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1
INTRODUCTION

This chapter provides an introduction to the relevant topics in this thesis. First, the con-
cept of optical coherence tomography (OCT) is introduced. OCT is a non-invasive optical
imaging technique capable of making 3D images. Second, optical wavefront aberrations
and adaptive optics are described. Understanding the influence of aberrations on OCT im-
ages is essential for finding methods to efficiently correct these aberrations without using
a wavefront sensor, which is commonly used in adaptive optics. Third, wavefront sensor-
less aberration correction is explained. We combine these three concepts into wavefront
sensorless adaptive optics in optical coherence tomography.

Parts of this chapter have been published in [1].

1
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2 1. INTRODUCTION

1.1. OPTICAL COHERENCE TOMOGRAPHY
Optical coherence tomography (OCT) is a high-resolution imaging modality with a
depth resolution of 2-10 µm providing cross-sectional images of tissue, in which the
contrast is based on differences in light back-scattering [2]. Today, OCT is a standard
imaging tool in ophthalmologic clinics used for the detection of retinal malformations
and for monitoring the effect of treatment and/or disease progression. In the medical
sector, it is also used for imaging the inside of (coronary) blood vessels and as a tool for
optical biopsy [3]. It even has found its way from biomedicine to other application ar-
eas, such as non-destructive testing of materials: multi-layered foils [4], pharmaceutical
tablets [5], ceramics [6], electronics [7], polymer-based materials [8], artwork conserva-
tion [9] and turbid media [10]. New research proposes that smartphones could do OCT
imaging [11]. We continue by describing some basic principles of OCT imaging. Cross-
sectional images, B-scans, are acquired by performing a series of axial depth scans,
A-scans, of optical backscattering at different transverse locations. The axial scans pro-

Figure 1.1: Cross-sectional OCT image, showing various layers of a human retina. [12].

vide information of the intensity of backscattered light versus the optical path-length
in the sample, which is used to reconstruct a 3D image of the sample. An example of a
B-scan of the human retina is shown in Fig. 1.1. A volumetric scan or C-scan is obtained
by taking A-scans in two different directions or, in other words, by combining B-scans
of different planes. One of the advantages of OCT is that it has a good balance between
the penetration depth and axial resolution [13], as shown in Fig. 1.2. OCT has several
other advantages over other imaging modalities such as non-invasive measurements,
relatively simple setup, and fast scanning.

Initially, OCT systems were operating in the time domain (TD), utilizing low temporal
coherence interferometry with a scanning mirror [2, 14, 15]. Temporal coherence is a
measure of the average correlation between a wave and a delayed copy of itself. In other
words, it characterizes how well a wave can interfere with itself for different delays. A
light source with a broad frequency range has low temporal coherence, which plays a
crucial role in the axial resolution of OCT. Time domain OCT was superseded by Fourier
domain (FD) OCT in which the A-scan is determined from the interference spectrum
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Figure 1.2: Schematic overview of the axial resolution and imaging depth of OCT compared to confocal mi-
croscopy and ultrasound [13].

and no longer requires a moving reference mirror in the reference arm to reconstruct
the depth information in axial scans [16]. Instead it uses the Fourier transform to go
from the wavenumber or spectral domain to the spatial domain, revealing the depth-
resolved optical structure of a sample. We will discuss this further in Section 1.1.2. Other
functional OCT imaging techniques were developed, such as polarization sensitive OCT
and Doppler OCT used for birefringence and flow detection [17], respectively. These
techniques are not treated in this thesis and will not be discussed in detail.

1.1.1. TIME DOMAIN OPTICAL COHERENCE TOMOGRAPHY

In 1988, scanning interferometry was first used to measure the eye length [18]. In 1990, a
first two-dimensional in vivo depiction of a human eye fundus along a horizontal merid-
ian based on white light interferometric depth scans was presented [19]. After further
development, the concept of TD-OCT was introduced in 1991 [2, 20]. A typical TD-OCT
setup is shown in Fig. 1.3. TD-OCT is based on measuring the interference between
backscattered light from a sample and a reference arm using a Michelson interferometer
and a single photodetector. To determine the depth at which the reflection in the sam-
ple takes place the interference is based on low temporal coherence light. The light from
the source is divided by a beamsplitter and directed to the reference arm and the sample
arm. The returning light of the sample and reference arm are then aligned in the same
optical path and the interference of the two waves is measured by a single photodiode
detector. By moving the mirror in the reference arm at constant velocity, the reflectivity
profile is modulated at the Doppler frequency of the moving mirror. By demodulating
the interference signal, the axial reflectivity profile of the sample can be determined from
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Optical Source 

Moving Mirror 

Beam 
Splitter 

Detector 

(a) (b) 

Sample 

Interference 
signal 
 Envelope 

𝐼𝐼(𝑧𝑧) 

𝑧𝑧 

𝑧𝑧𝑅𝑅 

𝑧𝑧0 

Figure 1.3: (a) Schematic of a time domain OCT system. (b) Schematic of an A-scan of the sample. The enve-
lope represents the axial reflectivity profile of the sample.

the envelope of the interference signal. An example of a possible interference signal and
its envelope, which represents the reflectivity profile of a sample, is given in Fig. 1.3.

The signal from the sample is a combination of light backscattered from different
depths z in the sample. The reflection amplitude of the sample at depth z is denoted by
a(z). The light from the sample is combined with light returning from the reference arm.
The intensity measured by the detector I in terms of the wavenumber k is given by

I (k) = |ER (k)+ES (k)|2 (1.1)

= |ER (k)|2 +|ES (k)|2 +2Re[ER (k)ES (k)] (1.2)

Here, ER and ES are the reference and sample electrical fields at the detector, respec-
tively. It should be noted that losses from the beamsplitter for instance are taken into
account by ER and ES and that I (k) is implicitly dependent on zR , the additional dis-
tance that is added by the moving mirror. Where appropriate we write I (k, zR ) instead of
I (k) to emphasize this dependence. The intensity I (k, zR ) for a sample with reflectivity
a(z) and refractive index n(z) is

I (k, zR ) = S(k)

∣∣∣∣aR e2i kzR +
∫ ∞

0
a(z)e2i k[n(z)z]d z

∣∣∣∣2

. (1.3)

The source’s spectral intensity, which expresses the intensity of the source in terms of
the wavenumber, is given by S(k), aR is the total reflection amplitude coefficient of the
reference arm and i is the imaginary number

p−1.
In the following example, we simplify the expression in Eq. (1.3). By convention, the

sample has the reflectivity profile a(z) = 0 when z < z0, where z0 is the distance from the
beamsplitter to the start of the sample as shown in Fig. 1.3. We ignore the dispersion and
assume the refractive index of the sample n(z) to be a constant. The refractive index in
the reference and sample arm before the sample is assumed to be one, which is similar
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to the refractive index of air. Without further loss of generality, we assume and a(z) < aR

and that aR = 1, which leads to

I (k, zR ) = S(k)

∣∣∣∣e2i kzR +
∫ ∞

0
a(z)e2i k[nz]d z

∣∣∣∣2

(1.4)

= S(k)

[
1+2Re

(∫ ∞

0
a(z)e2i k(zR−nz)d z

)
+

∫ ∞

0

∫ ∞

0
a(z)a∗(ẑ)e2i kn[z−ẑ]d zd ẑ

]
.

(1.5)

Here, a∗(z) is the complex conjugate of a(z). In practice, the third term including
a(z)a∗(ẑ) is a lot smaller because it is not amplified by the reference arm, hence it is
ignored. To further simplify this example, we assume that a(z) is real and the optical
source has a Gaussian spectral intensity

S(k) = 1

∆k
p
π

e
−

[
k−k0
∆k

]2

, (1.6)

where 2∆k is the spectral bandwidth at 1
e of its maximum and k0 represents the cen-

ter wavenumber of the light source spectrum. Since the detector detects the light at all
wavenumbers, we integrate over the wavenumbers as follows [17, Eq. 2.12]

I (zR ) =
∫

S(k)

[
1+2Re

(∫ ∞

0
a(z)e2i k(zR−nz)d z

)]
dk (1.7)

= S0

[
1+2

∫ ∞

0
a(z)e−(zR−nz)2∆k2

cos[2k0(zR −nz)]d z

]
. (1.8)

Here S0 = ∫ ∞
−∞ S(k)dk is the spectral integrated intensity from the optical source. For

example, if the sample consists of 2 very thin layers such that a(z) = a1δ(zS1)+a2δ(zS2)
and n = 1, then

I (zR ) = S0

[
1+2

2∑
m=1

ame−(zR−zSm )2∆k2
cos[2k0(zR − zSm)]

]
. (1.9)

The signal I (zR ) in Eq. (1.9) is shown in Fig. 1.4. From Eq. (1.9) it becomes clear that the
axial resolution of the OCT system is dependent on the spectral bandwidth 2∆k of the
source. If the spectral bandwidth increases, the interference envelope becomes smaller
and the axial resolution improves. The main disadvantage of TD-OCT is that it requires
the mechanical movement of a reference mirror. Further research led to the develop-
ment of Fourier domain OCT that no longer requires a moving reference mirror.

1.1.2. FOURIER DOMAIN OPTICAL COHERENCE TOMOGRAPHY
In Fourier domain (FD) OCT the detector input I (k) Eq. (1.5) is captured, which no longer
requires moving the reference mirror. The measured data is then processed using an
inverse Fourier transform to reconstruct the sample reflectivity profile. In 1995, spectral
domain interferometry was first used to measure intraocular distances [21]. Soon after,
spectral interferometry was used in optical coherence tomography [16,22,23]. There are
two ways to implement FD-OCT.
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Figure 1.4: TD-OCT A-scan for two thin layers at zS1 and zS2 [17].

The first way to do FD-OCT is spectral domain (SD) OCT. In SD-OCT the reference
arm mirror is stationary and a spectrometer is used to measure I (k) on an array of detec-
tors in space instead of detecting all the light with a single detector. Figure 1.5(a) shows
a simplified layout of a SD-OCT setup.

Optical Source 

Mirror 

Beam 
Splitter 

Spectrometer 

(a) (b) 

Sample 

𝐼𝐼(𝑘𝑘) 

Figure 1.5: (a) Spectral domain optical coherence tomography layout. (b) Possible interference spectrum of
the sample on the spectrometer [17].

The second method for FD-OCT is swept-source (SS) OCT. In SS-OCT the reference
mirror is also stationary and a tunable laser is used to measure I(k) in time on a sin-
gle photodiode detector. A tunable laser is a narrowband optical source that can sweep
through its wavelengths or wavenumbers. During the sweep through the wavenumbers
synchronous measurements are taken with the detector to measure I (k). For both SD-
OCT and SS-OCT the A-line is obtained through inverse Fourier transformation of I (k).

To explain the principles of FD-OCT we start from Eq. (1.5). The added distance zR

from the moving mirror is set to zero, because in FD-OCT no moving mirror is required
to obtain I (k). To simplify this example, we assume that reflectivity profile a(z) is real.
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This leads to

I (k) = S(k)

[
1+2

∫ ∞

0
a(z)cos(2knz)d z +

∫ ∞

0

∫ ∞

0
a(z)a(ẑ)e2i kn[z−ẑ]d zd ẑ

]
. (1.10)

In this equation three terms can be seen. The first term is a constant offset. The sec-
ond term is the term that encodes the depth information of the object. The depth z is
embedded in a sum of cosines with angular frequencies 2kn. The third term is an auto-
correlation term that represent the mutual interference of all the waves from the sample.
We continue rewriting Eq. (1.10) using the definition â(z) = a(z)+a(−z), which gives

I (k) = S(k)

[
1+

∫ ∞

−∞
â(z)cos(2knz)d z + 1

4

∫ ∞

−∞

∫ ∞

−∞
â(z)â(ẑ)e−2i kn[z−ẑ]d zd ẑ

]
(1.11)

= S(k)

[
1+

∫ ∞

−∞
â(z)e−2i knz d z + 1

4

∫ ∞

−∞
AC[â(z)]e−2i knz d z

]
, (1.12)

with AC[â(z)] = ∫ ∞
−∞ â(z)â(ẑ)e2i knẑ d ẑ. We define the Fourier transform as Fz̃

[
f (z̃)

] =∫ ∞
−∞ f (z̃)e−i kz̃ d z̃ and substitute z̃ = 2nz. Following [22, Eq. 4 to 6], this results in

I (k) = S(k)

[
1+ 1

2n
Fz̃

(
â

(
z̃

2n

))
+ 1

8n
Fz̃

(
AC

[
â

(
z̃

2n

)])]
, (1.13)

where AC essentially represents an autocorrelation. Taking the inverse Fourier transform
F−1

k gives us

F−1
k [I (k)] =F−1

k [S(k)]∗
[
δ(z)+ 1

2n
â(z)+ 1

8n
AC[â(z)]

]
, (1.14)

with∗ indicating a convolution. The convolution with the delta peak results in an inverse
Fourier transform of the spectrum of the source located at z = 0. The third autocorrela-
tion term is not amplified by the reference arm signal, therefore, it will often be a lot
weaker and is considered negligible. Additionally, this term is located around z = 0 and
can easily be ignored by moving the sample away from z = 0. The second term contains
the reflectivity profile of the sample. Figure 1.6 shows an exemplary-scan of a sample
reconstructed with the FD-OCT methods described in this section.

In FD-OCT, the maximum depth of the measurements zmax is limited by the number
of pixels in the detector array. The maximum depth range zmax for reconstruction in
FD-OCT is

zmax = π

2δs k
, (1.15)

where δs k is the sampling interval in the k domain. In practice, the depth range of OCT is
limited by the scattering and absorption of tissue to about 2 mm deep because at greater
depths the proportion of light returning in the optical path is too small to be detected.

In comparison with TD-OCT, FD-OCT can take scans faster because it no longer re-
quires a moving reference mirror. Therefore, in applications where measurement speed
is of the essence, FD-OCT is generally preferred. Additionally, FD-OCT has an improved
sensitivity over TD-OCT [24]. However, when imaging samples, not only the sensitivity
is important, but also the resolution will determine which features you will be able to
distinguish.
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Figure 1.6: FD-OCT A-scan of an arbitrary sample.

1.1.3. RESOLUTION AND DEPTH OF FIELD
In OCT, the axial resolution and lateral resolution are independent. As demonstrated in
Eq. (1.9) for TD-OCT and in Eq. (1.14) for FD-OCT, the axial resolution is given by the
width of the axial point spread function, which is the inverse Fourier transform of the
source spectrum. For a Gaussian source spectrum, the width of the axial PSF is inversely
proportional to the bandwidth of the light source and the axial resolution is [25]

∆z = 2ln(2)λ2
0

π∆λ
(1.16)

where∆z is the full-width-at-half-maximum (FWHM) of the axial point spread function,
∆λ is the FWHM of the spectral intensity S(k) and λ0 is the center wavelength of the
optical source. From Eq. (1.9) it can be seen that a broad bandwidth optical source is
necessary to achieve a high axial resolution [26].

The lateral resolution in OCT is decoupled from the axial resolution and determined
by the focal spot size. In OCT, the lateral intensity distribution of the beam is often Gaus-
sian [27]. This Gaussian beam is relayed onto the entrance pupil of the final sample arm
lens and, if no optical wavefront aberrations are present, a diffraction limited focal spot
is generated at the sample. The diffraction limited spot size is proportional to the wave-
length and inversely proportional to the numerical aperture or pupil size of the focused
beam. The e−2 Gaussian beam waist w0 for a spot the focus plane is approximated by,

w0 = λ f

πw
, (1.17)

where w is the e−2 beam waist in the pupil plane, λ is the wavelength and f is the focal
length [28]. Higher lateral resolutions are obtained by using a larger numerical aperture,
i.e., using a larger d or smaller f . Unfortunately, a higher numerical aperture also results
in a decreased depth of field. If the beam is strongly focused, objects in the focus plane
are sharp, however, out of focus objects are strongly blurred. This is characterized by
the Rayleigh length of the optical system. The Rayleigh length is the distance along the
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propagation direction of a beam from the waist to the place where the area of the cross
section of the beam is doubled. A Gaussian beam focal spot has a Rayleigh length of [28]

zRaylei g h = πw2
0

λ
. (1.18)

To summarize, in OCT the axial resolution is independent of the lateral resolution
and can be improved by getting a broad bandwidth optical source. However, improving
the lateral resolution requires a trade-off between diffraction limited spot-size and the
depth of field. Moreover, using a larger pupil results in large wavefront aberrations that
deteriorate the lateral resolution. Adaptive optics can correct these wavefront aberra-
tions.

1.2. ADAPTIVE OPTICS
Optical wavefronts can be reshaped using adaptive optics (AO). In most cases, AO is used
for modifying the phase of an optical beam using deformable mirrors, lenses or other
adaptive phase shaping devices. But, AO is more than just phase-only correction. Many
techniques use intensity and phase correction for the reshaping of an optical wavefront
and AO is also applicable to incoherent imaging techniques. However, in this thesis we
will focus on phase modification and the removal of phase aberrations to improve the
image quality. More and more optical systems that suffer from wavefront aberrations
are using AO to improve their signal to noise ratio, image quality or optical beam qual-
ity [29]. An example of phase aberrations are the defocus and astigmatism aberrations
introduced by the human eye, which result in poor vision and can be corrected for by
wearing contact lenses or spectacles. To correct wavefront aberrations that result from a
large entrance pupil, the wavefront can be corrected before entering the pupil of the eye.
For a spectral-domain OCT system this can be done using the setup as shown in Fig. 1.7.
The spectral domain OCT system in Fig. 1.7 is combined with an active optical element,
such as a deformable mirror or lens to change the phase of the wavefront entering the
eye, such that a perfect spherical wavefront is incident on the retina. A wavefront sen-
sor, in this case a Shack-Hartmann wavefront sensor, is used to measure the wavefront
returning from the eye.

1.2.1. OPTICAL WAVEFRONT ABERRATIONS
In many optics applications, including OCT, higher resolutions and higher signal to noise
ratios are desired [30]. In practice, imaging systems rarely reach the diffraction limit [31,
32], because optical wavefront aberrations lead to a larger focal spot, which deteriorates
the achievable resolution of the imaging system [33, 34]. When free-space light is cou-
pled into a fiber, the coupling efficiency of the light into the fiber is affected by the op-
tical wavefront aberrations as well. In this case, aberrations do not only lead to a loss in
resolution, but also to a decreased signal to noise ratio. Aberrations can be caused by
imperfections of optical lenses and mirrors or misalignments in the optical path. They
are also induced by inhomogeneous media whose refractive index n varies in space or
time. Examples are turbulent atmospheres in astronomy [35] and imaging of biological
specimens [36,37]. When in vivo imaging the human retina, the largest optical wavefront
aberrations are introduced by imperfections of the eye lens and the cornea [38–40].
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Figure 1.7: An adaptive optics spectral domain optical coherence tomography setup.

Optical aberrations are often modeled by the generalized pupil function (GPF) [33],

P (x, y) = A(x, y)e iΦ(x,y). (1.19)

Here, Φ(x, y) is called the phase aberration function and A(x, y) is the amplitude distri-
bution. The complex GPF is defined over the pupil of the optical system. The amplitude
distribution in the pupil plays an important role in the size of the focal point and can ac-
count for amplitude apodization [41], where apodization refers to cutting off the edges
of the optical beam. The phase of the wavefront in the pupil Φ(x, y) also has a great in-
fluence on the resolution and can be decomposed into Zernike polynomials, which are a
set of orthogonal polynomials defined over the unit disk [42,43]. A visualization of some
Zernike polynomials is shown in Fig. 1.8. The polynomials are named after the Dutch
physicist Frits Zernike, who won the Nobel prize in physics in 1953 [44]. An advantage of
Zernike polynomials is not only that they can be obtained in closed form, but also that
the first few modes represent the classical aberrations familiar to opticians and represent
the largest aberrations in the human eye [45,46]. To simplify the notations of the Zernike
polynomials, a polar coordinate system (ρ,φ) is introduced in which x = ρ cos(φ) and
y = ρ sin(φ). The phaseΦ is decomposed in Zernike polynomials as follows,

Φ(ρ,φ) = kW (ρ,φ) = k
∑

n,m
αn,m Zn,m(ρ,φ). (1.20)

The indices n ∈ N0 and m ∈ Z, represent the radial order and the azimuthal frequency
of the Zernike polynomials and are chosen such that n − |m| is even and greater than
or equal to zero.1 The Zernike coefficients αn,m ∈ R are a measure of how much each

1Both the radial order of the Zernike polynomials and the index of refraction are denoted by n as done in
literature, the context and usage should avoid any ambiguity.
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𝑍𝑍1,−1  𝑍𝑍1,1  

𝑍𝑍2,−2  𝑍𝑍2,0  𝑍𝑍2,2  

𝑍𝑍3,−3  𝑍𝑍3,−1  𝑍𝑍3,1  𝑍𝑍3,3  

𝑍𝑍4,−4  𝑍𝑍4,−2  𝑍𝑍4,0  𝑍𝑍4,2  𝑍𝑍4,4  

Figure 1.8: Visualization of the first to fourth order Zernike polynomials.
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aberration contributes to the phase. The Zernike polynomials are defined as:

Zn,m(ρ,φ) =
{

cn,mRn,|m|(ρ)cos(mφ) m ≥ 0

−cn,mRn,|m|(ρ)sin(mφ) m < 0
, (1.21)

where cn,m is a normalization constant and Rn,|m|(ρ) is the radial polynomial. The nor-
malization constant is defined as

cn,m =
{p

n +1 m = 0p
2(n +1) m 6= 0

, (1.22)

and the radial polynomial Rn,|m|(ρ) is

Rn,|m|(ρ) =
(n−|m|)/2∑

j=0

(−1) j (n − j )!

j !( n+|m|
2 − j )!( n−|m|

/ 2− j )!
ρn−2 j . (1.23)

The Zernike polynomials are normalized to have unit variance over the unit disk [46].
Throughout the thesis we also use the Zernike polynomials in Cartesian coordinates
Zn,m(x, y). An overview of Zernike polynomials in Cartesian coordinates is given in [47].

A decomposition of the phase in Zernike polynomials makes it easy to express the
aberration variance in terms of the classical aberrations and clearly shows how much
each Zernike mode contributes to the root mean square (RMS) of the phase aberration
function [48, 49]. The RMS of the phase aberrationΦ(ρ,φ) is calculated as follows [50],

RMS
[
Φ(ρ,φ)

]=
√

1

π

∫ 1

0

∫ 2π

0
Φ(ρ,φ)2ρdρdφ. (1.24)

Using the orthogonality of Zernike polynomials and the normalization factor cn,m this
can be simplified to

RMS
[
Φ(ρ,φ)

]= k
√ ∑

n,m
n 6=0

α2
n,m . (1.25)

Zernike polynomials, except for the piston Z0,0, have zero mean and a variance of one
over the unit disk. The piston Z0,0 is an extra delay and often neglected as it does not
deteriorate the focal spot. This means that the variance ofΦ(ρ,φ) is

var
([
Φ(ρ,φ)

])= k2
∑

n,m
n 6=0

α2
n,m . (1.26)

In OCT, the piston will result in an axial shift of the sample in an A-scan. This ax-
ial shift can be countered by adjusting the length of the reference arm. The tip and tilt
aberrations, Z1,−1 and Z1,1, change the angle of the beam. In OCT, this principle is taken
advantage of for laterally scanning over the sample with galvanometric scanning mirrors
that introduce tip and tilt. The tip and tilt are also often ignored as they do not directly
lead to a deterioration of the focal spot. However, they can introduce other aberrations
by steering the beam of the optical axis. The second order Zernike polynomials, n = 2,
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namely the defocus, the vertical astigmatism and the oblique astigmatism, are the largest
aberrations in a healthy human eye [51]. When imaging the human retina, correcting the
second radial order modes typically results in the largest improvement [40,52]. However,
the influence of aberrations on the OCT signal is not well defined. In Chapter 2 we in-
vestigate the influence of phase aberrations on the OCT system. By doing this, we find a
relation between the optical aberrations and the OCT signal. This is exploited to identify
and correct undesired aberrations without using a wavefront sensor as shown in Fig. 1.7.
Undesired aberrations in the optical beam path are corrected for by an active or adaptive
component in the optical path.

1.2.2. ACTIVE AND ADAPTIVE COMPONENTS
Adaptive optics (AO) is used in optical setups to remove undesired wavefront aberra-
tions and to shape optical wavefronts, in other words, you try to minimize the undesired
phase aberrations and add desired aberrations to Φ(x, y) with AO. If Φ(x, y) is decom-
posed in Zernike polynomials, this also implies minimizing certain Zernike coefficients
αn,m . In this section we will describe the principles of deformable mirrors and active or
deformable lenses that are commonly used to reshape the phase of the wavefrontΦ(x, y).

DEFORMABLE MIRROR

Deformable mirrors (DM) are among the most commonly used wavefront correctors.
DMs are mirrors with a deformable surface whose shape can be adjusted actively for the

Figure 1.9: (a) Aberrated wavefront propagating towards a deformable mirror. (b) Deformable mirror with
continuous surface. (c) Corrected wavefront.

correction of optical aberrations [53,54]. Several different technologies exist for creating
deformable mirrors. Examples are segmented mirrors [55], magnetic actuated DMs [56],
microelectromechanical systems (MEMS) based DMs [57], membrane DMs [58], bi-
morph DMs [59] and ferrofluid based DMs [60]. Every technology limits the achievable
DM properties and has its specific advantages and disadvantages [61]. An example of
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the operation of a DM is shown in Fig. 1.9. Figure 1.9 explains the principle of a DM by
analyzing the phase differences of the light. Phase modulation devices, which includes
DMs, are based on changing the optical path difference (OPD), which can be written as
n∆z, where n is the refractive index and ∆z is the length of the path travelled. The OPD
is related to the phase as Φ = 2πOPD/λ, which can be decomposed in Zernike polyno-
mials. Deformable mirrors change the length of the path ∆z by shaping their reflective
surface as seen in Fig. 1.9. As such they can correct for the path length differences and
the phase aberrations of the incoming wavefront. Alternatively, they can shape the
wavefront in a pre-determined shape to compensate for aberrations further down in the
system. The shape of a DM’s surface is controlled by multiple actuators at the backside
of the mirror [62]. DMs can be used in combination with optical wavefront sensors
and control systems [63, 64]. Often, they can be modelled and approximated by linear
systems, such that linear control theory applies [65–67]. DMs have several advantages.
They are reflective and therefore do not introduce chromatic aberrations. This is impor-
tant for broadband applications such as OCT, because the imaging performance would
suffer from these chromatic aberrations. Also, their coatings can be highly reflective so
that there is almost no power loss in the optical system and, therefore, are usable for
high-power optics. A disadvantage is that DMs are expensive and require folded optical
paths to conjugate the various pupil planes in the system.

Several properties characterize each DM [68]. A key property is how accurately a tar-
get phase can be reproduced. For example, a segmented mirror has a discontinuous sur-
face and in contrast to the continuous surface DM in Fig. 1.9, the surface of a segmented
DM can result in discontinuous phases. Being a mechanical element, every actuator has
a region where it has influence on the DM surface shape, which can be described by
the influence function. The influence function is the characteristic phase change cor-
responding to the action of a single actuator. If the influence functions of all actuators
in a deformable mirror are linear with respect to the input and the displacement, then a
single influence matrix can describe all the corresponding characteristic phase changes,
also see Chapter 6. The influence functions of the majority of DMs are quite different
from Zernike polynomials, however, in most cases Zernike polynomials can be formed
approximately by the DM as a combination of its influence functions. The reproduc-
tion quality of Zernike polynomials is mainly determined by the number of actuators
and the shape of the influence functions. Moreover, different actuators can influence
each other through coupling. Actuator coupling occurs when the movement of one ac-
tuator displaces its neighbors [69] and depends on the pitch between the actuators, the
materials used and the stroke. The actuator stroke is the maximum possible actuator
displacement and limits the amplitude of the introduced wavefront. The inter-actuator
stroke and the pitch limit the gradients and the amplitude of higher-order aberrations.
For DMs typically, the actuator stroke is between 1 to 50 micrometers.

In practice, for each application different demands are placed on the performance
of the deformable mirror. For high-speed applications and the correction of dynamic
aberrations the response and settling time of the actuators are important [70]. For ap-
plications in which large wavefront corrections are required, e.g. in ophthalmology, the
position and number of actuators, their accuracy and (inter-actuator) stroke determine
the maximum amplitude and number of Zernike modes the deformable mirror can cor-
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rect [68,71,72]. Even though all the available technologies still have their limits, it is pos-
sible for a specific application to formulate general requirements for a wavefront correc-
tor. For example, in astronomy a DM should have a large number of degrees of freedom,
i.e. many actuators, fast response time and accuracy. The shape and the amplitude of
its influence functions should be able to match the statistics of the wavefronts to be cor-
rected [29]. Finally, the response time should be fast enough to cover the whole temporal
range of the targeted aberrations. The cost of a DM is strongly related to the require-
ments of the application and are often considered too expensive in many applications.
Other alternatives, such as adaptive or deformable lenses, for correcting aberrations in
the phase of the wavefront exist.

ACTIVE AND ADAPTIVE LENSES

In contrast with DMs, adaptive and deformable lenses are used in transmission rather
than in a reflective manner. With an adaptive lens you can increase or decrease the dis-
tance the waves travel through a medium with a different refractive index. In this way,
it can change the OPD and introduce variations in the phase delays of the optical wave-
front. An example of a deformable lens changing its focal length is shown in Fig. 1.10.

Focused light 
Derformable membrane 

Light with 
different focal 
length 

Figure 1.10: Example of a deformable lens. The lens surface changes shape, therefore the focus of the lens
changes from far away (left) to close by (right) [73].

When using active lenses, different wavefront aberrations can be introduced by
translating or rotating fixed lenses with different shapes with respect to each other in the
optical beam [74–78]. In [79] an optical lens setup is described to correct astigmatisms
by rotating two cylindrical lenses. It is shown that the astigmatisms can be removed
using the two cylindrical lenses and that defocus can be removed using a lens on a
translation stage. In [80] a setup with two low cost cylindrical lenses is used for astig-
matism correction and a description of how the angles of the rotational lenses can be
related to the size of the astigmatism aberrations is given. This setup has been tested in
a fundus imaging device, which makes en face retinal images, but has no active defocus
correction. In [1], an optical lens setup to correct both large defocus and astigmatisms
was presented. For defocus correction a deformable defocus lens (Optotune EL-10-30)
is used and cylindrical lenses are placed on rotation stages behind the offset lens to in-
troduce the astigmatisms, shown in Fig. 1.11. In Fig. 1.12 we demonstrate the potential
of this setup by showing the images of a resolution target with different aberrations.
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Figure 1.11: Full lens setup for defocus and astigmatism correction. CAM is the camera, BS are beamsplitters,
TL is the deformable lens, CC are the rotational cylindrical lenses, SH is the Shack-Hartmann wavefront sensor,
RT is the resolution target.

The images in Fig. 1.12 show that the lens setup can accurately change the defocus and
astigmatism aberrations in the optical path and that it is capable of correcting most of
the remaining defocus and astigmatism aberrations in the system. The lens setup can
correct large defocus and astigmatism aberrations ranging from at least -6 to 4 diopters
for the defocus and from -1.5 up to 1.5 diopters for both astigmatisms with a root mean
square (RMS) error of 0.17 and 0.075 diopters for the defocus and the astigmatisms,
respectively. However, this setup has the disadvantage that it is bulky and can only
introduce defocus and astigmatism aberrations. Furthermore, the beam size on the res-
olution target changes slightly when different aberrations are introduced by the setup.
Other more compact adaptive lens technologies exist that can introduce aberrations
with a single lens [81, 82]. There are two principal approaches to make adaptive lenses.

The first principal approach is to actively change the shape of a lens. The first ex-
ample of this approach is the deformable defocus lens (Optotune EL-10-30) used in the
setup mentioned before in Fig. 1.11. This lens changes shape based on the amount of liq-
uid in the lens and the stiffness of the membrane. The liquid is concealed in a container
with at least one side being an elastic polymer or membrane. The membrane deforms
under changes of pressure in the container, hence changing the shape of the lens. The
change of the pressure of the liquid can be controlled mechanically or electrically [73].
The advantages of this type of deformable lens are a large tuning range and a low polar-
ization dependence. Another way to change the shape of the deformable lens is based
on electrowetting [83–85]. These lenses consist of two liquids with a similar density but a
different refractive index, such as water and oil. A voltage is applied to an insulated metal
substrate and the fluids, one conductive and the other insulating, changes shape accord-
ing to the applied voltage. This technology has several advantages, such as relatively fast
response times, a compact design, inexpensive fabrication and low power consumption.
However, for both of these technologies, gravity induces a coma optical aberration when
the lens is in upright position (optical axis horizontal) and the density of the two liquids
does not match, which is usually the case. Varioptics, a manufacturer of electrowetting
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(a) (b)

(c) (d)

Figure 1.12: (a) Image with 0.39 diopters defocus. (b) Image with vertical and oblique astigmatisms of 0.33
diopters and 0.44 diopters. (c) Image with 0.61 diopters defocus and astigmatisms of 0.27 diopters and 0.19
diopters. (d) Image with aberrations removed.
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lenses, recently announced a deformable lens with a clear aperture of 8 mm and a defo-
cus range of -12 to +12 diopters [86]. Moreover, this lens can also correct astigmatisms
up to −6 diopters, which compared to other deformable lenses is very large. Recently,
another multi-actuator lens that changes the shape was built in Italy. This is the only
available deformable lens with 18 piezoelectric actuators and it can correct up to the
fourth order of Zernike aberrations [87, 88]. However, the maximum amplitude of the
aberrations is limited.

The second principal approach to adaptive lenses is based on local changes in re-
fractive index, which can be induced by electro-optic or acousto-optic effects. A popular
technology for this approach are liquid crystal lenses [89]. They have the advantage of
small power dissipation, low voltages and ease of miniaturization. However, liquid crys-
tals are sensitive to the polarization of the light and slow in response due to reordering
of molecules with respect to other technologies.

Throughout the thesis, we examine different alternatives for an affordable adaptive
component in an AO-OCT system that can swiftly correct human eye aberrations. In
Fig. 1.7, the AO-OCT setup uses a deformable mirror. In Chapter 2 and Chapter 3 we
use a deformable mirror and in Chapter 5, we explore the use of a deformable lens for
AO-OCT.

1.2.3. ADAPTIVE OPTICS IN OPTICAL COHERENCE TOMOGRAPHY

The development of new broad spectrum light sources [90–93] has improved the axial
resolution for retinal imaging below 3 µm in OCT systems in 2001. However, the lat-
eral resolution was still hampered by optical wavefront aberrations in the eye and did
not reach theoretical diffraction-limited performance. As mentioned earlier, the lateral
resolution of OCT improves by using a larger pupil. However, when the pupil size is
increased for in vivo imaging of the retina, large ocular aberrations are introduced. In
practice, most conventional OCT systems used for retinal imaging are limited to lateral
resolutions of approximately 15 to 20 µm.

The concept of an AO-OCT system is shown in Fig. 1.7. A high lateral resolution can
be obtained by using adaptive optics (AO) to correct the optical wavefront aberrations on
large pupils (>2 mm). A wavefront sensor and a deformable mirror are used in combina-
tion to correct the undesired aberrations. Initially, a flat wavefront is launched into the
eye. A small part of the aberrated light returning from the human retina is directed to-
wards a wavefront sensor. The wavefront sensor estimates the aberrations that the light
experienced from its propagation to and from the retina. The shape of the deformable
mirror is set to correct the undesired aberrations. In practice this means that the wave-
front is deformed in such a way that after traversing the cornea and the lens a perfect
spherical wavefront is incident on the retina.

AO has been used in human retinal imaging to correct ocular wavefront aberrations.
In 2003, a report was made of improved lateral resolution for TD-OCT using en face OCT
and AO [94]. Soon after in 2004, a high-resolution TD-OCT system was demonstrated
with an improved transverse resolution of 5 to 10 µm [95]. The first implementation of
AO correction in FD-OCT imaging has been reported in 2005 with a lateral resolution of
3 µm [96]. The combination of AO with the high axial resolution of OCT results in three-
dimensional ultra-high resolution imaging. Such systems have been reported [96–99]
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and demonstrated lateral and axial resolution up to 3 µm and 2 to 3 µm, respectively. As
a result, AO-OCT has made it possible to image the 3D architecture of individual rods and
cones in vivo in the human eye [99,100]. These results demonstrate that the combination
of AO and OCT has the potential to provide researchers and clinicians with near cellular-
resolution information on retinal morphology [101]. To reduce the cost and size of an
AO-OCT setup, wavefront sensorless aberration correction has been pursued as will be
discussed in the next section.

1.3. WAVEFRONT SENSORLESS ABERRATION CORRECTION

In Sec. 1.2, an example of an AO-OCT setup with a Shack-Hartmann wavefront sensor
was given in Fig. 1.7. Imaging systems with SH wavefront sensors can suffer from several
disadvantages, such as non-common path wavefront errors and undesired reflections
on the wavefront sensor if they are not taken into account and removed. However, the
biggest disadvantage is that wavefront sensors lead to an increased cost and size of an
AO-OCT setup. These drawbacks can be avoided if wavefront sensor-less adaptive optics
(WFSL-AO) methods are used that no longer require a wavefront sensor. WFSL methods
are based on the optimization of quality metrics of the acquired image in order to mini-
mize the aberrations and create a sharper image. Examples of metrics are image sharp-
ness or signal strength. In WFSL-AO-OCT, aberration correction methods rely on the
measurement of a metric based on the OCT image (e.g. the strength of the OCT signal)
rather than on the wavefront measurement using of the wavefront sensor. WFSL-AO op-
timization procedures are often confused with post-processing methods that attempt to
remove aberrations from already acquired images [102,103]. Post-processing algorithms
do not improve the imaging resolution or signal to noise ratio of the system by actively
correcting aberrations in the optical beam path, but rather remove them after the image
has already been taken and create image artefacts instead. If aberrations are too large or
the signal to noise ratio is too low, these methods often do not succeed in creating a bet-
ter image. In short, WFSL-AO algorithms aim to optimize the image quality by actively
changing the wavefront of an optical imaging system without using a wavefront sensor.

1.3.1. DERIVATIVE-FREE, NOISY AND COSTLY FUNCTION OPTIMIZATION

The search for the wavefront aberrations that maximize the image quality metric is an
optimization process. Optimization can be defined as finding the values of variables
with the most cost effective or highest achievable performance of the objective func-
tion f under the given constraints. In practice, the lack of full information, the pres-
ence of noise and the lack of time restricts the optimization process in finding the op-
timum [104]. In the case of WFSL-AO the variables used in the optimization are often
related to the inputs of the adaptive components, such as the deformable mirror or the
deformable lens. For example, the variables that are used to maximize the image quality
can be the Zernike coefficients of the aberrations which are displayed by the adaptive
component. In this case, the image quality metric is an objective function that depends
on certain characteristics of the system.

The goal of the optimization is to find values of the variables in vector x that optimize
the objective function or metric f . The objective function or metric f is evaluated by tak-
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ing a measurement or an image. The variables are often constrained to a certain domain
or restricted to have certain properties [105]. The minimization problem is defined as

min
x∈X

f (x), (1.27)

where X is the domain to which x is restricted. A plethora of algorithms exist that tackle
variations of this problem. Different gradient descent or gradient based algorithms exist
that use the Jacobian ∆x f in the optimization process [106]. Other examples are quasi-
Newton methods [107, 108] and conjugate directions methods [109, 110]. The step size
per iteration in these optimization algorithms is often limited or determined by trust re-
gion methods [111] or line-search methods [104,112]. Trust region methods are methods
that limit the domain of the next guess for the minimizing argument to a region where
the current model is considered accurate enough, while line search methods attempt
to find a sufficiently decreasing step-size for a given descent direction. In practice, the
derivatives of the cost or objective function f (x) are often not available or difficult to cal-
culate due to the presence of noise. If the derivatives are not explicitly available, they can
be approximated by finite differences. However, the calculation of finite differences for
the derivatives requires additional function evaluations and is in general not accurate in
the presence of noise [113].

An alternative method is derivative-free optimization [114]. Some of the first and
most simple derivative-free algorithms are random search algorithms, coordinate de-
scent algorithms [115] and the Nelder-Mead or simplex method [116]. Michael Powell
wrote one of his first breakthrough derivative-free optimization methods in 1964, which
is referred to as Powell’s method [117]. Later he developed the NEWUOA method in
which he updates a quadratic model in a particular way to reduce computational com-
plexity and to improve the convergence speed [118]. Each iteration, the algorithm
establishes a quadratic model function and then finds the minimizing argument of the
model within a trust region. Some of his other derivative-free optimization algorithms
are based on similar principles, but allow the addition of (linear) constraints [119, 120].
These algorithms are amongst the top performing derivative-free local optimization
methods in terms of number of measurements (convergence rate) and computational
complexity [121]. However, they are not very robust with respect to high levels of
noise [122].

Other more frequently used derivative-free optimization algorithms include pattern
search methods [123, 124], simulated annealing [125], genetic or evolution based algo-
rithms [126, 127], particle swarm optimization [128], ant colony optimization [129], or
combinations such as hybrid genetic and swarm optimization [130]. These methods are
often not very robust to noisy outliers in case the function f (x) is noisy and the number
of measurements are limited [131, 132]. In many practical applications, such as retinal
OCT, it often happens that function evaluations of f (x) are noisy and costly to obtain.
For example, a costly function can be expensive in terms of actual cost or time. Hence,
during the optimization the number of measurements needs to be limited but still needs
to get close to the optimum of the objective function.

In some methods function evaluations are used to fit a surrogate model. In turn,
the model is used to find an approximate optimum of f by finding the minimum of the
surrogate model. Some of the previously mentioned methods are already based surro-
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gate functions, those that do not can be used in combination with surrogate functions
in order to improve robustness or limit the number of function evaluations [133, 134].
In Fig. 1.13 an example is given of derivative-free optimization using a non-linear surro-
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Figure 1.13: Example of optimization with a non-linear surrogate function. The unknown function f (x) is
approximated by g (x) after ten noisy measurements. The minimum of g (x) is then found and approximates
the minimum of f (x).

gate function. The surrogate function g (x) is fitted through the measurements such that
it approximates the unknown function f (x). With only ten measurements, the optimum
of g (x) is already close to the optimum of f (x). An example of a method that attempts
to reduce the number of measurements is Bayesian optimization [135]. Bayesian opti-
mization is becoming more and more popular for derivative-free optimization, because
it aims to do global optimization over the space X by using a surrogate model and it is
robust towards zero-mean noise [136–139].

Many well-known derivative-free optimization methods have been used for WFSL-
AO [140]. Examples are hill-climbing algorithms [141], stochastic parallel-gradient-
descent algorithms [142], the Nelder-Mead method [143], coordinate search meth-
ods [144], simulated annealing [145] and genetic algorithms [146]. When the number
of measurements for the evaluation of the metric is limited, many of these algorithms
falsely identify noisy outliers as an approximation of the optimum. Some WFSL-AO
methods rely on the repetition of an optimization procedure, such as pupil segmentation
where the same optimization procedure is repeated to adjust the phase of each segment
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in order to maximize the constructive interference of light in the focal spot [147].
It was shown that using model-based algorithms can improve the convergence rate

of WFSL-AO methods [148–151]. In [148,151], a quadratic polynomial was used to model
the region around the optimum of the metric. The quadratic model was based on prior
knowledge or prior measurements of the metric. This means that if there are large aber-
rations where the quadratic approximation is no longer valid, these methods will no
longer work accurately. Others have focused on approximating certain metrics by lin-
ear models or using specific linear metrics [150, 152]. Their methods are often limited
to specific metrics or applications. In [149, 153] neural networks are used to make an
approximating model of the metric to aid in correcting aberrations. One advantage of
neural networks is that they can approximate arbitrary continuous functions [154]. This
gives them the advantage that the information of more measurements with large aber-
rations can be kept in the model. A drawback of these algorithms is that they are often
computationally expensive and thus take more time to perform an optimization.

WFSL-AO-OCT was first attempted in 2009 with a simulated annealing algo-
rithm [145] and in 2013 with a coordinate search algorithm [144]. In this thesis, we

Figure 1.14: A wavefront sensorless adaptive optics optical coherence tomography setup.

combine OCT, sensorless AO and optimization to obtain a WFSL-AO algorithm that can
correct the largest phase aberrations present in the human eye, is sufficiently fast to im-
age human patients, and is robust with respect to noise. Furthermore, we demonstrate
that the aberration correction can be performed with a deformable lens. These two
improvements reduce the complexity, cost and size of AO-OCT systems. An example of
the WFSL-AO-OCT system we will demonstrate is given in Fig. 1.14.

1.4. GOAL OF THIS THESIS
In ophthalmic use, the lateral resolution of OCT, which is given by the spot size of the
sample arm light at the retina (∼ 20 µm), is hampered by aberrations present in the lens
and cornea of the eye. Consequently, the detection of one of the most important parts of
the retina, the cones, is not possible with standard commercial OCT systems. Therefore,
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AO is used to compensate for the aberrations in the eye lens and cornea and combined
with OCT systems to facilitate high-resolution imaging of the retina. AO has demon-
strated in the last decade to expand the OCT imaging resolution in three different ways:
an increased lateral resolution complementary to the high axial resolution of OCT, re-
duced speckle size and increasing the sensitivity to weakly reflecting biological objects.
Despite these major advantages, the wide-scale clinical integration of AO in OCT tech-
nology is hampered by several reasons.

The first reason is the cost and complexity of this technology. Classical AO consists
of the use of expensive wavefront sensors and deformable mirrors that can increase the
cost of a commercial spectral-domain OCT (SD-OCT) up to forty percent. Moreover,
the existing AO technology is difficult to integrate in OCT systems, because of the large
footprint.

The second reason is that part of the photons reflected by the object (retina) are used
by the wavefront sensor in AO systems, thus lowering the signal to noise ratio (SNR)
of the OCT system. The loss in photons could also require a longer integration time
for the camera and this would reduce the imaging speed. The temporal dynamics of
the optical aberrations show a correlation with the cardiopulmonary system (1 to 2 Hz),
which complicates the use of AO systems if the imaging speed is too low [155].

The third reason is that most AO correction in OCT is done for aberrations measured
by the wavefront sensor. The light coming from the biological specimen and going to the
OCT camera has a slightly different optical path than the wavefront sensor due to small
misalignments. This results in non-common path errors in the aberration estimation
and will result in poor AO performance.

The key objective of this thesis is to simplify the hardware of an AO-OCT system and
to overcome the drawbacks of AO-OCT. This will be done in three stages that will trans-
form the full AO-OCT setup shown in Fig. 1.7 into the more compact WFSL-AO-OCT
setup shown in Fig. 1.14. First, the influence of the aberrations on the eye and the result-
ing OCT signal is determined in order to understand what wavefront sensorless (WFSL)
AO approaches are applicable. Second, we exclude the use of the wavefront sensor and
correct the wavefront aberrations directly with aberrations obtained from the OCT signal
itself. In this step the aim is to develop a fast and robust algorithm capable of correcting
the large aberrations that are present in the human eye. Third, we will replace the expen-
sive deformable mirror with a cheap phase-diversity device, for example a deformable
lens that can induce different aberrations in the optical path and correct wavefront aber-
rations in the OCT image. In combination these steps yield ultra-high resolution OCT
based on novel optimization methods that corrects the wavefront aberrations without
the wavefront sensor. Meeting these goals allows the realization of ultra-high resolution
OCT to become more economically attractive on a wide clinical scale.

1.5. OUTLINE THESIS
In this section, we will discuss the outline of the other chapters is in thesis.

Chapter 2

In this chapter, we derive a model for optical wavefront aberrations in optical coherence
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tomography. More precisely, the transfer function for optical wavefront aberrations
in single-mode fiber based optical coherence tomography is determined. The loss in
measured OCT signal due to optical wavefront aberrations is quantified using Fresnel
propagation and the calculation of overlap integrals. A distinction is made between a
model for a mirror and a scattering medium. The model predictions are validated with
measurements on a mirror and a scattering medium obtained with an adaptive optics
optical coherence tomography setup. Furthermore, a one-step defocus correction,
based on a single A-scan measurement, is derived from the model and verified. Finally,
the pseudo-convex structure of the optical coherence tomography transfer function is
validated by showing convergence of the wavefront optimization with a hill climbing al-
gorithm. The implications of this model for wavefront sensorless aberration correction
are discussed.

The chapter is based on the following publications:

H. R. G. W. Verstraete, B. Cense, R. Bilderbeek, M. Verhaegen, and J. Kalkman, “Towards
model-based adaptive optics optical coherence tomography,” Opt. Express, vol. 22,
no. 26, pp. 32 406–32 418, Dec 2014.

H. R. G. W. Verstraete, M. Verhaegen, and J. Kalkman, “Modeling the effect of wave-front
aberrations in fiber-based scanning optical microscopy,” in Imaging and Applied Optics.
Optical Society of America, 2013, p. JTu4A.13.

Chapter 3

In this chapter, we describe the Data-based Online Nonlinear Extremum-seeker (DONE)
algorithm, a data-based optimization algorithm that is robust towards noisy mea-
surements. Several sensor-less wavefront aberration correction methods that correct
wavefront aberrations by maximizing the OCT signal are tested on an OCT setup. A
conventional coordinate search method is compared to two model-based optimization
methods. The first model-based method takes advantage of the well-known optimiza-
tion algorithm (NEWUOA) and utilizes a quadratic model. The second model-based
method (DONE) is developed by us and utilizes a random multi-dimensional Fourier
basis expansion. The model-based algorithms achieve lower wavefront errors with up
to ten times fewer measurements. Furthermore, the newly proposed DONE method
outperforms the NEWUOA method significantly. The DONE algorithm is tested on OCT
images and shows a significantly improved image quality.

The chapter is based on the following publications:

H. R. G. W. Verstraete, S. Wahls, J. Kalkman, and M. Verhaegen, “Model-based sensor-less
wavefront aberration correction in optical coherence tomography,” Opt. Lett., vol. 40,
no. 24, pp. 5722–5725, Dec 2015.

H. R. G. W. Verstraete, S. Wahls, J. Kalkman, and M. Verhaegen, “Numerical evaluation
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of advanced optimization algorithms for wavefront aberration correction in OCT,” in
Imaging and Applied Optics 2015. Optical Society of America, 2015, p. AOM3F.3.

Chapter 4

This chapter analyzes the Data-based Online Nonlinear Extremum-seeker (DONE)
algorithm, an online optimization algorithm that iteratively minimizes an unknown
function based on costly and noisy measurements. The algorithm maintains a surrogate
of the unknown function in the form of a random Fourier expansion (RFE). The sur-
rogate is updated whenever a new measurement is available and is subsequently used
to determine the next measurement point. The algorithm is comparable to Bayesian
optimization algorithms, but its computational complexity per iteration does not de-
pend on the number of measurements. We derive several theoretical results that provide
insight on how the hyper-parameters of the algorithm should be chosen. The algorithm
is compared to a Bayesian optimization algorithm for a benchmark problem and three
applications, namely, optical coherence tomography, optical beam-forming network
tuning and robot arm control. It is found that the DONE algorithm is significantly faster
than Bayesian optimization in the discussed problems, while achieving a similar or
better performance.

The chapter is based on the following publications:

H. R. G. W. Verstraete, L. Bliek, M. Verhaegen, and S. Wahls, “Online optimization with
costly and noisy measurements using random Fourier expansions,”IEEE Trans. Neural
Netw. Learn. Syst. [Accepted], 2016.

Chapter 5

In this chapter, we apply the Data-based Online Nonlinear Extremum-seeker (DONE)
algorithm to in vivo AO-OCT imaging. We optimize the optical coherence tomography
signal and image quality during in vivo imaging of the human retina using wavefront
sensorless adaptive optics. The optical wavefront aberrations are corrected using a novel
multi-actuator deformable lens which is linearized for the hysteresis in the piezoelectric
actuators.

The DONE algorithm succeeds in drastically improving the optical coherence to-
mography signal while achieving a computational time of 1 ms per iteration, making it
applicable for many high-speed applications.

The chapter is based on the following publications:

H. R. G. W. Verstraete, M. Heisler, M. J. Ju, D. Wahl, L. Bliek, J. Kalkman, S. Bonora,
M. Sarunic, Y. Jian, and M. Verhaegen, “In vivo wavefront sensorless adaptive lens OCT
with the DONE algorithm,” [Submitted], 2016.
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Chapter 6

The Data-based Online Nonlinear Extremum-seeker (DONE) algorithm is not only ca-
pable of optimizing the signal and quality of images in optical coherence tomography,
but can be applied to a multitude of optimization problems. In this chapter, we apply
the DONE algorithm to a Smart Programmable Array Microscope (S-PAM) to correct
optical wavefront aberrations. In this example, the DONE algorithm was modified to
work with a sliding-window principle. Older measurements are forgotten so that the
algorithm adapts to slowly changing aberrations.

The chapter is based on the following publications:

P. Pozzi, D. Wilding, O. Soloviev, H. R. G. W. Verstraete, L. Bliek, G. Vdovin, and M. Ver-
haegen, “Real time wavefront sensorless aberration correction in digital micromirror
based confocal microscopy,” Opt. Express [Accepted], 2016.

Finally, in the last chapter the conclusions drawn throughout this thesis are repeated and
recommendations for future work are given.
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OPTICS OPTICAL COHERENCE

TOMOGRAPHY

The transfer function for optical wavefront aberrations in single-mode fiber based opti-
cal coherence tomography is determined. The loss in measured OCT signal due to optical
wavefront aberrations is quantified using Fresnel propagation and the calculation of over-
lap integrals. A distinction is made between a model for a mirror and a scattering medium
model. The model predictions are validated with measurements on a mirror and a scatter-
ing medium obtained with an adaptive optics optical coherence tomography setup. Fur-
thermore, a one-step defocus correction, based on a single A-scan measurement, is derived
from the model and verified. Finally, the pseudo-convex structure of the optical coherence
tomography transfer function is validated with the convergence of a hill climbing algo-
rithm. The implications of this model for wavefront sensorless aberration correction are
discussed.

Parts of this chapter have been published in [156].
©2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic
reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes,
or modifications of the content of this chapter are prohibited.
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-26-32406
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2.1. INTRODUCTION
Optical coherence tomography (OCT) is a technique for non-invasive, in vivo imag-
ing of tissue [2, 21]. Its main application is found in opthalmology, where it is used
for the 3D imaging of the cornea and retina [24, 92, 93]. The axial resolution of OCT
is obtained through low coherence interferometry and is inversely proportional to the
source bandwidth. Using ultra-broadband sources, axial resolutions below 1 µm have
been recorded [157]. The lateral resolution of OCT is determined by conventional opti-
cal lens focusing. Hence, the lateral resolution improves by using a larger pupil. In OCT
imaging of the retina the lateral resolution is hampered by the small pupil size (< 2 mm).
Moreover, when the pupil size is increased, large ocular aberrations are introduced. It
has been demonstrated that high lateral resolutions can be obtained by using adaptive
optics (AO) to correct the optical wavefront aberrations on large pupils (>2 mm). Com-
bining the high axial resolution of OCT with the high lateral resolution of AO results in
ultra-high resolution AO-OCT imaging in three dimensions. Such systems have been re-
ported in [96–99] and demonstrated lateral and axial resolution up to 3 µm and 2- 3 µm,
respectively. As a result, AO-OCT has made it possible to image the 3D architecture of
individual rods and cones in vivo in the human eye [99, 100].

Current AO-OCT setups usually rely on wavefront sensors such as the Shack-
Hartmann wavefront sensor. In general, wavefront sensors have several drawbacks.
First, a loss of signal to noise ratio in the OCT signal occurs because light from the
object is directed away from the sensor (if no alternative imaging device is used as a
wavefront sensor). Second, specular reflection of optical components or from the eye
prevent the wavefront sensor from giving an accurate estimation of the aberrations.
Third, the magnitude and accuracy of the measured wavefront aberrations are limited
by the wavefront sensor design. Due to the large aberrations present in the human eye,
a trade-off is usually made between the maximum aberration that can be measured and
the accuracy of the wavefront estimation. Fourth, since wavefront sensors are located
outside the imaging path, non common-path errors with the imaged signal occur. In
other words different aberrations are estimated by the SH wavefront sensor than are
present in the optical path for the OCT image. Finally, the cost of the wavefront sensor
increases the overall cost of any adaptive optics system. This increased cost hampers
commercial and medical use of AO-OCT devices. Several authors have successfully
applied wavefront sensorless (WFS) AO algorithms to OCT [144, 145, 158] to mitigate
these disadvantages. WFS approaches are based on phenomenological image quality
metrics that are optimized to achieve aberration free images. If analytical expressions
for the transfer function of the OCT signal for different aberrations are known, more
efficient metrics and algorithms can be found and the region of convergence can be
determined. For example, in [148, 151] it is shown that the use of models can improve
the convergence speed of WFS algorithms. In [103] a general model is used, based on
a synthetic aperture and Zernike modal decomposition, for a software based image
optimization. The optimization is based on a sharpness and intensity metric.

Until now, only single aberrations have been modeled for OCT. The tip/tilt aberra-
tions are modeled in the context of galvanometric mirrors, that are used for scanning
across the sample. The defocus aberration is studied in the context of the axial transfer
function for single-mode fiber (SMF) based OCT systems. Studies [159–162] showed that
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the amount of backscattered signals, which is due to optical properties of the tissue, is
also influenced by the optical components of the OCT setup. A simplified axial transfer
function is proposed in [162] based on the overlap of the Gaussian beam profile arising
from the SMF. The proposed axial transfer function assumes the propagation of a perfect
Gaussian beam profile without lateral optical wavefront aberrations other than a fixed
defocus introduced by the lens. This transfer function is used to correct for OCT system
properties in the backscattered measured signal to determine the attenuation coefficient
of tissue from OCT scans. In general, OCT transfer function models distinguish between
a specular reflector and a backscattered sample. In the axial defocus model in [162] the
interaction of a Gaussian beam with the scattering medium is modeled by removing the
defocus curvature of the Gaussian beam at the sample.

The goal of this paper is to model and validate the effect of arbitrary optical wavefront
aberrations on the OCT signal for mirror and scattering media reflectors. This model is
used to correct for defocus and predict the convergence of a WFS algorithm.

2.2. OCT MODEL
OCT is based on a combination of confocal and coherent gating [22]. Confocal gating is
implemented by single mode fibers that act as pinholes for outgoing and returned light.
Coherence gating is based on low coherence, i.e. large optical bandwidth interference,
to detect only a thin section of the sample. The confocal and coherent detection of the
OCT system all take place in the OCT sample arm, which can be modeled as in Fig. 2.1.
A first lens (CL), conjugated to the sample lens, is used to collimate the beam. A second
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Figure 2.1: Geometry model for SMF-OCT. A collimator lens (CL) collimates the beam to a planar wavefront
with Gaussian distribution (G). The sample lens (L) with aberrations (A) focuses the light on the sample at
distance f +d . Light is reflected/scattered by the sample, shown here in transmission. The overlap integral (O)
with the Gaussian mode is calculated to quantify the coupling efficiency into the SMF.

lens (L), the sample lens, which contains aberrations (A), is used to focus the light on the
sample located a distance d from the actual focus f of the sample lens. Light reflected
from a thin slice of the sample goes through the same path back to the SMF, which is
shown in this model as transmission. The sample can be a mirror or a thin slice of tissue,
which we model here separately.

2.2.1. OCT MIRROR MODEL
After collimation by the collimator lens the optical field emitted from the single mode
fiber has a Gaussian distribution with a flat wavefront. This planar Gaussian wavefront
(G) is described by

G(x, y) =C exp

(
− 1

w2 (x2 + y2)

)
. (2.1)
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Here, C is the amplitude, and w is the beam waist of the collimated fundamental Gaus-
sian fiber mode. Next, the wavefront traverses optical aberrations. The aberrations (A)
in the pupil plane are denoted as

A(x, y,α) = exp
(
i kW (x, y)

)
. (2.2)

Here, k is the wave number 2π
λ , i is the imaginary number

p−1. Normalized Zernike
polynomials are used over a circular pupil [163] to represent W (x, y) = αT Z (x, y), the
vector α contains the corresponding Zernike coefficients, Z (x, y) is a vector of the corre-
sponding Zernike polynomials.

The aberrated optical wavefront is focused by a lens. The paraxial approximation of
the focusing sample lens (L) with a circular pupil is given by

L(x, y) = exp(−i k f )exp

(−i k

2 f
(x2 + y2)

)
circ

(√
x2 + y2

rpupi l

)
. (2.3)

For the lens the Fresnel approximation is used with focal length f . Following Good-
man [33], the circular pupil function circ(

√
x2 + y2/rpupi l ) is a circle with radius rpupi l .

Values inside the circle are set to 1, outside the circle to 0, and on the border to 0.5. The
pupil function is determined by the smallest pupil in the optical setup, in our case the
deformable mirror, which limits the beam radius to rpupi l = 3.61 mm.

Fresnel diffraction (F) [33] approximates the propagation of an arbitrary wavefront
U (x1, y1) to the plane (x2, y2) over an OPL z as,

Uz (x2, y2) = F (U (x1, y1), z) = exp(i kz)

iλz

Ï
U (x1, y1)exp

(
i k

2z

[
(x2 −x1)2 + (y2 − y1)2]) dx1 dy1.

(2.4)
In the mirror model the Gaussian distributed wavefront (G) passes through aberra-

tions (A) and the sample lens (L) and propagates (Fresnel diffraction) over a distance
f +d to reflect on the mirror and then propagates backwards over the distance f +d .
We describe the latter by a Fresnel propagation over 2( f +d). Hence, the wavefront right
before the sample lens (L) is

U1(x3, y3,d ,α) = F
[
G(x1, y1)L(x1, y1)A(x1, y1,α),2( f +d)

]
. (2.5)

Again, wavefront U1 traverses the sample lens (L) with aberrations (A). Finally, an over-
lap integral (O) of the field with the Gaussian mode of the collimated beam is taken.
Since the SMF only accepts a Gaussian wavefront identical to the collimated Gaussian
mode, we take the overlap integral of the reflected light with this Gaussian wavefront to
determine the total field coupled back into the fiber from the sample. The overlap in-
tegral [164] for an arbitrary wavefront U (x, y) with the Gaussian mode G(x, y) is defined
as

O(U (x, y)) =
Î ∞

−∞U (x, y)G∗(x, y)dx dyÎ ∞
−∞ |G(x, y)|2 dx dy

. (2.6)

The total intensity coupled back into the SMF is then denoted by

h1(d ,α) = ∣∣O [
U1(x3, y3,d ,α)L(x3, y3)A(x3, y3,α)

]∣∣2 . (2.7)
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2.2.2. SCATTERING MEDIUM OCT MODEL
The scattering medium transfer function is very similar to the mirror transfer function.
The only difference is the interaction with the scattering medium. The Gaussian beam
(G) traverses the sample lens (L) with aberrations (A) and interacts with the sample after
propagating an OPL f +d . In the scattering medium we assume that the lateral phase
relation of the wavefront is lost and a new plane wave is formed with a perfect planar
wavefront. This is modeled by taking the modulus of the field, |U (x, y)|, at the position
of the sample, which reduces the original phase of the wavefront laterally to a constant
phase. The wavefront U2 represents the wavefront after having interacted with the sam-
ple.

U2(x2, y2,d ,α) = |F [
G(x1, y1)L(x1, y1)A(x1, y1,α), f +d

] | (2.8)

The wavefront U2 propagates an OPL of f + d to the aberrated sample lens, which is
represented by the wavefront U3,

U3(x3, y3,d ,α) = F
[
U2(x2, y2,d ,α), f +d

]
. (2.9)

Wavefront U3 again traverses the sample lens (L) with aberrations (A) and the intensity
coupled into the fiber is determined with the overlap integral (O). The total intensity
coupled into the SMF fiber is

h2(d ,α) = ∣∣O [
U3(x3, y3,d ,α)L(x, y)A(x, y,α)

]∣∣2 . (2.10)

The functions h1(d ,α) and h2(d ,α) are called OCT transfer functions for the mirror and
scattering medium, respectively. These equations represent the intensity that is coupled
back into the fiber. It is important to note that the OCT signal, defined as the magnitude
of the Fourier transform, scales with the sample arm field and thus with

√
h1 and

√
h2.

The results for the transfer functions are numerically calculated in MATLAB using the
numerical Fresnel propagation code in [165].

2.2.3. SINGLE STEP DEFOCUS CORRECTION
If the AO-OCT setup and sample lens are well-known and calibrated, then a single step
correction for the defocus can be implemented. The change in focal length d is related
to the Zernike defocus coefficient α4 and the original focal length f as follows,

− 1

2( f +d)
(x2 + y2) =− 1

2 f
(x2 + y2)+2

p
3α4

(x2 + y2)

r 2
pupi l

. (2.11)

In Eq. (2.11) the left hand side is the quadratic phase factor for the lens focused at a
distance f +d and the second term on the right hand side is the Zernike defocus. As a
result, the defocus Zernike coefficient is derived as

α4 =
r 2

pupi l

4
p

3

(
1

f
− 1

f +d

)
. (2.12)

In the equations above rpupi l is the radius of the pupil, defined by the smallest pupil in
the setup (the deformable mirror), on which the Zernikes are defined. The index pro-
posed by Thibos et al. [166] is used to order the Zernike coefficients α (4 corresponds to
the defocus). Equation (2.12) allows to directly calculate the defocus coefficient α4 from
the distance d the sample is out of focus.
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2.3. MATERIALS AND METHODS
AO-OCT measurements are performed on an adaptive optics OCT system based on sin-
gle mode fibers and a Michelson interferometer, shown in Fig. 2.2. The light source
is a fiber coupled super luminescent diode (Superlum Broadlighter D-840-HP-I) with a
bandwidth of 100 nm and a center wavelength of 840 nm. The fiber from the source is a
single mode fiber with a 4 µm core diameter coupled to a fiber coupler (Gould Fiber Op-
tics Corning HI-780) with a splitting ratio of 50/50. Light is detected with a spectrometer
(Wasatch Photonics Cobra UHR) with 4096 pixels that cover a wavelength range from 650
nm to 950 nm. The integration time and line-time are set to 23 µs and 25 µs, respectively.

SLD 

SM 

PC 

PC 

CL 

CL 

PM1 

PM1 

PM2 

PM2 

DM 

Sample Lens 
L&M 

SH 

BS 

Figure 2.2: Schematic overview of the AO-OCT Setup. SMF fibers are indicated by a single line. The free space
light is indicated by three lines. SLD = super luminescent diode. SM = spectrometer. PC = polarization con-
trollers. CL = fiber collimator lens. L&M are the lens and mirror for the reference arm. SH = Shack-Hartmann
wavefront sensor. BS = beam-splitter. PM1 and PM2 are parabolic mirrors. DM = deformable mirror.

The two arms from the fiber-based interferometer both have 3-paddle polarization
controllers (Thorlabs FPC560) and light exiting the sample and reference arm fibers is
collimated by a fiber collimator lens (Thorlabs AC254-030-B). The reference arm consists
of a folded, collimated beam covering a distance of 3.8 m. In both sample and reference
arm a collimated Gaussian beam with a 3.4 mm beam waist

(
e−2

)
starts from the fiber

collimator lens. The sample arm consists of pairs of parabolic mirrors that are used to
conjugate the planes of the fiber collimator, deformable mirror (DM) and sample lens.
The parabolic mirrors PM1 (Edmund Optics 50.8 × 304.8 mm PFL 15°) and PM2 (Ed-
mund Optics 50.8 × 635.0 mm PFL 15°) in Fig. 2.2 are off-axis parabolic gold mirrors that
(de)magnify the beam 2.08 times. The deformable mirror (Imagine Eyes Mirao52) has 52
actuators and a stroke of 50 µm. At the end of the reference and sample arm the sample
lens with a focal length of 45 mm (Thorlabs AC254-045-B) focuses the light on a mirror
(Thorlabs KM100-E03) and the sample, respectively. An OKOtech Shack-Hartmann (SH)
wavefront sensor, 1-inch optical format, with a lenslet array pitch of 300 µm and focal
length 18.6 mm, is placed perpendicular to the optical beam path. A pellicle beam split-
ter (Thorlabs BP108) directs 8% of the light towards the SH and 92% to the fiber. The SH
pupil is conjugated to the pupil plane. The SH mask to CCD distance is 16.56 mm.

From the SH images the modal wavefront is reconstructed using the method de-
scribed in [167]. The diameter of the DM is the smallest pupil and acts as a field stop
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that determines the maximum pupil size. The DM diameter is 15 mm and after conju-
gation through the parabolic mirrors the pupil radius is rpupi l = 3.61 mm. This pupil
radius, rpupi l , is used for the wavefront reconstruction in the SH sensor as well as in the
circular pupil function for the model.

The acquired spectra are processed into OCT A-scans in the following way. First, the
spectrum of the reference arm is subtracted. Second, since the pixels of the spectrometer
correspond to a non-equidistant k axis, the data is linearly interpolated in k based on
a calibration table provided by the manufacturer. After interpolation the fast Fourier
transform (FFT) is taken over the spectrum. The magnitude of the FFT is used as the
OCT-signal.

The measured axial resolution is 3.9 µm (FWHM), which is in good agreement with
the coherence length of the Superlum source spectrum, which is 3.5 µm (FWHM). The
sensitivity is determined to be -94 dB by measuring the signal to noise ratio between
peak signal and the RMS noise.

Odd and even Zernike aberrations are set on the DM, such that perfect Zernike aber-
rations are displayed in the conjugate plane of the sample lens. Normalized Zernike
aberrations with index 1 to 9 are applied to the DM (tip, tilt, defocus, 2 astigmatisms, 2
comas and 2 trefoils). The tip and tilt are left out for the scattering medium, because
these aberrations correspond to lateral scanning over the sample, which is performed by
a translation stage. The aberration coefficients are varied between -0.45 µm to 0.45 µm.

For the mirror measurements 512 A-scans are taken at the same lateral position. All
of the OCT signal in the A-scans is then averaged over time and all depth to a scalar
and normalized (divided by the maximum value in a set of measurements). This scalar
represents the OCT signal for the mirror measurements.

For the scattering medium measurement, 512 A-scans are taken of a sample con-
sisting of 4 layers of Scotch tape attached on a translation stage. These 512 A-scans are
averaged over time and out of the averaged A-scan four depth points at zero aberrations
are taken. Several different aberrations are applied to the DM and the same four depth
points are scaled by the same normalization factor. These four points represent the OCT
signal for the scattering medium measurements.

2.4. RESULTS
Figure 2.3 shows the OCT measurements on a mirror for varying aberrations applied
on the DM. The measurements are plotted together with numerical results obtained
for the mirror model. The mirror model is in good agreement with the measurements,
especially for small aberrations. The model predicts almost no loss in OCT signal for
the odd aberrations (index 1-2, 6-9), because these aberrations are canceled due to the
double pass through the optical system. The higher order odd aberrations (comas and
trefoils) show a loss of OCT signal stronger than the results predicted by the model. We
attribute this to slight misalignments, which cause an imperfect cancellation of the odd
aberrations leading to the introduction of other aberrations in the wavefront.

Figure 2.4 shows the measured Zernike coefficients on the SH sensor, for modes with
index 1 to 20, obtained from the SH wavefront sensor. For even aberrations applied on
the DM (index 3 to 5) the measured wavefront aberrations on the SH are about twice as
large as those that have been put on the DM, i.e. the slope of the measurements on the
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Figure 2.3: OCT signal measurements on a mirror versus applied aberration for index 1-9. Measurements (red
markers) and numerical results (dashed black line) of the transfer function

√
h1(0,α) for the OCT signal are

shown. The standard deviation of the measurements is smaller than the marker size.
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Figure 2.4: Shack-Hartmann wavefront measurements on a mirror versus applied wavefront aberration, for
index 1-9. Measured wavefront aberrations are index 1-20. The measured aberration that is identical to the
applied aberration is in red, all other aberrations are indicated in black.
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SH sensor for even aberrations in Fig. 2.4 is about 2. The Zernike coefficients of the SH
sensor show that for odd aberrations (index 1 to 2 and 6 to 9) the wavefront aberration
cancels in the SH measurement. However, other aberrations appear (mostly tip, tilt, and
defocus) due to imperfect cancellation of the odd aberrations.

Figure 2.5 shows OCT measurements on the scattering medium versus the applied
aberration for index 3 to 9. The OCT measurements have a greater standard deviation
than the mirror measurements due to movement of the sample and the much lower sig-
nal strength. The measurements are compared to the scattering medium model and
show good agreement to the scattering medium model. It can be observed that the ob-
tained functions for the scattering medium for astigmatisms and defocus are broader
than the corresponding functions for the mirror measurements. The FWHM for the de-
focus curve of the mirror model is approximately 0.2 µm, while the FWHM for the de-
focus curve of the scattering medium model is approximately 0.4 µm. Moreover, the
transfer functions have a global maximum at zero aberrations for the given aberrations
from -0.45 to 0.45 µm. In comparison to the mirror model a clear maximum is visible for
both odd and even applied aberrations.

The corresponding Zernike coefficients, index 1 to 20, measured on the SH wavefront
sensor are shown in Fig. 2.6. The SH sensor measurement gives aberrations similar to
the aberration applied to the DM, even though the optical path passes the DM twice.
This means that light is not specularly reflected, but diffuse and that the phase of the
wavefront is lost after interaction with the scattering medium.

Based on the validity of our wavefront model we apply the model for one step defocus
correction, as shown in Fig. 2.7. For this experiment the sample is moved a fixed distance
out of focus (0.39 mm in Fig. 2.7). The optical path length moved out of focus, d , is
determined by the displacement of the target depth of the sample on the OCT A-scan
measurement and used to calculate α4 based on Eq. (2.12). Other parameters used in
this equation are the pupil radius rpupi l = 3.61 mm, and the focal length of the sample
lens f = 45 mm. The theoretical prediction of Eq. (2.12) for all displacements is shown in
Fig. 2.7(c) as the black line. The red dots correspond to the Zernike defocus coefficient,
α4, that maximized the OCT signal at that depth in the A-scan. Figure 2.7 shows the
sample before Fig. 2.7(a) and after Fig. 2.7(b) defocus correction, both are displayed
with the same intensity scale. Clearly, the sample in focus has a higher OCT signal.

Finally, we demonstrate that the model gives us insight into sensorless wavefront
correction. We test a sequential optimization algorithm similar to [144] for aberrations
with RMS error smaller than 0.4 µm. The applied aberrations are limited to the Zernike
modes with index 3 to 9 (similar to Fig. 2.5). The results for this test are shown in Fig. 2.8.
Figure 2.8(a) shows a single optimization for a random aberration applied to the DM.
It shows the magnitude of the merit function (OCT signal) while the algorithm scans
through Zernike modes with index 3 to 9 for the first time and adds the argument cor-
responding to the maximum for each mode to the DM to correct this aberration. In Fig.
2.8(b) the value of the merit function is shown after the algorithm has converged for 100
different starting aberrations, all with RMS error smaller than 0.4µm. The test shows that
the sequential optimization algorithm converges to the same magnitude for 100 differ-
ent initial aberrations all with an RMS wavefront error smaller than 0.4 µm. On average
it takes 20 seconds for the algorithm to converge.
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Figure 2.5: OCT signal measurements on a scattering medium versus applied aberration for index 3-9. Mea-
surements (red markers) and numerical results (dashed black line) of the transfer function
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h2(0,α) for the

OCT signal are shown.
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Figure 2.6: Shack-Hartmann wavefront measurements on a scattering medium versus applied wavefront aber-
ration, for index 3-9. Measured wavefront aberrations are index 1-20. The measured aberration that is identical
to the applied aberration is in red, all other aberrations are indicated in black.



2

38 2. TOWARDS MODEL-BASED ADAPTIVE OPTICS OPTICAL COHERENCE TOMOGRAPHY

d
ep
th

[m
m
]

0.3

0.5

0.7

d
ep
th

[m
m
]

0.3

0.5

0.7
0 0.5 1

0

0.2

0.4

0.6

0.8

d [mm]

α
4
[µ
m
]

(a) (b) (c)
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Figure 2.8: (a) Merit function (value of OCT signal) during a single step in the sequential optimization process.
Only the first search iteration of every Zernike mode is shown for index 3-9. Further iterations resulted in an
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100 random aberrations with RMS wavefront error <0.4 µm. For all 100 aberrations the maximum OCT signal
is found.
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2.5. DISCUSSION
The transfer functions for the OCT signal for mirror and scattering medium in Eq. (2.7)
and Eq. (2.10) are calculated based only on experimental parameters. Both transfer func-
tions match the experimental results well, as shown in Fig. 2.3 and 2.5.

The Shack-Hartmann measurements show a large difference between the wavefront
returning from the mirror and the scattering medium. The phase aberrations of the re-
flected wavefront are doubled for even aberrations and are canceled for odd aberrations
for measurements on the mirror. The specular reflection of the mirror causes the odd
aberrations to cancel and the even aberrations to double. Hence, these aberrations are
difficult to detect from a decrease in the OCT signal of a specular reflector. Even though
the OCT signal for the mirror measurements does not decrease a lot for the odd aber-
rations (index 1-2 and 6-9) in Fig. 2.3, our calculations show that the lateral resolution
(quantified by the FWHM of the focal spot on the sample) decreases for an increasing
magnitude of the odd aberrations [168]. Hence, image quality metrics should not only be
based on intensity but also on sharpness when dealing with specular reflecting objects,
which might also occur in OCT. This has been proposed on an ad-hoc basis [169, 170],
but clearly follows from our analysis.

Our model and measurements show that the lateral phase relations are lost when
the wavefront interacts with the scattering sample as the Shack-Hartmann measures the
same size of aberration as applied to the DM. The axial defocus model of van Leeuwen et
al. [162] for a scattering medium is also based on removal of defocus wavefront curvature
of the Gaussian beam after it interacted with the scattering medium. This supports the
use of our phase reset operator in the scattering medium model, which is based on the
same principle. Others have reported partial loss of wavefront phase upon reflection
from a scattering medium [171]. This may be attributed to the presence of both specular
and diffuse reflection components in their measurement.

To further validate the proposed OCT transfer functions, they are compared with
the well established Lorentzian axial transfer functions from [162]. The numerical re-
sults of the OCT signal transfer functions h1(d ,0) and h2(d ,0) for an axial displacement
of the sample, d , for the mirror and scattering medium are similar to the two different
Lorentzian functions proposed in [162] when the pupil is large enough compared to the
Gaussian waist of the beam. For large pupils, h1(d ,0) and h2(d ,0) correspond to the
Lorentzian functions, similar to the analytical expression in [162, 168]. The developed
transfer functions can be used to correct OCT A-scans for system properties including
all aberrations. Hence, potentially improving the estimation of tissue attenuation coef-
ficients from OCT data in the presence of other aberrations besides defocus.

These models can be related to another imaging technique, scanning laser opthal-
moscopy (SLO), however, this technique is not based on interferometry. The image is
formed by collecting all the backscattered light from different depths in the sample and
this requires further research.

Theoretical estimation of the defocus Zernike coefficient to correct for a defocus
caused by an axial displacement is in excellent agreement with the Zernike coefficient
obtained from an optimization maximizing the OCT signal at the given depth. The one
step defocus correction can be applied to scanning OCT systems to quickly set the opti-
mal defocus or to easily change the focal point to another depth in the sample. Only well
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calibrated and well known optical systems allow for this one step defocus correction, in
other cases it might be considered as a good first estimate. Note that the defocus is the
primary aberration in the human eye [166] and that its corrections leads to the strongest
image quality improvement of all aberrations.

The scattering medium OCT signal transfer functions for the single aberrations all ex-
hibit pseudo-convex properties, i.e. they have a global maximum for zero aberrations. A
validation for the pseudo-convex properties is given by the convergence results shown in
Fig. 2.8, which show that the algorithm always converged towards the same metric value.
The pseudo-convexity shows why hill climbing algorithms such as proposed in [144,145]
eventually converge towards a maximum signal. A clearer understanding of how aber-
rations influence the OCT signal can help in selecting metrics for wavefront sensorless
aberration correction, which can lead to faster signal convergence. The OCT transfer
functions, as developed here, also allow testing and simulation of new optimization al-
gorithms prior to in vivo application.

2.6. CONCLUSION
Using Fresnel propagation, overlap integrals and Gaussian distributions two OCT trans-
fer functions modeling the effect of lateral aberrations for a mirror and a scattering
medium on the OCT signal are derived. Measurements on a mirror and a scattering
medium with an AO-OCT system closely resemble the proposed transfer functions. A
one step defocus correction method has theoretically been derived and successfully
applied. The pseudo-convex nature of the transfer function is validated by the 100%
convergence success of a hill-climbing algorithm.
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Several sensor-less wavefront aberration correction methods that correct nonlinear wave-
front aberrations by maximizing the OCT signal are tested on an optical coherence tomog-
raphy (OCT) setup. A conventional coordinate search method is compared to two model-
based optimization methods. The first model-based method takes advantage of the well-
known optimization algorithm (NEWUOA) and utilizes a quadratic model. The second
model-based method (DONE) is new and utilizes a random multi-dimensional Fourier
basis expansion. The model-based algorithms achieve lower wavefront errors with up to
ten times fewer measurements. Furthermore, the newly proposed DONE method outper-
forms the NEWUOA method significantly. The DONE algorithm is tested on OCT images
and shows a significantly improved image quality.

Parts of this chapter have been published in [172].
©2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic
reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes,
or modifications of the content of this chapter are prohibited.
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COHERENCE TOMOGRAPHY

3.1. INTRODUCTION
Non-invasive 3D imaging of the retina is one of the main applications of optical coher-
ence tomography (OCT) [2]. The lateral resolution of the OCT system can be improved
by increasing the pupil size. In general, this leads to increased optical wavefront aberra-
tions that limit the resolution. Adaptive optics (AO) has been successfully used to correct
these optical wavefront aberrations on large pupils (>2 mm), leading to an improved
image quality. Ultra-high lateral and axial resolutions up to 3 µm and 2 - 3 µm, respec-
tively, have been obtained by using adaptive optics in OCT [96,97]. In general, the optical
aberrations in AO-OCT setups are determined by wavefront sensors such as the Shack-
Hartmann (SH) wavefront sensor. Imaging systems with SH wavefront sensors suffer
from several disadvantages, such as an increased cost and non-common path wavefront
errors. These drawbacks can be avoided if wavefront sensor-less adaptive optics (WFSL-
AO) methods are used. WFSL methods optimize image quality metrics (e.g. the strength
of the OCT signal) in order to minimize the aberrations and create a sharper image.

The ideal WFSL-AO algorithm for OCT is robust with respect to noise and converges
to its optimum in a small number of measurements. Here, noise includes shot noise,
speckle, and variation of sample structure in the B-scans with different lateral positions.
Finite difference approximations for the explicit calculation of derivatives, such as a for-
ward difference in the Newton-Raphson method, require extra measurements to deter-
mine the individual partial derivatives and are not robust with respect to noise. There-
fore, derivative-free optimization algorithms are preferred. It has been shown that var-
ious derivative-free optimization algorithms can successfully improve the quality and
signal-to-noise ratio of OCT images [144, 145, 156, 158]. We demonstrated that the coor-
dinate search (CS) algorithm [144] reaches the maximum OCT signal if the aberrations
are not too large [156]. Additionally, simulated annealing [145] and the stochastic par-
allel gradient descent (SPGD) algorithm [173] have been successfully used for WFSL-AO
in OCT and scanning laser ophthalmoscopy, respectively. However, the final obtained
root mean square (RMS) wavefront error in these algorithms is very susceptible to noise,
because past measurements are not exploited. It was shown that the use of models can
improve the convergence rate of WFSL algorithms [148, 151]. In this case, the model,
which is fit to the measurements, is used to estimate the derivatives. The final result is
much less susceptible to noise, because past measurement information is used in the
fit of the model. In [151] a quadratic model was fit to a set of prior measurements of an
image metric, so that the model could be used to correct the aberrations. However, the
aberration correction is limited to the relatively small region where the quadratic model
is a good approximation of the metric.

Recently, we developed and validated a transfer function for optical wavefront aber-
rations in OCT [156]. This model predicts the loss of the OCT signal caused by opti-
cal wavefront aberrations. Based on the shape of the transfer functions and simula-
tions on this model we propose two advanced model-based optimization algorithms for
WFSL-AO in OCT, the NEWUOA and the DONE algorithm, and compare these two al-
gorithms with the CS algorithm. The NEWUOA algorithm [174], based on an adaptive
quadratic model, is chosen because it is one of the most well known and best perform-
ing derivative-free algorithms in optimization. Our DONE algorithm, Data-based Online
Nonlinear Extremum-seeker, is based on a random Fourier basis. It is called an online
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method, because the aberrations of each measurement is chosen based on the outcome
of previous measurements. We demonstrate experimentally that both algorithms out-
perform the CS algorithm.

3.2. MATERIALS AND METHODS
The experimental results are obtained using the AO-OCT setup described in [156], except
the spectrometer is a Cobra VHR (Wasatch Photonics). The three investigated wave-
front correction algorithms maximize a metric based on the magnitude of the OCT sig-
nal. The OCT signal is obtained by sampling the spectrometer signal equidistantly in
the k domain using interpolation, taking the absolute value of the Fourier transform of
the spectrometer signal with the reference arm intensity subtracted. The time and space
averaged signal from a selected depth segment of the complete OCT signal in is used as
the image quality metric. The metric is a real valued function, f (α), of the optical wave-
front aberrations represented in the vector α. The aberration coefficients αi in α are the
coefficients for the normalized Zernike polynomials in µm based on our model [156].

The first algorithm we consider is the coordinate search algorithm from [144]. The CS
algorithm successively scans in S steps through a predefined domain of each aberration
αi with a step size s. It retains the value of αi of the scan that maximized the metric
before going to the next aberration αi+1. A performance trade-off exists between the
number of measurements and the size of the scanning domain. The step size s has to
be small enough to ensure a small final error and large enough to have fast convergence
to the maximum. The coordinate search optimization method is simple and converges
slowly.

The second algorithm is the NEWUOA optimization algorithm [174]. The NEWUOA
algorithm is a computationally efficient derivative-free optimization method based on a
quadratic model. The m variables of the initial multi-dimensional quadratic model are
fit to the first m measurements of the metric based on the OCT signal. When a new mea-
surement is taken to update the quadratic model, an old measurement is thrown away.
An optimization routine minimizes the quadratic model of − f (α) within a bounded re-
gion, in which the quadratic model is considered accurate, leading to a new estimate of
the metric’s maximum. This process is iterated until some stopping criterion is fulfilled.
The NEWUOA algorithm has three parameters. The first parameter, m, is the number
of variables the quadratic model is based on, the default value is (2d +1). Here, d is the
number of aberration coefficients that are optimized. The second parameter is an initial
step size ρα. This parameter should not be chosen too large such that the fundamental
features of the function are not skipped and also not too small such that larger variations
in f (α) are probed. The third parameter ρΩ determines the final step size, which should
be small. It should be smaller than the RMS wavefront error corresponding to λ

14 , the
Maréchal criterion for the diffraction limit.

The third algorithm, which we call Data-based Online Nonlinear Extremum-seeker
(DONE), fits a multi-dimensional random Fourier basis to the measurements [175].
With every new measurement taken, the function Four i er Reg r essi on, shown below
in pseudo-code with MATLAB like notation, computes a new model f̂ (α) of the metric
function f (α). After the model is obtained, a well known optimization routine, fmincon
(MATLAB R2012b) (see [176, 177] for the theoretical background on fmincon), is run
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on the model. Since we are looking for a maximum of f (α), we minimize − f (α). The
initial vector of the optimization algorithm is αi ni t , which is bounded element-wise
by the lower bound lb and upper bound ub. These bounds are chosen such that the
aberration, which is to be corrected, is never out of the bounded region. Before the
bounding, a random perturbation is added to avoid the algorithm from getting stuck in
an insignificant local minimum. The coefficients of the next measurement αi+1 are de-
termined by adding a small normally distributed perturbation with standard deviation
σ1 to the last found minimizer αmi n and enforcing the bounds as before. This second
perturbation is added to keep the algorithm from concentrating on a too narrow part of
the search space.

Algorithm 1 DONE Algorithm

1: procedure DONE(α0, N , l b,ub)
2: d = length(α0)
3: for i = 0 to N −1 do
4: fi = f (αi )+measurement noise
5: f̂ (α) = FourierRegression([α0 . . .αi ], [ f0; . . . ; fi ],d)
6: αi ni t = max(min(αi +σ1 randn(d,1),ub), lb)
7: αmi n = fmincon(− f̂ (α),αi ni t , lb,ub)
8: αi+1 = max(min(αmi n +σ1 randn(d,1),ub), lb)

9: return αmi n

Algorithm 2 Fourier Regression

1: procedure FOURIERREGRESSION(A,F,d)
2: ω=p

2σrandn(D,d)
3: b = 2πrand(D,1)

4: Z =
√

2
D cos(ωA+ [b . . .b])

5: w = (
Z Z T +λ length(F )eye(D)

)−1
(Z F )

6: f̂ (α) =
√

2
D wT cos(ωα+b)

7: return f̂ (α) . f̂ (α) is a function

In the function Four i er Reg r essi on, Line 5 solves the least squares problem
||Z T w − F ||22 + λ length(F )||w ||22. The constant D specifies the number of random
Fourier basis functions. More basis functions will lead to a better representation of the
original function, but also to an increased computational load. The parameter λ is a
regularization parameter used to avoid over-fitting of the model to the measurements.
The parameter σ sets the standard deviation of the frequencies of the cosine bases. It
should be chosen such that the higher frequencies of the unknown function f (α) are
still captured, however the bandwidth should not be too high such that noise in higher
frequencies is also filtered. The MATLAB commands randn and rand create normally
and uniformly distributed matrices, respectively. The command eye creates an identity
matrix.
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Table 3.1: Parameter values for the three wavefront correction algorithms (wavefront aberrations are defined
in µm)

CS NEWUOA DONE
S 50 ρα 1 D 1000

s 0.01 ρΩ 1e-8 σ1 0.1
√

3
d

m 2d+1 σ 1
λ 0.001

Table 3.1 shows the proposed parameter settings for the three algorithms. The pa-
rameters of the CS and NEWUOA algorithms are chosen such that the diffraction limit
can be reached, the maximum value of the added aberrations is covered, and fundamen-
tal features of the metric function f (α) are not missed. In order to find suitable values
for the parameters of the DONE algorithm, it was simulated using the OCT model [156]
for random aberrations between -0.45 µm and +0.45 µm.

3.3. EXPERIMENTS

We perform two experiments with three and seven aberrations applied to the DM shown
in Fig. 3.1 and Fig. 3.2, respectively. Each trial we add a random combination of these
wavefront aberrations with a total maximum RMS wavefront aberration of 0.45 µm to
the deformable mirror. Subsequently, the metric calculated from one B-scan of a Scotch
tape sample is optimized using the three algorithms. The Scotch tape sample is shown in
Fig. 3.3. In each iteration only one B-scan with 512 A-scans is taken. The remaining RMS
error after the optimization is measured with the Shack-Hartmann wavefront sensor. In
the first experiment, shown in Fig. 3.1, a combination of Zernike modes three to five,
i.e. defocus and two astigmatisms, is applied to the DM and corrected. In Fig. 3.1(a)
the maximum achieved values of the OCT signal with respect to the number of itera-
tions are averaged over 100 trials. In Fig. 3.1(b) the final RMS wavefront errors of the
100 trials are shown in a box plot together with the black line indicating the Maréchal
criterion for the diffraction limit based on the OCT center wavelength of 850 nm. On
each box, the central red line is the median, the edges of the box are the 25th and 75th
percentiles, and the whiskers extend to the most extreme data points not considered
outliers. Outliers are plotted individually with red markers. The coordinate search algo-
rithm converges slowly and does not have a good final RMS wavefront error after it was
stopped at 1050 measurements. However, it manages to get a strong OCT signal. Before
elaborating on this observation, we continue with the description of the results. The
NEWUOA algorithm converges faster than CS. It obtains smaller final RMS wavefront
errors than CS, even though the OCT signals are weaker. The DONE algorithm outper-
forms both other algorithms in final RMS error with ten times less measurements than
the CS algorithm. Fig. 3.2 shows a similar experiment, however in this case a combina-
tion of Zernike modes three to nine are applied and corrected by the DM. The results for
three and seven aberrations have similar characteristics. However, the performance of
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Figure 3.1: AO-OCT wavefront correction for Zernike modes three to five. (a) OCT signal averaged over 100
trials versus iteration number. (b) Box plots of the 100 final RMS wavefront errors measured with the SH wave-
front sensor. The black line indicates the Maréchal criterion for the diffraction limit.
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Figure 3.2: Similar to Fig. 3.1 for wavefront aberrations consisting of Zernike modes three to nine.



3

48
3. MODEL-BASED SENSOR-LESS WAVEFRONT ABERRATION CORRECTION IN OPTICAL

COHERENCE TOMOGRAPHY

the DONE algorithm in contrast with the other algorithms in terms of the final RMS error
for seven aberrations has become even better.

Since the NEWUOA algorithm has its own stopping criterion, the longest runs of
NEWUOA took 87 and 205 measurements for three and seven aberrations, respectively.
The DONE algorithm was set to stop after N = 100 and N = 250 measurements for three
and seven aberrations, respectively. For seven aberrations the CS and the NEWUOA algo-
rithm often don’t reach the diffraction limit, which is clear from the box plots of the final
RMS wavefront errors. The DONE algorithm clearly outperforms both the CS and the
NEWUOA algorithm in terms of final RMS error. In three dimensions DONE converges
99% of the starting aberrations converges below the Maréchal criterion, compared with
65% for seven dimensions.
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Figure 3.3: OCT B-scans of Scotch tape before aberration correction (a) and after 100 iterations of the DONE
algorithm (b). The red line indicates the depth of the OCT signal optimization.

To demonstrate the feasibility of our approach to actual OCT imaging, we image the
Scotch tape sample with a defocus of−0.54µm, a vertical astigmatism of 0.02µm, and an
oblique astigmatism of 0.30 µm in Fig. 3.3(a). Figure 3.3(b) shows an OCT image where
the RMS wavefront error measured by the SH wavefront sensor has been reduced to 0.03
µm after 100 iterations of the DONE algorithm. Using the same linear intensity scale,
the corrected OCT image has a much stronger OCT signal. The outcomes of the other
algorithms suffered from a weaker OCT signal but had a similar structure. Thus, they are
omitted.

In Fig. 3.4(a) we show a B-scan of a lemon slice with an added defocus of −0.49 µm,
a vertical astigmatism of 0.18 µm, and an oblique astigmatism of 0.32 µm. Figure 3.4(b),
Fig. 3.4(c), and Fig. 3.4(d) show the lemon slice image after 100 iterations of the CS,
NEWUOA, and DONE algorithm, respectively. A zoomed area for each image is added
to demonstrate the clear difference in the visible structural features, besides the strong
difference in OCT signal strength. For the large area images the same linear intensity
scale is used, however, the zoomed areas all have an enhanced contrast scaling to show
the features more clearly. The remaining RMS wavefront errors read from the coeffi-
cients applied to the DM for Fig. 3.4(b), Fig. 3.4(c), and Fig. 3.4(d) are 0.36 µm, 0.23 µm,
and 0.06 µm, respectively.
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Figure 3.4: OCT B-scans of a lemon slice before aberration correction (a) and after 100 iterations of the CS
algorithm (b), of the NEWUOA algorithm (c), and of the DONE algorithm (d). The red line indicates the depth
of the OCT signal optimization, the green rectangle indicates the zoomed area. An enhanced contrast scaling
is applied to the zoomed areas.
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3.4. DISCUSSION
In our experiments, we observed that even though the CS algorithm obtained a simi-
larly strong OCT signal strength in the end, the resulting RMS error is much lower for the
DONE algorithm. We attribute this phenomenon to the noise in the OCT signal mea-
surements. The CS algorithm does not take the noise into account and can therefore
yield OCT signals that are strong only due to noise. In contrast, the DONE algorithm
builds its model based on all known measurements, making it less susceptible to noise
as the number of measurements increases. The NEWUOA algorithm can keep track of a
fixed number of measurements, but this number is inherently limited by the complexity
of the quadratic model it uses. It is therefore less susceptible to noise as well, but, as can
be seen in the experimental results, the restriction to a fixed number of measurements
results in a considerable increase in the final RMS wavefront error. The superior per-
formance of the DONE algorithm, however, comes at the price of an increased compu-
tational complexity. While the computational complexity for CS and NEWUOA is inde-
pendent on the number of measurements, the computational complexity of a naive im-
plementation of DONE increases with every iteration. The CS and NEWUOA algorithms
have a computational time below 1 ms. However, the computational time of the DONE
algorithm is in the order of 60 ms during the experiments. This computational time is
equal to the acquisition and processing time of a B-scan in our OCT system, therefore it
is not a limiting factor. We expect that the computational complexity can be reduced be-
low 1 ms by using a recursive least squares algorithm in the FourierRegression function,
optimized compiled code, and parallel processing on a GPU.

3.5. CONCLUSION
In short, the performance of three methods for WFSL-AO in OCT has been investigated
experimentally. The DONE algorithm outperforms both NEWUOA and CS in terms of
final RMS error and it convergences up to ten times faster than the CS algorithm. We
implemented the DONE algorithm in OCT imaging and showed a significantly improved
image quality. We showed that for large aberrations the DONE algorithm succeeds in
correcting a noisy signal with high accuracy.
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NOISY MEASUREMENTS USING RANDOM

FOURIER EXPANSIONS

This paper analyzes DONE, an online optimization algorithm that iteratively minimizes
an unknown function based on costly and noisy measurements. The algorithm maintains
a surrogate of the unknown function in the form of a random Fourier expansion (RFE).
The surrogate is updated whenever a new measurement is available, and then used to
determine the next measurement point. The algorithm is comparable to Bayesian opti-
mization algorithms, but its computational complexity per iteration does not depend on
the number of measurements. We derive several theoretical results that provide insight
on how the hyper-parameters of the algorithm should be chosen. The algorithm is com-
pared to a Bayesian optimization algorithm for an analytic benchmark problem and three
applications, namely, optical coherence tomography, optical beam-forming network tun-
ing, and robot arm control. It is found that the DONE algorithm is significantly faster
than Bayesian optimization in the discussed problems, while achieving a similar or better
performance.

Parts of this chapter have been published in [178].
©2016 IEEE. One print or electronic copy may be made for personal use only. Systematic reproduction and
distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications
of the content of this chapter are prohibited.
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4.1. INTRODUCTION
Many optimization algorithms use the derivative of an objective function, but often this
information is not available in practice. Regularly, a closed form expression for the objec-
tive function is not available and function evaluations are costly. Examples are objective
functions that rely on the outcome of a simulation or an experiment. Approximating
derivatives with finite differences is costly in high-dimensional problems, especially if
the objective function is costly to evaluate. More efficient algorithms for derivative-free
optimization (DFO) problems exist. Typically, in DFO algorithms a model is used that
can be optimized without making use of the derivative of the underlying function [114,
179]. Some examples of commonly used DFO algorithms are the simplex method [116],
NEWUOA [118], BOBYQA [119], and DIRECT [180]. Additionally, measurements of a
practical problem are usually corrupted by noise. Several techniques have been devel-
oped to cope with a higher noise level and make better use of the expensive objective
functions evaluations. Filtering and pattern search optimization algorithms such as im-
plicit filtering [181] and SID-PSM [182] can handle local minima resulting from high fre-
quency components. Bayesian optimization, also known as sequential Kriging optimiza-
tion, deals with heteroscedastic noise and perturbations very well. One of the first and
best known Bayesian optimization algorithms is EGO [135]. Bayesian optimization relies
on a surrogate model that represents a probability distribution of the unknown function
under noise, for example Gaussian processes or Student’s-t processes [139, 183–185]. In
these processes different kernels and kernel learning methods are used for the covari-
ance function [186, 187]. The surrogate model is used to decide where the next mea-
surement should be taken. New measurements are used to update the surrogate model.
Bayesian optimization has been successfully used in various applications, including ac-
tive user modeling and reinforcement learning [136], robotics [138], hyper-parameter
tuning [184], and optics [188].

Recently, the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm was
proposed in [172]. It is similar to Bayesian optimization, but simpler and faster. The
DONE algorithm uses random Fourier expansions [175] (RFEs) as a surrogate model.
The nature of the DONE algorithm makes the understanding of the hyper-parameters
easier. In RFE models certain parameters are chosen randomly. In this paper, we derive
a close-to-optimal probability distribution for some of these parameters. We also derive
an upper bound for the regularization parameter used in the training of the RFE model.

The advantages of the DONE algorithm are illustrated in an analytic benchmark
problem and three applications. We numerically compare DONE to BayesOpt [139], a
Bayesian optimization library that was shown to outperform many other similar libraries
in [139]. The first application is optical coherence tomography (OCT), a 3D imaging
method based on interference often used to image the human retina [144, 145, 172].
The second application we consider is the tuning of an optical beam-forming network
(OBFN). OBFNs are used in wireless communication systems to steer phased array an-
tennas in the desired direction by making use of positive interference of synchronized
signals [189–194]. The third application is a robot arm of which the tip has to be directed
to a desired position [195].

This paper is organized as follows. Section 4.2 gives a short overview and provides
new theoretical insights on random Fourier expansions, the surrogate model on which



4.2. RANDOM FOURIER EXPANSIONS

4

53

the DONE algorithm is based. We have noticed a gap in the literature, where approx-
imation guarantuees are given for ideal, but unknown RFE weights, while in practice
RFE weights are computed via linear least squares. We investigate several properties
of the ideal weights and combine these results with existing knowledge of RFEs to ob-
tain approximation guarantees for least-square weights. Section 4.3 explains the DONE
algorithm. Theoretically optimal as well as more practical ways to choose the hyper-
parameters of this algorithm are given in Section 4.4. In Section 4.5 the DONE algorithm
and BayesOpt are compared for a benchmark problem and for the three aforementioned
applications. We conclude the paper in Section 4.6.

4.2. RANDOM FOURIER EXPANSIONS
In this section, we will describe the surrogate model that we will use for optimization.
There is a plethora of black-box modeling techniques to approximate a function from
measurements available in the literature, with neural networks, kernel methods, and of
course classic linear models probably being the most popular [137, 196, 197]. In this pa-
per, we use random Fourier expansions (RFEs) [175] to model the unknown function
because they offer a unique mix of computational efficiency, theoretical guarantees and
ease of use that make them ideal for online processing. While general neural networks
are more expressive than random Fourier features, they are difficult to use and come
without theoretical guarantees. Standard kernel methods suffer from high computa-
tional complexity because the number of kernels equals the number of measurements.
RFEs have been originally introduced to reduce the computational burden that comes
with kernel methods, as will be explained next [175, 198, 199].

Assume that we are provided N scalar measurements yi taken at measurement
points xi ∈Rd as well as a kernel k(xi ,x j ) that, in a certain sense, measures the closeness
of two measurement points. To train the kernel expansion

gK M (x) =
N∑

i=1
ai k(x,xi ), (4.1)

a linear system involving the kernel matrix [k(xi ,x j )]i , j has to be solved for the coef-
ficients ai . The computational costs of training and evaluating (4.1) grow cubicly and
linearly in the number of datapoints N , respectively. This can be prohibitive for large
values of N . We now explain how RFEs can be used to reduce the complexity [175]. As-
suming the kernel k is shift-invariant and has Fourier transform p, it can be normalized
such that p is a probability distribution [175]. That is, we have

k(xi −x j ) =
∫
Rd

p(ω)e−iωT (xi−x j )dω. (4.2)

We will use several trigonometric properties and the fact that k is real to continue the
derivation. This gives

k(xi −x j ) =
∫
Rd

p(ω)cos(ωT (xi −x j ))dω

=
∫
Rd

p(ω)cos(ωT (xi −x j ))+p(ω)
∫ 2π

0
cos(ωT (xi +x j )+2b)dbdω



4

54
4. ONLINE OPTIMIZATION WITH COSTLY AND NOISY MEASUREMENTS USING RANDOM

FOURIER EXPANSIONS

= 1

2π

∫
Rd

p(ω)
∫ 2π

0
cos(ωT (xi −x j ))

+cos(ωT (xi +x j )+2b)dbdω

= 1

2π

∫
Rd

p(ω)
∫ 2π

0
2cos(ωT xi +b)

·cos(ωT x j +b)dbdω

= E[2cos(ΩT xi +B)cos(ΩT x j +B)]

≈ 2

D

D∑
k=1

cos(ωT
k xi +bk )cos(ωT

k x j +bk ), (4.3)

if ωk are independent samples of the random variable Ω with probability distribution
function (p.d.f.) p, and bk ∈ [0,2π] are independent samples of the random variable B
with a uniform distribution. For ck =∑N

i=1
2
D ai cos(ωT

k xi +bk ) we thus have:

gK M (x) ≈
D∑

k=1
ck cos(ωT

k x+bk ). (4.4)

Note that the number of coefficients D is now independent of the number of measure-
ments N . This is especially advantageous in online applications where the number of
measurements N keeps increasing. We use the following definition of a random Fourier
expansion.

Definition 1. A Random Fourier Expansion (RFE) is a function of the form g :Rd →R,

g (x) =
D∑

k=1
ck cos(ωT

k x+bk ), (4.5)

with D ∈ N, the bk being realizations of independent and identically distributed (i.i.d.)
uniformly distributed random variables Bk on [0,2π], and with the ωk ∈ Rd being real-
izations of i.i.d. random vectors Ωk with an arbitrary continuous p.d.f. pΩ. The Bk and
theΩk are assumed to be mutually independent.

We finally remark that there are other approaches to reduce the complexity of kernel
methods and make them suitable for online processing, which are mainly based on spar-
sity [200–203]. However, these are much more difficult to tune than using RFEs [199]. It is
also possible to use other basis functions instead of the cosine, but the cosine was among
the top performers in an exhaustive comparison with similar models [204]. Moreover,
the parameters of the cosines have intuitive interpretations in terms of the Fourier trans-
form.

4.2.1. IDEAL RFE WEIGHTS
In this section, we deal with the problem of fitting a RFE to a given function f . We de-
rive ideal but in practice unknown weights c. We start with the case of infinitely many
samples and basis functions (see also [205, 206]), which corresponds to turning the cor-
responding sums into integrals.
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Theorem 1. Let f ∈ L2(Rd ) be a real-valued function and let

c̄(ω,b) =
{ 1

π | f̂ (ω)|cos(∠ f̂ (ω)−b), b ∈ [0,2π],
0, otherwise.

(4.6)

Then, for all x ∈Rd ,

f (x) = 1

(2π)d

∫
Rd

∫ 2π

0
c̄(ω,b)cos(ωT x+b)dbdω. (4.7)

Here, | f̂ | and ∠ f̂ denote the magnitude and phase of the Fourier transform f̂ (ω) =∫
Rd f (x)e−iωT xdx. The sets L2 and L∞ denote the space of square integrable functions

and the space of all essentially bounded functions, respectively.

Proof. For b ∈ [0,2π], we have

c̄(ω,b) = 1

π
| f̂ (ω)|cos(∠ f̂ (ω)−b)

= 1

π
Re

{
f̂ (ω)e−i b

}
. (4.8)

Using that f (x) is real, we find that

f (x) =Re

{
1

(2π)d

∫
Rd

f̂ (ω)e iωT xdω

}
=Re

{ 1

(2π)d

∫
Rd

(
f̂ (ω)e iωT x 1

2π

∫ 2π

0
1db+

f̂ (ω)e−iωT x
∫ 2π

0
e−2i bdb︸ ︷︷ ︸
=0

)
dω

}

=Re

{
1

π

1

(2π)d

∫
Rd

∫ 2π

0
f̂ (ω)e−i b

1

2

[
e i (ωT x+b) +e−i (ωT x+b)

]
dbdω

}
=Re

{
1

π

1

(2π)d

∫
Rd

∫ 2π

0
f̂ (ω)e−i b cos(ωT x+b)dbdω

}
(4.8)= 1

(2π)d

∫
Rd

∫ 2π

0
c̄(ω,b)cos(ωT x+b)dbdω. (4.9)

For b ∈ [0,2π], we have another useful expression for the ideal weights that is used
later on in this section, namely

c̄(ω,b) = 1

π
Re

{
f̂ (ω)e−i b

}
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= 1

π
Re

{∫
Rd

f (x)e−i (ωT x+b)dx
}

= 1

π

∫
Rd

f (x)cos(ωT x+b)dx. (4.10)

The function c̄ in Theorem 1 is not unique. However, of all functions c that satisfy
(4.7), the given c̄ is the one with minimum norm.

Theorem 2. Let c̄ be as in Theorem 1. If c̃ :Rd × [0,2π] →R satisfies

f (x) = 1

(2π)d

∫
Rd

∫ 2π

0
c̃(ω,b)cos(ωT x+b)dbdω a.e. (4.11)

then ||c̃||2
L2 ≥ ||c̄||2

L2 = (2π)d

π || f ||2
L2 , with equality if and only if c̃ = c̄ in the L2 sense.

Proof. First, using Parseval’s theorem and
∫ 2π

0 cos(a −b)2db = π for any real constant a,
note that

||c̄||2L2 =
∫
Rd

∫ 2π

0
c̄(ω,b)2dbdω

(4.6)=
∫
Rd

∫ 2π

0

1

π2 | f̂ (ω)|2 cos(∠ f̂ (ω)−b)2dbdω

=
∫
Rd

1

π2 | f̂ (ω)|2
∫ 2π

0
cos(∠ f̂ (ω)−b)2dbdω

=
∫
Rd

1

π
| f̂ (ω)|2dω

= (2π)d

π

∫
Rd

f (x)2dx = (2π)d

π
|| f ||2L2 . (4.12)

Assume that c̃(ω,b) = c̄(ω,b)+q(ω,b). Then we get∫
Rd

f (x)2dx

(4.11)=
∫
Rd

f (x)
1

(2π)d

∫
Rd

∫ 2π

0
c̃(ω,b)cos(ωT x+b)dbdωdx

= 1

(2π)d

∫
Rd

∫ 2π

0
c̃(ω,b)

∫
Rd

f (x)cos(ωT x+b)dxdbdω

(4.10)= π

(2π)d

∫
Rd

∫ 2π

0
c̃(ω,b)c̄(ω,b)dbdω

= π

(2π)d

∫
Rd

∫ 2π

0
c̄(ω,b)2 + c̄(ω,b)q(ω,b)dbdω

(4.12)=
∫
Rd

f (x)2dx+ π

(2π)d

∫
Rd

∫ 2π

0
c̄(ω,b)q(ω,b)dbdω. (4.13)

Following the above equality we can conclude that
∫
Rd

∫ 2π
0 c̄(ω,b)q(ω,b)dbdω= 0. The

following now holds:

||c̃||2L2 = ||c̄ +q ||2L2
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=
∫
Rd

∫ 2π

0
c̄(ω,b)2 +2c̄(ω,b)q(ω,b)+q(ω,b)2dbdω

= ||c̄||2L2 +||q||2L2 ≥ ||c̄||2L2 . (4.14)

Furthermore, equality holds if and only if ||q ||L2 = 0. That is, the minimum norm
solution is unique in L2.

These results will be used to derive ideal weights for a RFE with a finite number of ba-
sis functions as in Definition 1 by sampling the weights in (4.6). We prove unbiasedness
in the following theorem, while variance properties are analyzed in Appendix 4.8.

Theorem 3. For any continuous p.d.f. pΩ with pΩ(ω) > 0 if | f̂ (ω)| > 0, the choice

Ck = 2

D(2π)d

| f̂ (Ωk )|
pΩ(Ωk )

cos(∠ f̂ (Ωk )−Bk ) (4.15)

makes the (stochastic) RFE G(x) = ∑D
k=1 Ck cos(ΩT

k x + Bk ) an unbiased estimator, i.e.,

f (x) = E[G(x)] for any x ∈Rd .

Proof. Using Theorem 1, we have

f (x) = 1

(2π)d

∫
Rd

∫ 2π

0
c̄(ω,b)cos(ωT x+b)dbdω

= EΩ1,B1

[
1

(2π)d pB (B1)pΩ(Ω1)
c̄(Ω1,B1)cos(ΩT

1 x+B1)

]

= EΩ1...D ,B1...D

[
D∑

k=1

2πc̄(Ωk ,Bk )

D(2π)d pΩ(Ωk )
cos(ΩT

k x+Bk )

]
(4.6)= E

[
D∑

k=1

2

D(2π)d

| f̂ (Ωk )|
pΩ(Ωk )

cos(∠ f̂ (Ωk )−Bk )

cos(ΩT
k x+Bk )

]
= E [G(x)] . (4.16)

These ideal weights enjoy many other nice properties such as infinity norm conver-
gence [207]. In practice, however, a least squares approach is used for a finite D . This is
investigated in the next subsection.

4.2.2. CONVERGENCE OF THE LEAST SQUARES SOLUTION
The ideal weights c̄ depend on the Fourier transform of the unknown function f that we
wish to approximate. Of course, this knowledge is not available in practice. We therefore
assume a finite number of measurement points x1, . . . ,xN that have been drawn inde-
pendently from a p.d.f. pX that is defined on a compact set X ⊆ Rd , and corresponding
measurements y1, . . . , yN , with yn = f (xn)+ηn , where η1, . . . ,ηN have been drawn inde-
pendently from a zero-mean normal distribution with finite variance σ2

H . The input and
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noise terms are assumed independent of each other. We determine the weights ck by
minimizing the squared error

JN (c) =
N∑

n=1

(
yn −

D∑
k=1

ck cos(ωT
k xn +bk )

)2

+λ
D∑

k=1
c2

k

= ||yN −AN c||22 +λ||c||22. (4.17)

Here,

yN = [
y1 · · · yN

]T
,

AN =

 cos(ωT
1 x1 +b1) · · · cos(ωT

D x1 +bD )
...

. . .
...

cos(ωT
1 xN +b1) · · · cos(ωT

D xN +bD )

 , (4.18)

and λ is a regularization parameter added to deal with noise, over-fitting and ill-
conditioning.

Since the parameters ωk ,bk are drawn from continuous probability distributions,
only the weights ck need to be determined, making the problem a linear least squares
problem. The unique minimizer of JN is

cN = (
AT

N AN +λID×D
)−1

AT
N yN . (4.19)

The following theorem shows that RFEs whose coefficient vector have been obtained
through a least squares fit as in (4.19) can approximate the function f arbitrarily well.
Similar results were given in [205–208], but we emphasize that these convergence results
did concern RFEs employing the ideal coefficient vector given earlier in Theorem 3 that
is unknown in practice. Our theorem, in contrast, concerns the practically relevant case
where the coefficient vector has been obtained through a least-squares fit to the data.

Theorem 4. The difference between the function f and the RFE trained with linear least
squares can become arbitrarily small if enough measurements and basis functions are

used. More precisely, suppose that f ∈ L2 ∩L∞ and that supω∈RD ,b∈[0,2π]

∣∣∣ c̄(ω,b)
pΩ(ω)pB (b)

∣∣∣<∞.

Then, for every ε> 0 and δ> 0, there exist constants N0 and D0 such that∫
X

(
f (x)−

D∑
k=1

CN k cos(ΩT
k x+Bk )

)2

pX(x)dx < ε (4.20)

for all N ≥ N0, D ≥ D0, 0 < λ ≤ NΛ with probability at least 1−δ. Here, CN k is the k-th
element of the random vector corresponding to the weight vector given in (4.19), andΛ≥ 0
is the solution to ∣∣∣∣∣∣(AT

N AN +NΛ ID×D
)−1

AT
N yN

∣∣∣∣∣∣2

2
=

D∑
k=1

(
c̄(ωk ,bk )

(2π)d DpΩ(ωk )pB (bk )

)2

. (4.21)

The proof of this theorem is given in Appendix 4.7. In Section 4.4.2 we show how to
obtainΛ in practice.
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4.3. ONLINE OPTIMIZATION ALGORITHM
In this section, we will investigate the DONE algorithm, which locates a minimum of an
unknown function f based on noisy evaluations of this function. Each evaluation, or
measurement, is used to update a RFE model of the unknown function, based on which
the next measurement point is determined. Updating this model has a constant compu-
tation time of order O(D2) per iteration, with D being the number of basis functions. We
emphasize that this is in stark contrast to Bayesian optimization algorithms, where the
computational cost of adding a new measurement increases with the total number of
measurements so far. We also remark that the DONE algorithm operates online because
the model is updated after each measurement. The advantage over offline methods, in
which first all measurements are taken and only then processed, is that the number of
required measurements is usually lower as measurement points are chosen adaptively.

4.3.1. RECURSIVE LEAST SQUARES APPROACH FOR THE WEIGHTS
In the online scenario, a new measurement yn taken at the point xn becomes available
at each iteration n = 1,2, . . . These are used to update the RFE. Let an = [cos(ωT

1 xn +
b1) · · ·cos(ωT

D xn +bD )], then we aim to find the vector of RFE weights by minimizing the
regularized mean square error

Jn(c) =
n∑

i=1

(
yi −ai c

)2 +λ||c||22. (4.22)

Let cn be the minimum of Jn ,

cn = argmin
c

Jn(c). (4.23)

Assuming we have found cn , we would like to use this information to find cn+1 without
solving (4.23) again. The recursive least squares algorithm is a computationally efficient
method that determines cn+1 from cn as follows [209, Sec. 21]:

γn = 1/(1+an Pn−1aT
n ), (4.24)

gn = γn Pn−1aT
n , (4.25)

cn = cn−1 +gn(yn −an cn−1), (4.26)

Pn = Pn−1 −gn gT
n /γn , (4.27)

with initialization c0 = 0, P0 =λ−1ID×D .
We implemented a square-root version of the above algorithm, also known as the

inverse QR algorithm [209, Sec. 21], which is known to be especially numerically reliable.
Instead of performing the update rules (4.24)-(4.27) explicitly, we find a rotation matrix
Θn that lower triangularizes the upper triangular matrix in Eq. (5.3) below and generates
a post-array with positive diagonal entries:[

1 an P1/2
n−1

0 P1/2
n−1

]
Θn =

[
γ−1/2

n 0
gnγ

−1/2
n P1/2

n

]
. (4.28)

The rotation matrixΘn can be found by performing a QR decomposition of the transpose
of the matrix on the left hand side of (5.3), or by the procedure explained in [209, Sec. 21].
The computational complexity of this update is O(D2) per iteration.



4

60
4. ONLINE OPTIMIZATION WITH COSTLY AND NOISY MEASUREMENTS USING RANDOM

FOURIER EXPANSIONS

4.3.2. DONE ALGORITHM
We now explain the different steps of the DONE algorithm. The DONE algorithm is used
to iteratively find a minimum of a function f ∈ L2 on a compact set X ⊆ Rd by updating
a RFE g (x) = ∑D

k=1 ck cos(ωT
k x+bk ) at each new measurement, and using this RFE as a

surrogate of f for optimization. It is assumed that the function f is unknown and only
measurements perturbed by noise can be obtained: yn = f (xn)+ηn . The algorithm con-
sists of four steps that are repeated for each new measurement: 1) take a new measure-
ment, 2) update the RFE, 3) find a minimum of the RFE, 4) choose a new measurement
point. We now explain each step in more detail.

Initialization
Before running the algorithm, an initial starting point x1 ∈X and the number of ba-

sis functions D have to be chosen. The parameters ωk and bk of the RFE expansion are
drawn from continuous probability distributions as defined in Definition 1. The p.d.f.
pΩ and the regularization parameter λ have to be chosen a priori as well. Practical ways
for choosing the hyper-parameters will be discussed later in Sect. 4.4. These hyper-
parameters stay fixed over the whole duration of the algorithm. Let P1/2

0 = λ−1/2ID×D ,
and n = 1.

Step 1: New measurement
Unlike in Section 4.2.2, it is assumed that measurements are taken in a recursive fash-

ion. At the start of iteration n, a new measurement yn = f (xn)+ηn is taken at the point
xn .

Step 2: Update the RFE
As explained in Section 4.3.1, we update the RFE model g (x) =∑D

k=1 ck cos(ωT
k x+bk )

based on the new measurement from Step 1 by using the inverse QR algorithm given
in (4.24)-(4.27). Only the weights ck are updated. The parameters ωk and bk stay fixed
through-out the whole algorithm.

Step 3: Optimization on the RFE
After updating the RFE, an iterative optimization algorithm is used to find a (possibly

local) minimum x̂n of the RFE. All derivatives of the RFE can easily be calculated. Using
an analytic expression of the Jacobian will increase the performance of the optimization
method used in this step, while not requiring extra measurements of f as in the finite
difference method. For functions that are costly to evaluate, this is a big advantage. The
method used in the proposed algorithm is an L-BFGS method [104,210]. Other optimiza-
tion methods can also be used. The initial guess for the optimization is the projection of
the current measurement point plus a random perturbation:

xi ni t = PX (xn +ζn), (4.29)

where PX is the projection onto X . The random perturbation prevents the optimization
algorithm from starting exactly in the point where the model was trained. Increasing its
value will increase the exploration capabilities of the DONE algorithm but might slow
down convergence. In the proposed algorithm, ζn is chosen to be white Gaussian noise.
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Step 4: Choose a new measurement point
The minimum found in the previous step is used to update the RFE again. A pertur-

bation is added to the current minimum to avoid the algorithm getting trapped unnec-
essarily in insignificant local minima or saddle points [211]:

xn+1 = PX (x̂n +ξn). (4.30)

The random perturbations can be seen as an exploration strategy and are again cho-
sen to be white Gaussian noise. Increasing their variance σξ increases the exploration
capabilities of the DONE algorithm but might slow down convergence. In practice, we
typically use the same distribution for ξ and ζ. Finally, the algorithm increases n and
returns to Step 1.

The full algorithm is shown below in Algorithm 3 for the case X = [lb,ub]d .

Algorithm 3 DONE Algorithm

1: procedure DONE( f ,x1, N , lb,ub,D,λ,σζ,σξ)
2: Drawω1 . . .ωD from pΩ independently.
3: Draw b1 . . .bD from Uniform(0,2π) independently.
4: P1/2

0 =λ−1/2ID×D

5: c0 = [0 . . .0]T

6: x̂0 = x1

7: for n = 1,2,3, . . . , N do
8: an = [cos(ωT

1 xn +b1) · · ·cos(ωT
D xn +bD )]

9: yn = f (xn)+ηn

10: g (x) = updateRFE(cn−1,P1/2
n−1,an , yn)

11: Draw ζn from N (0,σ2
ζ

Id×d ).
12: xi ni t = max(min(xn +ζn ,ub), lb)
13: [x̂n , ĝn] = L-BFGS(g (x),xi ni t , l b,ub)
14: Draw ξn from N (0,σ2

ξ
Id×d ).

15: xn+1 = max(min(x̂n +ξn ,ub), lb)

16: return x̂n

Algorithm 4 updateRFE

1: procedure UPDATERFE(cn−1,P1/2
n−1,an , yn)

2: Retrieve gnγ
−1/2
n , γ−1/2

n and P1/2
n from (5.3)

3: cn = cn−1 +gn(yn −an cn−1)
4: g (x) = [cos(ωT

1 x+b1) · · ·cos(ωT
D x+bD )]cn

5: return g (x)

4.4. CHOICE OF HYPER-PARAMETERS
In this section, we will analyze the influence of the hyper-parameters of the DONE algo-
rithm and, based on these results, provide practical ways of choosing them. The perfor-
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mance of DONE depends on the following hyper-parameters:

• number of basis functions D ,

• p.d.f. pΩ,

• regularization parameter λ,

• exploration parameters σζ and σξ.

The influence of D is straight-forward: increasing D will lead to a better performance
(a better RFE fit) of the DONE algorithm at the cost of more computation time. Hence,
D should be chosen high enough to get a good approximation, but not too high to avoid
unnecessarily high computation times. It should be noted that D does not need to be
very precise. Over-fitting should not be a concern for this parameter since we make use
of regularization. The exploration parameters determine the trade-off between explo-
ration and exploitation, similar to the use of the acquisition function in Bayesian opti-
mization [136,187]. The parameter σζ influences the exploration of the RFE surrogate in
Step 3 of the DONE algorithm, while σξ determines exploration of the original function.
Assuming both to be close to each other, σζ and σξ are usually chosen to be equal. If in-
formation about local optima of the RFE surrogate or of the original function is available,
this could be used to determine good values for these hyper-parameters. Alternatively,
similar to Bayesian optimization the expected improvement could be used for that pur-
pose, but this remains for future work. The focus of this section will be on choosing pΩ
and λ.

4.4.1. PROBABILITY DISTRIBUTION OF FREQUENCIES
Recall the parameters ωk and bk from Definition 1, which are obtained by sampling in-
dependently from the continuous probability distributions pΩ and pB = Uniform(0,2π),
respectively. In the following, we will investigate the first and second order moments of
the RFE and try to find a distribution pΩ that minimizes the variance of the RFE.

Unfortunately, as shown in Theorem 7 in Appendix 4.8, it turns out that the optimal
p.d.f. is

p∗
Ω(ω) =

| f̂ (ω)|
√

cos(2∠ f̂ (ω)+2ωT x)+2∫
Rd | f̂ (ω̃)|

√
cos(2∠ f̂ (ω̃)+2ω̃T x)+2dω̃

. (4.31)

This distribution depends on the input x and both the phase and magnitude of the
Fourier transform of f . But if both | f̂ | and ∠ f̂ were known, then the function f itself
would be known, and standard optimization algorithms could be used directly. Further-
more, we would like to use a p.d.f. for ωk that does not depend on the input x, since the
ωk parameters are chosen independently from the input in the initialization step of the
algorithm.

In calibration problems, the objective function f suffers from an unknown offset,
f (x) = f̃ (x +∆). This unknown offset does not change the magnitude in the Fourier
domain, but it does change the phase. Since the phase is thus unknown, we choose a
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uniform distribution for pB such that bk ∈ [0,2π]. However, the magnitude | f̂ | can be
measured in this case. Section 4.5.2 describes an example of such a problem. We will
now derive a way to choose pΩ for calibration problems.

In order to get a close to optimal p.d.f. for ωk that is independent of the input x
and of the phase ∠ f̂ of the Fourier transform of f , we look at a complex generalization
of the RFE. In this complex problem, it turns out we can circumvent the disadvantages
mentioned above by using a p.d.f. that depends only on | f̂ |.

Theorem 5. Let G̃(x) = ∑D
k=1 C̃k e iΩT

k x+Bk , with Ωk being i.i.d. random vectors with a

continuous p.d.f. p̃Ω over Rd that satisfies p̃Ωk (ω) > 0 if | f̂ (ω)| > 0, and Bk being random
variables with uniform distribution from [0,2π]. Then G̃(x) is an unbiased estimator of
f (x) for all x ∈Rd if

C̃k = f̂ (Ωk )e−i Bk

D(2π)d p̃Ω(Ωk )
. (4.32)

For this choice of C̃k , the variance of G̃(x) is minimal if

p̃Ω(ω) = | f̂ (ω)|∫
Rd | f̂ (ω̃)|dω̃ , (4.33)

giving a variance of

Var[G̃(x)] = 1

D(2π)2d

(∫
Rd

| f̂ (ω)|dω
)2

− f (x)2.

(4.34)

Proof. The unbiasedness follows directly from the Fourier inversion theorem,

E
[
G̃(x)

]= D∑
k=1

∫
Rd

∫ 2π

0

f̂ (ωk )e−i bk e iωT
k x+bk

D(2π)d p̃Ω(ωk )2π
dbk p̃Ω(ωk )dωk

= D
∫
Rd

∫ 2π

0

f̂ (ω)e−i b

D(2π)d p̃Ω(ω)
e iωT x+b 1

2π
dbp̃Ω(ω)dω

= D
∫
Rd

f̂ (ω)

D(2π)d p̃Ω(ω)
e iωT xp̃Ω(ω)

∫ 2π

0

1

2π
dbdω

= 1

(2π)d

∫
Rd

f̂ (ω)e iωT xdω

= f (x). (4.35)

The proof of minimum variance is similar to the proof of [212, Thm. 4.3.1].

Note that the coefficients C̃k can be complex in this case. Next, we show that the
optimal p.d.f. for a complex RFE, p̃Ω, is still close-to-optimal (in terms of the second
moment) when used in the real RFE from Definition 1.
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Theorem 6. Let p̃Ω be as in (4.33) and let G with weights Ck be as in Theorem 3. Let P
be the set of probability distribution functions for Ωk that are positive when | f̂ (ω)| > 0.
Then, we have

Ep̃Ω,pB [G(x)2] ≤p
3 min

pΩ∈P
EpΩ,pB [G(x)2]. (4.36)

The proof is given in Appendix 4.8. We now discuss how to choose pΩ in practice.
If no information of | f̂ | is available, the standard approach of choosing pΩ as a

zero-mean normal distribution can be used. The variance σ2 is an important hyper-
parameter in this case, and any method of hyper-parameter tuning can be used to
find it. However, most hyper-parameter optimization methods are computationally
expensive because they require running the whole algorithm multiple times. In the
case that | f̂ | is not exactly known, but some information about it is available (because
it can be estimated or measured for example), this can be circumvented. The variance
σ2 can simply be chosen in such a way that pΩ most resembles the estimate for | f̂ |,
using standard optimization techniques or by doing this by hand. In this approach, it
is not necessary to run the algorithm at all, which is a big advantage compared to most
hyper-parameter tuning methods. All of this leads to a rule of thumb for choosing pΩ as
given in Algorithm 5.

Algorithm 5 Rule of thumb for choosing pω

1: if | f̂ | is known exactly then
2: Set pΩ = | f̂ |/∫ | f̂ (ω)|dω.
3: else
4: Measure or estimate | f̂ |.
5: Determine σ2 for which the pdf of N (0,σ2Id×d ) is close in shape to

| f̂ |/∫ | f̂ (ω)|dω.
6: Set pΩ =N (0,σ2Id×d ).

4.4.2. UPPER BOUND ON THE REGULARIZATION PARAMETER
The regularization parameter λ in the performance criterion (4.17) is used to prevent
under- or over-fitting of the RFE under noisy conditions or when dealing with few mea-
surements. Theorem 4 guarantees the convergence of the least squares solution only if
the regularization parameter satisfies λ ≤ NΛ, where N is the total number of samples
andΛ is defined in (4.21). Here we will provide a method to estimateΛ.

During the proof of Theorem 4, it was shown that the upper boundΛ corresponds to
the λ that satisfies ∣∣∣∣∣∣(AT

N AN +Nλ ID×D
)−1

AT
N yN

∣∣∣∣∣∣2

2

=
D∑

k=1

(
c̄(ωk ,bk )

(2π)d DpΩ(ωk )pB (bk )

)2

= M 2. (4.37)

The left-hand side in this equation is easily evaluated for different values of λ. Thus, in
order to estimateΛ, all we need is an approximation of the unknown right hand M 2.
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Like in Section 4.4.1, it is assumed that no information about∠ f̂ is available, but that
| f̂ | can be measured or estimated. Under the assumptions that D is large and that pΩ
is a good approximation of p̃Ω = | f̂ (ω)|/∫

Rd | f̂ (ω)|dω as in Algorithm 5, we obtain the
following approximation of M :

M = 2

(2π)d

√√√√ 1

D2

D∑
k=1

(
| f̂ (ωk )|
pΩ(ωk )

cos(∠ f̂ (ωk )−bk )

)2

≈ 2

(2π)d

√√√√ 1

D
E

[(
| f̂ (Ω1)|
pΩ(Ω1)

cos(∠ f̂ (Ω1)−B1)

)2]

= 2

(2π)d

√
1

2πD

∫
Rd

∫ 2π

0

| f̂ (ω)|2
pΩ(ω)

cos2(∠ f̂ (ω)−b)dbdω

=
p

2

(2π)d
p

D

√∫
Rd

| f̂ (ω)|2
pΩ(ω)

dω

≈
p

2

(2π)d
p

D

√∫
Rd

| f̂ (ω)|2
p̃Ω(ω)

dω

=
p

2

(2π)d
p

D

∫
| f̂ (ω)|dω= Ma . (4.38)

The squared cosine was removed as in Eq. (4.12). Using the exact value or an estimate
of

∫
Rd | f̂ (ω)|dω as in Algorithm 5 to determine Ma , we calculate the left-hand in (4.37)

for multiple values ofΛ and take the value for which it is closest to M 2
a . The procedure is

summarized in Algorithm 6.

Algorithm 6 Rule of thumb for finding an estimate ofΛ

1: Run Algorithm 5 to get
∫
Rd | f̂ (ω)|dω.

2: Take N measurements to get AN and yN .
3: Determine Λ for which the left-hand side of (4.37) is close to M 2

a =
2

(2π)2d D

(∫ | f̂ (ω)|dω)2
.

4.5. NUMERICAL EXAMPLES
In this section, we compare the DONE algorithm to the Bayesian optimization library
BayesOpt [139] in several numerical examples.

4.5.1. ANALYTIC BENCHMARK PROBLEM: CAMELBACK FUNCTION
The camelback function

f (x) =
(

4−2.1x2
1 +

x4
1

3

)
x2

1 +x1x2 +
(−4+4x2

2

)
x2

2 , (4.39)
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where x = [x1, x2] ∈ [−2,2] × [−1,1], is a standard test function with two global min-
ima and two local minima. The locations of the global minima are approximately
(0.0898,−0.7126) and (−0.0898,0.7126) with an approximate function value of −1.0316.
We determined the hyper-parameters for DONE on this test function as follows.
First, we computed the Fourier transform of the function. We then fitted a function

h(ω) = C
σ
p

2π
e−

ω2

2σ2 to the magnitude of the Fourier transform in both directions. This

was done by trial and error, giving a value of σ = 10. To validate, two RFEs were fit to
the original function using a normal distribution with standard deviation σ = 10 (good
fit) and σ = 0.1 (bad fit) for ωk , using the least squares approach from Section 4.2.2.
Here, we used N = 1000 measurements sampled uniformly from the input domain, the
number of basis functions D was set to 500, and a regularization parameter of λ= 10−10

was used. The small value for λ still works well in practice because the function f does
not contain noise.

Let g (x) denote the value of the trained RFE at point x. We investigated the root mean
squared error (RMSE)

RMSE =
√√√√ 1

N

N∑
n=1

( f (xn)− g (xn))2, (4.40)

for the two stated values of σ. The good fit gave a RMSE of 5.5348 ·10−6, while the bad fit
gave a RMSE of 0.2321, which shows the big impact of this hyper-parameter on the least
squares fit.

We also looked at the difference between using the real RFE from Definition 1
and the complex RFE from Theorem 5, for σ = 10, and for different values of D
(D ∈ {10,20,40,80,160,320,640,1280}). Fig. 4.1 shows the mean and standard devia-
tion of the RMSE over 100 runs. We see that the real RFE indeed performs similar to the
complex RFE as predicted by Theorem 8 in Appendix 4.8.

Using the hyper-parameters σ= 10 and λ= 10−10, we also performed 10 runs of the
DONE algorithm and compared it to reproduced results from [139, Table 1] (method
“BayesOpt1”). The number of basis functions D was set to 500, one of the smallest val-
ues with a RMSE of below 10−5 according to Fig. 4.1, and the initial guess was chosen
randomly. The exploration parametersσζ andσξ were set to 0.01. The resulting distance
to the true minimum and the computation time in seconds (with their standard devia-
tions) for 50 and 100 measurements can be found in Table 4.1. As in [139], the compu-
tation time for BayesOpt was only shown for 100 samples and the accuracy below 10−5

was not shown. It can be seen that the DONE algorithm is several orders of magnitude
more accurate and about 5 times faster when compared to BayesOpt for this problem.

4.5.2. OPTICAL COHERENCE TOMOGRAPHY
Optical coherence tomography (OCT) is a low-coherence interferometry imaging tech-
nique used for making three-dimensional images of a sample. The quality and resolu-
tion of images is reduced by optical wavefront aberrations caused by the medium, e.g.,
the human cornea when imaging the retina. These aberrations can be removed by us-
ing active components such as deformable mirrors in combination with optimization



4.5. NUMERICAL EXAMPLES

4

67

10 1 10 2 10 3

Number of basis functions

10 -8

10 -6

10 -4

10 -2

10 0

10 2

Mean (real)

Mean (complex)

Std (real)

Std (complex)

Figure 4.1: Mean and standard deviation of the root mean square error for a real and a complex RFE over 100
runs.

Table 4.1: DONE vs BayesOpt on the Camelback function

Dist. to min. (50 samp.) Time (50 samp.)

DONE 2.1812 ·10−9 (8.3882 ·10−9) 0.0493 (0.0015)

BayesOpt 0.0021 (0.0044) -

Dist. to min. (100 samp.) Time (100 samp.)

DONE 1.1980 ·10−9 (5.2133 ·10−9) 0.0683 (0.0019)

BayesOpt < 1 ·10−5 (< 1 ·10−5) 0.3049 (0.0563)
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algorithms [144, 172]. The arguments of the optimization can be the voltages of the de-
formable mirror or a mapping of these voltages to other coefficients such as the coef-
ficients of Zernike polynomials. The intensity of the image at a certain depth is then
maximized to remove as much of the aberrations as possible. In [172] it was shown
experimentally that the DONE algorithm greatly outperforms other derivative-free al-
gorithms in final root mean square (RMS) wavefront error and image quality. Here, we
numerically compare the DONE algorithm to BayesOpt [139]. The numerical results are
obtained by simulating the OCT transfer function as described in [156, 213] and maxi-
mizing the OCT signal. The input dimension for this example is three. Three Zernike
aberrations are considered, namely the defocus and two astigmatisms. These are gener-
ally the largest optical wavefront aberrations in the human eye. The noise of a real OCT
signal is approximated by adding Gaussian white noise with a standard deviation of 0.01.
The results are shown in Fig. 4.2. For the DONE algorithm the same parameters are used
as described in [172], only λ is chosen to be equal to 3. The number of cosines D = 1000
is chosen as large as possible such that the computation time still remains around 1 ms.
This is sufficiently fast to keep up with modern OCT B-scan acquisition and processing
rates. The DONE algorithm is compared to BayesOpt with the default parameters and
to BayesOpt with only one instead of 10 prior measurements, the latter is referred to as
BayesOpt-1 init. Other values for the parameters of BayesOpt, obtained with trial and
error, did not result in a significant performance increase. To use the BayesOpt algo-
rithm, the inputs had to be normalized between 0 and 1. For each input aberration, the
region -0.45 µm to 0.45 µm was scaled to the region 0 to 1. The results for BayesOpt and
DONE are very similar. The mean error of the DONE algorithm is slightly lower than the
BayesOpt algorithm. However, the total average computation time for the DONE algo-
rithm was 93 ms, while the total average computation time of Bayesopt was 1019 ms.

4.5.3. TUNING OF AN OPTICAL BEAM-FORMING NETWORK

In wireless communication systems, optical beam-forming networks (OBFNs) can be
used to steer the reception or transmission angle of a phased array antenna [189] in the
desired direction. In the case of reception, the signals that arrive at the different an-
tenna elements of the phased array are combined in such a way that positive interfer-
ence of the signals occurs only in a specific direction. A device based on optical ring
resonators [190] (ORRs) that can perform this signal processing technique in the optical
domain was proposed in [191]. This OBFN can provide accurate control of the reception
angle in broadband wireless receivers.

To achieve a maximal signal-to-noise ratio (SNR), the actuators in the OBFN need
to be adapted according to the desired group delay of each OBFN path, which can be
calculated from the desired reception angle. Each ORR is controlled by two heaters that
influence its group delay, however the relation between heater voltage and group delay
is nonlinear. Even if the desired group delay is available, controlling the OBFN comes
down to solving a nonlinear optimization problem. Furthermore, the physical model
of the OBFN can become quite complex if many ORRs are used, and the models are
prone to model inaccuracies. Therefore, a black-box approach like in the DONE algo-
rithm could help in the tuning of the OBFN. Preliminary results using RFEs in an offline
fashion on this application can be found in [194]. Here, we demonstrate the advantage
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Figure 4.2: (a) The RMS wavefront error of DONE and BayesOpt averaged over 100 simulations versus the num-
ber of iterations. (b) A boxplot of 100 final RMS wavefront errors after 100 iterations for DONE and BayesOpt.On
each box, the central line is the median, the edges of the box are the 25th and 75th percentiles, and the whiskers
extend to the most extreme data points not considered outliers. Outliers are plotted individually.
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of online processing in terms of performance by using DONE instead of the offline algo-
rithm in [194].

An OBFN simulation based on the same physical models as in [194] will be used in
this section, with the following differences: 1) the implementation is done in C++; 2) ORR
properties are equal for each ORR; 3) heater voltages with offset and crosstalk [193, Ap-
pendix B] have been implemented; 4) a small region outside the bandwidth of interest
has a desired group delay of 0; 5) an 8×1 OBFN with 12 ORRs is considered; 6) the stan-
dard deviation of the measurement noise was set to 7.5·10−3. The input of the simulation
is the normalized heater voltage for each ORR, and the output is the corresponding mean
square error of the difference between OBFN path group delays and desired delays. The
simulation contains 24 heaters (two for each ORR, namely one for the phase shift and
one for the coupling constant), making the problem 24-dimensional. Each heater influ-
ences the delay properties of the corresponding ORR, and together they influence the
OBFN path group delays.

The DONE algorithm was used on this simulation to find the optimal heater voltages.
The number of basis functions was D = 6000, which was the lowest number that gave an
adequate performance. The p.d.f. pΩ was a normal distribution with variance 0.5. The
regularization parameter was λ = 0.1. The exploration parameters were σζ = σξ = 0.01.
In total, 3000 measurements were taken.

Just like in the previous application, the DONE algorithm was compared to the
Bayesian optimization library BayesOpt [139]. The same simulation was used in both
algorithms, and BayesOpt also had 3000 function evaluations available. The other pa-
rameters for BayesOpt were set to their default values, except for the noise parameter
which was set to 0.1 after calculating the influence of the measurement noise on the
objective function. Also, in-between hyper-parameter optimization was turned off after
noticing it did not influence the results while being very time-consuming.

The results for both algorithms are shown in Fig. 4.3. The found optimum at each it-
eration is shown for the two algorithms. For DONE, the mean of 10 runs is shown, while
for BayesOpt only one run is shown because of the much longer computation time. The
dotted line represents an offline approach: it is the average of 10 runs of a similar pro-
cedure as in [194], where a RFE with the same hyper-parameters as in DONE was fitted
to 3000 random measurements and then optimized. The figure clearly shows the advan-
tage of the online approach: because measurements are only taken in regions where the
objective function is low, the RFE model can become very accurate in this region. The
figure also shows that DONE outperforms BayesOpt for this application in terms of ac-
curacy. On top of that, the total computation time shows a big improvement: one run
of the DONE algorithm took less than 2 minutes, while one run of BayesOpt took 5800
minutes.

The big difference in computation time for the OBFN application can be explained
by looking at the total number of measurements N . Even though the input dimension
is high compared to the other problems, N is the main parameter that causes BayesOpt
to slow down for a large number of measurements. This is because the models used in
Bayesian optimization typically depend on the kernel matrix of all samples, which will
increase in size each iteration. The runtime for one iteration of the DONE algorithm is,
in contrast, independent of the number of previous measurements.
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4.5.4. ROBOT ARM MOVEMENT
The previous two examples have illustrated how the DONE algorithm outperforms
BayesOpt in terms of speed (both OCT and OFBN) and how its online processing scheme
reduces the number of required measurements compared to offline processing (OFBN),
respectively. The dimensions in both problems were three and 27, respectively, which is
still relatively modest. To illustrate that DONE also works in higher dimensions, we will
now consider a toy example from robotics. The following model of a three-link-planar
robot, which has been adapted from [195], is considered:

ai (k) = ui (k)+ sin

(
π/180

i∑
j=1

α j (k −1)

)
·9.8 ·0.05, (4.41)

vi (k) = vi (k −1)+ai (k), (4.42)

αi (k) =αi (k −1)+ vi (k), (4.43)

x(k) =
3∑

j=1
l j cos

(
π/2+π/180

i∑
j=1

α j (k)

)
, (4.44)

y(k) =
3∑

j=1
l j sin

(
π/2+π/180

i∑
j=1

α j (k)

)
. (4.45)

Here,αi (k) represents the angle in degrees of link i at time step k, vi (k) and ai (k) are the
first and second derivative of the angles, ui (k) ∈ [−1,1] is the control input, x(k) and y(k)
denote the position of the tip of the arm, and l1 = l2 = 8.625 and l3 = 6.125 are the lengths
of the links. The variables are initialized as ai (0) = vi (0) =αi (0) = 0 for i = 1,2,3. We use
the DONE algorithm to design a sequence of control inputs ui (1), . . . ,ui (50) such that
the distance between the tip of the arm and a fixed target at location (6.96,12.66) at the
50-th time step is minimized. The input for the DONE algorithm is thus a vector contain-
ing ui (k) for i = 1,2,3 and k = 1, . . . ,50. This makes the problem 150-dimensional. The
output is the distance between the tip and the target at the 50-th time step. The initial
guess for the algorithm was set to a random control sequence with a uniform distribu-
tion over the set [−1,1] for each robot arm i . We would like to stress that this example has
been chosen for its high-dimensional input. We do not consider this approach a serious
contender for specialized control methods in robotics.

The hyper-parameters for the DONE algorithm were chosen as follows. The num-
ber of basis functions was D = 3000, which was the lowest number that gave consistent
results. The regularization parameter was λ = 10−3. The p.d.f. pΩ was set to a normal
distribution with variance one. The exploration parameters were set toσζ =σξ = 5·10−5.
The number of measurements N was set to 10000.

No comparison with other algorithms has been made for this application. The com-
putation time of the Bayesian optimization algorithm scales with the number of mea-
surements and would be too long with 10000 measurements, as can be seen in Table 4.2.
Algorithms like reinforcement learning use other principles, hence no comparison is
given. Our main purpose with this application is to demonstrate the applicability of the
DONE algorithm to high-dimensional problems.

Figure 4.4 shows the distance to the target at time step 50 for different iterations of
the DONE algorithm, averaged over 10 runs with different initial guesses. The control
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sequences converge to a sequence for which the robot arm goes to the target, i.e., DONE
has successfully been applied to a problem with a high input dimension. The number
of basis functions required did not increase when compared to the other applications in
this paper, although more measurements were required. The computation time for this
example and the other examples is shown in Table 4.2.

Table 4.2: Computation Time: DONE vs BayesOpt

Problem Method Input dim. N D Time (s)

Camelback
DONE 2 100 50 0.0683

BayesOpt 2 100 - 0.3049

OCT
DONE 3 100 1000 0.093

BayesOpt 3 100 - 1.019

OBFN
DONE 24 3000 6000 99.7

BayesOpt 24 3000 - 3.48 ·105

Robot arm DONE 150 10000 3000 99.1

4.6. CONCLUSIONS

We have analyzed an online optimization algorithm called DONE that is used to find
the minimum of a function using measurements that are costly and corrupted by noise.
DONE maintains a surrogate model in the form of a random Fourier expansion (RFE),
which is updated whenever a new measurement is available, and minimizes this surro-
gate with standard derivative-based methods. This allows to measure only in regions of
interest, reducing the overall number of measurements required. The DONE algorithm
is comparable to Bayesian optimization algorithms, but it has the distinctive advantage
that the computational complexity of one iteration does not grow with the number of
measurements that have already been taken.

As a theoretical result, we have shown that a RFE that is trained with linear least
squares can approximate square integrable functions arbitrarily well, with high prob-
ability. An upper bound on the regularization parameter used in this training proce-
dure was given, as well as an optimal and a more practical probability distribution for
the parameters that are chosen randomly. We applied the DONE algorithm to an ana-
lytic benchmark problem and to three applications: optical coherence tomography, op-
tical beam-forming network tuning, and a robot arm. We compared the algorithm to
BayesOpt, a Bayesian optimization library. The DONE algorithm gave accurate results
on these applications while being faster than the Bayesian optimization algorithm, due
to the fixed computational complexity per iteration.
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4.7. PROOF OF CONVERGENCE OF THE LEAST SQUARES SOLU-
TION

In this section, we show that using the least squares solution in the RFE gives a function
that approximates the true unknown function f . To prove this, we make use of the results
in [207] and of [214, Thm. 2] and [215, Key Thm.].

Proof of Theorem 4. Let the constant m > 0 be given by

m =
∣∣∣∣∣∣∣∣( 1

N
AT

N AN + λ

N
ID×D

)−1 1

N
AT

N yN

∣∣∣∣∣∣∣∣
2

, (4.46)

and define the set Cm = {c ∈ RD : ||c||2 ≤ m}. Note that Cm is a compact set. The least
squares weight vector

cN = (
AT

N AN +λID×D
)−1

AT
N yN

=
(

1

N
AT

N AN + λ

N
ID×D

)−1 1

N
AT

N yN , (4.47)

is also the solution to the constrained, but unregularized least squares problem (see [216,
Sec. 12.1.3])

cN = argmin
c∈Cm

1

N
||yN −AN c||22. (4.48)

Now, note that a decrease in λ leads to an increase in m. Since λ/N ≤Λ by assumption
and the upper boundΛ in Theorem 4 satisfies∣∣∣∣∣∣∣∣( 1

N
AT

N AN +Λ ID×D

)−1 1

N
AT

N yN

∣∣∣∣∣∣∣∣
2
= M , (4.49)

M =
√√√√ D∑

k=1

(
c̄(ωk ,bk )

(2π)d DpΩ(ωk )pB (bk )

)2

, (4.50)

we have that m ≥ M . We will need this lower bound on m to make use of the results
in [207] later on in this proof.

Recall from Section 4.2.2 that the vector yN depends on the function evaluations and
on measurement noise η that is assumed to be zero-mean and of finite variance σ2

H . We
first consider the noiseless case, i.e. yn = f (xn). For x ∈X , c ∈RD , let

E(x,c) = f (x)−
D∑

k=1
ck cos(ωT

k x+bk ). (4.51)

Using the Cauchy-Schwarz inequality, we have the following bound for all x ∈X , c ∈Cm :

E(x,c)2 = f (x)2 +
(

D∑
k=1

ck cos(ωT
k x+bk )

)2
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−2 f (x)
D∑

k=1
ck cos(ωT

k x+bk )

≤ f (x)2 +
(

D∑
k=1

ck cos(ωT
k x+bk )

)2

+2
∣∣ f (x)

∣∣ ∣∣∣∣∣ D∑
k=1

ck cos(ωT
k x+bk )

∣∣∣∣∣
≤ f (x)2 +

D∑
k=1

|ck |2 +2
∣∣ f (x)

∣∣√√√√ D∑
k=1

|ck |2

≤ f (x)2 +m2 +2 f (x)m

≤ (|| f ||∞+m
)2 . (4.52)

Note that E(x,c) is continuous in c and measurable in x. Let now Xn denote i.i.d. random
vectors with distribution pX. Using Theorem [214, Thm. 2] we get, with probability one,

lim
N→∞

sup
c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

E(Xn ,c)2 −
∫
X

E(x,c)2pX(x)dx

∣∣∣∣∣= 0. (4.53)

Since almost sure convergence implies convergence in probability [217, Ch. 2], we also
have:

lim
N→∞

P

(
sup

c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

E(Xn ,c)2

−
∫
X

E(x,c)2pX(x)dx

∣∣∣∣> ε)= 0 ∀ε> 0. (4.54)

We will need this result when considering the case with noise. For the case with noise,
i.e. yn = f (xn)+ηn , let

Ẽ(x,η,c)2 =
(

f (x)+η−
D∑

k=1
ck cos(ωT

k x+bk )

)2

= E(x,c)2 +2ηE(x,c)+η2. (4.55)

Using the properties of the noise η with p.d.f. pH , this gives the following mean square
error: ∫

R

∫
X

Ẽ(x,η,c)2pX(x)pH (η)dxdη

=
∫
X

E(x,c)2pX(x)

(∫
R

pH (η)dη

)
dx

+2
∫
X

E(x,c)

(∫
R
ηpH (η)dη

)
pX(x)dx

+
∫
X

pX(x)

(∫
R
η2pH (η)dη

)
dx
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=
∫
X

E(x,c)2pX(x)dx+
∫
X

E(x,c)E[Hn]︸ ︷︷ ︸
=0

pX(x)dx

+E[H 2
n]

=
∫
X

E(x,c)2pX(x)dx+σ2
H . (4.56)

Here, Hn is a random variable with distribution pH . For any choice of ε0,ε1,ε2,ε3 > 0
such that ε1 +ε2 +ε3 = ε0, we have, following a similar proof as in [218, Thm. 3.3(a)]:

P

(
sup

c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

Ẽ(Xn , Hn ,c)2−∫
X

∫
R

Ẽ(x,η,c)2pX(x)pH (η)dxdη

∣∣∣∣> ε0

)
= P

(
sup

c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

E(Xn ,c)2 + 2

N

N∑
n=1

HnE(Xn ,c)

+ 1

N

N∑
n=1

H 2
n −

∫
X

E(x,c)2pX(x)dx−σ2
H

∣∣∣∣∣> ε0

)

≤ P

(
sup

c∈Cm

{∣∣∣∣∣ 1

N

N∑
n=1

E(Xn ,c)2 −
∫
X

E(x,c)2pX(x)dx

∣∣∣∣∣
+

∣∣∣∣∣ 2

N

N∑
n=1

HnE(Xn ,c)
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N
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H 2
n −σ2

H
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(
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N
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∫
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Of these last three probabilities, the first one is proven to converge to zero in (4.54), while
the last one converges to zero by the weak law of large numbers. For the second probabil-
ity, we can make use of Theorem [214, Thm. 2] again, noting that ηnE(xn ,c) is continuous
in c. We use (4.52) to get ∣∣ηE(x,c)

∣∣≤ |η|(|| f ||∞+m
) ∀x,η,c. (4.57)

Again, since uniform convergence implies convergence in probability, and since
E[HnE(Xn ,c)] = E[Hn]E[E(Xn ,c)] = 0 for all n, using Theorem [214, Thm. 2] gives the
desired convergence in probability

lim
N→∞

P

(
sup

c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

HnE(Xn ,c)

∣∣∣∣∣> ε2

)
= 0 ∀ε2. (4.58)

Together with the other two convergences and (4.57) we get:

lim
N→∞

P

(
sup

c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

Ẽ(Xn , Hn ,c)2

−
∫
R

∫
X

Ẽ(x,η,c)2pX(x)pH (η)dxdη

∣∣∣∣> ε)= 0. (4.59)

The following bound follows from (4.52) and (4.56):

0 ≤
∫
R

∫
X

Ẽ(x,η,c)2pX(x)pH (η)dxdη

≤ (|| f ||∞+m
)2 +σ2

H . (4.60)

In light of this bound, [215, Key Thm.] now implies that the mean square error between
the output of the RFE with least squares weight vector and the noisy meansurements is
approaching its ideal value as the number of samples increases. More precisely, for any
choice of ε4 > 0 and δ1 > 0, there exists an N0 such that, for all N > N0,∣∣∣∣∫

R

∫
X

Ẽ(x,η,CN)2pX(x)pH (η)dxdη

−
∫
R

∫
X

Ẽ(x,η,C0)2pX(x)pH (η)dxdη

∣∣∣∣< ε4 (4.61)

with probability at least 1−δ1. Here, CN denotes the vector cN as a random variable as it
depends on the input and noise samples and on the samples ω1, . . . ,ωD ,b1, . . . ,bD , and
C0 ∈Cm minimizes

∫
R

∫
X Ẽ(x,η,c)pX(x)pH (η)dxdη. Next, it is shown that the same holds

for the mean square error between the least-squares RFE outputs and the unknown,
noise-free function values.

According to [207, Thm 3.2], for any δ2 > 0, with probability at least 1 − δ2 w.r.t.
Ω1, . . . ,ΩD and B1, . . . ,BD , there exists a c ∈Cm with the following bound1:∫

X

(
f (x)−

D∑
k=1

ck cos(ΩT
k x+Bk )

)2

pX(x)dx < γ(δ2)2

D
,

1The weights found in the proof of the cited theorem satisfy c ∈Cm if m ≥ M , which was shown in the beginning
of this appendix. Here we also made use of the result from Theorem 1 of this paper to get what is denoted
with α in [207]. We have also used, with the notation of [207], that || f − f̂ ||µ ≤ || f − f̂ ||∞.
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γ(δ2) = sup
ω,b

∣∣∣∣ 1

(2π)d

c̄(ω,b)

pΩ(ω)pB (b)

∣∣∣∣
(√

log
1

δ2
+4r

)
,

r = sup
x∈X

||x||2
√
σ2d +π2/3, (4.62)

with σ2 denoting the variance of pΩ. For this particular c, (4.55), (4.56) and (4.62) imply
that ∫

R

∫
X

Ẽ(x,η,c)2pX(x)pH (η)dxdη< γ(δ2)2

D
+σ2

H . (4.63)

Since C0 ∈ Cm minimizes the left-hand in the equation above by definition, we also
have that ∫

R

∫
X

Ẽ(x,η,C0)2pX(x)pH (η)dxdη< γ(δ2)2

D
+σ2

H (4.64)

with probability at least 1−δ2. Since the event in (4.64) only depends onΩ1, . . . ,ΩD and
B1, . . . ,BD , while the event in (4.61) only depends on the input and noise samples, we can
combine these two equations as follows. For any choice of ε4 > 0, δ1 > 0 and δ2 > 0, there
exists an N0 such that, for all N > N0,∫

R

∫
X

Ẽ(x,η,CN)2pX(x)pH (η)dxdη< ε4 + γ(δ2)2

D
+σ2

H (4.65)

with probability at least (1−δ1)(1−δ2). Using (4.56) now gives the following result. For
any choice of ε4 > 0, δ1 > 0 and δ2 > 0, there exists an N0 such that, for all N > N0, we
have ∫

X
E(x,CN)2pX(x)dx < ε4 + γ(δ2)2

D
(4.66)

with probability at least (1−δ1)(1−δ2).
Choosing D0,ε4,δ1 and δ2 such that D0 > γ(δ2)2/(ε−ε4) and (1−δ1)(1−δ2) = δ con-

cludes the proof.

4.8. MINIMUM-VARIANCE PROPERTIES
The following theorem presents the probability density function for Ωk that minimizes
the variance of a RFE at a fixed measurement location x.

Theorem 7. Given x, the p.d.f. p∗
Ω that minimizes the variance of the unbiased estimator

G(x) = ∑D
k=1 Ck cos(ΩT

k x+Bk ) as defined in Theorem 1, with Ck as defined in Theorem 3,
is equal to

p∗
Ω(ω) =

| f̂ (ω)|
√

cos(2∠ f̂ (ω)+2ωT x)+2∫
Rd | f̂ (ω̃)|

√
cos(2∠ f̂ (ω̃)+2ω̃T x)+2dω̃

. (4.67)
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For this choice of pΩ, the variance is equal to

1

2D(2π)2d

(∫
Rd

| f̂ (ω)|
√

cos(2∠ f̂ (ω)+2ωT x)+2dω

)2

− f (x)2. (4.68)

Proof. The proof is similar to the proof of [212, Thm. 4.3.1]. Let qΩ be any p.d.f. of
Ωk that satisfies qΩ(ω) > 0 if | f̂ (ω)| > 0. Let VarqΩ,pB be the variance of G(x) under the

assumption that pΩ = qΩ, pB = Uniform(0,2π), and Ck = 2
D(2π)d

| f̂ (Ωk )|
qΩ(Ωk ) cos(∠ f̂ (Ωk )−Bk ).

According to Theorem 3, this choice for Ck makes sure that G(x) is an unbiased estimator,
i.e., f (x) = E[G(x)]. The variance of G(x) can be computed as:

VarqΩ,pB [G(x)]

= VarqΩ,pB

[
D∑

k=1
Ck cos(ΩT

k x+Bk )

]
= D VarqΩ,pB

[
C1 cos(ΩT

1 x+B1)
]

= D

2π

∫
Rd

∫ 2π

0

(
2

D(2π)d

| f̂ (ω)|
qΩ(ω)

cos(∠ f̂ (ω)−b)

)2

cos(ωT x+b)2qΩ(ω)dbdω− f (x)2. (4.69)

For the stated choice of p∗
Ω, using∫ 2π

0
cos(∠ f̂ (ω)−b)2 cos(ωT x+b)2db

=
∫ 2π

0

1

4
(1+cos(2∠ f̂ (ω)−2b))(1+cos(2ωT x+2b))db

=
∫ 2π

0

1

4
db + 1

4

∫ 2π

0
cos(2∠ f̂ (ω)−2b)db

+ 1

4

∫ 2π

0
cos(2ωT x+2b)db

+ 1

4

∫ 2π

0
cos(2∠ f̂ (ω)−2b)cos(2ωT x+2b)db

=2π

4
+ 1

8

∫ 2π

0
cos(2∠ f̂ (ω)+2ωT x)

+cos(2∠ f̂ (ω)−2ωT x−4b)db

=2π

4
+ 2π

8
cos(2∠ f̂ (ω)+2ωT x)

=π
4

(cos(2∠ f̂ (ω)+2ωT x)+2) (4.70)

we get:

Varp∗
Ω

,pB [G(x)]+ f (x)2 = Ep∗
Ω

,pB [G(x)2]
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= D

2π

∫
Rd

∫ 2π

0

(
2

D(2π)d

| f̂ (ω)|
p∗
Ω(ω)

cos(∠ f̂ (ω)−b)

)2

cos(ωT x+b)2p∗
Ω(ω)dbdω

= D

2π

∫
Rd

1

p∗
Ω(ω)

(
2

D(2π)d

)2

| f̂ (ω)|2∫ 2π

0
cos(∠ f̂ (ω)−b)2 cos(ωT x+b)2dbdω

= D

2π

∫
Rd

1

p∗
Ω(ω)

(
2

D(2π)d

)2

| f̂ (ω)|2

π

4
(cos(2∠ f̂ (ω)+2ωT x)+2)dω (4.71)

(4.67)= D

2π

(
2

D(2π)d

)2

(∫
Rd

| f̂ (ω)|
√
π

4
(cos(2∠ f̂ (ω)+2ωT x)+2)dω

)2

= 1

2D(2π)2d

(∫
Rd

| f̂ (ω)|
√

(cos(2∠ f̂ (ω)+2ωT x)+2)dω

)2

(4.72)

This gives the value of the optimal variance. To show that the variance is indeed optimal,
compare it with any arbitrary p.d.f. qΩ using Jensen’s inequality:

Varp∗
Ω

,pB [G(x)]+ f (x)2

= D

2π

(
2

D(2π)d

)2

(∫
Rd

| f̂ (ω)|
qΩ(ω)

√
π

4
(cos(2∠ f̂ (ω)+2ωT x)+2)qΩ(ω)dω

)2

Jensen≤ D

2π

(
2

D(2π)d

)2

∫
Rd

| f̂ (ω)|2
qΩ(ω)2

π

4
(cos(2∠ f̂ (ω)+2ωT x)+2)qΩ(ω)dω

(4.70)= D

2π

∫
Rd

∫ 2π

0

(
2

D(2π)d

| f̂ (ω)|
qΩ(ω)

cos(∠ f̂ (ω)−b)

)2

cos(ωT x+b)2qΩ(ω)dbdω

(4.69)= VarqΩ,pB [G(x)]+ f (x)2. (4.73)

This shows that the chosen p.d.f. p∗
Ω gives the minimum variance.

The following theorem compares the second moments in real and complex RFEs for
different probability distributions.
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Theorem 8. Let p̃Ω, p∗
Ω, G̃ and G be as in Theorems 5 and 7. Then

1p
3
Ep∗

Ω
,pB [G(x)2] ≤ Ep̃Ω,pB [G(x)2] ≤p

3 Ep∗
Ω

,pB [G(x)2], (4.74)

1

2
Ep̃Ω,pB [G̃(x)2] ≤ Ep̃Ω,pB [G(x)2] ≤ 3

2
Ep̃Ω,pB [G̃(x)2]. (4.75)

Proof. From

1 ≤
√

(cos(2∠ f̂ (ω)+2ωT x)+2) ≤p
3, (4.76)

and from (4.67) and (4.33) it follows that

1p
3

p∗
Ω(ω) ≤ p̃Ω(ω) ≤p

3p∗
Ω(ω),

1p
3

1

p∗
Ω(ω)

≤ 1

p̃Ω(ω)
≤p

3
1

p∗
Ω(ω)

. (4.77)

Combining the above with (4.71) yields:

1p
3
Ep∗

Ω
,pB [G(x)2]

= 1p
3

1

2D(2π)2d∫
Rd

1

p∗
Ω(ω)

| f̂ (ω)|2(cos(2∠ f̂ (ω)+2ωT x)+2)dω

≤ 1

2D(2π)2d∫
Rd

1

p̃Ω(ω)
| f̂ (ω)|2(cos(2∠ f̂ (ω)+2ωT x)+2)dω

= Ep̃Ω,pB [G(x)2]

≤p
3

1

2D(2π)2d∫
Rd

1

p∗
Ω(ω)

| f̂ (ω)|2(cos(2∠ f̂ (ω)+2ωT x)+2)dω

=p
3 Ep∗

Ω
,pB [G(x)]. (4.78)

Combining (4.76) with (4.34) yields:

1

2
Ep̃Ω [G̃(x)2]

= 1

2D(2π)2d

∫
Rd

1

p̃Ω(ω)
| f̂ (ω)|2dω

≤ 1

2D(2π)2d

∫
Rd

1

p̃Ω(ω)
| f̂ (ω)|2

(cos(2∠ f̂ (ω)+2ωT x)+2)dω
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= Ep̃Ω,pB [G(x)2]

≤ 3

2D(2π)2d

∫
Rd

1

p̃Ω(ω)
| f̂ (ω)|2dω

= 3

2
Ep̃Ω [G̃(x)2]. (4.79)
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In this report, which is an international collaboration of OCT, adaptive optics, and control
research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) al-
gorithm to guide the image based optimization for wavefront sensorless (WFSL) AO OCT
for in vivo human retinal imaging. The ocular aberrations were corrected using a multi-
actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators.
The DONE algorithm succeeded in drastically improving the OCT signal intensity and
image quality, while achieving a computational time of 1 ms per iteration, making it ap-
plicable for many high speed applications. Data acquired from an imaging phantom and
in vivo from human research volunteers are presented.
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The visualizations in this chapter will be made available by the publisher of the article upon publication.
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5.1. INTRODUCTION
Since the inception of optical coherence tomography (OCT) in 1991 [2], it has con-
tributed to significant advancements in clinical ophthalmic imaging. A particular
strength of OCT is the ability to visualize the cross-sectional thickness of the retina,
and the various cell layers that are organized by function. With the axial resolution
dependent on the coherence length, but decoupled from the optics delivering light to
the eye, commonly available OCT systems were designed to have a depth of focus that
encapsulated the entire retinal thickness. This design goal is commonly achieved using
of a probe beam diameter of ∼1 mm incident on the cornea, resulting in a focused spot
size of ∼20 µm at the retina. In order to reveal the cellular structures of the retina, such
as the cone photoreceptor mosaic and the nerve fibre bundles, the resolution of the
imaging system needs to be increased. Given the fixed focal length of a representative
eye, the focal waist can be reduced by imaging with a larger beam at the pupil. In the
special case of healthy volunteers with good eye optics, general OCT imaging systems
are capable of imaging parafoveal or perifoveal photoreceptor cones [220–222]. How-
ever, the image reliability and quality of the cone photoreceptor images deteriorate
when imaging with a large incident beam because of wavefront aberrations present in
the refractive elements of the eye.

For the majority of eyes, Adaptive Optics (AO) is essential to maximize the image
quality for in vivo optical retinal imaging with a large pupil [223]. In particular, this is
true for resolving the cone mosaic close to the fovea, where the cone photoreceptor den-
sity increases, as the diameter of the cones decease to ∼2 µm in the center of the fovea.
Adaptive optics OCT has been reported to improve the quality of in vivo retinal images
to such an extent that single cone photoreceptors and individual nerve fiber bundles
are clearly resolved [96, 97, 99, 224–227]. Conventional AO-OCT imaging systems use a
Shack-Hartmann (SH) wavefront sensor to directly quantify and reconstruct the ocular
wavefront aberrations. An active component such as a deformable mirror or lens is then
used to remove these aberrations. The image quality obtained with these systems are
excellent. However, AO-OCT systems containing wavefront sensors are susceptible to
wavefront reconstruction errors. If back-reflections and non-common path errors are
not properly taken into account, they can lead to poor performance in the wavefront
reconstruction [228]. Limitations of the SH wavefront sensor based AO systems occur
in cases where subjects have irregularly shaped pupils, cloudy corneas, or other ocular
opacities that scatter light back to the SH wavefront sensor, obscuring the detection of
the ocular aberrations. Additional reasons for removing the wavefront sensor out of an
AO system are to reduce the size, complexity, and cost of the AO system. These draw-
backs of the SH wavefront sensor have led to the development of wavefront sensorless
AO (WFSL-AO) algorithms.

In place of a direct measurement of the optical aberrations, WFSL-AO algorithms at-
tempt to remove the optical aberrations by optimizing an image quality metric based
on a sequence of images acquired with different test aberrations applied to the adap-
tive element [152, 169, 170, 229, 230]. Implementations of WFSL-AO for retinal imaging
with scanning laser ophthalmoscopy (SLO) have been demonstrated using metrics de-
termined by the brightness or sharpness of an image [231, 232]. WFSL-AO OCT was first
demonstrated with a simulated annealing optimization algorithm [145]. A coordinate
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search (CS) algorithm was also demonstrated to improve the OCT signal [144,156]. More
recently, in vivo WFSL-AO OCT has been demonstrated for retinal imaging of mice [88,
158, 233] and humans [234, 235], also using a CS algorithm.

A limitation of the CS algorithm for in vivo imaging is that it is susceptible to noise
(i.e. motion artifacts) in the data used for the quality metric during the optimization
process. In mice and especially in human subjects, involuntary eye movements such
as microsaccades, tremor, and drift can significantly degrade the OCT volumes by caus-
ing motion artifacts. If the noise artifact causes the CS algorithm to select an improper
coefficient for a particular Zernike mode, the algorithm cannot recover. For robust in
vivo imaging with WFSL-AO, an image quality optimization algorithm that accounts for
motion artifacts is essential.

The Data-based Online Nonlinear Extremum-seeker (DONE) algorithm was first de-
scribed for WFSL-AO in OCT [172]. In contrast to the aforementioned algorithms that
take the measurement with the lowest (or highest) metric value, DONE was explicitly
designed to take all past measurements into account such that the robustness of the al-
gorithm with respect to noise is increased. Figure 5.1 shows an example of optimization
performed with the DONE algorithm generalized to a one dimensional case. Instead of

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

-1

-0.5

0

0.5

f(x) = x2
− 1

g(x)

Noisy measurements f(x)

Minimum g(x)

Measurement with 

Minimum Value 

Figure 5.1: Example of optimization with DONE. The unknown function f (x) is approximated by the random
cosine model g (x) with ten noisy measurements. The minimum of g (x) is found and approximates the mini-
mum of f (x).

assuming a convex merit function (solid line), the DONE algorithm fits a random co-
sine model to the measurements (dashed line). With every new metric evaluation, the
DONE algorithm updates the random cosine model of the merit function, improving its
robustness with respect to noisy measurements.
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The purpose of this report is to demonstrate the DONE algorithm for in vivo reti-
nal imaging in humans with WFSL-AO OCT. Our choice of wavefront correcting element
was the multi-actuator adaptive lens (MAL), described and demonstrated for mouse reti-
nal imaging in [88]. An advantage of a transmissive adaptive lens is that it can be more
readily integrated with a wide range of existing imaging systems by placing it in existing
pupil planes, unlike a conventional deformable mirror, which requires optical setups
to relay the pupil plane with folded optical paths [88]. The MAL was recently demon-
strated for WFSL-AO OCT for human retinal imaging in a compact system using a CS
algorithm [235]. However, the CS algorithm was sensitive to motion during the optimiza-
tion process. Furthermore, the piezoelectric actuators in the MAL suffer from hysteresis,
which was compensated by adding additional steps into the CS optimization algorithm
in [235], increasing the time required for optimization.

This paper demonstrates that the DONE algorithm can be used for WFSL-AO OCT for
in vivo human retinal imaging using an adaptive lens as the wavefront corrector. When
performing in vivo imaging, high speeds are imperative for both image acquisition, as
well as computation of the optimization algorithm. To meet the necessity of high speed
imaging, we implemented a high speed DONE routine to calculate the random cosine
model between the successive OCT volume acquisitions of the optimization process. In
order to more accurately determine the wavefront aberration introduced by the lens, the
hysteresis effect of the actuators was characterized, and then suppressed during in vivo
optimization to increase the accuracy of the MAL without the presence of a wavefront
sensor for feedback. We present WFSL-AO OCT images acquired in human subjects,
that are not trained in visual fixation, and demonstrate successful aberration correction
even in the presence of motion artifact.

5.2. MATERIALS AND METHODS

The measurements were performed with a compact clinical WFSL-AO OCT system de-
scribed in [235] which contained two deformable transmissive optical elements. A dou-
ble buffered 200 kHz effective line rate swept source laser was used as the imaging light
source (1060 nm center wavelength, 80 nm FWHM bandwidth, Axsun, Inc.). The results
of a Zemax simulation of the lens-based sample arm, shown in Fig. 5.2, indicated that
the optical design was diffraction limited over a 1.5° scan range. The wavefront aberra-
tions of the optical configuration were experimentally measured to be ∼0.069 nm RMS,
which is below the Maréchal criterion for diffraction limited imaging (wavelength di-
vided by 14). The first deformable lens was a MAL with 18 actuators described in more
detail in [88], placed adjacent to the collimator. The MAL was used to adjust fine fo-
cus, the vertical and oblique astigmatisms, and either two comas or two trefoils. The
pupil plane was related to the second deformable lens, which was a variable focal length
lens (Varioptics ARCTIC 316-AR850) and was used to manually correct the bulk of the
defocus in the human eye. The beam size on the subject’s pupil had a Gaussian profile
with a 1/e2 diameter of 4.8 mm. The calculated 1/e2 waist was ∼2.4 µm based on Gaus-
sian beam calculations using the Gullstrand-LeGrand model of the human eye [236,237].
Real-time processing of the OCT data was done on a GPU as described in [238].
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Figure 5.2: (a) Zemax 3D simulation of the optical aberrations of the lens-based sample arm. (b) Spot diagram
for three wavelengths spanning the 80 nm bandwidth of the light source (green, 1020 nm; blue, 1060 nm; red,
1100 nm). The eye was modeled as a paraxial lens with 16 mm focal length in air.

5.2.1. HYSTERESIS CORRECTION OF THE MULTI-ACTUATOR ADAPTIVE

LENS
The MAL has 18 piezoelectric actuators that suffer from hysteresis. The hysteresis error
of a single actuator is approximately 14%. In order to achieve the maximum possible
accuracy in depicting optical wavefront aberrations with the MAL without using a wave-
front sensor, the hysteresis was characterized and compensated. Several methods exist
to correct hysteresis in deformable mirrors, for example [239–241]. This information was
used to linearize the response of the piezoelectric actuators in terms of the voltage in-
put and displacement. The method used for hysteresis correction directly approximated
the inverse hysteresis curve with a combination of a polynomial and a Prandtl-Ishlinskii
(PI) model [242]. The model used was formed by the discrete-time elementary backlash
operator and a polynomial:

Hr [S (ū)](t ) = max{S (ū(t ))− r,min{S (ū(t ))+ r, Hr [S (ū)](t −T )}}, (5.1)

where ū(t ) is the input, r is the threshold, a sampling time T is used, and the polynomial
S (ū(t )) = cm ūm(t )+ cm−1ūm−1(t )+·· ·+ c1ū1(t ). Assuming that the piezoelectric actua-
tors started from the de-energized state, the initial condition Hr [S(ū)](0) was set to zero.
The full model was then expressed as

φ̄−1(ū(t )) =
n∑

i=1
wi Hri [S (ū)](t ). (5.2)

The weights wi were fitted to match the model to the inverse hysteresis curve. The num-
ber of backlash operators was set to n = 40, the order of the polynomial was set to m = 7,
and the thresholds ri = 0.02(i − 1). We fitted the hysteresis according to the following
procedure. A Shack-Hartmann (SH) wavefront sensor was placed at a conjugate plane
of the MAL such that the influence matrix of the lens could be measured. Each of the
18 piezoelectric actuators of the MAL were then sequentially actuated and the change
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Measured y(t) = φ(u(t))

Measured y(t) = φ(φ̄−1 (ū(t)))

Figure 5.3: Hysteresis curve of piezoelectric actuator measured by Shack-Hartmann wavefront sensor before
and after linearization.

in wavefront error was recorded by the SH sensor. The procedure was repeated sepa-
rately for each actuator. Figure 5.3 shows a measured hysteresis curve identifying the
relationship y(t ) = φ(u(t )) between the input u(t ) of one actuator of the MAL and the
normalized change in the wavefront error y(t ). The inverse φ−1 of this measured hys-
teresis curve was approximated by φ̄−1, a PI model combined with a polynomial fit. As-
suming that the real input of the actuator was set to u(t ) = φ̄−1(ū(t )), then the model of
the inverse hysteresis function was used to derive an input for the actuator that resulted
in a linear relationship between the wavefront error and the linear desired input of the
actuator ū(t ), y(t ) = φ(φ̄−1(ū(t ))) ≈ ū(t ). The linear realization can be seen in Fig. 5.3.
Using our approach the maximum hysteresis error after the linearization was below 2%.
The procedure was repeated for all actuators. After linearization, the response of all ac-
tuators of the lens was considered to be linear. This resulted in an influence matrix that
is valid over the entire stroke of the MAL and turns the generation of arbitrary wavefront
aberrations into a linear problem [29]. The normalized Zernike coefficients depicted on
the MAL can be calculated as x = Mū, where M is derived from the influence matrix and
ū = [ū1, ū2, . . . , ū18]T is a vector of the desired linear inputs of all 18 actuators. The cal-
ibration for the linearization of the actuators was performed once and remained stable
for all of the following imaging experiments.

5.2.2. THE DONE ALGORITHM

For the application of WFSL-AO OCT to in vivo human retinal imaging, minimization of
the optimization time is essential to reduce the effects of motion artifact on the aberra-
tion correction process. In order to perform the DONE model computations in near real-
time, fast algorithms are necessary. We present an improved and faster implementation
of the DONE algorithm [172, 178] used to maximize the AO-OCT signal for human reti-
nal imaging. The biggest difference between the DONE algorithm reported in [172] and
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the current work is a faster implementation that allows the exploration and the bounds
for each aberration to be set independently. Essentially, DONE maintains a model based
on D random cosines of which the amplitudes are determined by a linear least squares
problem. With the least squares solver implementation reported in [172], the computa-
tional time per iteration of the DONE algorithm was ∼60 ms. For 70 iterations, the time
for computation alone would exceed 4 s. Hence, we changed the least squares routine of
the DONE algorithm into a recursive procedure, which resulted in a significant increase
in computational speed. With the implementation of the recursive routine, the time per
iteration of the DONE algorithm was reduced to ∼1 ms, which is smaller than the settling
time of the MAL.

In iteration n of DONE, we define an = cos(ωT xn +B), where the vector xn contains
the coefficients of the Zernike aberrations of the MAL and yn is the corresponding OCT
signal metric value. Moreover, the matrix ω consists of d by D independent and identi-
cally distributed (i.i.d) random frequencies drawn from a normal distribution with zero
mean and standard deviation σ and the column vector B consists of D i.i.d phase offsets
with values between 0 and 2π drawn from a uniform distribution. Also, the cos function
operates element-wise on a vector. We implemented the inverse QR algorithm [209, Sec.
21] for the recursive update, which is known to be especially numerically reliable. The
initial amplitudes of the cosines are set to c0 = 0 and the initial matrix P0 = λ−1ID×D ,
where λ is the regularization parameter and ID×D is an identity matrix with D columns.
We find a rotation matrix Θn that lower triangularizes the upper triangular matrix in
Eq. (5.3) below and generates a post-array with positive diagonal entries:[

1 aT
n P1/2

n−1
0 P1/2

n−1

]
Θn =

[
γ−1/2

n 0
gnγ

−1/2
n P1/2

n

]
. (5.3)

The rotation matrixΘn can be found by performing a QR decomposition of the transpose
of the matrix on the left hand side of (5.3), or by the procedure explained in [209, Sec. 21].
Then we update the amplitudes of the cosines cn as follows,

cn = cn−1 +gn(yn −aT
n cn−1). (5.4)

One OCT metric evaluation takes place per iteration and is used to update the model.
The model is then defined as g (x) = cT

n cos(ωT x+B). After the model update, the min-
imum or maximum of the model g (x) is found. At the end of each iteration the DONE
algorithm proposes new values of the Zernike coefficients xn+1 to add on the MAL and
the next measurement for the OCT signal metric yn+1 is taken. This process is repeated
until the algorithm has converged up to a pre-defined maximum number of iterations.

DONE can deal with arbitrary aberrations and is mainly limited by the correction
capabilities of the MAL. DONE does not have a predetermined search pattern and will
change the position of the measurements based on past metric evaluations. Therefore,
the final accuracy of the aberration correction of the DONE algorithm is not limited by
the step size as for example compared to the CS algorithm [172]. To improve the accuracy
of the lens, hysteresis compensation of the actuators in the lens was necessary. Also, by
choosing a small standard deviation for the frequencies of the cosines, the model will
serve as a low-pass filter for the metric evaluations, while other algorithms often take
the argument of the highest or lowest value of the evaluated metric, which can yield an
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outlier due to noise as shown in Fig. 5.1. In this way, DONE mitigates the noise effects of
motion on the merit function during the optimization.

5.2.3. HUMAN IMAGING AND ABERRATION CORRECTION

The performance of DONE in combination with the MAL was investigated by imaging
the retinal photoreceptor layer of 10 healthy volunteers with refractive errors of less than
4 diopters. The mean age of the volunteers was 28.3 ± 7.6 years, consisting of 2 females
and 8 males. The mean axial length and cylindrical refractive error of the research vol-
unteers (measured with an IOL Master 500) was 24.19 ± 0.94 mm and 1.042 ± 0.52 D
respectively. Human retinal imaging was performed in accordance with the research
ethics approved by the Office for Research Ethics (ORE) at Simon Fraser University, the
University of British Columbia, and Vancouver General Hospital. Written and informed
consent was obtained prior to imaging from all imaging subjects. The average power of
light incident on the cornea during imaging was limited to 900 µW. Imaging was initi-
ated with the eye dilated, and the subject seated comfortably with their head supported
by a chin and forehead rest. An additional benefit of the pupil dilation was that it caused
temporary paralysis of the eye’s ciliary muscles, preventing accommodation. Prior to the
optimization, the subject’s eye was aligned to the imaging system and an OCT volume
of 400 by 400 A-scans was acquired (pre-optimization). For the optimization procedure,
small volumes (C-scans) consisting of 8,000 A-scans (400 × 20) were acquired at a 200
kHz line rate, corresponding to a volume acquisition rate of ∼ 25 volumes per second. En
face images of the operated selected retinal layer were extracted from the OCT volume in
real-time during the optimization. The brightness of the en face OCT images was used as
the signal metric for the DONE algorithm [156]. The axial position of the retinal layers in
the OCT B-scan was dynamically tracked by the acquisition software [243] to account for
the axial motion of the subjects [155] and ensure the OCT signal metric was calculated
based on the same retinal layer throughout the optimization process. Different retinal
layers could be chosen to perform the optimization, as shown in [235]. In this work we
tracked and imaged the photoreceptors in the outer retina. The DONE algorithm was
configured to take 70 metric evaluations for the optimization, which corresponded to
a total time for the optimization (including actuation of the lens and processing of the
small C-scans) of ∼3 seconds. Immediately after the optimization a large volume of 400
by 400 A-scans was acquired for the final image (post-optimization).

For human eye imaging, the MAL was used to correct d = 5 Zernike aberrations,
namely, the defocus, two astigmatisms, and two comas. The empirically determined
parameters used for the DONE algorithm optimization in the human eye are described
in Table 5.1. Setting the number of cosines to D = 1,000 provided good results for at least
up to seven aberrations [172]. The standard deviation of the frequencies of the cosines
was σ= 1, which was set to match the frequency content in the transfer function of the
aberration [156]. The regularization parameterλ= 5 prevented over-fitting of the model.
The upper and lower bound vectors ub and lb, respectively, consisted of the individual
bounds for each aberration and matched the maximum capabilities of the lens with hys-
teresis correction. The vectorsση andσξ determined the amount of exploration done by
the DONE algorithm for each aberration. The exploration parameters define a trade-off
between the number of steps used exploring and the final accuracy, a larger value could
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result in faster convergence, while a smaller value could lead to a smaller wavefront er-
ror. The exploration factor for the comas was set lower than for the other aberrations
because the upper bounds of the comas are lower.

Table 5.1: Parameter values for the DONE algorithm (wavefront aberrations are defined in µm)

DONE
D 1000
σ 1
λ 5

ση,σξ [0.07,0.07,0.07,0.025,0.025]
ub [1.8,2,2,0.4,0.4]
lb −ub

5.3. RESULTS
The imaging performance of the DONE algorithm was compared against the hill climb-
ing CS algorithm used in previous work reported using the MAL [158, 235]. In order
to provide a comparison between the two optimization techniques, we imaged a tis-
sue phantom with no motion artifact. The DONE algorithm used for phantom imaging
was the same as that described for human imaging in the previous section. The CS algo-
rithm was implemented as in the previous work using the MAL [158, 235], using a static
look-up-table for the actuator voltages to generate a specific amplitude of a particular
Zernike mode. For each Zernike mode, 10 OCT volumes were acquired with the aberra-
tion applied to the MAL using coefficient values that were uniformly distributed across
the same range of upper and lower bounds (ub and lb) as used for the DONE algorithm
optimization. The coefficient resulting in the highest value of the merit function was
selected as the optimized value for that Zernike mode, and applied to the MAL. Subse-
quent Zernike modes used the optimized values of the preceding modes as the starting
point. Because the CS algorithm did not take into account the hysteresis of the lens, the
actuators were de-energized by applying a decreasing sinusoid to each of the actuators;
this ‘relax’ procedure required ∼100 ms. The CS was performed by relaxing the MAL, ap-
plying the previously found optimized values, and then stepping through look-up-table
of coefficients. For each Zernike mode, the procedure first searched the positive coeffi-
cient values, relaxed the MAL actuators, and then searched the negative coefficient val-
ues. A Shack-Hartmann wavefront sensor optically conjugated to the MAL was used to
measure the interaction of the Zernike modes while running the CS algorithm; the mea-
surements are presented in Visualization 1. The video results indicate that the Zernike
modes have been generated by the MAL with minimal cross-talk to the other modes with
the exception of coma, and even in that case the effects on the reconstructed wavefront
map were minimal. The results of the DONE and CS optimization on a phantom (lens
paper fibres) are presented in Fig. 5.4. The sequences of en face images acquired during
the optimization process for CS and DONE are presented in Visualization 2.
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(b)

(a) OFF DONECoordinate Search

Figure 5.4: Comparison of Coordinate Search (CS) and DONE optimization on a stationary sample. (a) Unop-
timized and final images of the phantom after aberration correction with the CS and DONE algorithms. (b)
Merit function recorded as a function of iteration for CS and DONE.
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5.3.1. IMAGING HUMAN PHOTORECEPTORS
Images of human retina acquired from the research subjects are presented before and
after optimization with the DONE algorithm. The images were processed identically. In
Fig. 5.5, a 450 µm by 450 µm en face image shows the retinal cones of a healthy subject
centered at approximately 3 degrees from the center of the fovea. The en face image was

Figure 5.5: The top row shows the OCT en face image of human photoreceptors before and after optimization
using 70 iterations of DONE. The bottom row shows the corresponding B-scans at the location shown in yellow
on the en face image. All scale bars are 100 µm.

extracted from 400 by 400 A-scans. In the pre-optimization image, the individual cones
are not resolvable. The contrast and structure of the cones is improved after the opti-
mization; a mosaic pattern can be visualized, and the cones are readily distinguished.
In Fig. 5.6, the OCT image metric values are plotted against the iteration number of the
DONE algorithm for the optimization used in Fig. 5.5. The fluctuation of the metric is
caused by noise, changing aberrations on the MAL and small movements of the subject’s
eye. The progress of the metric function during the optimization shows a large increase
after the optimization. The WFSL-AO OCT signal was maximized at the IS-OS junction
layer, which becomes approximately seven times higher after the optimization (from an
initial value of 553 to a final value of 3761). The total root mean square (RMS) wave-
front error of the corrected wavefront aberrations was 1.22 µm with an oblique astigma-
tism that had a RMS wavefront error of 0.53 µm. The WFSL-AO optimized images from
another representative research subject are presented in Visualization 3. Although the
focus was optimized at the photoreceptor layer, the full thickness of the retina can be vi-
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sualized in the OCT volume (post DONE optimization, single acquisition, not averaged).
The images presented in the previous figures were acquired on research subjects that

had relatively good fixation. Figure 5.7 shows the optimization of the OCT signal in a dif-
ferent subject, that is more representative of average to below-average fixation ability.
This data demonstrates DONE’s ability to function when the subject is not able to main-
tain a fixed gaze, as suggested from the large motion artifacts that are present both before
and after optimization. These motion artifacts, which appear as discontinuities in the en
face images, are caused by involuntary movements of the subject’s eye and are taken into
account by the DONE algorithm as noise. A similar improvement in image quality was
observed despite the presence of the motion artifacts. Here, the total RMS wavefront er-
ror of the corrected wavefront aberrations was 0.58 µm, including a vertical astigmatism
with a RMS wavefront error of −0.49 µm.

We investigated the utility of the DONE algorithm optimization for imaging wider
regions in the retina. In Figure 5.8, 12 WFSL-OCT volumes were acquired and manu-
ally aligned to generate a montage image. The different regions were acquired by asking
the research subject to change the fixation to calibrated points in the field of view. The
four regions immediately surrounding the central square are presented on a larger scale,
demonstrating that the cone photoreceptor mosaics are clearly resolved. Since the size
of the cone photoreceptors increases and the cone density decreases at larger eccentric-
ities, the remaining images are also readily resolved.

5.4. DISCUSSION
We demonstrated WFSL-AO OCT aberration correction using the DONE algorithm and
a multi-actuator adaptive lens (MAL) for human retinal imaging in vivo. This work rep-
resents the results of an international collaboration, and relative to our previous works,
a significant advance towards WFSL-AO OCT imaging with a MAL in a clinical setting. In
terms of the system hardware, the non-linearity and hysteresis of the MAL was removed.
Algorithmically, an improved version of the DONE algorithm was developed and imple-
mented to minimize the computational time required in between data points. In combi-
nation, the linearized e lens and the high-speed DONE algorithm were used to maximize
the WFSL-AO OCT signal from the human retina in different subjects. The linearization
of the hysteresis did not need to be repeated for the measurements of the ten subjects.
Physical changes in the lens may cause a slow variation of the hysteresis fit, however, our
results demonstrated that they remained valid during the entire period of data acquisi-
tion of all subjects. Similar to the linearization of the MAL actuators, the tuning of the
parameters of the DONE algorithm was done beforehand.

The results acquired on the tissue phantom in Fig. 5.4 demonstrated that the DONE
algorithm and the CS algorithm arrived to very similar results for the optimization of a
static sample. The CS algorithm did not have hysteresis compensation, and required a
’relax’ procedure, which added significantly to the optimization time. A key difference
between the CS and DONE algorithms is apparent in the graph of merit function versus
iteration number in Fig. 5.4 (b). The merit function measurements for the CS algorithm
showed significant variations when scanning through each Zernike mode. A small mo-
tion artifact affecting the CS early in the optimization process could have disastrous re-
sults on the overall result, causing the selection of an incorrect value for a Zernike mode
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Figure 5.6: Values of the metric function during the optimization with the DONE algorithm.

Figure 5.7: OCT en face image of human photoreceptor starting before and after optimization with 70 iterations
of DONE. All scale bars are 100 µm.
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Superior Nasal

InferiorTemporal

Figure 5.8: Mosaicked images of the retina acquired across a retina in a single imaging session. The position
on the retina was controlled by asking the subject to fixate on different calibrated points in the visual field.
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coefficient because of noisy outliers. In contrast, the merit function measurements for
the DONE algorithm show a general upward trend, and due to the model fitting on the
past measurements, is more resistant to the noise in the measurements.

Model based algorithms for WFSL-AO converge faster than stochastic approaches [148,
151, 172]; taking into account prior knowledge of the optical system to reduce the re-
quired number of measurements for the optimization [148, 151]. However, in retinal
OCT imaging, the use of a static model of the refractive elements of the eye, the cornea
and intraocular lens, is hampered by of significant variation among subjects. Using
information of past measurements in a dynamic model can increase the accuracy and
robustness of the optimization algorithm with respect to the noise level of the measure-
ments. In [156] we showed that all wavefront aberrations can be removed in a wavefront
sensorless manner by maximizing the signal intensity in an OCT system.

When comparing the images of the retina before and after optimization in Fig. 5.5,
the images after wavefront correction show more contrast. The increase of the image
quality metric shown in Fig. 5.6, which is the average WFSL-AO OCT signal at the IS-OS
junction layer, confirms an increase in the OCT signal by a factor seven and, hence, an
improvement in the signal to noise ratio. When comparing the images before and after
optimization in Fig. 5.5 and Fig. 5.7, the images after wavefront correction clearly show
that features such as the cones and blood vessels are sharper and have more contrast
after optimization. Additionally, it should be noted that not only the intensity of the
WFSL-AO OCT signal of the cones improves, but also the shape becomes more circular.

The DONE parameters are general for human retinal imaging with the MAL and the
number of aberrations corrected, and were kept constant for all the measurements re-
ported. The results demonstrate that the DONE algorithm has successfully corrected
aberrations during in vivo measurements, which resulted in improved WFSL-AO OCT
images. The circumstances under which the optimization algorithm has to perform have
become clearer from the data acquisition. In Fig. 5.7 motion artifacts show small lateral
movements of the eye within the C-scan. Throughout the optimization the sample is
continuously moving by similar amounts and the metric was evaluated at slightly dif-
ferent lateral locations. The DONE algorithm was exhibited to be robust with respect to
unexpected motion induced noise in the image quality metric. Further improvements to
the optimization algorithm can be made by filtering out measurements when the signal
disappears due to big movements of the eye. However, if relatively long lasting signal de-
viations that can no longer be considered noise occur, like blinking, the DONE algorithm
could fail to find an improved WFSL-AO OCT signal.

Mitigation of the motion artifact during optimization is essential for successful aber-
ration correction with WFSL-AO OCT. Eye movements, and blinking are more likely to
occur if the duration becomes too long, which in turn will deteriorate the performance
of the algorithm. However, as mentioned previously, the minimum number of iterations
permitted will also impact the performance. Active tracking of eye movements could re-
duce the movement of the image [244,245], but it would lead to additional hardware and
added costs for implementation. Fast optimization methods are imperative for applica-
tion of WFSL-AO aberration compensation to a large group of people. The rate limiting
factor of the present WFSL-AO OCT implementation was the time for acquisition of the
OCT volumes with a 200 kHz A-scan light source (nominally 40 ms). However, with a
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state-of-the-art 1.5 MHz Fourier domain mode locking source [246], the volume acqui-
sition time could be reduced to ∼5 ms. The second limiting factor of the current imple-
mentation was the settling time of the MAL, which was on the order of 5 ms. In this re-
port, we presented a recursive implementation of the DONE algorithm with a computa-
tional time of only one millisecond per iteration. For the number of iterations performed
in this report, and with incremental modifications to the system, the optimization speed
could be in the order of a second with the current set of search parameters for the DONE
algorithm.

The aberration correcting performance of DONE relative to the CS was previously
presented in [172]. For trained fixators with normal eyes, there were no significant dif-
ferences in the final image quality with DONE or with the CS algorithm. Empirically,
our experience was that the DONE algorithm was more reliable in terms of obtaining an
aberration correction for subjects with an average gaze fixation ability. This is empha-
sized in the graph of Fig. 5.6. The value of the metric function trends upwards even in
the presence of motion artifact induced noise in the measurements.

The number of iterations used in the DONE algorithm is a trade-off between the
amount of time available for searching, and the final aberration corrected performance.
Whenever considering more wavefront aberration modes to correct, more measure-
ments are needed. In contrast, the parameters of the DONE algorithm will remain
largely the same, even for more modes. The maximum stroke of the MAL limits the
maximum amplitudes of the modes, hence the exploration parameters and bounds for
each mode should be carefully chosen. Previously, DONE has successfully been used in
WFSL-AO OCT, light sheet microscopy, and simulations of an optical beam forming net-
work [172, 178, 247]. It was shown that DONE outperforms other algorithms in residual
wavefront error and convergence speed [172].

5.5. CONCLUSION
The improved and faster version of the DONE optimization algorithm was successfully
applied to maximize the OCT signal during in vivo measurements of the human eye. The
optical wavefront aberrations were corrected using a multi-actuator adaptive lens after
linearizing the hysteresis of the actuators to improve the accuracy. This paper demon-
strates that the improved version of the DONE algorithm succeeds in drastically improv-
ing the OCT signal while achieving a computational time of 1 ms per iteration, making it
applicable for many high speed applications in optics. We have shown that the improved
version of the DONE algorithm is fast enough for in vivo retinal imaging and robust to-
wards small involuntary movements of the eye which it considers as noise in the change
of the average OCT signal.
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APPLYING DONE TO S-PAM

Science is the great antidote to the poison of enthusiasm and superstition.

Adam Smith

We apply the DONE algorithm to a Smart Programmable Array Microscope (S-PAM) to
correct sample induced optical wavefront aberrations. The DONE algorithm was modified
to work with a sliding-window principle. In this way older measurements are forgotten so
that the algorithm can adapt to changing wavefront aberrations. We successfully remove
sample induced aberrations. Compared to the coordinate search optimization algorithm
the combination of S-PAM and DONE converges faster.

Parts of this chapter have been published in [248].
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6.1. INTRODUCTION
The spatial resolution of optical imaging systems is severely influenced by phase aberra-
tions [249]. Because of the spatial refractive index variations in biological samples wave-
front aberration are created when imaging inside tissue. In fluorescence microscopy, for
example, these wavefront aberrations in combination with the high numerical aperture
lead to a significant resolution loss. Particularly, in confocal microscopy, wavefront aber-
rations cause a loss in signal, because it is based on point-like excitation and detection
through a confocal pinhole. The confocal image of the excitation point spread function
becomes wider than the confocal pinhole, which results in a reduction of the measured
fluorescence signal. Adaptive optics (AO) can be used to correct these aberrations [36].

Two approaches for aberration corrections are common, namely direct sensing of
the wavefront [250] and iterative optimization of an image metric [170]. In the latter
case, a metric is computed of the image and an optimization algorithm is applied to
find the wavefront correction that optimizes the metric. The image metrics are typically
based on fluorescence intensity, image sharpness, or spatial frequencies. This approach
is easily applicable on most samples, but requires the acquisition of multiple images
for the optimization. Because of the number of aberrations and the low frame rate of
traditional confocal microscopes, the optimization can require several seconds or min-
utes. This correction time precludes dynamic correction of time dependent aberrations,
such as those introduced during the acquisition of a stack of images, or by time depen-
dent changes in the sample itself [251]. Moreover, it reduces the image quality due to
the effect of photobleaching, which reduces the fluorescence over time, due to the light
exposure during the optimization procedure.

Here, we present a Smart Programmable Array Microscope (S-PAM), an approach to
AO in optical sectioning fluorescence microscopy. Instead of implementing AO as an
add-on to traditional optical sectioning setups, a dedicated system was realized in order
to achieve comparable image quality, however, with substantially faster aberration cor-
rection. The system uses rejected out of focus light from confocal apertures, to compute
a performance metric at high frequency during a scanning procedure. This allows for
optimization with the DONE algorithm at a much higher rate than the imaging speed of
the system.

6.2. S-PAM
For high speed dynamic correction of aberrations in confocal microscopy, without a
wavefront sensor, it is a prerequisite that the performance metric can be estimated at
a frequency higher than the microscope frame rate. Since most optical sectioning tech-
niques rely on sample scanning, the metric should be independent from the dynamics
of the image scanning procedure. This is practically impossible in a traditional, single
beam, laser scanning confocal microscope; as the only signal acquired, namely the flu-
orescence intensity, varies throughout the field of view. Consequently, a metric calcu-
lated over the full image scan is typically used, limiting the optimization frequency to
the imaging frame rate. If the fluorescence signal is acquired simultaneously in multiple
positions that are uniformly distributed throughout the field of view, the inhomogeneity
of the sample is averaged out, and a metric can be computed faster than the full frame
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time.
While never used for AO applications, the possibility of achieving optical sectioning

in fluorescence imaging through the use of a digital micromirror device (DMD) [252]
was first proven in 1998 [253, 254], under the name of Programmable Array Microscope
(PAM).

Figure 6.1: A simplified scheme of the S-PAM setup missing a 4f system between the deformable mirror (DM)
and the objective (O). Blue lines are the excitation light, green lines are the fluorescence light, orange lines are
the optical path shared by excitation and fluorescence light.
LED – light source, DC - Dichroic cube, DMD – Micromirror device, IC – Imaging camera, OC – Optimization
camera.

6.3. METHODS
We built a Smart Programmable Array Microscope (S-PAM) as schematically shown in
Fig. 6.1, in which a standard PAM is modified with a high speed camera detecting out
of focus fluorescence, and with a deformable mirror in the pupil plane, used to correct
aberrations in the system. The micromirrors of the DMD act as an array of tiny pinholes
and hence, the set-up is essentially an adaptive, multi-aperture confocal microscope.

A DMD is a digitally controlled optical device, consisting of a bi-dimensional array
of reflective elements, which can be individually tilted in a binary fashion at an angle of
+α (“ON”) or −α (“OFF”). In S-PAM, the DMD is located in an image plane in the optical
path shared by excitation and fluorescence light, forming an angle +2α between the nor-
mal of the mirror and the optical axis of the excitation light. In this position, the DMD
acts as a binary intensity modulator, deflecting excitation light in the direction of the ob-
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jective for elements that are “ON”, and out of the system, at an angle −4α, if elements are
“OFF”. As such, the micromirrors act as point sources for excitation light, and as con-
jugated pinholes for the fluorescence light. S-PAM measures the distribution of signal
intensity in the proximity of the confocal excitation spot during a parallelized scanning
procedure with multiple programmable apertures. Hence, a performance metric related
to the shape of the excitation spots can be used. An optically sectioned image can be ac-
quired with a pixelated detector, if all micromirrors turn “ON” for an equally long period.
The DMD is used to detect the out of focus fluorescence light rejected by the pinholes
in a secondary imaging arm (optimization arm) at an angle -2α from the DMD surface.
The optimization camera can operate at the DMD update rate and detects no light from
the locations of the “ON” pixels, but only captures the out of focus light rejected by the
“OFF” pixels. Even in a diffraction limited confocal setup with the “ON” pixels organized
in clusters of size equal to the Airy diameter of the system, part of the fluorescent light
is reflected by the “OFF” mirrors adjacent to the “ON” clusters due to diffraction. In the
presence of optical aberrations, the area of fluorescence light on the adjacent "OFF" mir-
rors becomes wider. The width of this area is used as an image quality metric for wave-
front sensorless adaptive optics (WFSL-AO). Multiple confocal apertures or pinholes are
generated with the DMD concurrently and are used to calculate the metric at different
lateral points in the sample simultaneously.

The optimization procedure minimizes the second moment of the fluorescence in-
tensity distribution at each of the confocal aperture images reflected from the DMD on
the optimization camera. The metric is computed as the average second moment of the
fluorescence distribution along all visible confocal apertures in the image. To perform
the optimization of the metric the DONE algorithm is used [172, 178]. The DONE algo-
rithm was run with a total of D = 600 cosine functions, and the model was fit on a set of
the last 50 measurements of the metric. The optimization procedure is performed on the
Zernike coefficients, excluding piston, tip, tilt and defocus, up to the 5th order, for a total
of 18 degrees of freedom. The S-PAM aberration correction with DONE is compared to a
standard confocal microscopy imaged-based coordinate search optimization.

For this application the DONE algorithm is modified to run indefinitely and correct
aberrations with slow dynamics. A sliding-window principle is implemented in the re-
cursive least squares (RLS) procedure of the DONE algorithm to only take the last N
function or metric evaluations into account. The oldest measurement is removed by
performing a RLS downdate and the latest measurement is added with a RLS update,
ensuring that at all times a maximum of N measurements are taken into account for the
fit of the random Fourier expansion. The RLS downdate is similar to the RLS update, the
difference is that it removes a measurement from the current model. In this way DONE
adapts to dynamic variations in the aberrations that are varying at a slower rate than the
convergence speed of the algorithm. In our implementation of the DONE algorithm the
computation of the metric and one iteration take a time shorter than the exposure time
of the optimization camera, which runs at 135 Hz. The measurements and the model of
DONE are up- and downdated at this rate of 135 Hz and the model is based on the last
50 measurements. Therefore, the model updates its entire set of measurements at a rate
of 2.7 Hz and slow changes in the 18 Zernike aberrations are taken into account.
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6.4. RESULTS AND DISCUSSION
Wavefront sensorless aberration correction tests were performed on a 16 µm thick tissue
slice (Fluocells prepared slide #3, mouse kidney with Alexa Fluor 488, Invitrogen, U.S.A.).
While the tissue slice is thin, our experiments show that some sample induced aberra-
tions are present, and the use of AO can increase the image quality. The convergence of
DONE with S-PAM is faster than the traditional image based method as shown in Fig. 6.2.
There are two reasons for the fast convergence observed in Fig. 6.2(a). The first reason
is that S-PAM does not have to wait for a full image to calculate a value for the metric.
The second reason is that DONE converges faster than the coordinate search algorithm
as it searches more efficiently for the optimum, as previously demonstrated in [172]. In
less than 8 seconds, 18 Zernike aberrations have been corrected by DONE. The images
after the optimization with DONE in Fig. 6.2(c) are compared with the image before op-
timization in Fig. 6.2(a) and the image after a more than 400 s long optimization with
the CS algorithm in Fig. 6.2(b). The images optimized with DONE in Fig. 6.2(c) have
more contrast and are sharper than the other two images. In Fig. 6.3 a larger field of view
shows the sample before and after optimization with the DONE algorithm. There is a
clear improvement of the image quality and contrast after the optimization with DONE.

6.5. CONCLUSION
In this work, we have shown the successful removal of sample aberrations using the
DONE algorithm in S-PAM. At an update rate of 135 Hz, DONE optimizes the image
quality of S-PAM images by correcting for 18 Zernike aberrations. DONE succeeds in
correcting 18 Zernike aberrations in less than 8 seconds.
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Figure 6.2: (a) Convergence speed for an artificially induced wide amplitude aberration. A traditional coordi-
nate search procedure, performed on sharpness data of the imaging camera, (dashed line) is compared to the
result of S-PAM optimization with DONE (solid line). Image details (b) for uncorrected image, (c) for the image
after coordinate search image optimization, and (d) for S-PAM optimization.

Figure 6.3: Sample (a) without aberration correction, and (b) after optimization with DONE.



7
CONCLUSIONS

Conclusions and recommendations are given for the optical coherence tomography aber-
ration model, the DONE algorithm and the application of DONE in wavefront sensorless
aberration correction. Furthermore, the current limitations of the contributions are pre-
sented and further research questions that address the current limitations are proposed.
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7.1. CONCLUSIONS
The conclusions in this thesis are divided into three different subjects: modeling aberra-
tions in optical coherence tomography, the DONE algorithm, and sensorless aberration
correction with DONE.

7.1.1. MODELING ABERRATIONS IN OPTICAL COHERENCE TOMOGRAPHY
Two OCT transfer functions, modeling the effect of lateral aberrations for a mirror and
a scattering medium on the OCT signal, have been derived using Fresnel propagation,
overlap integrals and Gaussian fields. This is the first time that various wavefront aber-
rations other than the defocus have been modeled for a mirror and a scattering medium
in single-mode fiber based OCT. Measurements on a mirror and a scattering medium
with an AO-OCT system closely resembled the calculated transfer functions. This leads
us to conclude that the proposed models correctly predict the effect of aberrations in
OCT. Furthermore, a one-step defocus correction method has been derived based on
these models and was applied successfully. The pseudo-convex nature predicted by
the theoretical transfer function is validated by the 100% convergence success of a hill-
climbing algorithm both numerically and experimentally. The OCT aberrations models
were then used for the development of a better optimization algorithm for wavefront
sensorless adaptive optics (WFSL-AO) in OCT. When performing OCT imaging on the
human retina, many parameters of the OCT transfer function are not known. To make
the WFSL-AO algorithm robust towards this uncertainty, it has to be able to find the op-
timum when the parameters of the transfer function are unknown. From the measured
transfer functions it is concluded that the optimization algorithm has to accurately de-
termine large aberrations in OCT, while performing in the presence of extremely noisy
signals. The combination of an unknown transfer function and the noise in the OCT
measurements have led to the development of the DONE algorithm.

7.1.2. THE DONE ALGORITHM
We presented the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm
that is used to find the minimum of an unknown function using measurements that are
costly to obtain and corrupted by noise. DONE maintains a surrogate model in the form
of a random Fourier expansion (RFE), which is updated whenever a new measurement
is available. After updating the surrogate function, it finds the minimizing argument
of this surrogate function with standard derivative-based methods. The next measure-
ment is chosen near the last optimum and this strategy allows the DONE algorithm to
measure only in regions of interest, reducing the overall number of measurements re-
quired. DONE is comparable to Bayesian optimization algorithms. Both methods rely
on the fitting of a surrogate function to the measured data and, subsequently, use other
well-known optimization methods to find the optimum of the surrogate function. How-
ever, DONE has the distinctive advantage that the computational complexity of one it-
eration does not grow with the number of measurements that have already been taken.
As a theoretical result, we have shown that a RFE surrogate function that is trained by
solving a linear least squares can approximate square integrable functions arbitrarily
well. Tikhonov regularization is used in this linear least squares problem and an up-
per bound on the regularization parameter was given. Additionally, a more practical,
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well-performing probability distribution for the randomly chosen frequencies of the RFE
model was given. By choosing the parameters of the RFE surrogate function of the DONE
algorithm in this way, the performance and accuracy of DONE improves. Throughout
the thesis, we have applied the DONE algorithm to a benchmark problem and to three
simulated applications: optical coherence tomography, optical beam-forming network
tuning, and a robot arm. We compared the algorithm to BayesOpt, a Bayesian optimiza-
tion library. From the numerical simulations, we conclude that the DONE algorithm
gave comparable or more accurate results on these applications while being quicker
than the Bayesian optimization algorithm, due to the fixed computational complexity
per iteration. We have demonstrated that DONE is a powerful optimization algorithm
for smooth noisy and costly unknown objective functions with up to 150 input dimen-
sions. After successful application of DONE to the numerical simulations, DONE was
applied to experimental optical applications.

7.1.3. SENSORLESS ABERRATION CORRECTION WITH DONE

We have implemented the DONE algorithm in WFSL-AO-OCT imaging and have shown
a significantly improved image quality on a roll of Scotch tape and a biological sample.
The experiments also showed that the DONE algorithm succeeds in maximizing a noisy
signal with high accuracy even for large aberrations. The performance of DONE was
compared experimentally to two different methods for WFSL-AO in OCT. DONE outper-
formed both NEWUOA and a coordinate search algorithm in terms of final root mean
square wavefront error and it converged up to ten times quicker than the coordinate
search algorithm.

Subsequently, the DONE optimization algorithm was successfully applied to opti-
mize the OCT signal and image quality during in vivo measurements of the human eye.
The optical wavefront aberrations were corrected using a multi-actuator deformable
lens after linearizing the hysteresis of the actuators. We demonstrated that the DONE
algorithm succeeded in drastically improving the OCT signal. The computation time
was less than 1 ms per iteration, showing that it is suitable for high speed applications in
optics. Throughout the experiments the convergence of the DONE algorithm was found
to be robust with respect to small involuntary movements of the eye during the opti-
mization.

We have successfully applied DONE to S-PAM, a confocal microscopy technique. At
a measurement rate of 135 Hz, DONE optimized the image quality of S-PAM images by
simultaneously correcting 18 Zernike aberrations. DONE succeeded in correcting these
18 aberrations in less than 8 seconds. The application of DONE to S-PAM shows but the
tip of the iceberg of all the applications DONE can be used for.

To conclude, the DONE algorithm is a powerful tool that can be used in various appli-
cations. For all applications considered, DONE has outperformed other derivative-free
algorithms in terms of final convergence error. Furthermore, it should be stressed that
DONE was quicker than the BayesOpt optimization library, due to the fixed computa-
tional complexity per iteration.
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7.2. RECOMMENDATIONS FOR FUTURE WORK
In Chapter 2 we developed models for aberrations in optical coherence tomography.
However, the validity of the aberration model has to be verified under more extreme
conditions such as an increased numerical aperture or larger wavefront aberrations. In
future work, improved models for scattering in OCT, such as presented in [255], could
be combined with a model for aberrations. A desirable goal would be the creation of a
full simulation of an OCT system that includes both wavefront aberrations and the effect
of scattering in tissue on the wavefront. This would help in the development of special-
ized post-processing WFSL-AO-OCT aberration correction methods, such as described
in [103], because in that case a full AO-OCT setup is no longer needed to test the algo-
rithms. Additionally, advanced classification algorithms for diagnosis, functional imag-
ing methods and their performance could be simulated in the presence of aberrations.

Throughout this thesis we have described the use of various adaptive and deformable
components. Part of the motivation for this thesis was to find a cheaper wavefront cor-
rection device for retinal OCT imaging. However, an ideal, affordable and compact de-
formable device for correcting most wavefront aberrations in OCT introduced by the
human eye does not yet exist when using a large pupil. For retinal imaging, deformable
mirrors require lots of stroke and actuators to correct all aberrations. Nowadays, these
deformable mirrors are still quite expensive and require a lot of optical path length in the
imaging system. On the other hand, deformable lenses are still limited by their degrees
of freedom or the maximum aberrations they can introduce. The past development of
deformable mirrors, deformable lenses and their current prices show great promise for
the future. It is recommended to research the tunable lens in more detail and improve
on its number of degrees of freedom and magnitude of the aberration correction. In
the near future, a more suitable affordable commercial WFSL-AO-OCT device based on
these lenses can become available.

A limitation of DONE algorithm is that the computational complexity of the algo-
rithm increases quadratically with the number of random Fourier basis functions. For
higher dimensional optimization problems this can become an obstacle, as many basis
functions are often required to accurately approximate the cost function. To improve
the computation time for larger scale applications of DONE we recommend the use of
graphics processing unit (GPU), a field-programmable gate array (FPGA), or another
dedicated processing unit. Many computational aspects of DONE, such as the linear
least squares procedure to fit the RFE model, can benefit from parallel computations.

In Chapter 6 an option to use the sliding window principle was added to the DONE
algorithm such that it can cope with dynamic optical aberrations as applied to the S-
PAM microscope. However, it should be further studied how fast and how well DONE
with a sliding window can track changing aberrations. For many imaging applications,
such as astronomy, dynamic aberrations are a problem and the system has to be able
to correct these aberrations at a certain frequency rate. With the sliding window princi-
ple added to DONE, the first step towards these applications has been taken, but further
research is required to determine what the maximum rate is at which DONE can track
dynamic aberrations, such as turbulence. The tracking speed will of course depend on
the computation time of DONE, but also on the time needed for one metric evaluation.
Another open research question is whether the sliding window leads to quicker local op-
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timization convergence for larger scale problems in contrast with the situation in which
all the measurements are used in the model.

DONE has successfully been applied to sensorless wavefront aberration correction
in vivo, but large movements of the patients disrupt any optimization algorithm. Hence,
improvements are possible for in vivo imaging. These improvements are not related
to the DONE optimization algorithm but more to the removal of measurements during
the movement of patients or animal subjects. Fault detection mechanisms can be im-
plemented to reject false measurements and if necessary automatically restart the op-
timization procedure if too little static measurements are acquired. If the eye moves or
blinks during the optimization such that the retina is no longer imaged, this faulty mea-
surement should not be passed to the optimization algorithm as a valid measurement
or metric evaluation. Furthermore, fault detection mechanisms can be built in together
with a segmentation procedure or layer tracking when the algorithm occasionally fails to
calculate the metric at the correct layer due to movement and noisy measurements. This
kind of fault detection can be added as a software extension to the (DONE) optimiza-
tion algorithm, however, hardware based solutions to compensate for the eye movement
such as eye trackers also exist.

In addition to wavefront sensorless aberration correction, the DONE algorithm has
been applied to simulated data for several applications, such as the tuning of an OBFN
network, and the positioning of a robot arm. Furthermore, DONE has been applied to
applications such as aberration correction in S-PAM, and the extension of the field of
view of a light-sheet microscope [247]. DONE is an optimization algorithm designed
to optimize arbitrary derivative-free, noisy and costly functions online. Hence, DONE
could also be used in other applications such as WFSL-AO in a scanning laser ophthal-
moscope, astronomy and other types of microscopy, such as two-photon microscopy,
stochastic optical reconstruction microscopy (STORM) or stimulated emission deple-
tion (STED) microscopy. However, DONE is not limited to correcting aberrations in op-
tical beams as demonstrated with the robot arm example. The limitations of the DONE
algorithm still have to be further studied in terms of global convergence with many
local minima and discontinuous functions. Similar to Bayesian optimization that has
been applied to solve a wide range of problems [136], automatic machine learning tool-
boxes [187], robotics [256], sensor networks [257], interactive animation [258], big data
analysis [259] etc. DONE could be applied to these problems as well. Therefore, another
recommendation of this thesis is to uncover other applications of DONE.
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SUMMARY

Optical coherence tomography (OCT) is a technique for non-invasive imaging based on
low coherence interferometry. Its main application is found in ophthalmology, where it
is used for 3D in vivo imaging of the cornea and the retina. OCT has evolved over the past
decade as one of the most important ancillary tests in ophthalmic practice, providing
great diagnostic value for disease screening and monitoring. In retinal OCT imaging, the
lateral resolution is not determined by the pupil size, but instead it is limited by optical
wavefront aberrations of the cornea and lens. These aberrations reduce the OCT image
resolution and lower the signal to noise ratio. To obtain high quality OCT images the
optical aberrations can be removed using adaptive optics (AO).

In general, AO consists of an adaptive optical element and a wavefront sensor. The
adaptive element, such as a deformable mirror, is used to reshape the wavefront and
remove the undesired aberrations. The wavefront sensor measures the aberrations by
reconstructing the phase of the wavefront, which is used to determine the correction on
the wavefront applied by the deformable mirror. However, the use of a wavefront sensor
has some disadvantages. It requires light being directed out of the imaging path onto
the wavefront sensor. This leads to a loss of signal in the imaging path and can result in
non-common optical path errors in the aberrations estimation procedure. Additionally,
the use of a deformable mirror and a wavefront sensor leads to a bulky and expensive
OCT setup.

The work presented in this thesis has the goal of reducing the cost and bulkiness of an
AO-OCT system. First, we investigate the influence of optical wavefront aberrations to
the OCT signal strength. The establishment of the relation between aberrations and the
OCT signal strength is key to estimating and correcting the aberrations based on single
OCT scans. By using Fresnel optical wave propagation and determining the fiber cou-
pling efficiency, we find that the OCT transfer function, i.e. the function that expresses
the relation between the aberrations and OCT signal strength, is quasi-convex. We de-
termine both analytically and experimentally the transfer function for both reflective
and scattering media, such as a mirror and Scotch tape sample. Additionally, if the OCT
system and its optical properties are well-known we demonstrate a method to correct a
defocus aberration in one step.

Second, we use the OCT transfer function to develop and determine an efficient
wavefront sensorless (WFSL) AO optimization procedure. WFSL-AO methods aim to
correct the aberrations without using a wavefront sensor, but instead base the deter-
mination of the wavefront on the imaging signal itself. This eliminates the use of the
wavefront sensor, its extra cost and its disadvantages from an AO-OCT setup. To keep up
with the OCT imaging rate, which is of the order of several tens of kHz, the algorithm has
to be computationally efficient. Furthermore, there are no analytic derivatives available
for the optimization and the OCT signal is very noisy. Finally, the derivative-free op-
timization algorithm also has to be able to determine the aberrations accurately when
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dealing with a minimum number of noisy measurements. We developed the Data-based
Online Nonlinear extremum-seeker (DONE) algorithm. Every iteration, the DONE algo-
rithm updates a surrogate function, which is based on random Fourier expansions (RFE)
of the OCT transfer function, with a new OCT signal measurement. The optimum of
the RFE surrogate function is then found with a well-known (quasi-Newton) optimiza-
tion method. We demonstrate the effectiveness of the DONE algorithm compared to
other optimization algorithms for WFSL-AO on biological and non-biological samples.
We conclude that DONE has a smaller convergence error, while maintaining similar or
faster convergence speeds compared to the other algorithms.

Third, we demonstrate a fully functional WFSL-AO OCT setup for retinal imaging.
We use a state-of-the-art deformable lens with 18 actuators, rather than a deformable
mirror, which leads to a smaller and more integrated WFSL-AO setup. The WFSL-AO
OCT setup is successfully used for in vivo retinal OCT imaging and demonstrates that the
DONE algorithm can remove the ocular wavefront aberrations with the deformable lens
during in vivo OCT imaging. By developing a new algorithm and exploring the options
for adaptive components, we have succeeded in retinal WFSL-AO OCT.

In a broader perspective, we show that the DONE algorithm is suitable for other
applications than WFSL-AO OCT. We demonstrate that the DONE derivative-free opti-
mization algorithm is robust towards noisy measurements for applications in robotics,
microscopy and optical beam forming networks.



SAMENVATTING

Optische coherentie tomografie (OCT) is een techniek voor niet-invasieve beeldvor-
ming, gebaseerd op laag coherente interferometrie. De hoofdtoepassing van OCT is
in de oogheelkunde, waar het wordt gebruikt voor 3D in vivo beeldvorming van het
hoornvlies en het netvlies. OCT heeft zich het afgelopen decennium tot één van de
meest belangrijke aanvullende tests getoond voor de oogheelkundige praktijk, waar
het een toegevoegde waarde heeft bij het maken van diagnoses voor het screenen van
ziektes. In OCT beeldvorming van het netvlies wordt de laterale resolutie gelimiteerd
door optische golffront aberraties. Deze aberraties verslechteren de resolutie en de
signaal-ruisverhouding van OCT beelden aanzienlijk. Om beelden van betere kwaliteit
te maken kunnen de aberraties verwijderd worden met behulp van adaptieve optiek
(AO).

In het algemeen bestaat AO uit een adaptief element en een golffrontsensor. Het
adaptieve element, zoals een vervormbare spiegel, wordt gebruikt om het golffront te
vervormen en verwijdert de ongewenste aberraties. De golffrontsensor meet de aberra-
ties door de fase van het golffront te reconstrueren en wordt gebruikt om de correctie
van het golffront die door de deformeerbare spiegel wordt geactueerd te bepalen. De
golffrontsensor heeft een aantal nadelen. De sensor vereist licht dat uit het OCT beeld-
vormingspad wordt gehaald en wordt gemeten door de golffrontsensor. Dit leidt tot een
verlies van signaal in het beeldvormingspad en kan leiden tot niet-gemeenschappelijke
fouten in het optische pad die de schattingsmethode voor de aberraties bemoeilijken.
Bovendien kan het gebruik van een vervormbare spiegel en een golffrontsensor leiden
tot een omvangrijke en dure OCT setup.

Het werk dat gepresenteerd wordt in deze dissertatie heeft het doel om de kosten en
omvang van een AO-OCT systeem te reduceren. Ten eerste onderzoeken we de invloed
van optische golffrontaberraties op de OCT signaalsterkte. Het vinden van een relatie
tussen aberraties en de OCT signaalsterkte is de sleutel tot het schatten en het corri-
geren van de aberraties op basis van enkele OCT scans. Door het gebruik van Fresnel
propagatie en het bepalen van de glasvezel-koppelingsefficiëntie, vinden we dat de OCT
overdrachtsfunctie, d.w.z. de functie die de invloed van aberraties op het OCT signaal
uitdrukt, een quasi-convexe functie is. We bepalen, zowel analytisch als experimenteel,
de overdrachtsfunctie voor zowel reflectieve en verstrooiende media, zoals een spiegel
en Scotch tape monster. Bovendien, als het OCT systeem en zijn optische eigenschappen
bekend zijn, demonstreren wij een methode voor om een defocus aberratie te corrigeren
in één stap.

Ten tweede gebruiken we de overdrachtsfunctie voor het ontwikkelen en het bepa-
len van een efficiënte golffrontsensorloze (WFSL) AO optimalisatie procedure. WFSL-
AO methoden hebben als doel de aberraties te corrigeren zonder het gebruik van een
golffrontsensor en baseren de bepaling van het golffront enkel op het af te beelden sig-
naal zelf. Dit elimineert het gebruik van een golffrontsensor, de bijkomende kosten en
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de nadelen van het gebruik van een golffrontsensor in een AO-OCT setup. Om de OCT
beeldvormingsnelheid, die in de orde van enkele tientallen kHz is, bij te kunnen houden,
moet het algoritme computationeel efficiënt zijn. Daarnaast zijn er geen analytische af-
geleide beschikbaar voor de optimalisatie en zit er ruis op het OCT signaal. Het afgeleide
vrije optimalisatiealgoritme moet ook in staat zijn om de aberraties nauwkeurig te bepa-
len uit een minimaal aantal metingen met ruis. Wij stellen het op gegevens gebaseerde
online niet-lineaire extremum vinder (DONE) algoritme voor. In elke iteratie werkt het
DONE algoritme een surrogaat functie, die gebaseerd is op willekeurige Fourier expan-
sies (RFE), bij met een nieuwe meting van het OCT signaal. Het optimum van de RFE
surrogaat functie wordt dan gevonden met een bekende (quasi-Newton) optimalisatie
methode. We tonen de effectiviteit van het DONE algoritme aan op biologische en niet-
biologische monsters en vergelijken verschillende algoritmen voor WFSL-AO optimali-
satie. We concluderen dat DONE een kleinere convergentiefout behaalt en een soortge-
lijke of snellere convergentie snelheid behoudt in vergelijking met de andere algoritmen.

Ten derde, richten we ons op een volledig functionele WFSL-AO OCT setup voor
beeldvorming van het netvlies. We maken gebruik van een state-of-the-art vervorm-
bare lens met 18 actuators, in plaats van een vervormbare spiegel. Het gebruik van de
vervormbare lens kan leiden tot kleinere WFSL AO-opstellingen. Daarnaast gebruiken
we de WFSL-AO OCT setup voor in vivo OCT beeldvorming van het netvlies. De demon-
stratie toont het succes van het DONE algoritme voor het verwijderen van de oculaire
golffront aberraties met de vervormbare lens tijdens in vivo beeldvorming. Door het
ontwikkelen van een nieuw algoritme en het verkennen van de mogelijkheden voor de
adaptieve componenten, zijn we erin geslaagd het in vivo netvlies in beeld te brengen
met WFSL-AO OCT.

In een breder perspectief tonen wij aan dat het DONE algoritme ook geschikt is voor
andere toepassingen dan WFSL-AO OCT. Het is een optimalisatiealgoritme dat robuust
is met betrekking tot metingen met ruis en is geschikt voor applicaties in robotica, mi-
croscopie, en optische bundelvormingsnetwerken.



LIST OF PUBLICATIONS

JOURNAL PAPERS
[1] H. R. G. W. Verstraete, B. Cense, R. Bilderbeek, M. Verhaegen, and J. Kalkman,

“Towards model-based adaptive optics optical coherence tomography,” Opt.
Express, vol. 22, no. 26, pp. 32 406–32 418, Dec 2014. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-26-32406

[2] H. R. G. W. Verstraete, S. Wahls, J. Kalkman, and M. Verhaegen, “Model-based
sensor-less wavefront aberration correction in optical coherence tomography,”
Opt. Lett., vol. 40, no. 24, pp. 5722–5725, Dec 2015. [Online]. Available:
http://ol.osa.org/abstract.cfm?URI=ol-40-24-5722

[3] H. R. G. W. Verstraete, L. Bliek, M. Verhaegen, and S. Wahls, “Online optimiza-
tion with costly and noisy measurements using random Fourier expansions,” IEEE
Trans. Neural Netw. Learn. Syst. [Accepted], 2016.

[4] H. R. G. W. Verstraete, M. Heisler, M. J. Ju, D. Wahl, L. Bliek, J. Kalkman, S. Bonora,
M. Sarunic, Y. Jian, and M. Verhaegen, “In vivo wavefront sensorless adaptive lens
OCT with the DONE algorithm,” [Submitted], 2016.

[5] P. Pozzi, D. Wilding, O. Soloviev, H. R. G. W. Verstraete, L. Bliek, G. Vdovin, and
M. Verhaegen, “Real time wavefront sensorless aberration correction in digital mi-
cromirror based confocal microscopy,” Opt. Express [Accepted], 2016.

CONFERENCE PAPERS
[1] H. R. G. W. Verstraete, M. Verhaegen, and J. Kalkman, “Modeling the effect of

wave-front aberrations in fiber-based scanning optical microscopy,” in Imaging
and Applied Optics. Optical Society of America, 2013, p. JTu4A.13. [Online].
Available: http://www.opticsinfobase.org/abstract.cfm?URI=COSI-2013-JTu4A.13

[2] H. R. G. W. Verstraete, S. Wahls, J. Kalkman, and M. Verhaegen,
“Numerical evaluation of advanced optimization algorithms for wave-
front aberration correction in OCT,” in Imaging and Applied Optics
2015. Optical Society of America, 2015, p. AOM3F.3. [Online]. Available:
http://www.osapublishing.org/abstract.cfm?URI=AOMS-2015-AOM3F.3

[3] H. R. G. W. Verstraete, S. Wahls, J. Kalkman, and M. Verhaegen, ‘Wavefront Sensor-
less Algorithms for Wavefront Correction in Model-Based OCT,” in AOIM Padova.
Adaptive Optics for Industry and Medicine , 2015.

137

http://www.opticsexpress.org/abstract.cfm?URI=oe-22-26-32406
http://ol.osa.org/abstract.cfm?URI=ol-40-24-5722
http://www.opticsinfobase.org/abstract.cfm?URI=COSI-2013-JTu4A.13
http://www.osapublishing.org/abstract.cfm?URI=AOMS-2015-AOM3F.3


138 CONFERENCE PAPERS

[4] H. R. G. W. Verstraete, R. Bilderbeek, J. Kalkman, and M. Verhaegen, “Feedforward
Operation of a Lens Setup for Large Defocus and Astigmatism Correction,” in AOIM
Padova. Adaptive Optics for Industry and Medicine , 2015.

[5] H. R. G. W. Verstraete, M. Almasian, P. Pozzi, R. Bilderbeek, J. Kalkman, D. J. Faber,
and M. Verhaegen, “Feedforward operation of a lens setup for large defocus and
astigmatism correction,” in SPIE Photonics Europe. International Society for Optics
and Photonics, 2016, pp. 98 960T–98 960T.



CURRICULUM VITÆ

Hans Roeland Geert Wim VERSTRAETE

28-06-1990 Born in Brasschaat, Belgium.

EDUCATION
2008–2011 Bachelor of Science Electrical Engineering

Minor Finance and Honours programme
Delft University of Technology

2011–2012 Master of Science Control Systems
Imperial College London

2012–2016 PhD. Electrical Engineering & Control Systems
Delft University of Technology
Thesis: Optimization-based adaptive optics for optical co-

herence tomography
Promotor: Prof. dr. ir. M. Verhaegen

AWARDS
2011 Best High Tech Start-up Business plan - IEEE Benelux section

2012 Hertha Ayrton Centenary Prize, best MSc project - Imperial College London

139


	Introduction
	Optical coherence tomography
	Time domain optical coherence tomography
	Fourier domain optical coherence tomography
	Resolution and depth of field

	Adaptive Optics
	Optical wavefront aberrations
	Active and adaptive components
	Adaptive optics in optical coherence tomography

	Wavefront sensorless aberration correction
	Derivative-free, noisy and costly function optimization

	Goal of this thesis
	Outline thesis

	Towards model-based adaptive optics optical coherence tomography
	Introduction
	OCT model
	OCT mirror model
	Scattering medium OCT model
	Single step defocus correction

	Materials and methods
	Results
	Discussion
	Conclusion

	Model-based sensor-less wavefront aberration correction in optical coherence tomography
	Introduction
	Materials and Methods
	Experiments
	Discussion
	Conclusion

	Online Optimization with Costly and Noisy Measurements using Random Fourier Expansions
	Introduction
	Random Fourier Expansions
	Ideal RFE Weights
	Convergence of the Least Squares Solution

	Online Optimization Algorithm
	Recursive Least Squares Approach for the Weights
	DONE Algorithm

	Choice of Hyper-parameters
	Probability Distribution of Frequencies
	Upper Bound on the Regularization Parameter

	Numerical Examples
	Analytic Benchmark Problem: Camelback Function
	Optical Coherence Tomography
	Tuning of an Optical Beam-forming Network
	Robot Arm Movement

	Conclusions
	Proof of convergence of the least squares solution
	Minimum-variance properties

	Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging  
	Introduction
	Materials and methods
	Hysteresis correction of the multi-actuator adaptive lens
	The DONE algorithm
	Human imaging and aberration correction

	Results
	Imaging human photoreceptors

	Discussion
	Conclusion

	Applying DONE to S-PAM  
	Introduction
	S-PAM
	Methods
	Results and discussion
	Conclusion

	Conclusions
	Conclusions
	Modeling aberrations in optical coherence tomography
	The DONE algorithm
	Sensorless aberration correction with DONE

	Recommendations for future work

	Bibliography
	Summary/Samenvatting
	List of publications
	Curriculum Vitæ

