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Abstract— One of the most challenging applications targeted 

by evolving (beyond-)5G technology is virtual reality (VR). 

Particularly, 'Social VR' applications provide a fully immersive 

experience and sense of togetherness to users residing at 

different locations. To support such applications the network 

must deal with huge traffic demands, while keeping end-to-end 

latencies low. Moreover, the radio access network must deal 

with the volatility and vulnerability of mmWave radio channels, 

where even small movements of the users may have substantial 

effects on the Quality of Experience. We present an integral 

modelling framework for feasibility assessment and 

performance optimization of the radio access network for Social 

VR applications in indoor office scenarios. Using the presented 

modelling approach, we conduct an extensive simulation-based 

assessment to determine the performance impact of head 

motion, the frequency band (3.5 GHz, 26 GHz) and radio 

network configurations, and derive the required carrier 

bandwidth for a range of 'Social VR' scenarios. Insights into 

these issues are a prerequisite for setting up guidelines for 

network deployment and configuration as well as for the 

development of (AI/ML-based) methods for dynamic resource 

management to optimally support Social VR applications. 

Keywords—Social XR, VR, 5G, modelling, performance 

assessment 

I. INTRODUCTION 

It is widely recognized that emerging 5G network 
technology [1] will boost the development of new, highly 
innovative applications in virtually all domains. One of the 
most challenging application classes targeted by (beyond-)5G 
networks is augmented/virtual reality (AR/VR), in particular 
scenarios with multiple distant users who are able to interact 
fluently with each other through all human senses [2][3].  
Transporting one’s social and functional self to any place on 
earth is an exciting idea that will save travelling time and costs 
(and reduce carbon footprint) by e.g. enabling virtual 
meetings, exploitation of remote expertise or skills in smart 
industry or other contexts in the form of collaborative 
working, remote inspection or maintenance, and remote 
education and training. 

To support such so-called ‘Social VR’ applications with 
compelling visual, haptic, audio and possibly even olfactory 
experiences for remote users, the networking infrastructure 
must be able to handle extremely high-bandwidth streams 
while keeping the end-to-end latency low [3]-[5]. 
Furthermore, the infrastructure should provide powerful (in-
network) processing capabilities, reducing the need for heavy 
computational capabilities at the client devices, thus 
increasing the clients’ flexibility and mobility. Actually, 

natural Social VR experiences can only be realized when all 
components in the end-to-end capture, transmission and 
rendering pipeline optimally work together [5]-[8]. 
Optimization of the Quality of Experience (QoE) requires 
dynamic orchestration of these components, allocation of 
resources in the networking and compute infrastructure, and 
an optimized exploitation of the connect-compute trade-off, 
noting that the end-to-end latency budget can be flexibly 
distributed over computational and transport tasks. In 
particular, dynamic orchestration and resource management 
complemented with e.g. multi-connectivity should also be 
able to cope with the intermittent nature of high-frequency 
(mmWave) radio channels used in 5G to satisfy the huge 
capacity and throughput requirements [5][9][10].   

Other (beyond-)5G Radio Access Network (RAN) 
features and capabilities to support extremely demanding 
wireless applications like Social VR, are the use of massive 
MIMO-based beamforming to overcome the associated 
attenuation challenges, the flexible OFDM numerology, the 
use of scheduling mini-slots and self-contained subframes, 
and the use of channel-adaptive latency-based packet 
schedulers to efficiently achieve high data rates while 
satisfying latency requirements. 

This paper focuses on radio access challenges for 
supporting Social VR applications. As a first key contribution, 
we present an integral modelling framework covering all 
relevant aspects needed for an adequate feasibility assessment 
and performance optimization of ‘Social VR’ applications in 
indoor office scenarios. Studies presented in literature mostly 
focus on individual aspects, particularly blockage of mmWave 
channels and possible ways to mitigate such blockage effects 
[10][11]. Comprehensive studies of VR performance in the 
RAN covering multiple relevant aspects (and their 
dependencies) simultaneously are lacking, while there is a 
clear need for such an integral view. The modelling aspects 
covered in our study, besides the specifics of the use case 
scenario (office layout), include: (i) user behavior; (ii) 
application’s traffic characteristics and service requirements; 
(iii) the radio network deployment, incl. the deployed 
antennas, the carrier assignment and the configuration of the 
Grid of Beams (GoB); and (iv) key 5G radio resource 
management mechanisms, incl. MU-MIMO/latency-based 
packet scheduling. Exploiting the integrated implementation 
of the proposed models in a simulation tool, our second key 
contribution is an extensive scenario-based performance 
assessment, conducted to determine the impact of several use 
case/application-level aspects, the employed frequency band 
(3.5 GHz, 26 GHz) and radio network configurations on the 



attainable performance and the resources required to support 
a given Social VR scenario with adequate service quality.  

Such insights are particularly useful, a prerequisite even, 
for setting up guidelines for local network deployment as well 
as for the development of (potentially AI/ML-based) methods 
for dynamic resource management and tuning of radio access 
parameters to best support Social VR applications in indoor 
office scenarios. The envisioned ultimate goal is then to use 
these results for the design of a fully automated ‘Social VR 
network slice’, i.e. a self-configuring and autonomously 
managed 5G (radio) network slice to support this type of 
Social VR applications. 

The remainder of the paper is organized as follows. First, 
in Section II an overview of related work is given. Next, in 
Section III, we give a high-level description of the addressed 
‘Social VR’ use case. Section IV then presents our modelling 
framework for the performance assessment and optimization 
of Social VR scenarios, covering user behavior, application 
aspects, network deployment and radio resource management. 
Next, in Section V we outline the different assessment 
scenarios and define the Key Performance Indicators (KPIs). 
Section VI then presents and analyses the simulation results 
obtained for the specified scenarios. Finally, in Section VII we 
summarize our key contributions and insights, and give an 
outlook for further research. 

II. RELATED WORK 

There is a large body of research addressing virtual reality 
systems in a wireless setting. In [12], a framework is presented 
that analyses the performance of VR services over wireless 
networks. The framework captures the tracking accuracy, 
transmission delay, and processing delay, but most radio 
characteristics such as frequency-selective fading, antenna 
configurations and blockage effects are not considered. In 
[13], the authors study the impact of blockage by hand, head 
and body on wireless mmWave links and suggest an algorithm 
to overcome the corresponding challenges. The proposed 
solution uses a fixed relay to increase robustness against 
blocking and is assessed in an experimental setup. The 
attainable gains strongly depend on numerous assumptions 
and deployment configurations which are not described in any 
detail. In [10], the challenges and enablers for ultra-reliable 
and low-latency VR are discussed. The authors state that for a 
truly immersive VR user experience, three aspects should be 
designed and orchestrated together: communication, 
computing and caching. A case study has been worked out 
where multi-connectivity is used to mitigate the blockage and 
disturbance caused by several impulse actions. Although the 
results of this study are quite extensive, a lot of modelling 
aspects and choices are not covered. The authors of [9] 
propose a new latency-based MAC scheduling approach to 
optimize VR applications over 5G radio networks. 

Recently, 3GPP also showed interest in supporting 
Extended Reality (XR) over 5G networks. An XR 360o 
conference meeting has been defined in [4]. However, QoS 
requirements for such use cases are not clearly defined, likely 
because the QoE assumptions vary so tremendously. 3GPP 
considers 50-100 Mbps [4], while other sources mention bit 
rates in the order of Gbps [5][10]. Despite lacking 
concreteness, there is more of an agreement on latency 
requirements, in the sense that latency should be lower than 
for current real-time applications. 

To the best of our knowledge, there is no study available 
in literature providing a comprehensive and integral 

framework of all relevant modelling aspects for the considered 
type of scenario. This paper aims to provide a modelling 
framework and an extensive simulation study based on this 
framework, enabling a variety of sensitivity analyses, 
derivations of deployment guidelines and the development 
and assessment of radio network management solutions. 

III. USE CASE 

We consider a use case of running a Social VR application 
in an indoor office scenario. More specifically, we consider a 
square meeting room with a large round conference table 
placed in the center of the room (see Figure 1). Uniformly 
spread around the conference table are N = NP + NV chairs, 
seating in this example NP = 4 participants that are physically 
present in the room, and NV = 4 participants located elsewhere 
and virtually attending the conference meeting. The 
physical/virtual participants are assumed to be seated in an 
alternate fashion (P – V – P – …). 

 

Figure 1: Visualization of the ‘Social VR’ application scenario 

with eight physically or virtually present meeting participants. 

Each physically present participant wears a VR headset or 

Head-Mounted Display (HMD) towards which video images 

are wirelessly transferred via an integrated User Equipment 

(UE). These tailored images are transferred by the Multi-

point Control Unit (MCU) [7] residing in the media 

processing cloud. Two on-table video capture devices are 

installed and pointed to the participant to capture images for 

wireline upstream transfer (see Figure 2). 

IV. MODELLING 

In this section we present the integrated modelling 

framework, covering user behavior, the VR application, the 

radio network deployment and key radio resource 

management aspects. 

A. User behavior 

 Each physically present participant is and remains seated 
in his chair, but the participant’s head is modelled to exhibit 
some degree of randomized head motion in terms of changes 
in position and orientation [15][16]. In general, the relevance 
of modelling head motion lies therein that the antennas used 
for downlink reception are fixed to the VR headset and hence 
any realistic motion of a participant’s head directly impacts 
the position and orientation of the receive antennas. We 
purposely differentiate modelling the position and orientation 
due to their inherently different natures, although, when put 
together, they should realistically emulate the head motion of 
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a seated participant. More precisely, the proposed model 
consists of: 

• The change of a head’s position can be modelled 
according to a modified random waypoint model in 3D. 
More specifically, a participant’s default (or average) 
head position has coordinates (x0,y0,z0), with (x0,y0) 
given by its appointed chair and z0 fixed to, e.g. 1.4 m. 
The initial head position is sampled according to a three-
dimensional Gaussian distribution with mean vector 

(x0,y0,z0), standard deviations σx, σy, σz, and all 
covariances set to 0 m2. From there, the head is modelled 
to move linearly to its next position, sampled from the 

same distribution, at a speed of 0.1 × µ m/s, where µ is 
the head motion index in the range [0,10]. Once there, 
the process repeats itself, ad infinitum.  

• The head’s orientation is given by a randomly sampled 
3D vector of angular offsets around a straight line aimed 
at the current speaker (the speaker itself is assumed to 
aim his view on the previous speaker). Offsets are 
independently sampled w.r.t. the pitch, yaw and roll axes 
perpendicularly cutting through the head, assuming 

uniform angular distributions on the ranges [-αP, αP], [-

αY, αY] and [-αR, αR], respectively, with e.g. αP/Y/R = 5º. 
Whenever the speaker changes, such offsets are sampled 
and the corresponding change in orientation is modelled 

to take 1.5 - 0.2 × µ seconds, with µ as defined above. 
Once the targeted orientation is reached, a new offset is 
sampled and pursued, and so on, until the speaker 
changes once again. 

Aside from substantial changes in the head orientation that 
are due to speaker changes, the randomizations of the head 
position and its orientation effectively constitute some degree 
of ‘head wobbling’ in 3D, with the intensity configured by 

head motion index µ. 

 

Figure 2: Illustration of user setting and end-to-end architecture. 

The meeting dynamics are modelled by traversing through 
a pre-generated speaker list, letting each designated 

participant speak for a deterministic time of τS seconds, for 
instance 4 seconds, and then switch to the next speaker on the 
list. For the above-mentioned scenario with N = 8 participants, 
the speaker list could e.g. be given by ‘0 – 5 – 2 – 7 – 4 – 1 – 
6 – 3’, where we choose to alternate between physically and 
virtually present users. 

B. VR application 

The VR application is modelled as a persistent real-time 
UDP-based video streaming application [17], where each up- 
or downstream is a sequence of GoPs (Groups of Pictures) and 
each GoP comprises a single I (‘intra-coded’) and MGoP – 1 P 
(‘predicted’) video frames. The size of the relatively large 
fresh I and the differential P frames is denoted SI and SP < SI, 
respectively. A typical frame generation rate of RF FPS 
(frames per second) is assumed, which is noted to apply at the 
source. The application-level bit rate �� is given by 

�� � 8 ����	 
 ���
� � 1� ���
10� ��
� . 

For an example case inspired by [18] and visualized in Figure 
3, with MGoP = 6, SI = 1250 kB, SP = 250 kB and RF = 30 FPS, 
the application bit rate is 100 Mbps, which is labelled as an 

‘entry-level VR’ quality, providing a 2048 × 2048-pixel  
visual field. In the downlink, the assumed fixed-rate (non-
adaptive) video stream is noted to be a (potentially processed) 
aggregation of the distinct uplink video streams captured for 
the different meeting participants.   

 

Figure 3: VR application traffic model. 

For the considered indoor office scenario, the source of the 
downlink transfers is the above-mentioned MCU, which 
receives, aggregates and potentially processes all captured 
video streams (incl. e.g. HMD removal) before generating a 
downlink video stream to a given UE. Generated as 
application-level frames at the source (see Figure 3), the video 
information arrives in the form of 1500-byte IP packets at the 
Base Station (BS) transmission buffer. For the downlink 
streams, the packets are dispersed in time due to the 
variabilities of packet latencies on the path from source to 
transmit buffer. The time dispersion for the downlink streams 
is modelled as follows. Upon generation of a video frame, the 
frame is segmented into IP packets at a ‘packet extraction bit 

rate’ given by RB / (1 – β), with RB the application-level bit 

rate as introduced above and β ∈ [0,1] the configured 

burstiness parameter. Note that for the extreme case of β = 0 
the IP packets are maximally dispersed (effectively yielding a 

constant bit rate flow), while for the case of β → 1 each video 
frame is upon generation instantaneously segmented into IP 
packets, reflecting the maximum degree of burstiness. In our 

simulations, we assume a β of 0.5. Figure 4 shows how β 
influences the traffic profile. Note that β can make packets 
from distinct frames overlap. 

A frame is generated each time the scene is fully rendered 
in the MCU. The most likely case for an entry-level setup is 
for the MCU to render the complete scene, which includes all 
participants, and use that information to generate the frames 
for each. As opposed to rendering a user-specific scene, this 
means the IP packets are sent simultaneously, and thus we 
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assume the packet arrival traffic profile represented in Figure 
4 is the same for each participant. Despite the most realistic, 
this is a worst-case scenario for RAN performance because 
each participant will require resources concurrently. 

 

Figure 4: Packet arrival traces for scenarios with MGoP = 6, �� = 100 Mbps and different burstiness values β. 

The QoS requirement of the VR application is given by a 
maximum tolerable end-to-end one-way frame-level latency 

of e.g. ∆E2E = 150 ms, considering the application as 
‘conversational video (live streaming)’ [4], where any VR 

frame delivered with a latency exceeding ∆E2E is considered 
useless. In our study, we assume that the external network 
consumes part of this end-to-end budget, and assume the 
remainder as a packet-level budget for the RAN segment of 

∆RAN < ∆E2E ms, acknowledging that the RAN handles IP 
packets and is unaware of application-level video frames [18]. 

Distinct values ∆RAN are considered, effectively addressing 

scenarios with distinct ∆E2E. ∆RAN is used by the packet 
scheduler to give due priority to packets approaching the 
associated transmission deadline and potentially even drop 
packets that (are estimated to) exceed the deadline. 

C. Radio access network 

The meeting room is adequately equipped to support social 
VR meetings, including, besides video capturing and playback 
devices, also advanced wireless networking hardware. More 
specifically, we assume that a single massive MIMO antenna 
array is mounted at the ceiling center (at a height of 3 meter) 
and pointed downwards (see Figure 1). Considering both 3.5 
GHz and 26 GHz deployment scenarios, we assume an 
antenna array comprising 4 × 4 or 8 × 8, respectively, of cross-
polarized AEs (Antenna Elements) described by 3GPP [19], 
with a half-wavelength inter-AE spacing in both dimensions 
(see Figure 5). No subarray structure is assumed for these 
antenna arrays, hence all AEs of the 32T32R and 128T128R 
antennas, respectively, are fed with independent RF (Radio 
Frequency) chains and fully digital beamforming is applied. 
The maximum BS transmit power is 20 dBm [20]. 

The BS antenna is assigned a single TDD carrier of distinct 
bandwidths in the 3.5 or 26 GHz band. The carrier is 
configured with numerology 2, implying a subcarrier spacing 
of 60 kHz and a slot duration of 0.25 ms.  

 

Figure 5: Assumed UE (HMD; left) and BS (right) antenna 

arrays for the 3.5 GHz (top) and 26 GHz (bottom) scenarios. 

At the BS antenna a Grid of Beams (GoB) is configured to 
comprise a set of pre-defined transmission beams (wideband 
precoders) in a three-dimensional angular grid covering an 
angular span of 120o in both the azimuth and elevation planes. 
Since we assume a persistently on-going VR-aided meeting, 
we are not concerned with the more coarsely defined access-
oriented SS/PBCH-based (Synchronisation Signal / Physical 
Broadcast CHannel) GoB, but rather model the traffic-
oriented CSI-RS (Channel State Information Reference 
Signals) beams in a more finely granular GoB. Specifically, 
the proposed grid of CSI-RS beams has an approximate 
angular resolution of 12o for both the 3.5 GHz and 26 GHz 
scenarios. Given the angular span and the applied granularity, 

the GoB comprises 11 × 11 = 121 beams.  

The UEs incorporated into the HMD are equipped with an 

antenna array comprising 2 × 2 or 4 × 4 cross-polarized AEs 

with half-wavelength inter-AE spacings, for the 3.5 GHz and 

26 GHz scenarios, respectively (see Figure 5). A receiver 

noise figure of 8 dB is assumed at the UE. 

The characteristics of the propagation environment in 

terms of path loss, shadowing and multipath fading, are taken 

from the line-of-sight ‘indoor office’ scenario specified by 

3GPP [19] with implementations provided by Quadriga [21]. 

D. Radio resource management 

 Connected to the ceiling-mounted BS antenna, the UE 
selects the strongest CSI-RS beam, indicated via the CSI-RS 
Resource Indicator (CRI) feedback. Receive beamforming is 
used at the UE side in the form of Maximum Ratio Combining 
(MRC). The combination of a selected CSI-RS beam and a 
selected MRC configuration at the UE receiver, constitutes a 
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so-called downlink ‘beam pair’. The best CSI-beam used by 
the BS ���  is chosen from the GoB using to the expression 
below, which simplifies when the BS knows the UE 

beamformer ���  is derived with MRC, i.e. ��� � �����, 

��� � argmax� ∈ "#$%
 |�����| �  argmax� ∈ "#$%

 |��| 
where H  represents the Hermitian matrix, "()*  are the 
beamformers in our GoB, and � is the channel matrix that 
connects the AEs in the UE’s antenna array to the BS’s AEs.  

 The matrix H used for beam choice is outdated by a small 
delay of 5 TTIs due to the time past between transmission and 
measurement of the reference signal. And the beam pairs do 
not change until a new CSI update. CSI is acquired based on 
a configurable CSI periodicity +,�	  parameter that can vary 
from one TTI to infinity. Other mechanisms, like scheduling, 
rely on the available CSI to operate.  

The latency-oriented Modified-Largest Weighted Delay 
First (M-LWDF) packet scheduler is modelled to govern 
wideband-based downlink transmissions [22][23], given the 
resources configured by an applied TDD duplexing scheme, 
configured by a frame size of five time slots and a fixed 1:4 
UL/DL resource split. In the DL, the slot is DL-heavy, i.e. all 
symbols are used for DL transmission, however we consider 
control signaling overhead given by 3GPP in [24] of 14% and 
18% when using a 3.5 GHz and 26 GHz carrier, respectively. 
Head of line packet dropping is applied in the transmit buffers 
in case the packet’s corresponding VR frame is determined 

not to meet the aforementioned latency budget ∆RAN. At each 
scheduling opportunity, hence at each TTI (Transmission 
Time Interval; taken equal to a time slot), the M-LWDF 
scheduler ranks the UEs based on priority levels given by  

-.�/� � � log23 4.ΔRAN 9.�/� �.�/�
�:.�/ � 1� 

for UE i at TTI t, where 4. � 0.05 is the maximum allowed 
packet drop rate of flow i, 9.�/�  denotes the flow’s 
experienced head-of-line packet latency, �.�/�  denotes its 

instantaneously attainable bit rate and �:.�/ � 1�  is the 
exponentially smoothed bit rate it experienced so far. After 

TTI t, the �:.�/� is updated according to 

�:.�/� � <�1 � =��:.�/ � 1� 
 =�.�/� if scheduled
�1 � =��:.�/ � 1�                  otherwise     

MU-MIMO-based co-scheduling of multiple UEs in the 
same time-frequency resources is applied. The applied 
criterion thereby is that two UEs can be co-scheduled if their 

selected CSI-RS beams are at least κ beams apart in the GoB, 

with κ ∈ {0, 1, 2, …} a configurable scheduling parameter. 

The smaller κ, the higher the applied degree of MU-MIMO, 

while for very large κ the MU-MIMO is effectively turned off 
and only single-user scheduling is used. Note that in the 

extreme case of κ = 0, spatial diversity or, more specifically, 
polarization diversity, must be applied to avoid excessive 
interference. The system currently operates with a dual-
polarized single-layer per UE, therefore users cannot be 
multiplexed effectively within the same CSI-beam. In line 

with this, a unit value for κ was found to yield the best 
performance, i.e. users are always co-schedule as long as they 
reported a different optimum beam.  

The adaptive modulation and coding scheme estimates the 
received Signal-to-Interference-plus-Noise-Ratio (SINR) and 
maps this to a selected and fed back MCS (Modulation and 
Coding Scheme) based on a 10% BLER (BLock Error Rate) 
target and link-level results available from [26].  

V. SCENARIOS & KPIS 

We have implemented all above-mentioned modelling 

considerations in a system-level simulator. Using this 

simulator we investigate how the Social VR performance and 

the feasibility of use case scenarios are impacted by different 

scenario aspects. We organize a scenario-based assessment 

around a baseline scenario, studying the impact of the number 

of meeting participants N (with NP = NV), the motion index μ, the application bit rate ��, the RAN latency budget ∆RAN 

and the CSI periodicity +,�	 . In the default scenario we 

assume N = 8, I � 3, �� = 100 Mbps, ∆RAN = 10 ms and +,�	  
= 5 ms. Both scenarios with 3.5 GHz and 26 GHz carriers are 

considered with a default carrier bandwidth of 50 MHz. In 

different experiments, distinct model parameters are 

unilaterally varied around their default settings. Regarding 

the number of meeting participants N, we note that the room 

and table are dimensioned to seat up to 16 participants, hence 

when varying N, the average distance between users will vary 

accordingly, which is expected to influence the experienced 

interference. In two of the conducted experiments we derive 

for a range of use case scenarios the amount of bandwidth 

needed in the 3.5 GHz or 26 GHz band to support the scenario 

with sufficient QoS. For all other parameters, we used the 

examples provided in Section IV. 

The considered key performance indicator is the packet 

loss ratio (PLR), i.e. the ratio between the number of lost 

packets and the total number of generated packets. For the 

experience in video streaming to be tolerably affected, the 

PLR should not exceed 5% [26]. As described in Section 

VI.D, packets are dropped when they cannot be successfully 

transmitted within the RAN latency budget. Factors that can 

cause packet losses are: 

• Incidental overestimation of the achievable SINR may 

cause the selection of too high an MCS and hence 

transport block errors, where multiple such block errors 

belonging to a given packet may cause the packet delay 

to exceed the scheduler’s dropping threshold. 

• The rate at which packets are successfully transferred is 

momentarily lower than the rate at which packets are 

generated, e.g. due to poor channel conditions 

aforementioned block errors or simply a scarcity of 

transmission resources. This may lead to an 

accumulation of packets in the BS buffer and 

consequently to excessive delays and packet dropping. 

In all experiments, to attain statistical significance, for 

each scenario we simulate twenty different meetings, by 

generating the channels for twenty random initializations. 

Each meeting is simulated for a duration of sixteen seconds, 

which proved sufficient for the PLRs to converge. 

VI. NUMERICAL RESULTS 

A. Performance impact from user behavior 

Figure 6 shows how the PLR varies for motion indices µ 

= 1, 3 and 5, and for 3.5 GHz and 26 GHz. The observation 



that the latter (mmWave) band yields lower PLRs can be 

related to beamwidth. Since our mmWave antenna has more 

elements, its beams are narrower than the sub-6 GHz 

counterpart, and that can result in less interference each 

participant experiences due to other nearby participants.  

 

Figure 6: PLR for different motion indices I. 

The second noticeable thing is the similarity across 

different μ. One would expect that if users move more, that 

causes a higher variability of the channel, resulting in 

degraded performance, but it seems that head motion barely 

impacts performance. However, recall that every 5 ms 

(default value for +,�	 ) CSI is acquired. Now, GoB-based 

operation permits less frequent CSI acquisition: the optimal 

beam changes less often than the optimal weights to make 

AEs coherently interfere, as is the case with reciprocity-based 

beamforming. Therefore, it can simply be the case the 

channel is measured so often that we cannot see the effect of 

different motion indices, because the channel variability 

caused by them is within what can be accurately estimated 

with our rate of measurements. But further testing shows that 

performance for μ = 1, 3 or 5 stays practically unchanged as 

we increase +,�	 , so that hypothesis is invalid. 

Alternatively, the similarity can be justified by an 

insufficient variability in movement rate between the 

considered μ , thus hiding the impact of user behavior on 

performance behind rare random-nature phenomena inherent 

of simulations. However, recall that for μ = 5 the rate of head 

position translation is 5× bigger than for μ = 1. Therefore, 

there certainly is enough variability between motion indices 

already, regarding the head positions, but when we look at the 

orientations, we see that for μ = 5 users rotate their heads only 

1.3/0.5 = 2.6 times faster than with μ � 1. On this basis, 

maybe head rotation has more impact than head position, and 

we simply need to test sufficiently different rates of rotation. 

To assess that hypothesis, we compare μ = 7 to μ = 5, 

since the former has 5× the rotation rate of the latter, and less 

difference than translation speed. Table 1 shows the results. 

In all cases, the highest μ  resulted in the highest PLR, 

effectively proving that change in head orientation affects 

performance more than change in head position. This can be 

explained since the channel varies little between positions 

close to one another, because large-scale fading is spatially 

correlated, a product of using a realistic channel generator. 

Antenna orientation, on the other hand, is directly associated 

with its radiation pattern, and so, aggressively changing 

orientations can cause immense signal oscillations. 

Table 1: PLR for a given motion index I, 

frequency and three distinct CSI periodicities. 

CSI 

periodicity 

3.5 GHz 26 GHz 

μ = 5 μ = 7 μ = 5 μ = 7 

5 ms 16.7% 17.3% 3.0% 4.2% 

10 ms 16.9% 18.1% 3.3% 4.7% 

20 ms 17.4% 19.9% 4.1% 6.9% 

 

Regarding the CSI periodicity, note that as +,�	  
increases, the difference between speeds becomes more 

pronounced, thus supporting the theory that we could not 

accurately measure the difference between motion indices at 

first because the rate of CSI acquisition is much higher than 

what is required for this scenario. Overall, this also shows us 

that we can use the CSI periodicity to reduce the impact of 

head motion. Let us see in more detail other ways the CSI 

periodicity impacts performance. 

B. Performance impact from RAN parameters 

Among all RAN parameters, the period between two CSI 

reports is of major relevance. Figure 7 compares the 

performance across many CSI periodicities. Firstly, it is 

generally true that a higher +,�	  corresponds to higher PLR, 

which makes sense since sampling the channel less often 

increases the likelihood of block errors, and eventually of 

packet errors. Secondly, the performance in higher 

frequencies is more dependent on +,�	 . Because of the 

increased volatility of higher spectrum [27], the channel 

estimation gets outdated quicker, requiring more frequent 

CSI updates. These two patterns are also present in Table 1. 

 

Figure 7: PLR for different CSI periodicities. 

C. Performance impact of service requirements 

Let us assess now how service requirements such as the 

application bit rate or a smaller RAN latency budget impact 

performance. In Figure 8 we vary application bit rates. We 

see a threshold, which seems to be around 75 Mbps for 3.5 

GHz and 100 Mbps for 26 GHz, after which the increase in 

PLR is very similar for subsequent increases in application 

bit rate, independently of the frequency. This suggests that 

past the threshold the system gets overloaded, and all 

additional packets are lost. 

Additionally, we observe that the 3.5 GHz carrier can on 

average support for each participant a throughput of 75 Mbps 

with a similar PLR as the 26 GHz carrier supports 100 Mbps.  



 

Figure 8: PLR for different required application bit rates. 

With respect to latencies, Figure 9 compares PLR for 

distinct RAN latency budgets ΔKLM . The lower the latency 

budget, the more difficult it is to cope with this latency 

requirement and PLR performance gets worse, as expected. 

More interesting is to see the convergence of PLR to zero 

slows down in 3.5 GHz and not in 26 GHz. 3.5 GHz has 

inherently lower average SINR, and so, naturally, there are 

periods (that may last longer than the latency budgets we 

considered) where the SINR is so low that practically no 

packets are transmitted, leading to an accumulation and 

eventual loss. In mmWave, such reduction in convergence 

speed happens closer to zero PLR because the higher average 

throughputs lead to less frequent packet accumulation. 

 

Figure 9: PLR for different RAN latency budget requirements. 

D. Performance impact of the meeting setting 

In the previous subsection we showed how PLR 

performance is impacted by the two most relevant service 

requirements, bit rate and latency. In this section we focus on 

the impact of the number of meeting participants. The 

objective is to assess how meetings of different sizes require 

different quantities of resources and how those quantities 

vary with the specific service requirement. To do that, the 

vertical axis of plots in this section is the minimum bandwidth 

(in MHz) required to obtain a PLR less than 5% for a given 

scenario. Figure 10 and show the required bandwidths as 

function of the number of participants, for distinct bit rates 

and latency budgets, respectively. 

As intuitively clear, the required bandwidth decreases in 

the latency budget and grows in both the application bit rate 

and the number of users. Perhaps even more interesting is to 

observe (see Figure 11) the degree to which a more relaxed 

latency requirement allows the packet scheduler to achieve a 

higher resource efficiency, translating to significantly lower 

eventual bandwidth requirement. This demonstrates the 

benefits of reducing transmission or (perhaps primarily) 

processing delays elsewhere in the end-to-end chain in order 

to allow a somewhat more generous latency budget in the 

radio access network. 

 

Figure 10: Bandwidth required to support different 

bit rates and number of participants, with NKLM = 10 ms. 

 

Figure 11: Bandwidth required to support different 

latencies and number of participants, with ��= 100 Mbps. 

Furthermore, for a given bit rate or latency requirement, 

26 GHz practically always requires less bandwidth than 3.5 

GHz. Independently of the scenario, the increased directivity 

of mmWaves leads to less interference and, hence, higher 

average SINRs; so higher MCSs are supported, and less 

bandwidth is required. The only exception to the rule is in 

case of a single physical participant (communicating with a 

single virtual participant), because there are no other users in 

the room, hence no interference, and no advantage of 

mmWaves since the maximum MCS is used in both 

frequencies. Note that for 26 GHz the bandwidth 

requirements grow slower than for 3.5 GHz, when the 

number of users increase. Again, since the beams are 

narrower, there is less interference, so the system is more 

resilient to the increase in user proximity. Furthermore, the 

maximum carrier bandwidth allowed in the sub-6 GHz band 

is 100 MHz [27], which implies that required bandwidths 

exceeding 100 MHz require the use of multiple carriers. 



Other observations that can be made include (i) a 

meeting with N = 8 participants supported on a mmWave 

carrier can support per-participant bit rates of 200 Mbps, 

which is 4× that supportable on a 3.5 GHz carrier with the 

same bandwidth; and (ii) given the same bandwidth, in 

meetings with N = 4 participants, use of the mmWave carrier 

can support a RAN latency budget < 5 ms, while the 3.5 GHz 

carrier supports a latency budget > 20 ms. 

VII. CONCLUDING REMARKS 

 We have established an integral modelling framework for 
the feasibility assessment and performance optimization of the 
radio access network for Social VR applications in indoor 
office scenarios, noting that the framework provides a good 
basis for extension to handle other use cases. The modelling 
framework covers in detail all relevant aspects regarding 
meeting room layout, number of participants, human 
behavior, application-layer specifics, network deployment 
and configuration, signal propagation and resource 
management. Using this modelling framework, we have 
conducted an extensive simulation study to assess the 
performance impact of these scenario specifics for two 
frequency bands, viz. 3.5 GHz and 26 GHz.  In particular, it is 
shown how the required carrier bandwidth for supporting 
Social VR depends on the number of participants and the 
available RAN latency budget. Regarding the latter, our 
results demonstrate the potential significance of the increased 
radio network efficiency when e.g. accelerated processing 
elsewhere in the end-to-end chain allows a somewhat more 
generous latency budget in the RAN. Also, the behavior that 
each user exhibits impacts performance more prominently in 
higher frequencies. Results further reveal the benefits of the 
smaller beamwidths enabled in the 26 GHz case in lowering 
interference the average user experiences, and thus improving 
the efficiency of settings with high spatial re-use of the radio 
resources. Additionally, results support that RAN parameters, 
such as the period with which channel state information is 
acquired, can be adjusted to mitigate the impact resultant from 
user behavior or different carrier frequencies. 

A topic for future research is the development of (AI/ML-
based) methods for dynamic configuration of RAN 
parameters to support Social VR applications. This involves 
cross-layer adaptation, e.g. the adaptation of application-layer 
data rates (hence QoE) to actual radio network capabilities, 
optimization of the connect-compute trade-off in the radio 
access (incl. edge cloud), and pro-active beam management 
based on human movement predictions. Ultimately, we 
envision the design of a self-configuring 5G network slice, 
autonomously managed to support Social VR applications. 
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