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Training and Testing Texture Similarity Metrics
for Structurally Lossless Compression

Kaixuan Zhang , Zhaochen Shi , Jana Zujovic , Member, IEEE, Huib de Ridder , René van Egmond ,
David L. Neuhoff , Life Fellow, IEEE, and Thrasyvoulos N. Pappas , Life Fellow, IEEE

Abstract— We present a systematic approach for training and
testing structural texture similarity metrics (STSIMs) so that
they can be used to exploit texture redundancy for structurally
lossless image compression. The training and testing is based
on a set of image distortions that reflect the characteristics of
the perturbations present in natural texture images. We conduct
empirical studies to determine the perceived similarity scale
across all pairs of original and distorted textures. We then
introduce a data-driven approach for training the Mahalanobis
formulation of STSIM based on the resulting annotated texture
pairs. Experimental results demonstrate that training results in
significant improvements in metric performance. We also show
that the performance of the trained STSIM metrics is competitive
with state of the art metrics based on convolutional neural
networks, at substantially lower computational cost.

Index Terms— Perceptual image quality, visual texture
analysis, structural texture similarity metrics (STSIMs),
matched-texture coding (MTC).

I. INTRODUCTION

THE field of image compression has made significant
advances over the past decades, relying on signal trans-

formations, perceptual models, and lossless compression,
to eliminate mathematical and perceptual redundancy. One of
the keys to further advances is exploiting texture similarity.
Current techniques have not been able to do this because
they rely on quality metrics that are sensitive to point-by-
point distortions that fail to account for the stochastic nature
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of texture and how it is perceived by humans [1], [2], [3], [4],
[5]. To address such limitations, Zujovic et al. [4] introduced
a new class of structural texture similarity metrics (STSIMs)
that rely on region statistics, computed within each image,
to evaluate texture similarity. Zujovic et al. [6] have identified
three operating domains for evaluating the performance of
texture similarity metrics: the ability to retrieve “identical”
textures; the ability to distinguish between perceptually similar
and dissimilar textures; and the ability to quantify distortion
at the top of the similarity scale, that is, small deviations from
identical textures. The performance of STSIMs in the first
two domains, with applications to content-based retrieval, has
been studied in [4] for identical and [6] for similar textures.
The goal of this paper is to develop methods for training and
testing STSIMs for applications that fall in the third domain,
and in particular, for structurally lossless compression [5],
whereby the original and compressed images may have visible
differences in a side-by-side comparison, but have similar
quality and one cannot tell which is the original. Structurally
lossless compression is essential for exploiting texture self-
similarity for image compression.

Traditional perceptual quality metrics rely on low-level
properties of the human visual system [7], [8] to measure
distortions near the threshold of perception. The goal is to
achieve perceptually lossless compression, that is, images
cannot be distinguished from the original in a side-by-side
comparison at a given display resolution and viewing distance
[8]. However, like peak-signal-to-noise ratio (PSNR), percep-
tual metrics still measure point-by-point distortions, albeit
in the subband or DCT domain. This has prevented image
(and video) compression algorithms from using spatial (and
temporal) prediction for encoding textured regions, because
large prediction errors can occur for textures that to the human
eye appear to be equivalent. However, extended regions of
texture (grass, clouds, foliage, concrete walls, fabric) could be
simply replaced with previously encoded patches with similar
statistics without any significant effect on perceived texture
quality. The development of STSIMs has been the key for
exploiting such texture redundancy, which naturally leads to
the notion of structurally lossless image compression. STSIMs
rely on region statistics, and can thus account for the typically
stochastic nature of textures and the ability of the human visual
system (HVS) to perceive textures with visible point-by-point
differences as similar.

One approach for achieving structurally lossless compres-
sion is matched-texture coding (MTC) [9], [10], [11], [12].
It aims to exploit the self-similarity of an image, especially in
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textured regions. In MTC, selected image blocks are encoded
by pointing to previously encoded blocks that are sufficiently
similar; the remaining blocks are encoded by a baseline
method, such as JPEG. Any image blocks can be encoded in
this way, but the most significant gains are obtained when they
contain textures, which require high bitrates when encoded
by the baseline method. As a result, the success of MTC
depends on a good texture similarity metric. To obtain such
a metric, we propose a systematic approach for synthesizing
texture variations that are encountered in image compression
applications; we then design and conduct empirical studies
for assigning perceived similarity scores to such variations;
and use machine learning techniques for training STSIMs so
that they can be used to exploit texture redundancy for image
compression.

A key requirement for image quality metrics that are
intended to be used both for quality assessment and as a
tool within a compression algorithm is that they provide
similarity measurements that are consistent with human per-
ception. Agreement with subjective quality judgements can
be evaluated by a number of statistical criteria, such as
Pearson’s linear correlation coefficient, Spearman’s rank corre-
lation coefficient ρ, and Kendall’s rank correlation coefficient.
The first measures the linear correlation between metric and
subjective ratings, and the other two consider the relative
rankings. However, as pointed out in [6], such quantitative
assessment of image quality can only be achieved at the high
end of the similarity scale; for severe distortions or dissimilar
textures, the metric should simply give low similarity scores.
For MTC coding in particular, it is important to find good
matches for a (target) block of texture to be encoded and
to order the candidates according to similarity to the target.
To train a metric and to test its performance, we need a set
of variations of a given texture and the associated perceived
similarity scores. However, obtaining a set of images with
fine similarity differences in the context of real compression
applications (such as MTC) is difficult. Instead, we introduce
a systematic approach for generating synthetic distortions that
model variations that occur in natural textures, and conduct
empirical studies for rating the similarity of the distorted and
original textures. We then introduce a data-driven approach for
training and testing the Mahalanobis formulation of STSIM
based on the resulting annotated texture pairs. We also com-
pare the performance of a number of existing variations of
STSIMs that require no training (STSIM-1 and STSIM-2
[4]), or minimal training (STSIM-M [4] and STSIM-I [13]).
Experimental results with an annotated dataset of 10 original
grayscale texture images, three types of distortions (micro
translations, micro rotations, and warping) and three degrees of
each distortion demonstrate that the STSIMs provide excellent
performance, but the data-driven approach can lead to consid-
erable improvements. A set of 10 additional textures shows
similar performance.

Gide et al. [14] conducted a similar empirical study using a
comprehensive database they constructed as a benchmark for
comparison of different texture quality metrics. Their database
contains texture images with several types and degrees of dis-

tortions induced by traditional coding algorithms such as noise,
blur, compression artifacts, shifts due to motion estimation,
and synthesis based on a parametric texture model [15]. In con-
trast, our database construction and empirical studies are aimed
at variations that occur naturally in textures, with the goal of
exploiting texture self-similarity in compression applications.

Ding et al. [16] combined a VGG (Visual Geometry Group)
convolutional neural network (CNN) [17] with SSIM [18] to
develop DISTS (deep image structure and texture similarity),
a data-driven image quality assessment technique that achieves
excellent performance on texture similarity measurements and
texture retrieval tasks. Experimental results with our annotated
texture database demonstrate that the trained Mahalanobis
formulation of STSIM is competitive with the performance
of DISTS, trained on the same database, while offering
a considerable advantage in computational efficiency over
the VGG-based metric. In addition, we combine the two
approaches by using a variant of the VGG CNN in place of the
steerable filter bank in STSIM, and show that it matches the
DIST performance.

The key ideas of this paper, including the construction
of the database of geometric texture distortions and the
basic experimental setup, were introduced in a conference
paper [19]. For this paper, we modified the experimental setup
to obtain subjective ratings that better reflect the perception
of texture distortions. We also present extensive statistical
analysis of the results of the two empirical studies, introduce a
data-driven approach for metric training, and present extensive
experimental results with an expanded set of textures. Over-
all, this paper provides a comprehensive presentation of the
proposed approach with additional details, analysis, data, and
experimental validation.

The remainder of this paper is organized as follows.
Section II provides an overview of the basics of texture
similarity metrics. In Section III, we describe the construction
of the database of texture distortions. Two empirical studies
to determine the similarity of the textures in the database
are presented in Section IV and the data-driven approach for
metric training is presented in Section V. The experimental
results are discussed in Section VI, and the conclusions are
summarized in Section VII.

II. TEXTURE SIMILARITY METRICS BASICS

In this section we review grayscale texture similarity met-
rics. As we discussed, in order to take into account human
perception and the (typically) stochastic nature of textures,
STSIMs replace point-by-point comparisons with compar-
isons of region statistics. The idea of using region statistics
was introduced by Wang et al. in the structural similarity
(SSIM) metrics, which were implemented both in the space
domain [18] and the complex wavelet domain [20]. However,
SSIMs include a “structure” term that computes cross-image
correlations, which are point-by-point comparisons, and as
a result give low similarity values for perceptually similar
textures. In contrast, STSIMs [4], [21], [22] only compare
statistics computed within each image. The basic elements of
STSIMs are:
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• A real or complex subband decomposition, such as the
steerable filter decomposition.

• A set of statistics computed for each subband or pair of
subbands of each image. For spatially varying images,
the statistics are computed in a sliding window, and for
homogeneous texture patches, as in this paper, they are
computed over the entire subband. The statistics (mean,
variance, horizontal and vertical autocorrelations, and
crossband correlations) can be computed on the complex
subband coefficients or their magnitudes.

• Formulas for computing similarity scores for each pair of
corresponding statistics, one from each image. Different
formulas may be used for different statistics, depending
on the range of values that it takes, and may also include
a normalization factor.

• A pooling strategy for combining the similarity scores,
over statistics, subbands, and window positions, to pro-
duce an overall STSIM score.

Three variations, STSIM-1, STSIM-2, and STSIM-M, are
presented in detail in [4]. All of these metrics use the complex
steerable filters [23] to decompose the image into ns =

3 scales and no = 4 orientations, plus a low frequency and a
high frequency band. Since the low and high frequency bands
are not split into orientations, the total number of subbands is
ns · no + 2 = 14. All metrics compute the mean µm

x , variance
σm

x , and horizontal and vertical autocorrelations ρm
x (0, 1) and

ρm
x (1, 0) for each image or image patch x and each subband

m, for a total of 56 statistics. STSIM-2 and STSIM-M also
add crossband correlations ρ

m,n
x (0, 0), ns ·

(no
2

)
= 18 across

all orientations for a given scale, and no · (ns − 1) = 8 across
adjacent scales for a given orientation. Note that no crossband
correlations are computed across the high frequency subband
and the first scale and across the low frequency band and
the last scale. Thus, STSIM-2 and STSIM-M use a total of
n = 82 statistics. The statistics for STSIM-1 and STSIM-2
are computed on the complex subband coefficients, except for
the crossband correlations that are computed on the magni-
tudes, while for STSIM-M all statistics are computed on the
magnitudes [4].

STSIM-1 and STSIM-2 combine statistics in a fashion
inspired by SSIM for an overall similarity score (details can
be found in [4]). Like SSIM, these metrics do not satisfy the
conditions of the mathematical definition of a metric [24],
and thus, we refer to them as metrics in a loose sense.
An alternative approach is to form an 82-dimensional vector of
statistics f (x) for each image or image patch, and to compute
a dissimilarity score as the Mahalanobis distance between the
feature vectors f (x1) and f (x2) for images x1 and x2, as
follows [4]

D(x1, x2) =

√
( f (x1) − f (x2))H M( f (x1) − f (x2)) (1)

where H denotes the Hermitian operator (complex conjugate
transpose). It can be shown that the Mahalanobis distance
satisfies the conditions of a proper metric, albeit in the
82-dimensional STSIM feature space rather than in the image
space. The reason is that, if the features of two texture images
are the same, the images are visually indistinguishable, but

there is no guarantee that they are equal pixel-by-pixel. It can
easily be shown that (1) satisfies the other two conditions of
a metric, symmetry and triangular inequality.

Zujovic [4] used a diagonal Mahalanobis matrix M with
the inverse of the variance of each feature, computed across
all data, on the diagonal. Maggioni et al. [13] argued that, for
image classification, the diagonal Mahalanobis matrix should
use the intra-class variances, which reflect inherent texture
variations in each class, so that inter-class variations can
contribute to better discrimination among classes. We will
refer to the resulting metric as STSIM-I.

Selecting a diagonal Mahalanobis matrix M assumes that
the texture features f (x) are independent, which may be a
reasonable approximation, but is not necessarily true. In the
following sections, we will discuss techniques for metric train-
ing, that is, designing the Mahalanobis matrix M . In particular,
in Section V, we will present a data-driven approach for
selecting the entries of the Mahalanobis matrix M .

In the past decade, CNN features have become popular for
multiple tasks, such as style transfer [25], superresolution [26],
and texture synthesis [27]. These techniques rely on CNN
feature distance as a fidelity criterion. This has inspired the
use of CNN features for image quality assessment (IQA) [28],
[29], [30]. However, these methods were designed for images
of faces, objects, and scenes, and do not reflect perceptual
quality for texture images. As we discussed in the introduction,
DISTS [16] is much more appropriate for texture quality.
DISTS is based on a variation of the VGG CNN [17] and
obtains the overall similarity of the images as a weighted
sum of the luminance and structure terms of SSIM [18]
computed for each feature. The task of machine learning is
to determine these weights. Since DISTS performs well on
IQA benchmarks and is also robust to texture distortions,
the proposed proposed data-driven approach will be compared
with DISTS in Section VI.

In addition to training the various STSIM metrics and
DISTS, we will also combine the two approaches by using
a variant of the VGG CNN in place of the steerable filter
bank in STSIM. However, since the number of feature maps
of the different layers is very large, we will only use means,
variances, and horizontal and vertical first order correlations as
features. We will not use any crossband correlations, because
there are too many possibilities and no obvious way to select
a smaller subset. We will refer to this metric as STSIM-VGG.

Finally, we should point out that all the metrics in this paper
are not scale or rotation invariant. This is because in image
compression and quality applications rotation and scaling are
considered image distortions.

III. DATABASE CONSTRUCTION

The performance of a texture similarity metric depends on
how well it can quantify the perceived similarity of a pair of
texture images. In this and following two sections, we propose
a systematic approach for training and testing STSIMs to
achieve this goal for image compression applications. In this
section, we describe the construction of a database of texture
distortions that model variations that occur in natural textures.
In Section IV, we present empirical studies to determine

Authorized licensed use limited to: TU Delft Library. Downloaded on March 25,2024 at 12:02:35 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: TRAINING AND TESTING TEXTURE SIMILARITY METRICS FOR STRUCTURALLY LOSSLESS COMPRESSION 1617

Fig. 1. Original texture images (1)-10, raster scan).

Fig. 2. Grid points in the original and distorted meshes.

the perceived similarity of the textures in the database, and
in Section V, we present a data-driven approach for metric
training, that is, designing the Mahalanobis matrix M , based
on the annotated database.

To construct the database, we started by selecting a set of
ten grayscale texture images, shown in Fig. 1, that range from
random noise to highly structured textures. The resolution is
128 × 128 pixels. For each of these ten textures we generated
three types of distortions, with three degrees of severity
for each distortion. The first distortion consists of random
rotations of small local patches. A w×w patch of the original
texture is replaced by a patch of the original image rotated
by an angle θ around the center of the patch. The values
of θ are selected from a uniform distribution U (−θo, θo).
The second distortion consists of random shifts of small local
patches. A w × w patch is replaced by a patch of the original
image displaced by (dx, dy) from the patch location. The
values of dx and dy are selected from uniform distributions
U (−Dx , Dx ) and U (−Dy, Dy). In both cases, the rotated or
shifted patches are larger than the patch they replace so that
there are no gaps in the image. The third distortion is image
warping. The texture is warped according to random deviations
of the control points of an underlying mesh, as illustrated
in Figure 2. First, B-splines are fitted to the control points,
and then bilinear interpolation is used to determine the pixel
values. The software is available in MATLAB.1 The control
points are located on a v × v grid, and their deviations
(δx, δy) are selected from uniform distributions U (−1x , 1x )

and U (−1y, 1y). Examples of the underlying meshes and the
resulting distortions are shown in Figure 3.

The severity of each type of distortion can be controlled
by varying the parameters of the distributions of the rotation
angles and the patch and control point displacements. As we
discussed, these synthetic distortions are intended to model
variations that occur in natural textures. In our experiments,

1https://www.mathworks.com/matlabcentral/fileexchange/20057-b-spline-
grid-image-and-point-based-registration

Fig. 3. Underlying meshes (top) and resulting warping distortions (bottom).

we selected w = 11 for the patch rotations and translations and
v = 5 for the mesh control points. The smaller meshes result in
similar scale artifacts as those of the patches. This is because,
as illustrated in Figure 2, four points on the grid control a
rectangle shown in dashed lines, thus effectively producing
deformations on rectangles of size equal to two times the grid
spacing, with boundary smoothness and continuity conditions.
Examples of the distorted images, corresponding to three
different originals, are given in Figure 4. From left to right,
we have three rotation-distorted images, three shift-distorted
images, and three warped images, for a total of nine distortions
for each texture. The severity of the distortions is increasing
from left to right. For three levels of severity, we selected
θ0 ∈ {0.3, 0.5, 0.7} degrees for the random rotations, Dx =

Dy ∈ {3, 5, 8} pixels for the random shifts, and 1x = 1y ∈

{0.3, 0.5, 0.8} pixels for the warping.

IV. EMPIRICAL STUDIES

In this section, we present two empirical studies to deter-
mine the perceived similarity of the textures in the database,
first, to determine the similarity of the distortions of each
texture class (original texture and associate distortions), and
then to compare distortions across classes.

A. Study I: Within Texture Class

In the initial study [19], for each of the ten original textures,
the participants were asked to rank the nine distorted textures
on the basis of similarity with the original texture; tied
ranks were not allowed. However, this procedure provides
no indication of how close any of the distortions is to the
original image. To better anchor the resulting perceptual scale
with respect to the original texture, in the current study,
we redid the experiments including the original in the ranking
pool. A snapshot of the test is shown in Figure 5. The
users were asked to drag and drop the ten images from
the pink box into the gray boxes, according to increasing
perceived distortion. The sequence of texture presentation was
chosen randomly for each user, and the initial ordering of the
ten images in the pink box was also random. There was a
total of nine participants in this study; they were graduate
students in the EECS department at Northwestern University
and they all reported normal or corrected-to-normal vision.
Each participant ranked ten groups of textures, one for each
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Fig. 4. Examples of distorted texture images.

Fig. 5. Snapshot of Test I: Sorting within texture class.

TABLE I
PARTICIPANTS THAT SELECTED ORIGINAL AS LEAST DISTORTED

class. They conducted the test on their own machines, desktops
or laptops with different resolutions, and were allowed to pick
a comfortable viewing distance. Given the small size of the
texture patches, in all cases, the resolution was adequate. The
effective image resolution varied approximately from 20 to
30 cycles per degree. The participants were not told that one
of the ten images they were asked to rank is the original image,
and as Table I shows, they did not always select the original as
the least distorted. The length of the test was about 15 minutes.

Once we have the ranking results, we need to convert them
to ratings that reflect the perceived similarity between the
original texture and the ten textures (the nine distortions and
the original texture) it was compared with. This can be done
in a number of different ways. In all cases, for each original
image, we extract a ten-dimensional vector of ratings. This
vector represents the ground truth with which the values of a
similarity metric should be compared.

The simplest approach is to find the mean ranking across
participants for each distorted image and to use that as its

“subjective” position with respect to the original. This is
perhaps one of the oldest techniques, proposed in 1770 by
Jean-Charles de Borda, and today is known as Borda’s rule.
He called this method “election by order of merit,” i.e.,
the cumulative preference given to a candidate is its final
score.

In [19], Zujovic et al. tried two other popular approaches
for analyzing this type of data, Thurstonian scaling [31], and
multidimensional scaling (MDS) [32], [33], and found that
the three approaches for analyzing the ranking data to obtain
similarity ratings yield approximately the same results, so we
used the simplest, Borda’s rule. Moreover, Boschman [34],
[35] shows that for categorical data the mean ranking results
are comparable to the results obtained by Thurstonian scaling.
The key question is whether the rankings can be considered
as an interval scale instead of an ordinal one, and Boschman
suggests that that is a fair assumption. In fact, we analyzed
the ranking data using both the mean ranking and Thurstonian
scaling and verified Boschman’s conclusions.

Figure 6 shows the resulting ratings for each texture. The
original texture is indicated as 0 and the three severity levels
for each type distortion are indicated as 1, 2, and 3. Note that,
with the exception of textures 2 and 8, the level 3 warping
is perceived as the most distorted. However, the results very
significantly from texture to texture for the other levels and
distortion types. Again, note that the original is not always
perceived as the least distorted (textures 2 and 5). Figure 7
shows the resulting order for each texture class. Note that the
differences are most distinct for texture classes 3 and 6.

To ensure that we have meaningful results for metric train-
ing, we need to determine whether the differences between
the distorted textures and the original are above the perceptual
threshold. For this we used the R-index [36], [37]. According
to Brown [36], the R-index is free of assumptions, is easy
to calculate, and does not need a lot of replications. It is
especially efficient for multiple comparisons where there is
a reference image and several other images to be compared
to the reference, and can be applied to ranking data where
the reference is one of the test images, as is the case in our
study. The R-index ranges from 50% (chance level) to 100%.
Table II lists the R-index for each of the distortions of the
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Fig. 6. Empirical Study I: Severity of distortions for each texture. Empty markers indicate distortions used in Study II. The error bars stand for standard
errors, which are standard deviation divided by the square root of the number of participants.

TABLE II
R-INDEX FOR EACH DISTORTION OF EACH TEXTURE. RED

NUMBERSINDICATE IMAGES BELOW THE
DETECTION THRESHOLD

10 texture classes. Given the number of distortions (9) and a
preferred α-value of 0.05, which becomes 0.005 after Bonfer-
roni correction, the threshold that the R-index is significantly
different from 50% is R = 78.36. The table shows that most
of the ratings are above threshold. However, the subthreshold
data should also be taken into account in metric training, as the
metric must yield low values for distortions that are below
threshold.

B. Empirical Study II: Across Texture Classes

In order to obtain the subjective ranking of distortions
across texture classes, in the final stage of the initial study
[19], the participants were asked to rank the ten textures they
selected as the most distorted in each class on the basis of
similarity with the corresponding original texture. However,
the data collected in this manner is very sparse, because each
participant was asked to label only one subset of the distorted
images out of 910 possible subsets. Instead, in the current
study, we asked the participants to rank two sets of distortions
across the ten textures: the medium-level rotation distortions
and the high-level warping distortions. This allows us to create
a combined ordering of the subjective scores for all pairs
of original and distorted textures, which can be converted to
similarity ratings that can be used as ground truth for metric
training and testing. A snapshot of this final stage of the
test is given in Figure 8. This study was conducted by the

same participants as the first study, on the same machines and
viewing conditions. Each participant ranked two sets of distor-
tions across the ten textures, one for the medium-level rotation
distortions and one for the high-level warping distortions. The
length of the test was about 5 minutes.

We used Borda’s rule to convert the rankings of the textures
for the two distortions to similarity ratings. The results are
shown in Figure 9. A 2-way ANOVA showed that there was
no significant interaction between texture and distortion type:
F(9,160) = 1.90, p = 0.06, while there was a significant effect
of texture: F(9,160) = 17.46, p < 0.001. We then combined
the ratings of the two experiments. This was done in two
stages. First, we scaled the within texture class distortions
for each class from 0 for the original to 1 for distortion 33
(warping level 3). Let yi be the scaled vector of distortions
for each texture class i . This resulted in two negative values,
which we later set to 0. We then solved a least squares
problem to find the scaling value si for each texture class
i that minimizes(

si yi
12 − zi

12

)2
+

(
si yi

33 − zi
33

)2
(2)

where zi
12 and zi

33 are the ratings for distortions 12 (rotation
level 2) and 33 for the texture classes in the second experiment.
The results are shown in Figure 10.

V. DATA-DRIVEN APPROACH FOR METRIC TRAINING

Among the different variations of STSIMs we reviewed in
the previous section, we selected the Mahalanobis distance
because it provides an intuitive combination of the differ-
ent features (texture statistics) that can take into account
their interdependencies and relative importance. STSIM-1 and
STSIM-2 are not easily amenable to optimization. Moreover,
they were developed with retrieval applications in mind, for
example, in the selection of feature similarity formulas and the
multiplicative combination of the similarity scores. Yet, as we
will see, their performance is remarkably good without any
training.

We take a data-driven approach for selecting the entries of
the Mahalanobis matrix, in contrast to the diagonal matrix in
[4] and [13], which assumes that the features are independent.
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Fig. 7. Empirical Study I: Distortions ordered according to severity. Cyan box indicates original texture, red below threshold.

Since the n × n Mahalanobis matrix is positive semi-definite,
it can be factored into a product M = L H L , where L is an
r × n matrix. Then we can rewrite (1) as follows

D f (x1, x2) = ||L · ( f (x1) − f (x2))|| (3)

where ||g|| =
√

gH g. We use the Adam optimizer to find
the matrix L that maximizes the Pearson’s (linear) correlation
coefficient r (PLCC) between the ratings from the empirical
test and the metric prediction. Details of the metric training
will be introduced in V-A. The task is to estimate both the
dimensionality of L and the values of its entries. We will refer

to this formulation of the metric as STSIM-Mf, where f stands
for factored. We will also use machine learning techniques to
estimate the entries of a diagonal M , and will refer to the
resulting metric as STSIM-Md.

An important implementation question that we will address
in Section VI is the selection of the analysis filter bank.
Zujovic et al. [4] used a complex steerable filter decomposi-
tion; for STSIM-1 and STSIM-2, the means, variances, and
autocorrelations were computed with the complex subband
coefficients, and the crossband correlations (STSIM-2) were
computed with the coefficient magnitudes; for STSIM-M,
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Fig. 8. Snapshot of Test II: Sorting across texture classes (original texture
at the top, medium-level rotation distortion at the bottom).

Fig. 9. Empirical Study II: Distortion severity across textures. The error bars
stand for standard errors.

Fig. 10. Empirical Study II: Normalized distortion severity.

they found that magnitudes were most effective. However,
the application domain of this paper is compression instead
of retrieval, and their conclusions do not necessarily hold.
We will consider both complex and real steerable filter decom-
positions. In addition, as we discussed in Section II, we will
train STSIM-VGG, a variant of the VGG CNN in place of
the steerable filter bank in STSIM, and appropriately selected
features. Finally, we will compare the performance of the
trained STSIM metrics with DISTS trained on the same
data.

A. Metric Training

To compare the metric predictions with the empirical
ratings, one can use PLCC, Spearman’s rank correla-
tion coefficient ρ (SRCC), or Kendall’s rank correlation

coefficient τ (KRCC). We based the metric training on PLCC
maximization.

Let ŷ k
d be the metric prediction of the difference between

original texture x k
o and distorted texture x k

d for class k given
by (1):

ŷ k
d = D(x k

o , x k
d ) (4)

We form a vector ŷ k of the metric predictions for all distor-
tions (including different seeds) of all types for class k, and
a vector y k of the corresponding empirical ratings. Then, the
PLCC maximization is defined as follows:

arg max
L

PLCC(ŷ, y) (5)

with

PLCC(ŷ, y) =
1
K

K∑
k=1

r(ŷ k, y k) =
1
K

K∑
k=1

cov(ŷ k, y k)

σ (ŷ k)σ (y k)
(6)

where K is the total number of texture classes (K = 10),
ŷ and y are vectors formed by concatenation of the vectors ŷ k

and y k for all classes k, r is the PLCC between vectors ŷ k

and y k , and L is the Mahalanobis factor that appears in (3).
If there are no perceptual ratings across classes, the PLCC
is computed locally, within each class and then averaged
across all classes, as in (6). If global perceptual ratings are
available, then the PLCC is computed globally, across all
available data, which are combined in two vectors ŷg and yg .
Thus,

PLCC(ŷ, y) = r(ŷ g, y g) =
cov(ŷ g, y g)

σ (ŷ g)σ (y g)
(7)

In the next section, we will show that global training leads to
more robust metric performance.

We chose to optimize the metric by maximizing PLCC
rather than SRCC or KRCC, because PLCC optimization
is straightforward using a gradient descent approach, while
the gradient calculation is not straightforward for the SRCC
and KRCC approaches. Note that the typical optimiza-
tion criterion used in machine learning is mean squared
error (MSE)

MSE(ŷ, y) =
1

dim(ŷ)
||ŷ − y||

2 (8)

which as we will show in Section VI, leads to subopti-
mal results. To optimize PLCC we minimize the negative
correlation. The optimization is carried out with an Adam
optimizer [38].

VI. EXPERIMENTAL RESULTS

In this section, we present the results of metric training and
compare the performance of the resulting metric with existing
approaches. The performance of the texture similarity metrics
will be based on comparisons with the values of perceived
similarity that we obtained from the empirical studies we
discussed in Section IV.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 25,2024 at 12:02:35 UTC from IEEE Xplore.  Restrictions apply. 



1622 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

TABLE III
EXISTING METRICS WITH STEERABLE FILTERSa

A. Existing Metrics

Zujovic et al. [19] relied on the results of the initial empiri-
cal study to compare the performance of PSNR, SSIM (space
domain) [18], CWSSIM (complex wavelet domain) [20], and
STSIM-1 and STSIM-2 [4]. The comparisons were based on
PLCC and SRCC, and showed that the STSIMs outperformed
the other metrics. They reported values for PLCC and SRCC
that were computed within each class and averaged over all
the texture classes.

In our experimental results we used the updated empirical
studies, whereby the original texture image was included in the
ranking pool in the within class study, and the medium-level
rotation distortions and high-level warping distortions were
used in the across class study. The combination of the two
studies makes it possible to obtain a global similarity scale,
and thus the performance criteria (PLCC, SRCC, and KRCC)
can be computed globally. Table III shows the performance
of existing data-independent metrics, PSNR, STSIM-1 and
STSIM-2, and the data-dependent STSIM-M and STSIM-I.
STSIM-1 and STSIM-2 were implemented as in [4], with
the real/complex filter coefficients used for the correlation
coefficients, and their magnitudes used for the crossband
correlations. The data-dependence of STSIM-I and STSIM-M
consists of estimating the variances on the diagonal, which
was based on the same data that was used for the data-
driven approaches. STSIM-M and STSIM-I were implemented
as in [4], with the magnitude of the real/complex filter
coefficients for all correlations. It is somewhat surprising
that STSIM-1 has the best overall performance. As expected,
STSIM-I performs better than STSIM-M.

B. Data-Driven Metrics

The total number of images that were used in our empirical
studies is 100, 10 original images and nine distortions for each
image. While the empirical study data is adequate for metric
evaluations, a lot more data is required for metric training.
To increase the amount of data without conducting cumber-
some additional empirical studies, we generated 12 additional
images for each distortion using the same parameters but
different random seeds. We used the 1080 additional images
for metric training and validation, and the initial 100 images
for testing. We assumed that a different seed does not result in
significant changes in texture appearance, so we used the same
similarity ordering/ratings that we obtained in the empirical
studies.

Fig. 11. STSIM-Mf performance for different ranks of M .

We trained the metrics using two different objective func-
tions, MSE loss (8) and PLCC maximization (5). We selected
PLCC maximization for the experiments reported in this
section because it is the most straightforward to use. Since
the values of the empirical ratings are normalized to the [0, 1]

interval, while the Mahalanobis-based STSIM metrics take
values in the [0, ∞) range, the MSE loss requires the selection
of a mapping of the metric values (or conversely the empirical
ratings), which will affect the results.

We used the Adam optimizer [38] and 0.01 as the initial
learning rate. Each metric was trained with 500 epochs.
For STSIM-Mf based on complex steerable filters, we tried
different values of l, the rank of the matrix L , covering the
entire range from 1 to 82. To measure the goodness of fit,
we used Pearson’s r (PLCC), Spearman’s ρ (SRCC), and
Kendall’s τ (KRCC), computed globally, as we discussed
above. The results are shown in Figure 11. Observe that the
performance increases sharply up to l = 5, and remains high
after that, with the variations depending on the performance
criterion. We selected l = 10 as a reasonable balance between
performance and computational efficiency, as well as lower
risk of over-fitting.

We first establish the importance of metric training using the
global similarity scale. Figure 12 compares the performance
of the data-dependent but minimally trained STSIM-M with
the local and global optimization of STSIM-Mf. For the local
optimization, we maximize the average of the PLCC computed
within each class. In all cases, the metric values are plotted
against the global perceptual ratings, and the performance
criteria (PLCC, SRCC, and KRCC) can be computed globally.
Note that local optimization aligns the data for each texture but
fails to align the data across textures, as global optimization
does, for a huge gain in performance. This is especially
impressive in view of the fact that the behavior of two textures
(2 and 5) deviates from the other ones. Figure 13 presents an
alternative view of the resulting fit by comparing the rescaled
original experimental data from Figure 10 with the global
optimization. The ten panels, one per texture class, underscore
how successful the training was. For example, the ratings for
distortion type 1 (shifts) are not influenced by the level of
distortion for textures 1, 4 and 6. This is correctly indicated
by the model predictions.

We now compare the performance of the different data-
driven metrics. Table IV shows the results of 5-fold cross-
validation for the metrics trained with PLCC maximization.
For the cross-validation we used the following grouping of the
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Fig. 12. Metric predictions for STSIM-M (top), local STSIM-Mf (middle),
and global STSIM-Mf (bottom). Empty circles below threshold.

textures: (1,3), (2,4), (5,9), (6,10), and (7,8). The performance
criteria for both training and testing were computed globally.
STSIM-Md refers to the metric with diagonal Mahalanobis
matrix trained with the data-driven approach. As we discussed,
STSIM-Mf refers to the factored Mahalanobis matrix with
r = 10. STSIM-VGG refers to STSIM combined with the
VGG CNN in place of the steerable filters. Comparing with
the results of existing metrics in Table III, we conclude that

TABLE IV
5-FOLD CROSS VALIDATION ON THE 10 TEXTURESc

training improves performance, but it is not clear that adding
terms off the diagonal helps. There is no clear conclusion
on the relative performance using real and complex steerable
filters. The performance of the trained STSIM metrics is
slightly better than DISTS [16] and STSIM-VGG based on
PLCC. The results vary when we consider SRCC and KRCC
but the advantage of training is clear.

One important consideration is the batch size for metric
training. STSIM-Mf has a small number of parameters, and
thus, can be trained with very large batch size (all 900 textures
and more). DISTS on the other hand is based on a neural net
(VGG), which has a lot of parameters, and can only be trained
with batch size of 60 on the latest GTX 3080. However, with
global training and random shifting of the data, the batch size
has no significant effect on the results.

C. Results With Additional Textures

To further test the robustness of the proposed techniques,
we collected a set of 10 additional textures, shown in
Figure 14. We will refer to the new textures as 11-20 in
raster scan order. We conducted two empirical studies with
a new group of 10 participants. In the first study, we asked
the participants to rank the distortions of the new set of
textures on the basis of similarity with the corresponding
original texture. In the second study, we asked the partici-
pants to rank the medium-level rotation distortions and the
high-level warping distortions across all 20 textures. The
studies were conducted in the same manner as the studies in
Section IV.

First, we applied the metrics that were trained on the
10 textures of Figure 1 to the new set of textures. The results
are shown in Table V. The performance of the trained STSIM
metrics has dropped compared to the 5-fold cross validation
of Table IV, indicating that they are not as robust as DISTS,
which now has the best overall performance. However, the
results clearly demonstrate the advantage of metric training.
The drop in performance can be attributed to the fact that the
textures in the second set are different. A more accurate eval-
uation of performance can be obtained by cross-validations,
which we consider next.

We then conducted a 5-fold cross-validation test using all
20 textures. We used the following random grouping of the
textures for the test: (2,6,8,18), (10,14,16,19), (3,12,13,17),
(4,5,7,15), (1,9,11,20). The results, shown in Table VI are
comparable to the original cross-validation results of Table IV.
Note the impressive performance of STSIM-VGG, which is
comparable to DISTS.
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Fig. 13. Final results: Normalized distortion severity (solid lines) and metric predictions (dotted lines).

Fig. 14. Additional texture images (11-20, raster scan).

TABLE V
TRAIN ON FIRST SET OF 10 TEXTURES, TEST ON SECOND SET

TABLE VI
5-FOLD CROSS-VALIDATION ON ALL 20 TEXTURES

D. Image Quality

As we discussed in the Introduction, the goal of this paper is
to develop metrics for structurally lossless image compression
[5]. While developing a method that incorporates the proposed
metrics is beyond the scope of this paper, we used the metric
to evaluate the quality of the results presented in [9] and [10].
Figure 15 shows an original image compressed with JPEG

TABLE VII
STSIM-MF TESTED ON THE IMAGES IN FIGURE 15

and MTC [9]. The similarity based on the proposed metric is
shown in Table VII for different sliding window sizes with
50% overlap. The metric values reflect the fact that the JPEG
image has visible distortions in the neck and hands of the
woman, while the MTC image has no obvious artifacts, even
though the sweater texture is a bit different than the original.

E. Computational Cost

The experiment results above show that the trained STSIM
is competitive with DISTS in terms of performance. However,
STSIM metrics have significant computational advantages.
The first advantage is the use of a (relatively compact)
filter bank. VGG has thousands of feature maps (convolution
kernels), while the steerable filter decomposition has only
14 subbands. Since convolution is the most computationally
intensive operation in the metric, STSIM-Mf is dramatically
faster for both training and inference. Another advantage is the
reuse of feature vectors. For the Mahalanobis-based metrics
(STSIM-Mf and STSIM-VGG) the statistics (features) are
computed independently for each texture image, while the
structure term in DISTS requires a pair of images as input.
Thus, for STSIM-Mf and STSIM-VGG, we only need to
compute the feature vectors once, and save them for future
training and inference, while for DISTS the features must be
recomputed for each new pair of textures. For instance, in a
texture retrieval task with N query images, and M reference
images, STSIM-VGG requires N +M forward propagations of
VGG to generate and store the feature vectors for all images,
whereas DISTS requires 2N M forward propagations of VGG
to compute the feature vectors for all pairs of query and
reference images.

In terms of actual running time, the implementation of the
complex steerable filters is actually slower because VGG is
a widely used network that has been optimized very well
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Fig. 15. Image compression at 0.34 bits/pixel [9].

in pytorch. Thus, DISTS and STSIM-VGG have comparable
speeds of 4.6 ms/frame, compared with 28 ms/frame STSIM-
Mf. On the other hand, the steerable filters use considerably
fewer GPU resources. For training 45 images in a batch, VGG
requires 8 GB of GPU memory, while the steerable filters
require 2 GB of GPU memory.

VII. CONCLUSION

We presented a systematic approach for training and testing
structural texture similarity metrics (STSIMs) so that they can
be used to exploit texture redundancy for structurally lossless
compression. Accordingly, the training and testing is based on
a set of image distortions that reflect the characteristics of the
perturbations present in natural texture images. We conducted
empirical studies to determine human perception of the sever-
ity of these distortions and used them to train STSIMs. Our
experimental results show that training significantly improves
metric performance. We have also demonstrated that the
performance of the trained STSIM metrics is competitive with
state of the art metrics based on convolutional neural networks
trained on the same data, at substantially lower computational
cost. Future research will include a broader range of image
deformations, and incorporation of the trained metrics in
matched texture coding [9], [10] and other structurally lossless
compression algorithms.
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