical
scenario is that the ZBCP as a function of the system parameter
shows a spike-like conductance peak which can be greater than
2e2/h. (a) The conductance as a function of EZ and Vbias for a
nanowire which has a negative chemical potential and is subject to a
dip potential near the NS junction. Here it takes the form of Gaussian
potential with the parameters of (σ,Vmax) = (0.5 μm, −1.1 meV),
and the chemical potential μ = −1 meV. The lower panel is the
line cut for the conductance at zero bias. (b) The conductance as
a function of depth Vmax and Vbias for a nanowire with a negative
chemical potential at EZ = 0.46 meV [labeled in the green dashed
line in (a)]. (c) Similar to (a), but now the dip-like potential is
in the form of the sinusoidal potential, with the parameter being
(σ,Vmax, σ

′,V ′
max) = (0.4 μm, 1 meV, 0.2 μm, 1 meV). The chem-

ical potential of the nanowire is μ = 1 meV. (d) Similar to (b) for
the sinusoidal potential. The strength of the Zeeman field is fixed at
EZ = 0.67 meV [labeled in the green dashed line in (c)].

conductance in realistic junctions. As shown in Fig. 7(b), an
oscillatory conductance peak near zero bias appears in the
range of −1.8 meV < Vmax < −0.8 meV, and more impor-
tantly, its peak value is greater than 2e2/h at Vmax ≈ −1 meV
and −1.5 meV.

Figures 7(c) and 7(d) show the calculated conductance
in the presence of a sinusoidal-function-like potential [see
Eq. (3)] near the junction. Similar to the dip-like-potential
scenario, a topologically trivial ZBCP forms at finite strength
of Zeeman field before TQPT (EZ < EZc). Furthermore, the
zero-bias peak profile at EZ ≈ 0.67 meV and VD ≈ 1 meV is
spike-like instead of plateau-like, and the peak value exceeds
2e2/h.

One way to understand the features of dip-potential-
induced “spiky” ZBCPs is to decompose the low-energy
Andreev bound states into a pair of overlapping Majorana
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wave functions forming the q-MZMs [see Fig. 10(d) in the
Appendix]. The presence of the dip potential enhances the
coupling between the two Majoranas wave functions, and thus
the energy of the Andreev bound state crosses the zero energy
instead of sticking. Therefore we see only spike-like ZBCP
rather than a conductance plateau in this scenario. Moreover,
owing to the dip potential, both Majoranas couple effectively
with the external normal lead, which causes the tunneling
peak value to be greater than 2e2/h. In fact, our simulations
show (see the animations presented in the Supplemental Ma-
terial [43]) that the resulting zero-bias conductance quickly
rises to 4e2/h, corresponding to the combined conductance of
two Majoranas, and then quickly becomes zero as the ABS
is no longer a zero-energy state. An extremely fine-tuned
dip-potential may give rise to a zero-bias conductance above
2e2/h, but it is unlikely to be experimentally observable as a
ZBCP because of the strongly spiky nature of the conductance
peak. This is in sharp contrast to the barrier-like potential
where a conductance plateau at 2e2/h may stick to zero bias
for finite parameter regimes in both the Zeeman field and
chemical potential.

V. DISORDER-INDUCED ZERO-BIAS
CONDUCTANCE PEAKS

We now consider the scenario in which the potential
inhomogeneity is in the form of a nondeterministic ran-
dom potential, i.e., disorder. In realistic devices, such a
potential can originate from the growth imperfection at
the superconductor-semiconductor interface or from uninten-
tional (and hence unknown) impurities in the wire or the
superconductor or the substrate. Our focus is on whether it
is possible to find a disorder-induced apparent trivial quan-
tized conductance plateau whose peak value is greater than
2e2/h. Figure 8 shows the calculated tunneling conductance
in the presence of disorder with two distinct random configu-
rations. We choose the amplitude of the disorder fluctuations
to be σμ = 1 meV, which is the same order of the chemical
potential μ = 1 meV. The first row of Fig. 8 uses one spe-
cific random configuration. We notice that the gap closes at
EZ ∼ 0.8 meV below the TQPT (the red dashed line), and an
almost-quantized conductance plateau forms. This plateau of
conductance is not as robust as the inhomogeneous-potential-
induced plateau, as shown in Fig. 4(a). However, if we rescale
the EZ axis and focus on only the nearby region of the plateau,
we can still manually create a “robust” plateau, although this
trivial plateau is a deceptive visual effect because of fine-
tuning the parameter range. Such a trivial disorder-induced
ZBCP “plateau” may misleadingly masquerade as evidence
supporting the presence of topological MBS since experimen-
tally the TQPT location is not known, [66] and a priori there
is no way to know whether one is below or above the TQPT
based just on NS tunneling measurements.

However, this artificial plateau, which to some extent is
robust against Zeeman field strength, is not robust against the
tunnel barrier. In Fig. 8(b) we show the conductance depen-
dence on the tunnel barrier height at a fixed field strength
EZ = 0.78 meV [corresponding to the green solid line in
Fig. 8(a)]. The conductance decreases from 3e2/h to 1.5e2/h
monotonically as Vg increases. This instability indicates that
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FIG. 8. Conductance for a Majorana nanowire in the presence of
a random disorder potential in the bulk. (a) Conductance as a function
of EZ and Vbias. The disorder potential can induce ZBCP when the
Zeeman field is strong enough, and the zero-bias conductance as a
function of the Zeeman field strength shows a spike-like profile with
the peak value greater than 2e2/h. (b) The peak conductance at zero
bias (blue solid line) and normal conductance above SC gap (orange
solid line) as a function of Vg and Vbias at fixed EZ = 0.83 meV
[labeled in the green line in (a)]. The conductance increases mono-
tonically with the decreasing potential height. (c, d) Conductance as
a function of EZ and Vbias under another set of disorder configuration,
which also manifests the same conductance peaks.

the trivial ZBCP does not have a truly stable quantized con-
ductance with a value higher than 2e2/h against both the
Zeeman field and the tunnel barrier. The important point to
note is that the disorder-induced trivial ZBCP could produce
a somewhat-stable plateau with conductance above 2e2/h.

In the second row of Fig. 8, we present the conductance
results for another random disorder configuration. A trivial
ZBCP with a peak value well above 2e2/h is observed at
EZ ∼ 0.7 meV, similar to the conductance profile in Fig. 8(a).
Interestingly, when we fix the field strength at EZ ∼ 0.7 meV
and vary the tunnel barrier height, the ZBCP shows a robust
plateau between 0 meV < Vg < 5 meV whereas the above gap
conductance changes by more than 50% before it drops at
larger values of Vg [see Fig. 8(d)]. Note that the ZBCPs in
Fig. 8 for both random configurations are obtained by careful
fine-tunings and postselection.

Furthermore, we consider the properties of disorder-
induced ZBCPs from a statistical perspective. Our goal is
to show the occurrence probability of the peak stability and
the peak value. In particular, we consider an ensemble of
disorder potential with fluctuation amplitude σμ = 1 meV,
and randomly sample 100 different disorder configurations.
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FIG. 9. (a) The statistics of the occurrence of ZBCP as a function
of 	EZ/EZc. The y axis is the probability density function (PDF).
(b) The statistics of conductance given the trivial ZBCP is already
found. The parameters are the same as Fig. 8, and ensemble size is
100.

In each specific conductance spectroscopy, we define two
quantities for the conductance peak in the topologically trivial
phase (EZ < EZc): (1) the dimensionless ratio of the energy
interval of Zeeman field that ZBCP can appear to the to-
tal energy interval of trivial phase, denoted by 	EZ/EZc,
which characterizes the stability of a disorder-induced ZBCP,
(e.g., a special case without trivial ZBCP corresponds to
	EZ/EZc = 0) and (2) the conductance of the peak of the
ZBCP given a ZBCP is already found in the tunneling con-
ductance. The results are shown in Fig. 9, where Fig. 9(a)
shows that most disorder-induced peaks have a ratio less than
0.2, which is consistent with the conductance spectroscopies
shown in Fig. 8. It alludes that disorder-induced ZBCPs are
mostly spike-like and thus have a relatively small ratio. Fig-
ure 9(b) shows that the peak values disorder-induced ZBCPs
are mostly below 2e2/h, but there are rare occasions where the
peak values go above 2e2/h. The percentage of ZBCPs going
above 2e2/h is roughly 8% when the strength of disorder is
σμ = 1 meV.

These examples demonstrate that disorder could generi-
cally introduce trivial ZBCPs at conductance values higher
than 2e2/h, which, with some postselection and fine-tuning,
may reflect some limited apparent “robustness” in both the
applied magnetic field and applied gate voltage depending on
the details of the disorder. Of course, disorder can also induce
trivial ZBCPs with conductance values at or below 2e2/h, as
has recently been studied in the literature [40,54].

VI. DISCUSSION

Strictly speaking, the confirmation of topological su-
perconductivity and MZMs should be based on various
experimental measurements probing both the ends and the
bulk of the wire simultaneously. For example, the Majorana-
induced robust quantized ZBCP should be accompanied by
the topological gap closing and reopening in the vicinity of
TQPT, and the ZBCP oscillations with an increasing Zee-
man field strength. However, in practice, the topological bulk
gap features are difficult to observe using the local probe in
NS tunneling spectroscopies, and the strength of the Zee-
man field is constrained by the critical field of the parent
superconducting layer above which all bulk superconductivity
vanishes, thus destroying the topological superconductivity
in the process. The fundamental problem underlying local

tunneling spectroscopy is its inability to confirm any signature
of nonlocality, which is the hallmark of topological Majorana
modes.

In most of the recent experimental measurements, we only
see the formation of a ZBCP just before the closing of the
parent superconducting gap. This apparent gap closing feature
in the NS tunneling spectrum may, however, have nothing
to do with a bulk gap closing, but only a manifestation of
Andreev bound states coming together leading to a trivial
ZBCP [34]. Thus, the question that motivates this work is:
What can we learn if we have merely the local tunneling
measurements on the Majorana nanowires, and can we infer
the underlying physical mechanisms for the ZBCP based on
their peak profiles?

With extensive numerical simulations, we find that true-
or quasi-Majoranas do (not) induce ZBCPs of a peak
value equal to or smaller (greater) than 2e2/h in the
zero-temperature limit. By contrast, for those ZBCPs due
to dip-potential-induced ABSs and disorder-induced bound
states, the peak value can exceed 2e2/h generically, al-
though such dip-induced trivial ZBCPs have very sharp spiky
structures as a function of system parameters (e.g., Zeeman
field, gate potentials) and are therefore observed only when
tunnel/temperature/dissipation broadening effect is large.

We further note that the disorder scenario has much richer
physics than realized before, because, through careful postse-
lection and fine-tunings, a particular random disorder configu-
ration may induce a ZBCP (above or below or close to 2e2/h)
which shows robustness against either the field strength or
the tunnel barrier height. So any NS tunneling observation by
itself, e.g., a nearly quantized ZBCP at or around 2e2/h, or
a robust peak against one system parameter, is not sufficient
to conclude topological Majoranas or even trivial quasi-
Majoranas in superconductor-semiconductor nanowires. Only
with a combination of conductance quantization at 2e2/h
at zero temperature, robustness against both Zeeman field
strength and gate voltages, the observation of Majorana os-
cillations with increasing field strength, closing/reopening of
the bulk gap just as the ZBCP develops, and correlation mea-
surements on both wire ends can give convincing evidence to
Majorana zero modes. One needs to be particularly mindful
of the fact that disorder-induced trivial ZBCPs may have
observable features above, at, or below 2e2/h, perhaps even
manifesting some apparent (but misleading) limited robust-
ness in the Zeeman field and chemical potential.

We also emphasize that all the calculations in this work
are based on the single-subband assumption. The number of
subbands in the devices in the laboratory is not known a priori.
When multiple subbands come below the Fermi level of the
hybrid nanowire due to gating, the ZBCP may exceed 2e2/h
in principle [31]. However, even in the multisubband model, a
conductance plateau is observed only at half-integer multiples
of 4e2/h, and a plateau of conductance slightly above 2e2/h is
unlikely for MZM.

Before concluding, we now provide a brief discussion of
the existing experimental results on Majorana nanowires in
the context of our theoretical findings. Early Majorana experi-
ments during 2012 to 2016 were all plagued by very strong
disorder in the systems leading to soft gaps indicating the
presence of considerable disorder-induced subgap fermionic
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states, and although weak ZBCPs (∼0.1–0.2e2/h) often man-
ifested in the tunnel conductance spectra, it is manifestly clear
that these experimental observations are not conclusive at all
for the existence of topological Majorana modes. The first
experiment involving a hard gap was by Deng et al. [11]
which saw the emergence of ZBCPs (but with peak height
� 2e2/h) arising from the merging of Andreev bound states.
A detailed theoretical analysis established these observations
as most likely the manifestation of trivial ZBCPs with ABSs
becoming almost zero-energy states mimicking as MZMs
[34]. Two influential later papers, by Zhang et al. [18] and
Nichele et al. [12], reported the observation of ZBCPs with
peak heights at 2e2/h in nanowires with hard gaps, creating
considerable excitement that perhaps the topological MZMs
have been seen. It was soon realized, however, that the Nichele
experiment [12] saw ZBCPs with peak heights higher than
2e2/h even at finite temperatures (and the T = 0 peak height
would be still higher), indicating that the observation is incon-
sistent with topological MZMs [56]. Very recent experimental
work [18] now indicates that the same is true for the Zhang
experiment [18] also, with the ZBCP height actually being
2.2e2/h already at T = 25 mK. In addition, the new data and
analysis [18] indicate that the original experimental conduc-
tance plateau reported in Ref. [18] is an artifact and careful
consideration of charge jumps in the system eliminates the
ZBCP stability. Therefore, both of these experiments, Nichele
[12] and Zhang [18], report unstable ZBCPs with conductance
values somewhat above 2e2/h. Our work demonstrates that
these observations are inconsistent with either the topological
MZM or the trivial q-MZM interpretation. Thus, the only
possible conclusion, which has also been reached recently
in other theoretical publications, [40,54,57] is that even the
best experimental samples of today still have considerable
disorder in them, and in all likelihood, ZBCPs being observed
experimentally arise from disorder and are trivial. Given that
semiconductor nanowire systems are undoubtedly the clean-
est platforms for Majorana experiments, it is reasonable to
conclude that all ZBCP-implied conclusions about the ob-
servation of Majorana zero modes are actually observing
disorder-induced trivial zero-bias peaks in superconductor-
semiconductor heterostructures. This is in fact an encouraging
scenario for the future of Majorana experiments—all one
needs to do is to remove disorder and produce cleaner samples
in order to obtain topological Majorana zero modes.

VII. CONCLUSION

To conclude, we have systematically investigated ZBCPs
in the NS tunneling spectroscopy arising from different phys-
ical mechanisms, focusing on the conductance peak values
and their robustness against system parameters. We find that
for true topological Majoranas and smooth-potential-induced
quasi-Majoranas, the induced ZBCP does not exceed 2e2/h.
In a realistic finite-length nanowire, the Majorana-induced
ZBCP oscillates with an increasing Zeeman field strength due
to the wave function overlap between the Majoranas at the
opposite ends of the wire, while the quasi-Majorana-induced
ZBCP does not oscillate because its wave function is localized
at the end of the inhomogeneity. Both MZMs and q-MZMs

show a conductance plateau as a function of the tunnel barrier
transparency.

Beyond the simple single-subband calculation, we use
the self-consistent Thomas-Fermi-Poisson method and show
that a smooth confinement potential is indeed likely to form
near the NS junction due to the combined effects of gates
and superconductor-semiconductor band offset. It also indi-
cates that the realistic 3D model is qualitatively equivalent
to the widely used effective 1D minimal model in the single-
subband limit.

If there is a dip or well inside the potential inhomogeneity,
the ZBCP can exceed 2e2/h, and the profile of the ZBCP then
becomes spike-like as a function of either Zeeman energy or
tunnel barrier height. We ascribe the spike-like conductance to
the enhanced inter-Majorana coupling in the dip-like potential
inhomogeneity. Such a spiky conductance rises and falls too
quickly as a function of parameters (we provide animations in
the Supplemental Material [43]) to be experimentally relevant
in our view. It is, of course, possible that very careful fine-
tuning plus effects of temperature and dissipation may lead to
just the correct experimentally observed conductance slightly
above 2e2/h [12,18] arising from a quantum dot-induced dip
potential, but such fine-tuning is more likely to lead to a ZBCP
with conductance below 2e2/h [11,34]. In any case, the dip
potential would not lead to any robustness in the ZBCP, and
cannot be construed to belong to the q-MZM category.

Finally, we present conductance calculations for the ran-
dom disorder potential which also induces trivial ZBCP, with
its peak value which may exceed 2e2/h, and having cer-
tain limited robustness against either Zeeman field or tunnel
gate, if any, through a careful fine-tuning procedure. Such
fine-tuned somewhat robust ZBCPs with conductance val-
ues above 2e2/h have been observed in recent experiments,
[12,18], and we believe that these are all disorder-induced
trivial ZBCPs.

In summary, our message to the experimentalists is that
the presence of a conductance plateau approaching quantized
2e2/h from below without much fine-tunings may indicate the
existence of real or quasi-Majorana zero modes. By contrast,
a conductance peak above 2e2/h, whether the profile is spike-
like or plateau-like, would be from disorder- or dip-induced
trivial Andreev bound states. Producing cleaner samples with
less disorder should be the highest priority for progress in the
field.

The definitive evidence for the existence of topological
MZMs in the tunneling spectroscopy must minimally satisfy
the following five criteria: (1) generic observation of 2e2/h
(or slightly below) ZBCP without extensive fine-tuning; (2)
stability of the ZBCP in the Zeeman field, tunnel barrier
potential, and chemical potential; (3) ZBCP manifesting some
oscillatory behavior with increasing Zeeman field; (4) obser-
vation of end-to-end tunneling nonlocal correlations in the
ZBCP; and (5) observation of a bulk gap closing and reopen-
ing concomitant with the appearance of the ZBCP.

Finally, we comment on the nonexistence of any meso-
scopic conductance fluctuations in Majorana nanowires,
particularly in view of our conclusion that even the best
available samples are currently disorder-dominated. It is
worthwhile to mention that our exact phase-coherent tunnel

214502-11



PAN, LIU, WIMMER, AND DAS SARMA PHYSICAL REVIEW B 103, 214502 (2021)

EZ = 1.2 meVMZM-MZM
(a)

1st γ1 1st γ2

2nd γ1 2nd γ2

EZ = 0.8 meVqMZM-MZM
(b)

1st γ1 1st γ2

2nd γ1 2nd γ2

EZ = 0.8 meVqMZM-qMZM
(c)

1st γ1 1st γ2

2nd γ1 2nd γ2

0 3L (μm)

EZ = 0.46 meVDip-like
(d)

1st γ1 1st γ2

2nd γ1 2nd γ2

FIG. 10. (a) The wave function of two MZMs on both ends at
EZ = 1.2 meV. (b) The wave function of the q-MZM on the left and
MZM on the right at EZ = 0.8 meV. (c) The wave function of two
q-MZM on both ends at EZ = 0.8 meV. (d) The wave function of a
dip-like potential corresponding to Fig. 7 at EZ = 0.46 meV.

conductance calculations in the presence of random disorder
in the nanowire do not manifest any mesoscopic fluctuations
in the system. In particular, the theoretical tunnel conductance
does not fluctuate randomly at all [let alone by O(e2/h)] as
a function of bias voltage, chemical potential, and Zeeman
field; instead, varying smoothly according to the spectral
evolution of the BdG equation with parameter variation. In
fact, no mesoscopic fluctuations are expected here because of
the existence of the superconducting gap and the nature of
tunneling transport as would have happened in a similar dis-
ordered normal system for coherent diffusive transport. This
lack of any disorder-induced mesoscopic fluctuations in the-
ory is consistent with the experimental findings in nanowire
tunneling transport, where mesoscopic fluctuations have never
been reported despite all the early experimental samples hav-
ing substantial disorder, as reflected in their having very soft
gaps indicating the existence of considerable sample disorder.
In the superconducting systems, where Majorana experiments
are carried out, one expects only disorder-induced nonuni-
versal subgap bound states fluctuating from one disorder
configuration to another, as is also found in the theoret-
ical calculations with disorder. The existence of different
sets of subgap bound states in different disorder configura-
tions is the analog of conductance fluctuations in the current
systems.
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APPENDIX: WAVE FUNCTION

Figure 10 shows spatial wave functions for three scenarios
corresponding to Fig. 3 and one case of dip-like potential
corresponding to Fig. 7.
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