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SUMMARY

Nowadays, GNSS-based navigation is moving more and more to critical applications. Global
Navigation Satellite Systems (GNSS), which in the past used to be represented by the Amer-
ican GPS and the Russian GLONASS are now growing in number and performance. The
European system Galileo and the Chinese system Beidou are being deployed, while GPS and
GLONASS are being modernized. The availability of a larger number of satellites to provide
measurements, together with a new frequency dedicated to civil use, are strongly increasing
the application potential of GNSS technology.

To be used in aviation, in particular during critical phases of flight as approach and land-
ing, satellite navigation shall provide a very high level of service. Correctness — within tight
bounds — of the position solution, shall be guaranteed to extremely high levels of probabil-
ity. In operating an aircraft, the risk for so-called Hazardously Misleading Information (HMI)
due to the navigation system is typically budgeted at the 10−7 to 10−9 level. These extremely
tight requirements constitute a guarantee of safety, which is called integrity. More formally,
integrity is about the trust that a user can have in the navigation service (and more specifi-
cally, the indicated position information). The trust is measured by the probability of HMI
(or integrity risk), which is the probability that the position error exceeds a certain tolerance,
without being detected and an Alert being raised in time.

Commonly, a distinction is made between system-level integrity and user-level integrity.
At system level, integrity is monitored directly by the GNSS control segment and can be
monitored by additional external augmentation systems. At user level, integrity is moni-
tored directly by the user via statistical methods. This dissertation focuses on user-level in-
tegrity monitoring, also called Receiver Autonomous Integrity Monitoring (RAIM). In a RAIM
method, integrity is monitored by exploiting the redundancy of the GNSS signals as collected
at the receiver. Calculations are performed within the user equipment itself to check the
measurements’ consistency. RAIM computations are possible as long as a number of satel-
lites larger than the minimum necessary for a position fix (four in case of single constellation)
is visible.

RAIM algorithms have been investigated since the late 1980s, starting with publications
by Lee, Brown and Brenner. As main representative and reference of the first generation
RAIM algorithms we cite the Weighted RAIM algorithm, also referred to as Least-Squares-
Residuals (LS) RAIM, proposed by Walter and Enge. This algorithm is still in use today, typi-
cally implemented in aviation grade GPS receivers, to provide low-precision lateral integrity
only. As of today no RAIM implementation exists for any application requiring integrity in
the vertical plane (i.e. precision approaches), which has more stringent certification require-
ments. To serve this scope second generation RAIM algorithms are now being developed and
tested, as for instance the Advanced RAIM (ARAIM), proposed by the Stanford group.

Different approaches being around show that the community has not reached conver-
gence on the subject of integrity of GNSS for aviation yet, especially on RAIM. The Least
Squares residuals RAIM, was the staple of the first generation RAIM: its algorithm was found
to be not completely flawless from a theoretical point of view and is not designed to deal
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with a multi-constellation system. The ARAIM is currently being tested but has not reached
yet a definitive shape and has not fully convinced the community because of its high com-
putational load, its convoluted structure and supposed approximations. New alternative
approaches are also being proposed.

This dissertation offers to the community a critical review of the most popular RAIM al-
gorithms currently available or under development (in particular LS RAIM and ARAIM), and
highlights their major strengths and shortcomings. Furthermore it reviews the DIA proce-
dure, a well-established method for gross error detection in geodesy developed by TU Delft,
and proposes its application to the RAIM problem. A connection is made from the DIA con-
cept of reliability to integrity risk and a method to evaluate RAIM performance parameters
(False Alarm and HMI rates) for a multi-step exclusion/adaptation procedure is proposed
(by means of the concept of worst-case bias). The study performed shows the viability of
the DIA procedure as an alternative RAIM procedure, and its competitive performance com-
pared to the algorithms currently in use or under development in aviation (LS RAIM and
ARAIM). Simulation results show that in several scenarios the DIA method performs signif-
icantly better than the others. Points of improvement are nevertheless individuated, also in
the DIA, and recommendations are given for the development of the RAIM of the future.

In particular, as a result of the algorithms review and the simulation results, it is con-
cluded that all RAIM algorithms discussed, including the DIA procedure, have room for im-
provement. Both ARAIM and DIA show safe performance (i.e. risk is never larger than re-
quired/announced), but some of the approximations employed in ARAIM seem rather con-
servative and its exclusion mechanism seems not particularly effective. At the same time also
the DIA exclusion mechanism does not appear to perform optimally, from the integrity max-
imization point of view. From a reliability analysis point of view — i.e. prior computation
of the probability of HMI (PHMI) based on the satellite geometry alone — the DIA performs
better than ARAIM, i.e. can guarantee higher availability (and higher continuity in a faulty
scenario). On the other hand one of the main weaknesses of the RAIM algorithms analyzed is
the Exclusion (or Adaptation) mechanism. Both ARAIM and DIA procedures recognize that
in many geometries — given a requirement on the continuity — attempting exclusion intro-
duces more risk than just declaring Alert. This suggests that further investigation is required
to develop a more robust and reliable exclusion method for integrity.



SAMENVATTING

Tegenwoordig wordt GNSS gebaseerde navigatie meer en meer ingezet voor kritische toepas-
singen. Global Navigation Satellite Systems (GNSS), in het verleden vertegenwoordigd door
het Amerikaanse GPS on het Russische GLONASS, groeien momenteel in aantal en prestatie.
Het Europese systeem Galileo en het Chinese system Beidou worden ontwikkelde terwijl GPS
en GLONASS gemoderniseerd worden. De beschikbaarheid van een groter aantal satellieten
voor metingen, samen met een nieuwe frequentie gewijd aan civiele bebruik, vergroten sterk
het toepassings-potentieel van GNSS technologie.

Om gebruikt te kunnen worden in de luchtvaart, en in het bijzonder tijdens kritieke fa-
sen van de vlucht, zoals nadering en landing, dient satelliet-navigatie op zeer hoog niveau
dienst te verlenen. De correctheid van de positie-oplossing dient, binnen nauwe grenzen,
gegarandeerd te worden met extreem hoge waarschijnlijkheid. In de luchtvaart is de accep-
tabele waarschijnlijkheid van zogenaamde gevaarlijke misleidende informatie (Hazardously
Misleading Information - HMI) ten aanzien van het navigatie-systeem typisch begroot op
10−7 tot 10−9. Deze veiligheids-garantie wordt integriteit genoemd. Meer formeel is de inte-
griteit het vertrouwen dat de gebruiker mag hebben in de navigatie-dienst (en meer speci-
fiek, in de gepresenteerde positie-informatie). Het vertrouwen wordt gemeten door de HMI-
waarschijnlijkheid (of integriteits-risico), en dit is de waarschijnlijkheid dat de positie-fout
een bepaalde grens overschrijd, zonder dat dit door het systeem gedetecteerd wordt en er
tijdig een waarschuwing afgegeven wordt.

Gewoonlijk wordt er onderscheid gemaakt tussen integriteit op systeem en op gebrui-

kers niveau. Op systeem niveau wordt integriteit direct bewaakt door het GNSS controle
segment en kan het bewaakt worden door aanvullende externe augmentatie systemen. Op
gebruikers-niveau kan integriteit direct bewaakt worden door statistische methoden. Deze
dissertatie richt zich op integriteitsbewaking op gebruikers-niveau, ook wel autonome in-
tegriteitsbewaking door de ontvanger (Receiver Autonomous Integrity Monitoring - RAIM)
genoemd. In een RAIM-methode wordt de integriteit bewaakt door gebruik te maken van de
overtalligheid van GNSS metingen, zoals ze door de ontvanger verzameld zijn. Berekeningen
worden uitgevoerd op de apparatuur van de gebruiker om de consistentie van de metingen
te controleren. RAIM berekeningen zijn mogelijk zolang het aantal zichtbare satellieten gro-
ter is dan het minimum van vier dat nodig is voor een positie-oplossing (vier satellieten in
geval gebruikt wordt gemaakt van een enkele constellatie).

Onderzoek naar RAIM methoden heeft plaatsgevonden sinds de late jaren ’80, beginnend
met publicaties door Lee, Brown en Brenner. Als primaire vertegenwoordiging van de eer-
ste generatie RAIM methoden refereren we naar de Weighted RAIM methode door Walter en
Enge, ook bekend als Least Squares Residuals (LS) RAIM. Deze methode is vandaag de dag
nog steeds in gebruik, en typisch geïmplementeerd in GPS ontvangers voor de luchtvaart,
om alleen lage-precisie zijdelingse integriteit te verschaffen. Tot op heden bestaat er geen
RAIM implementatie voor toepassingen die integriteit in vertikale zin vereisen, met meer
stringente certificerings-eisen. Hiervoor worden tweede generatie RAIM methoden ontwik-
keld en getest, zoals bijvoorbeeld het Advanced RAIM (ARAIM), voorgesteld door de Stanford
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groep.
De gemeenschap heeft nog geen overeenstemming bereikt op het onderwerp van inte-

griteit van GNSS voor de luchtvaart, in het bijzonder op RAIM. Er circuleren verschilllende
methoden voor integriteits-bewaking. De Least Squares residuals RAIM, boegbeeld van de
eerste generatie RAIM, is niet volledig waterdicht op theoretisch vlak en is niet ontworpen
om met een multi-constellatie systeem om te gaan. ARAIM, zoals momenteel voorgesteld,
heeft nog niet haar definitieve vorm bereikt en heeft de gemeenschap niet volledig overtuigd
vanwege haar hoge reken-belasting, haar ingewikkelde structuur en veronderstelde benade-
ringen. Nieuwe alternatieve methoden zijn ook voorgesteld.

Deze dissertatie biedt de gemeenschap een kritische beschouwing van de meest popu-
laire RAIM methoden die momenteel beschikbaar of in ontwikkeling zijn (in het bijzonder
LS RAIM en ARAIM), en bespreekt de sterke en zwakke punten. Verder beschouwt deze dis-
sertatie de DIA-procedure, een in de geodesie gevestigde methode (ontwikkeld aan de TU
Delft), om grove fouten op te sporen, en wordt de toepassing hiervan op het RAIM probleem
behandeld. Het concept van betrouwbaarheid in de DIA procedure wordt gekoppeld aan
het integriteits-risico, en een methode wordt gepresenteerd om RAIM prestatie-parameters
(onterecht alarm en HMI verhoudingen) te evalueren, door middel van het concept van de
meest ongunstige systematische fout, voor het geval van een buitensluiting- en aanpassings-
procedure bestaande uit meerder stappen. De uitgevoerde studie demonstreert de uitvoer-
baarheid van de DIA-procedure als een alternatieve aanpak voor RAIM, en haar concurre-
rende prestaties vergeleken met de methoden die momenteel in gebruik zijn in de luchtvaart
(LS RAIM en ARAIM). Simulaties laten zien dat in verschillende scenario’s de DIA procedure
substantieel beter presteert dan de andere methoden. Mogelijke verbeteringen worden niet-
temin besproken, ook voor de DIA procedure, en aanbevelingen worden gegeven voor de
ontwikkeling van de RAIM methode van de toekomst.

In het bijzonder, als resultaat van de kritische beschouwing en de simulaties, wordt ge-
concludeerd dat alle besproken RAIM methoden, inclusief de DIA-procedure, verder ver-
beterd kunnen worden. Zowel ARAIM als de DIA-procedure zijn veilig bevonden (in de
zin dat het risico nooit groter is dan vereist/aangekondigd), maar een aantal benaderin-
gen die in ARAIM gebruikt worden lijken behoorlijk conservatief en haar buitensluitings-
mechanisme lijkt niet bijzonder effectief. Tegelijkertijd lijkt, vanuit integriteits-oogpunt, ook
het buitensluitings-mechanisme van de DIA-procedure niet optimaal te presteren. Vanuit
betrouwbaarheids-oogpunt - de a-priori berekening van het integriteits-risico (HMI) op ba-
sis van de satelliet-geometrie - presteert de DIA procedure beter dan ARAIM, d.w.z. het kan
een hogere beschikbaarheid garanderen (en hogere continuiteit in een scenario met fouten).
Het buitensluitings- of aanpassingsmechanisme is één van de belangrijkste zwakke schakels
in de geanalyseerde RAIM methoden. Zowel ARAIM als de DIA procedure erkennen dat met
veel geometrieën - gegeven een beschikbaarheids-eis - het uitvoeren van een buitensluiting
meer risico introduceert dan enkel het afgeven van een waarschuwing. Dit suggereert dat
verder onderzoek nodig is om een meer robuuste en betrouwbare buitensluitingsmethode
voor integriteit te ontwikkelen.
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1
INTRODUCTION

The topic of this dissertation is GNSS-based Receiver Autonomous Integrity Monitoring (RAIM),
with specific focus to its aircraft navigation application. But what is RAIM? What is integrity
of navigation? How does Global Navigation Satellite System (GNSS) based navigation apply
to aircraft navigation? In this Chapter we present the background of this work, its reasons
and objectives, and the contribution that through this work is given to the community.

We first describe the main GNSS applications in aviation, and we provide an overview
of the recent progress in GNSS. Following we introduce the concept of integrity of naviga-
tion (that will be further developed in Chapter 2) and the concepts of integrity monitoring
systems, present and under design. Finally we discuss the objectives, and the original con-
tribution of this research to the scientific community.

1.1. THE ROLE OF GNSS IN AVIATION
The use and acceptance of Global Navigation Satellite Systems (GNSS) in aviation has —
so far — not been a smooth and straight ride. During the early years of GPS, with the so-
called block I satellites, launched from 1978 to 1985, the capability of satellite navigation
was successfully demonstrated. In the eighties and nineties of last century, there was a lot
of activity on the subject of integrity (reliability/soundness), most of it, connected to the
use of satellite navigation in aviation. Then, GPS became fully operational (FOC with 24
satellites) in 1995. There was an enormous, sky-reaching believe in the potential of satellite
navigation. The USA FAA stated, in 1996, that all air navigations’ aids, current at that time,
would be phased out by 2010. Only GPS and augmented GPS systems were to be provided for
civil aviation by the government after 2010. As we know today, this has not become reality.

During the nineties there was mentioning and demonstration of possibilities of interfer-
ence to GPS signals. This materialized eventually in the final Volpe report on vulnerability, in
2001 [106]. A major finding was that potential interference to the GPS L1 civil signal was a se-
rious problem. This was a ‘big-blow’ to ambitious plans, the phase of disillusionment. At the
same time, however, technological progress was made. In 2000, Europe announced the plan
for Galileo, a European civilian multi-frequency satellite navigation system. A wide-band
GPS signal on the L5 frequency was specified (to be the third GPS frequency), and the design
of the second frequency signal for civilian GPS users was concluded. The status of today is
that GPS has a more than nominal constellation, with modernization and additional signals
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underway, Galileo is under deployment with 8 satellites already flying, the Russian Glonass
is again fully operational, the Chinese Compass-Beidou system has already 17 satellites in
orbit, and the Space Based Augmentation Systems (SBAS) in the USA and in Europe (WAAS
and EGNOS respectively) are operational.

These recent developments provide diversity in system control, with many satellites (over
100 expected in several years from now), and diversity in radio frequency spectrum, with
signals in the range from 1.1 to 1.6 GHz (some of them wide-band), occupying several tens
of MHz and mitigating the earlier concerns on risks and interference. We are now making
steady progress towards the plateau of productivity.

GNSS is nowadays a key technology for the Communications, Navigation and Surveil-
lance (CNS) infrastructure, necessary for the introduction of Performance Based Navigation
(PBN) and Automatic Dependent Surveillance-Broadcast (ADS-B). It is employed in safety
related systems such as GPWS (Ground Proximity Warning Systems), and provides the time
reference that is used to synchronise many systems and operations in Air Traffic Manage-
ment (ATM). About 90% of the fleet operating in Europe is already equipped with GPS re-
ceivers and it is expected to reach 100% before 2020.

The paper [87], of 2008, presents the EUROCONTROL policy on GNSS for navigation
applications in the civil aviation domain, with implications to the SESAR implementation
phase. The policy is based on a gradually increasing reliance on satellite navigation, based on
a Multi-Constellation, and Multi-Frequency GNSS. A similar policy has been put in place al-
ready by the FAA in the USA, with the Next Generation Air Transportation System (NextGen)
program [30] “see where we are going!”.

1.1.1. AIR TRAFFIC MANAGEMENT

Presentation [74] gives the view of Boeing on future CNS/ATM (Communications, Naviga-
tion and Surveillance/Air Traffic Management) and evolution towards 4D trajectory man-
agement, with a substantial role for GNSS positioning. Determination of position and time
— 4D positioning — is a cornerstone for future ATM developments. ATM moves from what
is essentially a space-based system (primarily based on centralized radar-surveillance), to a
time-based system. Aircraft would be required to ‘turn up’ at a very precise departure and
arrival time for use of the runway. The overall goal is to improve airspace (and runaway)
capacity, safety and efficiency, and reduce environmental impact.

Automated decision support tools are envisioned to be used in future ATM systems, with
the purpose of providing safe (and efficient) services in increasingly congested skies [83]. De-
cision support tools should provide conflict-free flight trajectories in real time, which must
be accurately adhered to by each aircraft to maintain sufficient separation with surrounding
traffic.

Airborne autonomous operations will rely — in terms of technical resources — on satellite-
based 4D navigation, and on data-link communication. Next, an important element consists
of trajectory prediction, which is used in conflict resolution [83]. Crucial input to trajectiory
prediction and conflict resolution, is the current aircraft position, or more general, the cur-
rent aircraft state, with the highest possible quality (best possible state estimate, together
with an adequate description, or statement of the quality).
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1.1.2. APPROACH AND LANDING
Integrity is particularly important during the approach phase, which is the most demanding
phase of flight. The associated requirements on the navigation system are extremely strict
during this phase. Navigation must be available more than 99% of the time regardless of
the weather, and the navigation system must be reliable especially after an aircraft approach
has commenced. A break in the continuity of service must affect less than one approach
in 100 000. At the same time, integrity has to be guaranteed, i.e. the system has to guard
against the occurrence of Hazardous Misleading Information (HMI). This means that pos-
sible failures which may lead to dangerous navigation errors must be detected within few
seconds (referred to as Time-to-Alert, TTA). The risk of a HMI — an integrity failure — must
be less than 10−7 to 10−9 per approach (depending on the minimum decision height). Fig-
ure 1.1 shows the different types of approach procedures with their respective Minimum
Descent Altitudes (MDA) and Alert Limits (AL). The MDA is a specific altitude below which
descent must not be made without the required visual reference, whereas the ALs (Vertical
or Horizontal, VAL and HAL) define the maximum position errors that are not classified as
dangerous for navigation. Currently, as from the Figure, the simple GPS is able to support
only Lateral Navigation (LNAV) approaches, whereas more demanding approaches require
aid from additional systems (e.g. SBAS, see Section 1.5).

Figure 1.1: Approach procedures. On the left are the navigation systems employed ordered by decreasing MDA.
On the right the ALs are reported for the different type of approaches, also decreasing with decreasing MDA.
Figure taken from [110].

LNAV approach refers to approach procedures where the radio equipment provides lat-
eral guidance only and the vertical information comes from barometric altimetry. The LNAV
approaches are characterized by ‘drive’ and ‘dive’ procedures, during which the aircraft re-
duces its altitude step by step as it approaches the airport. These procedures are not favoured
by the pilots because of the quite high workload required. Precise vertical guidance presents
a much more manageable workload to the pilot and thus is significantly safer.

Worldwide vertically guided approach is an abiding goal of the aviation community. We
would like to fly an aircraft down to an altitude of 70m anywhere in the world regardless
of weather and time of day, and without the use of any dedicated navigation equipment at
the receiving airfield. At TU Delft we believe that satellite navigation, with the modernized
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GNSSs, will achieve this goal.

1.2. GNSS CONTEXT
GNSS capability has been growing very rapidly in recent times. In particular, two main fac-
tors are leading the progress of GNSS: 1. the deployment of new constellations and 2. the
introduction of new frequency signals. The European system, Galileo, has now 8 satellites
in orbit available and functioning, sufficient to generate a position fix in the European area,
whereas the Chinese system, Beidou, deployed 17 satellites already and is expected to be
fully operational in few years time. At the same time the GPS is being upgraded and the
Russian Glonass constellation has reached fully operational status again.

The resulting large number of usable GNSS signals can strongly increase the availability
of the GNSS service and consequently, as we will see, its integrity. In fact the integrity of the
positioning service is strongly related to the redundancy of observations available.

Figure 1.2: GPS signals: present and future. For each generation of satellite GPS satellites (on each row/trace)
the broadcast signals are represented, for each of the frequencies L5, L2 and L1. The Block IIR-M satellites
started to broadcast in 2005, the Block IIF in 2009, also in the new frequency L5. The first Block III satellite is
planned to be launched in 2017. Figure taken from [110].

Up to 2005, GPS satellites broadcast the navigation signals in the two frequency bands
shown in the top trace of Figure 1.2. L1 denotes the broadcast at 1575.42 MHz and L2 de-
notes the broadcast at 1227.60 MHz. As shown, two signals are broadcast on frequency L1,
a narrow-band signal and a wide-band signal. The narrow-band signal is modulated by a
spread-spectrum code called C/A code. This code has a modest chipping rate of 1.023 Mcps,
and consequently a null-to-null bandwidth of 2.046 MHz. The wide-band signal is modu-
lated by the P(Y) code, which has a chipping rate of 10.23 Mcps and a null-to-null bandwith
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of 20.46 MHz. The C/A code is available to everyone and it is at the basis of the majority of
today’s civil applications [40], [93]. The P(Y) code is instead primarily for US military use.

Starting from 2005, new GPS satellites began to broadcast the signals shown on the sec-
ond trace of Figure 1.2 [31]. They continued to send the ‘old’ signals, but introduced as well
new military sugnals at L1 and L2 (M-code and P(Y) code) and a civil signal at L2. This new
signal however has not much importance for aviation since it does not lie in the Aeronauti-
cal Radio-Navigation Service (ARNS) portion of the spectrum. All civil aviation organizations
demand that the signals employed be in ARNS bands so that they have institutional control
over this spectrum and maintain legal protection from interference [40].

In 2009 new GPS satellites were deployed able to broadcast signals in a third band, called
L5 [40], [104] (L3 and L4 carry non-navigation information for the military). L5 is located in
an ARNS band and has therefore great aviation utility. The future GNSS based avionics will
be able to leverage a useful property: the influence of ionosphere on signal delay is different
at L1 than at L5. Thanks to this property receivers will be able to estimate the full ionospheric
delay at each frequency and remove it from the measurements. The errors due to the iono-
sphere could be for the most part eliminated.

Integrity monitoring architectures will have great benefit from the double frequency:
Space Based Augmentation Systems (SBASs) for instance will need much fewer reference
stations on the ground, since many of them are now needed to sample and monitor the
ionosphere.

The ICAO (International Civil Aviation Organization) ANC (Air Navigation Conference)
12th held in Montreal in November 2012 highlighted that, with the deployment of new con-
stellations and the enhancement of the existing ones, the signals from multi-constellations
and multiple frequency bands are becoming available to aviation; these development leads
to performance improvement and create potential for achieving significant operational ben-
efits. The conference stressed the need to identify these operational benefits, to enable air
navigation providers and aircraft operators to quantify these benefits for their specific oper-
ational environment. It also noted that Multi-Constellation, Dual Frequency (MCDF) GNSS
brings with it a number of technical and regulatory challenges, beyond the ones associated
with current GNSS implementations [88].

Taking into account the operational benefits of MCDF GNSS and the progressive depen-
dency on GNSS for ATM/CNS applications, EUROCONTROL policy on GNSS and the Eu-
ropean ATM Master plan set a vision based on the use of signals coming from at least two
constellations in dual frequency, that will provide improved performance, robustness and
coverage. The SESAR project 15.3.4 made an assessment of the MCDF GNSS technical ca-
pabilities on the basis of performance simulations and the analysis of robustness against
identified vulnerabilities (ionosphere and interference). The project also assessed the ben-
efits of integrating GNSS sensors with inertial systems. This assessment [88] [44] identified
the following improvements in technical capabilities:

• Increased availability and continuity in nominal conditions: as mentioned, GNSS will
be able to calculate the ionospheric delay in real time, eliminating this major error
source. It will be less likely that scintillation will result in loss of service, thanks to the
extra ranging sources available. More and better signals will be available in mountain-
ous terrain/high latitude, making less likely that high terrain or lack of satellites in view
would result in loss of service.



1

6 1. INTRODUCTION

• Increased availability and continuity in degraded conditions (increased robustness):
MCDF GNSS will guarantee improved robustness and integrity thanks to the increased
number of backup modes available in degraded modes (alternative frequency and ad-
ditional satellites from different constellations). New GNSS signals will be more resis-
tant to interference due to higher power and improved signal design.

• Extended service area: in particular, it will be easier to extend augmentation systems
(as EGNOS) services to new areas.

• Independent time reference system: the availability of GNSS timing service will im-
prove, making aviation less dependent on GPS for time distribution and synchroniza-
tion in an increasing number of CNS/ATM systems and applications (e.g. data-link,
ADS-B, terrestrial communication systems, 4D NAV, . . . ).

As a result of the above listed capability enhancements, the GNSS will be able to support
more demanding system performance levels required by new applications or advanced op-
erations that are expected to be developed over time. For example EGNOS V3 is being de-
signed to guarantee system perforance levels with a Vertical Alert Limit (VAL) of 10m, that
could be used to certify CAT I auto-land systems.

1.3. INTEGRITY FOR GNSS IN AVIATION
Satellite navigation in aviation is moving more and more to critical applications. We will fo-
cus here onwards on CNS/GNC aspects (with less concern to ATM, considering anyway that
most concepts are easily transferrable). The application of GNSS started with basic R-NAV,
moved into SBAS approaches, is about to move into CAT-II/III GBAS precision approaches,
and may ultimately reach auto-land with zero visibility. Thereby the aspect of integrity is
getting more and more crucial. But what is integrity exactly?

To be used in aviation, in particular during critical phases of flight as approach and land-
ing, satellite navigation shall provide a very high level of service. Correctness — within tight
bounds — of the position solution, shall be guaranteed to extremely high levels of probabil-
ity. In operating an aircraft, the risk for so-called Hazardously Misleading Information (HMI)
due to the navigation system is typically budgeted at the 10−7 to 10−9 level, as we mentioned
in the context of approach operations. Practically, integrity means a guarantee of safety.

More formally, integrity is about the trust that a user can have in the navigation service
(and more specifically, the indicated position information). The trust is measured by the
probability of HMI (or integrity risk), which is the probability that the position error exceeds
a certain tolerance, without being detected and an alert being raised in time. The user should
have been warned but is not. The given position information is misleading, as it is not cor-
rect within specified bounds, and, as the user or operator is not warned, he or she is not
aware of the potentially hazardous situation. The aircraft is somewhere else, than where the
navigation system says it is.

The approach in [79] is such that the integrity risk is calculated for a given tolerance,
the Alert Limit (AL). The AL is the maximum allowed position deviation, for which no alert
needs to be raised. For Safety-of-Life (SoL) applications as aviation, we quote from [79], as
an example, the Galileo SoL core system performance requirements (without receiver con-
tribution) with respect to integrity: a risk of 2 ·10−7 in any 150 seconds, with an AL of 12m for
the horizontal, and 20m for the vertical component.
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In practice, a navigation system cannot be optimized independently for integrity. In-
tegrity is not a free parameter; it is linked to other navigation performance parameters as
accuracy, continuity and availability. Typically, reducing complexity of the problem by mak-
ing approximations on the safe side on the aspect of integrity, i.e. being conservative with
regard to safety, will cost availability of the navigation system/service. This calls for a safe,
optimal, but lean approach to integrity of the position solution.

The quality of the position estimator, comprising accuracy and integrity, is one aspect of
navigating the aircraft safely from A to B. In consequently flying a designated trajectory, two
more aspects come into play. They concern how well a ‘to be flown’ trajectory can be actually
followed, and the intended/planned flight path description/definition itself.

The reference, or desired trajectory can also be corrupted with errors and anomalies
(path definition error). One can think of administrative errors (as naming and labelling),
in-accuracies of data in the database (also as a result of surveying errors), lack of up-to-date
information (such as changes to airport infrastructure and procedural aspects which are not
reflected in the database yet), and mis-interpretations of geodetic datums.

The Flight Technical Error (FTE) represents the additional error to, or deviation from, the
reference trajectory (additional to the navigation system error), due to the process of physi-
cally flying the aircraft under operational circumstances. Due to external circumstances (as
wind and turbulence) and aircraft performance, the pilot cannot keep the aircraft exactly
on the reference trajectory. This aspect becomes increasingly important as reference tra-
jectories will get more complicated. Flight paths now basically consisting of straight line
segments connected by fixed radius turns will be replaced more and more by more sophisti-
cated curved segments.

A formal definition of integrity will be given in Chapter 2. In particular, the problem of
single epoch independent integrity monitoring will be addressed in the following and con-
stitute the main body of this work. The last two aspects of integrity in aeronautics mentioned
above, trajectory monitoring and FTE, are not part of the scope of this thesis.

1.4. GNSS ANOMALIES
Even though the operation of GPS has been very reliable during its whole life and showed
extraordinary performance (sometimes even beyond specification), faults have nevertheless
occurred, some man-made and other due to Mother Nature.

For instance, the navigation data broadcast by the GPS satellites may contain significant
errors. The GPS satellites are monitored by the ground control network: the measurements
taken at the ground control stations are used to predict the orbit of the satellites. These
predictions are then uploaded to the satellites and broadcast from the satellites to the user.
The estimated orbit is generally accurate up to 1 or 2m [112], but occasionally the broadcast
ephemeris may contain rather large errors. Between 1999 and 2007, errors greater than 50m
were registered in 24 different occasions [37]. On April 10, 2007, a large outlier occurred in
the broadcast ephemeris from Space Vehicle (SV) 54, with an error of at least 350 m [37]. In
Delft a sensible anomaly was registered on January 1st , 2004, when the range error from SV
23 grew up to more than 250 km in about two hours, before being detected by the control
segment and set to unusable. Figure 1.3 shows the position error registered at a Delft station,
which started to grow out of control from about 18:30 Coordinated Universal Time (UTC).

The navigation broadcast from each satellite contains also an estimate of the time offset
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Figure 1.3: GPS anomaly recorded in Delft on January 1st , 2004. Position error in meters as a function of time.
In normal situations the position accuracy was about 5 to 10 meters, but the error started to grow suddendly at
about 18:30 UTC, reaching the size of hundreds of meters in few minutes.

of the onboard atomic clock with respect to the GPS system time. This estimate is normally
accurate to within nanoseconds. Some large clock runoffs were anyway experienced on SV22
on July 28, 2001; SV27 on May 26, 2003; and SV35 on June 11, 2003. These events produced
range measurements errors larger than 1 km [29].

A problem with the modulation of the broadcast signal from SV19 was recorded in Fall
1993. The falling edge of the digital modulation was not synchronous with the satellite mas-
ter clock, and was occurring approximately 30ns later. This lag caused ranging errors of
about 3m and position errors of up to 9m. This anomaly was tackled by switching from the
active modulation unit to the backup unit available on all GPS satellites [25]. Such peculiar
anomaly has been observed only once in the GPS operational life, but it constitutes a clear
example of the challenge associated with ensuring integrity at the required service levels.

Nature by itself is sometimes responsible to generate dangerous anomalies in the mea-
surements. The most worrisome source of anomalies is the ionosphere. The residual de-
lay introduced by the ionosphere in the signals amounts nominally to a few meters during
the day and about 1m at night. The spatial and temporal variation of this delay is normally
quite smooth and easily managed. However, in case of an ionospheric storms the delay in
the signal propagation becomes much larger and spatial and temporal gradients are tough
to manage. Ionospheric storms do occur in every solar cycle — Datta-Barua lists about 40
significant events in the last solar cycle [22]. Not all of these events resulted in navigation
threats, but all must be evaluated in real-time to guarantee the required system integrity.

The introduction of a second frequency available for aviation will obviate most of the
ionospheric effects described above, but still second-order ionospheric delays will be present
and may require monitoring in specific applications (though unlikely to exceed the size of
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some centimeters).

1.5. GNSS INTEGRITY MONITORING SYSTEMS
Integrity of the position solution is concerned with errors that can be due to the user receiver
(failure or anomaly), to the system (Signal in Space, SIS), its augmentation, and to signal
propagation. Errors and anomalies can thus occur at various stages, and this offers several
possibilities of detecting them (such as via the control segment of the satellite navigation
system, its augmentation, or the user receiver). Commonly, a distinction is made between
system level integrity and user level integrity. At system level, integrity is monitored directly
by the GNSS control segment and can be monitored by additional external augmentation
systems. At user level, integrity is monitored directly by the user via statistical algorithms.

Furthermore we can distinguish between a first and a second generation of fault-detection
systems [110]: the first generation constituted by the methods developed by the year 2000,
currently in use, and the second generation constituted by the future concepts, still under
study/development, that will exploit the full functionality of a MCDF GNSS.

The GNSS ground segments (control segments) have themselves a role in the integrity
monitoring of the system. They are in fact enrolled to detect failures in satellites, but they
are not intended to identify threats within a TTA of few seconds as foreseen in aviation re-
quirements. In [10] for instance a distinction is made between threats that require a TTA of
6s (labeled as High Dynamic Threats, HDT) and threats that do not (Low Dynamic Threats,
LDT). The ground segment can thus take responsibility for mitigating part or most of LDTs
(more details on types of anomalies are given in Section 2.9).

1.5.1. FIRST GENERATION INTEGRITY MONITORING — PRESENT

ARCHITECTURES
Today, in 2015, fault-detection is implemented in two different ways, at system level or at
user level. At system level, we distinguish two types of external augmentation systems, Space-
Based Augmentation Systems (SBAS) [108], [56] and Ground-Based Augmentation Systems
(GBAS) [28], [73]. Both are Differential GPS systems (DGPS).

One category of external augmentation systems is represented by the SBAS. SBASs are
constituted by a ground segment and by a space segment. The ground segment is made up of
a system of monitoring stations distributed across the area of interest, a master control sta-
tion and a set of uplink stations, whereas the space segment is constituted by geostationary
satellites. The monitoring stations measure the range errors in the satellites observations,
which are then processed by the master control station to produce the integrity message.
This corrective message is then transmitted by the uplink stations to the geostationary satel-
lites, which role is to re-transmit it to the user. The range errors can be computed because
the positions of the monitoring stations are well known, and can be compared to the com-
puted position solutions based on GNSS signals. From these, a corrective message can be
generated and forwarded to the user. The SBAS generates a four-dimensional correction for
each satellite, which accounts for satellite clock and satellite ephemeris. Furthermore SBAS
sends a grid of corrections for ionospheric errors for the region spanned by the SBAS ground
system. Since the signal sent by the geostationary satellite is synchronized to the GPS time,
it can also augment the normal suite of GPS ranging measurements, beside serving as data
link.
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Several SBASs have been implemented based on GPS. In particular:

• The US Wide Area Augmentation System (WAAS), covering the continental US (CONUS)
and most part of Alaska, Canada and Mexico.

• The European GNSS Navigation Overlay System (EGNOS), covering the European con-
tinent, providing integrity and improved accuracy.

• The Multi-functional Satellite Augmentation System (MSAS), implemented by Japan.

• The GPS Aided Geo Augmented Navigation (GAGAN), implemented by India.

• The System for Differential Corrections and Monitoring (SDCM), implemented by Rus-
sia, a WAAS-compatible SBAS covering their territory.

A second category of external augmentation systems is represented by the GBAS. These
systems are simply constituted by a set of ground monitoring stations, located close to the
airports, that transmit correction signals directly to the aircraft via RF links. Again the cor-
rective information is obtained comparing the true distances of the satellites (computable
exploiting the known position of the ground stations) with the ranges obtained from the
GNSS observations. The GBAS corrections and error bounds are broadcast to the approach-
ing aircraft using a line-of-sight very high-frequency transmitter that is also located on the
airport property. The data link is a terrestrial radio.

SBAS and GBAS develop corrections that improve the accuracy of the measurements, but
their true purpose is to provide the means to generate real-time error bounds. These bounds
are called Protection Levels (PLs) and must overbound the actual error under all conditions
and in real-time to a very high probability [23]. SBAS and GBAS are both very powerful means
of guaranteeing integrity, and compared to RAIM they are much less sensitive to the strength
of the basic GNSS geometry, but they present the drawback of needing a very complex and
costly infrastructure. The requirement for warning the user of any loss of integrity within a
very little time demands a high amount of computing power and facilities. The reference net-
work must be installed, tested, operated and maintained. The SBAS networks are dense be-
cause they must sample the ionosphere at closely spaced intervals to guarantee the detection
of sharp gradients with near certainty. The WAAS indeed deploys 38 receivers across North
America, EGNOS 39 receivers across Europe and North Africa. Furthermore, both SBAS and
GBAS have to transmit the integrity information in high-bandwidth and the ground-to-air
data latency must be less than a few seconds [72].

Finally the GNSS integrity can be monitored at user level, by exploiting the redundancy of
the GNSS signals as collected at the receiver. This is done by performing calculations within
the user equipment itself to check their consistency. This method is called Receiver Au-
tonomous Integrity Monitoring (RAIM). RAIM computations are possible as long as a num-
ber of satellites larger than the minimum necessary for a position fix (4 in case of single con-
stellation) is visible, and this occurs most of the time at all latitudes. If one constellation of
satellites is employed for positioning, five satellites in view are sufficient to detect a possible
anomaly, and six satellites are sufficient to identify/isolate a fault in a single satellite. RAIM is
a powerful method because of its autonomy, but strictly relies on the strength of the satellite
geometry. With the deployment of the new GNSS constellation many more satellite signals
will soon be available and increased redundancy of measurements will be at hand: this will
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increase the power of RAIM algorithms — second generation RAIM in particular is designed
to exploit the full potential of MCDF GNSS.

1.5.2. SECOND GENERATION INTEGRITY MONITORING — FUTURE CONCEPTS

With second generation integrity monitoring we mean the integrity monitoring concepts
currently under investigation, as candidates for the integrity system of the future. Three dif-
ferent architectures are currently investigated [110] [109]: the GNSS Integrity Channel (GIC),
Relative RAIM (RRAIM) and absolute RAIM (RAIM or ARAIM1). All these architectures em-
ploy a ground network that monitors the satellite signals to identify faults and support the
integrity monitoring, but they place different fractions of the integrity burden on the aircraft
and on the external network.

The GIC architecture is similar to the SBAS, and places all the integrity monitoring re-
sponsibility on means external to the aircraft, the space and ground network. One form of
GIC could be a worldwide implementation of dual frequency SBAS, with the broadcast to the
aircraft of similar capacity (bandwidth of 250 bps), or could have a lighter implementation,
broadcasting only a single user range accuracy (URA) per satellite.

The absolute RAIM is instead the heir of current RAIM, and places the minimal burden
to external monitors. Differently from standard RAIM though, a ground system is needed
to provide a priori failure probabilities for the individual satellites and the associated URA
(by means of the so called Integrity Support Message, ISM). This information anyway needs
to be updated only every hour or even less frequently. Beside relying on this a priori infor-
mation provided from the ground, the absolute RAIM will use the same concept of RAIM
and will exploit the multiplicity of constellations and the dual frequency available. The main
representative of absolute RAIM at the moment is the Advanced RAIM (ARAIM), designed
by the Stanford group and currently in testing phase [10]. This dissertation dedicates half of
Chapter 4 to the ARAIM review.

RRAIM is a solution that stands in between GIC and absolute RAIM, since it splits the in-
tegrity burden between the aircraft and the external monitors [110] [59] [36]. In this method
the aircraft uses past carrier smoothed code measurements, previously validated by ground
monitors, and projects them forward in time by adding to them the difference between cur-
rent and past carrier phase measurements. These projections are the new position fixes, and
their integrity is ensured by RRAIM, that protects against any anomaly that may occur after
the last externally validated data set. Fundamentally RRAIM works as a RAIM algorithm ap-
plied on the relative positioning, carried on by means of carrier phase measurements, which
is based on reference positions validated through external monitoring. The advantage of
RRAIM with respect to GIC is that the latency time of the integrity information coming from
the external network can be much longer, of the order of tens of seconds or even minutes,
since the main part of the integrity monitoring is carried out internally through carrier phase
measurements checks. With respect to absolute RAIM, the advantage lies in the fact that car-
rier phase measurements are much more precise than code measurements, and this can al-
low to set very tight detection thresholds for the statistical tests run and consequently reduce
the number of false alert and lead to high levels of integrity availability. RRAIM geometry re-
quirements are also relaxed relative to absolute RAIM and the latency time for the external

1We will simply refer to it as RAIM because the acronym ARAIM will be used for Advanced RAIM in the follow-
ing.
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support message lies in between GIC and RAIM.

1.6. RESEARCH OBJECTIVES

1.6.1. WHAT IS MISSING
Whereas system-level integrity is documented in the MOPS DO-229 document [72], with de-
tailed specification of algorithm and parameter values, and briefly reviewed above, user-level
integrity is not. According to [72] the equipment shall have a Fault Detection and Exclusion
(FDE) capability that uses redundant GPS and SBAS ranging measurements to provide in-
dependent integrity monitoring (for en-route and terminal mode). Requirements are put
forward in [72], and its Appendix K — Fault Detection and Exclusion references — provides
just a list with 9 papers, and nothing more.

Furthermore, let us consider the concept of the Protection Level (PL). The Protection
Level (PL) is key to the integrity concept as employed today in SBAS. In earlier versions of
the MOPS, the PLs were set based on certain assumed statistical distributions (for the posi-
tion error) [80]. In the current version [72], the underlying statistical distributions have been
abolished, and SBAS service providers must transmit quality indicators with the corrective
information, such that the PLs bound the errors within the target probabilities. Responsibil-
ity is thus transferred to the service provider, and no direction or guideline is given on how
to achieve this.

As previously mentioned, and also outlined in [105], Galileo was at one point planning to
use an approach to integrity different from SBAS, namely computation of the overall proba-
bility of HMI at the AL, rather than computing the PL for a fixed integrity risk. Different ap-
proaches being around show that the community has not reached convergence on the sub-
ject of integrity of GNSS for aviation yet, especially on RAIM. The LS RAIM developed in [107],
staple of the first generation RAIM, was found to be not completely flawless from a theoreti-
cal point of view (see Section 4.1) and is not designed to deal with a multi-constellation sys-
tem. The ARAIM [8] [11] is currently being tested but has not reached yet a definitive shape
and has not fully convinced the community because of its high computational load, its con-
voluted structure and supposed approximations. New approaches are being proposed, for
instance in [50] and [52].

1.6.2. OBJECTIVES
As explained in the previous Section, the MOPS DO-229 document [72] is not definitive in
providing methods to perform RAIM, and refers to FDE procedures which constitute only
one of the possible approaches to monitor integrity. We believe it is opportune to clarify the
mathematical concepts of integrity monitoring and RAIM and provide a sound definition
for the latter. The RAIM problem shall be placed in its statistical context, and the tools of
statistics be examined and evaluated around the problem.

Once the mathematical problem is defined, the most relevant current and future RAIM
concepts are to be reviewed and compared in a systematic way. The FDE procedure devel-
oped by the Delft school, the DIA procedure, is the most standard method for gross error
detection employed in geodesy. It is natural to wonder how the DIA procedure would per-
form in a RAIM algorithm, in comparison with the other developed methods.

This work focuses on RAIM. This means that only user level integrity monitoring is ana-
lyzed. RAIM is generally less powerful than GBAS and SBAS (GIC), but has the advantage of
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not requiring any external aid from ground or space infrastructure, only a contained com-
puting power at the user level. Different integrity concepts, as GIC and RRAIM, are also left
aside. Furthermore, RAIM shall be analyzed only in its standard single epoch implementa-
tion; smoothing or filtering could possibly bring advancement to the current autonomous
integrity monitoring concepts, but they are left aside of the scope of this work.

The most relevant RAIM concepts available in literature shall be reviewed and discussed
(in particular Standard LS RAIM and ARAIM). The DIA itselft shall be reviewed and adapted
accordingly to the RAIM application requirements; in particular its reliability concept shall
be extended to allow the monitoring of the specific RAIM performance parameters. The dif-
ferent RAIM algorithms shall be implemented on software and their performance assessed
through numerical simulations. Eventual shortcomings in any of the algorithms presented
shall be individuated and opportunities for improvement discussed.

1.7. NEW CONTRIBUTIONS
This dissertation offers to the community a critical review of the most popular RAIM algo-
rithms currently available or under development and highlights their major strengths and
shortcomings. The mathematical problem of RAIM is defined and the tools available in
statistics to tackle it are reviewed: the RAIM algorithms can as a result be compared on the
basis of univocally defined integrity performance parameters.

Next this dissertation proposes the application of the DIA procedure — the reknown
method for gross error detection in geodesy developed by TU Delft — to the RAIM problem.
A connection is made from the DIA concept of reliability to the integrity risk and a method
to evaluate the RAIM performance parameters for a multi-step exclusion/adaptation proce-
dure is proposed (by means of the concept of worst-case bias).

The DIA procedure is then compared to the RAIM methods currently in use (LS RAIM
and ARAIM). The study performed shows the viability of the DIA method as a RAIM pro-
cedure, and highlights the shortcomings and strengths of the other methods. Simulation
results show that in several scenarios the DIA method performs significantly better than the
other algorithms. Points of improvement are nevertheless individuated also in the DIA pro-
cedure, and recommendations are given for the development of the RAIM of the future.

The DIA procedure was not applied before to the RAIM problem and this step required
development of methods to monitor new performance parameters, like the risk of Wrong
Detection and the risk of HMI linked to a multiple iterations procedure. A method to test and
compare the different RAIM algorithms was also proposed together with a set of parameters
to monitor to assess their performance.

1.8. GUIDE FOR READING
In Chapter 2 we attempt to define the RAIM problem, which does not necessarily apply to
aircraft navigation only but potentially to any estimation problem. The definitions given by
the RTCA are also presented, as well as the GNSS observation model. Chapter 3 presents the
possible approaches to the RAIM problem and the general statistical methods available in
literature, from a high level perspective. In Chapter 4 the most important RAIM algorithms
currently used or in testing phase are reviewed — the standard RAIM as main representative
of the first generation RAIM and the ARAIM as a forerunner of the second generation RAIM.
Chapter 5 presents instead the TU Delft DIA procedure, the original TU Delft FDE procedure
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first developed to monitor observations in geodetic networks, and Chapter 6 proposes an
adaptation of the DIA procedure to the RAIM problem. Finally in Chapter 7 the algorithms so
far reviewed/proposed are tested and compared via numerical simulations. The conclusions
are gathered in Chapter 8.



2
THE INTEGRITY PROBLEM

In this chapter we intend to define the problem of integrity monitoring for GNSS based nav-
igation. Most of the concepts that will be presented apply in fact to any type of parameter
inference, not just GNSS-based nor navigation oriented. Navigation is based in the first place
on parameter estimation, and integrity, as we will see, can refer to any type of parameter es-
timation/inference.

2.1. NAVIGATION SYSTEM AND PARAMETERS ESTIMATION
A navigation system is any system that provides an operator with information about a ve-
hicle’s actual position in a given geometric and time reference frame [78]. The navigation
system is enrolled to collect and process some measurements or input data and to deliver
a position/state estimation. Based on some input data, that we call observations, the pa-
rameters of interest are estimated. The model for this estimation problem can be written
as:

y =G(x)+e (2.1)

where y is a vector of m observables, G(·) is a generic function of the argument, x is the vec-
tor (n components) of all the parameters on which the observables depend, among which
are the parameters of interest, and e is a vector of measurement errors. Collection of ob-
servations is in fact a random process, subject to errors, this is the reason why y and e are
random variables.

In the GNSS case, the observables y are constituted by the range measurements from
each visible satellite. These measurements are a function of the user position, which can be
defined by three components x1, x2 and x3, but also of other unknown parameters, as for
instance the clock error at the receiver, which can be included in the vector x as additional
components. In the GNSS estimation problem therefore we will always estimate the position
of the user, which is of interest for navigation, but also ‘indirectly’ some extra parameters
which the observables depend upon.

Since this dissertation is concerned with integrity monitoring, we will mostly focus on
the subvector of x that contains only the parameters of interest for integrity (i.e. the po-
sition coordinates, the first three components), that we call xint. A simple linear relation
can be written that relates xint to x: xint = Lintx with Lint = [I3 O3×(n−3)], where I3 is the
3×3 identity matrix and O3×(n−3) is a 3× (n −3) null matrix (assuming, for the aviation case,

15
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that vertical guidance is needed). Since, with this rule, it is easy to transform any require-
ment/relation/constraint on xint in the corresponding one on x, in the following we will al-
ways refer to the general x, bearing in mind that in most cases our interest is focused just on a
subset of its components. Furthermore in the following we will always adopt an East-North-
Up reference frame, and x1, x2 will always be the East and North components respectively,
whereas x3 will be the Up component.

The estimator of x is denoted in the following by x̂, and is usually a function of the ob-
servable y , x̂ = F (y). As we will see in detail in the following, the choice for the function F

has a strong influence on the integrity.
In our GNSS case, the model for the estimation problem (Equation (2.1)) is slightly non-

linear, but it is standard practice to transform it into a linear one, of the form:

y = Ax +e (2.2)

where the m×n matrix A can be determined by the geometrical configuration of the satellites
in view, and is referred to as the geometry matrix. The GNSS model is treated in more detail
in Section 2.8.

2.2. NAVIGATION SYSTEM PERFORMANCE
This section describes how the performance of a navigation system can be expressed. ICAO
and RTCA [61] defined four Required Navigation Performance (RNP) parameters, accuracy,
integrity, continuity and availability, that are standardly used to describe a navigation sys-
tem’s performance. The definitions of these parameters, based on [61], are reported in the
following.

ACCURACY
The accuracy defines how well the estimated or measured position agrees with the true po-
sition. For GNSS, accuracy can be defined separately for horizontal and vertical dimension
with the two quantiles lhor,0.95 and lver,0.95 respectively, such that 95% of the position so-
lutions should present a smaller position error. Accuracy is computed assuming that the
system is working in fault-free conditions, with standard performance.

lhor,0.95 = argminlhor
P (

√

(x̂1 −x1)2 + (x̂2 −x2)2 < lhor |No Fault) ≥ 0.95

lver,0.95 = argminlver
P (|x̂3 −x3| < lver |No Fault) ≥ 0.95

(2.3)

INTEGRITY
Integrity defines the level of trust that can be given to the system (accounting for all possi-
ble/anticipated system states). This means that the system should provide timely warnings
(within the Time-to-Alert, TTA, see Section 2.6) if it cannot be trusted anymore. The prob-
ability of Hazardous Misleading Information PHMI (that can be also generally referred to as
integrity risk) can be defined as:

PHMI = P (H M I ) = P (x̂ −x ∉ΩAL ∩No Alert) (2.4)

where ΩAL is the ‘integrity region’ around the true position whose boundaries are the Alert
Limits (AL), which with the current standard requirements has a cilindric shape. An error
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lying outside ΩAL is considered dangerous/not safe for navigation. The ALs are set as re-
quirements for safe navigation by the authorities and differ for each phase of flight. ALs and
ΩAL are discussed further in Section 2.6. The integrity (or integrity confidence) is the com-
plement to 1 of the probability of hazardous information (PHMI):

Int = 1−PHMI (2.5)

In the following we will work only with the PHMI as main parameter defining the integrity of
navigation.

CONTINUITY
The continuity of a system is the ability of the system to finish an operation, e.g. an ap-
proach, without interruption, once it has commenced. This means the system guarantees
to stay available during the entire operation duration. Continuity is expressed as the prob-
ability that during a certain time interval (e.g. 15 second for a Cat.I approach) the system is
providing trustworthy navigation information, assuming it was available at the beginning.

c = P (
m
⋂

i=1
(No Alert at i | System Available at i = 1) (2.6)

where i is the sample epoch considered and m is the number of epochs in the desired time
interval, e.g. 15 sec.

AVAILABILITY
Availability is the fraction of time the navigation function is usable, as determined by its com-
pliance with accuracy, integrity and continuity requirements, before an approach is initiated:

a =
tSystem Available

ttotal
(2.7)

equivalent to the (frequentist) definition of the probability that the system is available at any
given moment/epoch:

a = P (System Available) (2.8)

where:

System Available : lhor,0.95 ≤ r eqa1 & lver,0.95 ≤ r eqa2 & PHMI ≤ r eqH M I & c ≤ r eqc (2.9)

assuming that also vertical guidance is needed. The determination of system availability is
based on satellite geometry alone. In a single epoch scenario the system is either available
or not available, therefore:

ase =
{

1 System Available
0 System Not Available

(2.10)

2.3. INTEGRITY MONITORING SYSTEMS AND RAIM
A navigation system can include/be backed by an integrity monitoring system. As men-
tioned in Chapter 1, different types of integrity monitoring systems exist, in particular exter-
nal (SBAS, GBAS) and internal (RAIM) systems, at user level. The integrity monitoring system
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processes input data to determine the health state of the navigation system itself. It can be
constituted by extra hardware that provides data extra than that employed for navigation
(the case of external system, GBAS and SBAS), or can simply be an algorithm that processes
the same observations used for navigation (RAIM).

This dissertation will focus on the latter integrity monitoring system, RAIM. A RAIM al-
gorithm exploits the redundancy in the set of available measurements: once a mathemati-
cal model describing the relations between measurements and unknown parameters is as-
sumed, it checks, statistically, the consistency between measurements on one hand, and the
model on the other; for instance, with m measurements and n unknown parameters in the
model of Equation (2.2), and m ≥ n, one can (through parameter elimination) formulate
m −n conditions which the measurements have to fulfil (or, which the expectations of the
observables have to fulfil, to be more precise).

2.4. RAIM PROBLEM DEFINITION
Now that the main navigation performance parameters have been defined, we can introduce
the problem of RAIM, i.e. the integrity monitoring that is based only on the observations
and does not require any external aid, from ground or space based networks. Specifically,
a single epoch snap-shot scenario is considered, so that each epoch can be treated per se
and no filtering or smoothing is added to possibly improve the integrity (beside the standard
Hatch carrier phase smoothing [39], see Section 2.8.2).

2.4.1. BASIC FORMULATION
Given is a single epoch scenario in which a user at position x (unknown) receives signals
from the GNSS satellites, which geometrical configuration with respect to the user position
is described by the matrix A ∈ Rm×n (introduced in Section 2.1)1. The observables received
by the user are identified by the random variable y ∈ Rm , where m is the number of observa-
tions.

The RAIM problem is fundamentally an estimation problem, and can be defined in first
run as searching for a estimator x̂ = F (y) which lies within some bounds around the true
position x with a certain probability (larger than the requirements). That is, find:

x̂ = F (y)

such that:
P (x̂ −x ∉ΩAL) ≤ r eq ∀x

where ΩAL is the integrity region around the true position whose bounds are the Alert Limits
(defined by the navigation requirements). This function F (y) may not exist for all the satellite
geometries.

On the other hand, the navigation requirements do not state that such estimation has to
be provided necessarily 100% of the time: a requirement on continuity establishes as well
the percentage of time that the position estimate must be provided to the user, whilst the
remaining time a warning can be provided not to trust the navigation system. This means

1Equivalently, in a general estimation problem, the observable y can depend upon the unknown parameters
through a possibly non-linear relation as in Equation (2.1), in which case the single epoch scenario is defined
by G(x).
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that after the observation has been taken, it can be checked to determine whether it is safe to
trust the navigation system or not, and then provide (or not) a position estimate to the user.
A selection can thus be made among the possible observations, based on their coherency,
that labels subsets of the observation domain as either trustworthy or not trustworthy. This
is anyway possible only when some redundancy of measurements is present.

Therefore, the RAIM problem is finally defined as: for any possibly occurring satellite
geometry, to which corresponds a certain statistical distribution of the observable y (depen-
dent on x), find an ‘acceptance’ regionΩ ∈ Rm (subdomain of Rm) and an estimation/detect-
ion function F (y) that to the observable y ∈Ω assigns a position estimator x̂:

y ∈Ω→ x̂ = F (y) (2.11)

such that:

P (x̂ −x ∉ΩAL ∩ y ∈Ω) = PHMI ≤ P
r eq

HMI ∀x (2.12)

and

P (y ∉Ω) = PF A′ ≤ P
r eq

F A′ ∀x (2.13)

where:

• P
r eq

F A′ is the requirement of False Alert probability, the probability that an Alert is raised
by the algorithm and the continuity of the operation is interrupted, without any actual
reason. It holds:

P
r eq

F A′ < 1− c0 (2.14)

where c0 is the continutity requirement per epoch. This means that P
r eq

F A′ is a sub-
allocation of the full continuity requirement 1−c0, which has to account also for justi-

fied Alert. See also Section 2.5.3 for FA’ and PF A′ definitions.

• ΩAL is the ‘integrity region’ around the true position which boundaries are the Alert
Limits (AL), which with the current standard requirements has a cilindric shape. In
fact two bounds are normally set for the position error, one for the horizontal dimen-
sion (defining a circle in the horizontal plane) and the other for the vertical dimen-
sion. Fundamentally the position error is required to lie within the boundaries defined
by the Alert Limits (therefore inside ΩAL) with an extremely high probability, 1−P

r eq

HMI.
Note that the region in which the error is required to lie with determined probabil-
ity 1−P

r eq

HMI is in fact the associated confidence region, therefore ΩAL sets an external
bound to the confidence region of the position error (accounting for all possible sys-
tem states).

• P
r eq

HMI, the (maximum allowed) Probability of Hazardous Misleading Information PHMI,
is the integrity requirement per epoch or per geometry. This is the probability that the
information on the aircraft position provided from the system is wrong by at least a
certain amount considered dangerous for the navigation, without any alert or warning
on possibly present anomaly being provided along.
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The acceptance region Ω fundamentally represents the set of all the measurements y (sam-
ples of y) on which base is possible to determine a safe position estimate x̂, i.e. for which the
requirement on the PHMI is satisfied.

To be found is therefore the function x̂(y) = F (y) that represents the safe position estima-
tor satisfying the integrity requirements, together with the acceptance region Ω, whatever is
the actual position x (at least among all plausible possibilities). The distribution of y is gen-
erally a function of the true position x.

Suppose for now that y is fully defined as a random function of x, for instance:

y =G(x)+e cf. Equation (2.1)

where G(x) is a deterministic function of x and e is a random variable with known/assumed
distribution. Then x̂ = F (G(x)+ e) is a function of x as well, which distribution can be de-
termined (apart from the unknown x). The quantities in Equations (2.13) and (2.12) can be
computed, generally as function of the actual x still, therefore the requirements must be ful-
filled by any x. Appendix A provides an explanation of the requirements on integrity and
continuity assuming a Bayesian point of view (distribution of observable fully known).

Since P (x̂−x ∉ΩAL∩y ∈Ω) = P (y ∈Ω)×P (x̂−x ∉ΩAL|y ∈Ω), the integrity requirement in
Equation (2.12) could be written as P (x̂ − x ∉ΩAL|y ∈Ω) ≤ k. The first proposed formulation
is most generally adopted in literature (as standard formulation of aviation requirement),
nevertheless it is possible to work also with this second formulation:

P (x̂ −x ∉ΩAL|y ∈Ω) ≤ k = P
r eq

HMI|a ∀x (2.15)

which may allow easier manipulation of the probability distribution functions. Here
P

r eq

HMI|a = P
r eq

HMI/a is the probability of hazardous misleading information given (conditioned)
the measurements have been accepted as trustworthy.

It is necessary to set the continuity requirement in Equation (2.13) because the require-
ment on integrity in Equation (2.12) can be satisfied very easily choosing as acceptance
region Ω the null set. On the other hand, if it is possible to find a rule y → x̂ such that

P (x̂ − x ∉ ΩAL) ≤ P
r eq

HMI for all y ∈ Rm , this would mean extending Ω to the whole domain
Rm , and it would be of course optimal since the continuity is maximized (P (y ∈Ω) = 1) . This
leads to a simplified definition of the problem, as considered at the beginning of this sec-
tion, but also means setting a maximum requirement on the continuity, i.e. P

r eq

F A′ = 1 (P
r eq

F A′

is a sub-allocation of c0). Therefore for standard continuity requirements, in case y ∉Ω the
system would not provide an x̂ but declare Alert.

There exist geometries for which finding such a rule is impossible, and x̂ simply cannot
be provided, since for instance P (y ∉ Ω) > P

r eq

F A′ when the requirement on PHMI is satisfied
(or viceversa). For these geometries the integrity is not available.

In any geometry we can optimize the rule in many different ways. The two extreme ap-
proaches would be:

1. Minimizing the PHMI given the requirement on the continuity is satisfied, i.e.:

x̂(y ∈Ω),Ω= argminx̃(y∈Ω̃),Ω̃ P (x̃ −x ∉ΩAL ∩ y ∈ Ω̃)

with: P (y ∉ Ω̃) ≤ P
r eq

F A′ ∀x
(2.16)
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2. Viceversa minimizing the PF A′ (maximizing the continuity c) given the requirement on
the PHMI is satisfied, i.e.:

x̂(y ∈Ω),Ω= argminx̃(y∉Ω̃),Ω̃ P (y ∈ Ω̃)

with: P (x̃ −x ∉ΩAL ∩ y ∈ Ω̃) ≤ P
r eq

HMI ∀x
(2.17)

In general anyway it is possible to minimize (or maximize) a combination of the two moni-
tored quantities, for instance:

x̂(y ∈Ω),Ω= argminx̃(y∈Ω̃),Ω̃(c1P (x̃ −x ∉ΩAL ∩ y ∈ Ω̃)+ c2P (y ∉ Ω̃))

with: P (y ∉ Ω̃) ≤ P
r eq

F A′ , P (x̃ −x ∉ΩAL ∩ y ∈ Ω̃) ≤ P
r eq

HMI ∀x
(2.18)

where c1 and c2 are two weighting constants (c1 ≥ 0, c2 ≥ 0).
A further constraint has still to be added to the RAIM definition: the Time-to-Alert (TTA)

constraint. In fact, as from the definition of integrity given in Section 2.2, the integrity mon-
itoring system is required to provide timely warnings to the user in case of unavailability, i.e.
within the TTA time constraint. This means the RAIM system as well is supposed to carry out
its estimator function and satisfy Equations (2.12) and (2.13) within the TTA.

An Alert can consequently be defined as:

Alert : y ∉Ω (2.19)

under the assumption that all the computation on y required by the RAIM algorithm can be
carried out within the TTA. Note that we distinguish an Alert from an Alarm because we use
the latter to refer to the rejection of the null hypothesis in a hypothesis testing contest (see
Section 3.6.1).

2.5. RAIM INPUT, OUTPUT AND PERFORMANCE PARAMETERS
Following the definition of the RAIM problem given in the previous Section, we summarize
in this Section input, output and performance parameters of any RAIM algorithm. Figure 2.1
presents a schematic representation of a RAIM algorithm.

2.5.1. INPUT PARAMETERS
As from the definition given in previous Section, we can highlight the following set up input
for the RAIM algorithm (necessary to define the algorithm equations):

• P
r eq

F A′ , the False Alert requirement per geometry.

• ΩAL, the integrity region delimited by the ALs.

• P
r eq

HMI, the maximum allowed PHMI per sample.

The above parameters are sufficient to define the algorithm; next, the input to the algorithm
at each epoch is constituted by:

• A, the geometry matrix;

• y , the observation vector;

• fy , the distribution function of the observable — partial knowledge; in fact this input
may differ among the different RAIM algorithms, and each algorithm may make differ-
ent assumption on this distribution.
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Figure 2.1: RAIM scheme. An Alert can thus be due to the weakness of the geometry itself, i.e. when the esti-
mation rule cannot satisfy Equations (2.12) and (2.13), or to the fact that the measurements taken do not lie in
the algorithm acceptance region, y ∉Ω.

2.5.2. OUTPUT PARAMETERS

Outputs of the RAIM algorithm are, at each epoch:

• Alert/No Alert, binary decision whether integrity is guaranteed or not;

• x̂, the position estimate (to be used only if no Alert is declared);

• (optional) PHMI or PLs, the Protection Levels.

The raising of an Alert can be due to two different reasons:

1. The satellite geometry is itself too weak: in this case the Alert occurs before even taking
the actual measurements, so only the input A is employed. Generally the knowledge
of the geometry A and the (partial) knowledge of the fy allows the RAIM algorithm
to compute the (upperbound to the) PHMI (or the PLs) for the epoch considered, and
if this computed PHMI is larger than the maximum allowed an Alert should be raised
irrespectively of the measurements.

2. The satellite geometry can guarantee integrity but the sample measurement taken is
too inconsistent: this is actually the case y ∈ Ω introduced in the definition of RAIM
problem. The measurement falls in the subset of measurement that cannot be trusted
to guarantee integrity, and no repair/adaptation is possible/foreseen.

On the base of the output of the RAIM algorithm compared with the actual state of nature
(actual x), over a long span of time, it is possible to determine the performance of a RAIM
algorithm. The performance parameters are discussed in next Section.
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2.5.3. PERFORMANCE PARAMETERS
From the comparison of the output (Alert/No alert and x̂) with the actual position x (not
possible in reality, but possible in simulations or experiments), the following events can be
distinguished:

• Positioning Failure (PF), that is defined:

PF ≡ x̂ −x ∉ΩAL (2.20)

• Correct Alert (CA), in case of simultaneous Alert and PF (justified Alert):

C A ≡ Alert ∩PF ≡ y ∉Ω∩ x̂ −x ∉ΩAL (2.21)

• False Alert (FA’), in case an Alert is not justified by a PF:

F A′ ≡ Alert ∩ No PF ≡ y ∉Ω∩ x̂ −x ∈ΩAL (2.22)

FA’ is used to indicate a False Alert, because FA will be instead used to indicate a False
Alarm.

• Hazardous Misleading Information (HMI), in case a PF occurs but is not detected with
an Alert:

H M I ≡ PF ∩ No Alert ≡ x̂ −x ∉ΩAL ∩ y ∉Ω (2.23)

As a result the following performance parameters can be computed:

• PPF , the probability of Positioning Failure (PF):

PPF = P (PF ) = P (x̂ −x ∉ΩAL) (2.24)

If we refer to the RAIM definition in Equations (2.11) to (2.12), we can see that the
integrity requirement for the estimation function x̂ = F (y) can be rewritten using the
PF:

P (PF ∩ y ∈Ω) = PHMI ≤ P
r eq

HMI ∀x (2.25)

• PHMI, the probability of Hazardous Misleading Information (HMI), that was defined in
Equation (2.4):

PHMI = P (H M I ) = P (x̂ −x ∉ΩAL ∩No Alert) = P (PF ∩No Alert) (2.26)

which is equivalent to the RAIM definition:

P (x̂ −x ∉ΩAL ∩ y ∈Ω) (2.27)

since No Alert ≡ y ∈Ω.

• PF A′ , the probability of False Alert, defined as:

PF A′ = P (No PF ∩ Alert) = P (x̂ −x ∈ΩAL ∩ y ∉Ω) (2.28)
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We want to comment here furthermore on the FA’s and on the PF A′ . FA’ and PF A′ are not
necessarily defined for all RAIM algorithms since a RAIM algorithm does not necessarily pro-
vide a position estimate x̂ when an Alert is raised (when y ∉Ω). The FA’ could be intended
as the occurrence of an Alert when the position estimate ‘that would have been given in case
an Alert did not occur’ is not erroneous enough to cause a PF. FA’ and PF A′ appear to the
author controversial quantities, of limited practical use, though they are strongly connected
to the quality of the estimation rule and may drive availability. In fact to compute the RAIM
availability it is standard practice to consider only the Alerts that occur in the fault-free hy-
pothesis, i.e. under the assumption that the system is working with nominal performance
(it can be argued in fact that the requirement in Equation (2.13) should be restricted to the
fault-free hypothesis). Thus we can approximate PF A′ with:

PF A′ ≈ PF A′ |No Fault = PF A′ |H0 = P (y ∉Ω|H0) = PF Atot (2.29)

where H0 indicates the fault-free hypothesis and PF Atot stands for total probability of False
Alarm (FA). The terms Alarm and FA refers generally to hypothesis testing and FDE proce-
dures (see Section 2.6 and 3.6.1). This is the only reasom why we differentiate the two terms.
As outputs of the RAIM algorithm, Alarms and Alert (as well as FA and FA’) effectively coin-
cide. We specify total probability of FA because a FA standardly refers to a false detection (in
the fault-free state) by any of the tests employed, whereas an Alarm in the fault-free state in
FDE procedures usually results out of a succession of multiple False Alarms.

2.5.4. NOTE ON THE PLS

To define the PLs the total requirement on the PHMI, the P
r eq

HMI, must be split into horizon-

tal and vertical contributes, P
r eq

HMI,hor
and P

r eq

HMI,ver
. HPL and VPL are defined as the maxi-

mum position error size (in the horizontal plane or in the vertical direction) that can pass
undetected with probability smaller or equal to the probability requirements, P

r eq

HMI,hor
and

P
r eq

HMI,ver
.

HPL = argminδ P
(√

(x̂1 −x1)2 + (x̂2 −x2)2 > δ
∣

∣

∣ No Alert
)

≤ P
r eq

HMI,hor

V PL = argminδ P
(

|x̂3 −x3| > δ
∣

∣ No Alert
)

≤ P
r eq

HMI,ver

(2.30)

with P
r eq

HMI,hor
+P

r eq

HMI,ver
= P

r eq

HMI. To satisfy the navigation availability requirement it has to
be:

HPL ≤ H AL and
V PL ≤V AL

(2.31)

If those equations are satisfied integrity is maintained for the epoch under consideration.
Instead of computing the PLs, the integrity monitoring system can simply compute the ac-
tual PHMI or an upperbound, and compare it to the requirement P

r eq

HMI, as mentioned. If

PHMI ≤ P
r eq

HMI, integrity is maintained.
PLs are computed by ARAIM and by many other RAIM algorithms. In this dissertation

nevertheless preference will be given to the simpler direct computation of the PHMI, and the
comparison between the different RAIM algorithms will be based on the computed PHMI or
on a computed upperbound on it. The PLs provide extra information to the user, but this
information is not vital for safety warranty.
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2.6. COMMENTS ON RTCA DEFINITIONS
Working Group 5 of RTCA Special Committee (SC)-159 spent several years working on the
problem of GPS Fault Detection and Exclusion (FDE) for a primary-means navigation sys-
tem. The results of this working group activities have been incorporated in [72] and are sum-
marized in [61]. In this work performance parameters strictly related to RAIM other than the
RNP parameters were defined. An FDE algorithm is a possible approach to tackle the RAIM
problem, but it is not the only one possible. In Chapter 3 other possible ways to approach
the problem will be considered. Nevertheless, as today almost all RAIM algorithms in use or
in testing phase employ an FDE procedure.

Here we report the definitions given in the RTCA that refer strictly to FDE procedures.
FDE procedures are all based on statistical hypothesis testing [101]. They perform statistical
tests to detect whether any fault is affecting the system or not, and to identify and exclude the
fault. Often the detection step and the identification/exclusion step are distinct and employ
different tests, but in some cases the same tests can perform detection and identification
at the same time. A hypothesis is describing a possible state of the (navigation) system. As
in standard hypothesis testing, the FDE algorithm tests a null hypothesis (H0) against one or
multiple alternative hypotheses (Ha or Hi ). The null hypothesis (H0) reads: no faults, healthy
system, nominal operations (standard performance). The alternative hypotheses (Hi ) read:
presence of failure or anomaly in the positioning system.

• False Alarm/Detection (FA) The term False Alarm (FA) is associated to a Hypothesis
Testing procedure. In the RTCA document it is referred to as False Detection. This
event occurs when a statistical test rejects the null hypothesis when instead the null
hypothesis holds true. An FA occurs when the test statistic exceeds the critical value
(the system detects a fault), while there is actually no failure (the null-hypothesis H0

holds):
T > k ∩H0 (2.32)

where T is the test statistic and k is its critical value. A FA might result in an False Alert
(see the following), and thus loss of continuity. A (False) Alarm can refer to any single
test run in the algorithm, therefore if the full procedure is made up of multiple tests
and multiple steps, an Alarm does not necessarily results in an Alert, as final output of
the monitoring algorithm.

• Missed Detection (MD) Also the term Missed Detection (MD) is associated to a Hy-
pothesis Testing procedure. A Missed Detection occurs if a failure is affecting the sys-
tem (an alternative hypothesis Ha holds true) and it is not detected. This coincides to
the event of a test accepting the null hypothesis when in fact an alternative hypothesis
holds true:

T < k ∩Ha (2.33)

where T is the test statistic and k is its critical value. An MD may coincide to a Missed
Alert depending on the actual Positioning Error and on the result of other tests even-
tally run in the algorithm.

• Wrong Detection/Exclusion (WD) A Wrong Detection (WD) and Exclusion occurs when
a satellite failure is detected but the exclusion algorithm declares the wrong satellite or
the wrong set of satellites to be in faulty and thus excludes from the model the wrong
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satellite/satellites. In the RTCA document the term Wrong Exclusion is employed only
when after the exclusion of the wrong satellites a Positioning Failure occurs. If after the
exclusion there is no Positioning Failure, the event is called Incorrect Exclusion. In the
following anyway we will employ the same term WD for both cases.

2.7. GENERAL DISTRIBUTION OF THE OBSERVABLE
One big issue of the RAIM problem is the distribution of the observable y . The pdf of y is
generally supposed to be known in standard fault free conditions, but not really known in
case some anomalies would occur; it is furthermore generally assumed that anomalies in
the systems will occur with a certain failure rate.

Different hypotheses can be defined to represent the state of the system: a fault free (null)
hypothesis H0 and NHa alternative hypothesis Hi , representing the different possible types
of anomalies affecting the system, with i = 1, . . . , NHa . In this dissertation we consider only
observation systems the states of which can be modelled or approximated by a linear model,
of the type shown in Equation (2.2). In fact in the null hypothesis H0 the observation model
is assumed to be of the form:

H0 : y = Ax +e cf. Equation (2.2)

whereas in an alternative hypothesis Hi we assume:

Hi : y = Ax +∇yi +e (2.34)

where ∇yi = Cyi
∇i is the bias (due to an anomaly) affecting the observations, and is char-

acterized by a signature/structure matrix Cyi
∈ Rm×q , which is a characteristic of the corre-

sponding alternative hypothesis, and by a bias size vector ∇i ∈ Rq , which is unknown. Fur-
thermore we assume:

e ∼ N (0,Qy y ) (2.35)

that is, the distribution of the random errors is normally distributed with zero mean and
known variance, in all null and alternative hypotheses. This model of alternative hypothesis
is the so-called mean shift (or slippage) model, by far the most popular in geodesy. Differ-
ent models exist for the alternative hypotheses, as the variance inflation model and mixed
models (see for instance [63], [76], [41]). The choice of the mean shift model is justified in
Section 2.9.

The distribution of the observable y , as a result, depends on the state of the system. Un-
der each hypothesis y is assumed to be distributed as a multivariate normal distribution (this
follows from Equations (2.2), (2.34) and (2.35)). In particular, we can write the conditional
distributions of y under each hypothesis as:

{

fy |H0 = N (Ax,Qy y )

fy |Hi
= N (Ax +∇yi ,Qy y ) ∀i = 1, . . . , NHa

(2.36)

Beside defining multiple hypotheses to describe the distribution of the observable, we
need to introduce as well the prior assumption about the probability of occurrence of each
hypothesis. The approach described in the following is equivalent to the one adopted in
ARAIM [8]. We can introduce the random variable H representing the state of the system,
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which possible realizations are the previously defined hypotheses H0 and Hi , with i = 1, . . . ,
NHa . It is possible to associate prior probabilities to the occurrence of the different hypothe-
ses, in such a way that the variable H has a prior Probability Mass Function (PMF):

H ∼



















P (H = H0) = p0

P (H = H1) = p1
...
P (H = HNHa

) = pNHa

(2.37)

The marginal distribution of y is thus obtained as:

y ∼ p0 · fy |H0 +
NHa
∑

i=1
pi · fy |Hi

(2.38)

At this point the uncertainty about the y distribution is expressed by its dependence on
the unknown variable ∇i beside x. There exists the possibility to assume some prior distri-
butions also for the bias sizes ∇i , for instance special heavy tailed distributions commonly
used for outliers modelling (as the Cauchy distribution, which has infinite standard devia-
tion [96]). Other robust approaches are also possible (assumption of worst-case scenarios
etc.). Adopting any of these approaches allows writing the observable distribution as a func-
tion of the sole position x, in such a way that any (estimation) function of the observable can
be written as a function of x.

2.8. THE GNSS MODEL
In the previous Section (2.7) the general observable distribution that is considered in this
dissertation was presented. In this Section we focus on the GNSS case. The observation
model in this case can be linearized and reduced to the same general form introduced in
the previous Section; the specific matrix A and error variance Qy y have to be opportunely
defined. This Section describes how to construct the geometry matrix A (which defines the
GNSS functional model) and how to compute/approximate the variance matrix Qy y (at the
basis of the stochastic model).

2.8.1. GNSS FUNCTIONAL MODEL
Suppose receiver r simultaneously tracks pseudo-range measurements of m satellites on
one frequency, say L1, then we can formulate a complete system of equations:

E













ρ1
r

ρ2
r
...

ρm

r













=











√

(X1 −Xr )2 + (Y1 −Yr )2 + (Z1 −Zr )2 + cd t
g
r − cd t 1 +a1

r +b1
0

√

(X2 −Xr )2 + (Y2 −Yr )2 + (Z2 −Zr )2 + cd t
g
r − cd t 2 +a2

r +b2
0

...
√

(Xm −Xr )2 + (Ym −Yr )2 + (Zm −Zr )2 + cd t
g
r − cd t m +am

r +bm
0











(2.39)

where:

• ρi

r
is the pseudorange observable from satellite i at receiver r ;

• Xi ,Yi , Zi are the actual coordinates of satellite i ;
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• Xr ,Yr , Zr are the actual coordinates of receiver r ;

• c is the speed of light;

• d t
g
r is the time offset of receiver r with respect the clock of constellation g , to which

the satellite i belongs;

• d t i is the clock offset of satellite i with respect to the clock of its own constellation;

• ai
r is the atmospheric delay at receiver r from satellite i ;

• bi
0 is the nominal bias affecting the measurement from satellite i in fault-free condi-

tions (considered in the ARAIM algorithm [111]). Addition of these nominal biases
is made to take into account the non-Gaussianity of the observations (due mainly
to nominal code correlation peak deformations) by means of the concept of paired
bounding [84] [85].

The parameters of interest are Xr ,Yr , Zr , the coordinates of the receiver. The model in Equa-
tion (2.39) is a nonlinear model. Given y is the full vector of observables (ρi

r ) and x is the
vector of unknown parameters, this model can be written in the form E(y) =G(x).

For our GNSS positioning problem, the unknown parameters are Xr ,Yr , Zr , and d t
g
r (one

for each constellation). In fact satellites positions and satellites clock offsets are known
(though with limited accuracy). It is possible to correct the measurements for atmospheric
delays ai

r (using tropospheric models and exploiting the dual frequency to remove the iono-
spheric delay, as explained in the following), and the nominal biases, as introduced in the
ARAIM algorithm, can be bounded by conservative estimates [111]. Therefore parameters
Xi ,Yi , Zi , d t i , ai

r and bi
0 in Equation (2.39) are not to be estimated.

An identical system can be written for the code observations collected in the second fre-
quency L5. For each pair of measurements coming from the same satellite i , in the two
frequencies L1 and L5, it is possible to write the ionosphere-free combination:

ρi

I F
=

f 2
L1ρ

i

L1
− f 2

L5ρ
i

L5

f 2
L1 − f 2

L5

(2.40)

As a result of this combination, the same functional model as in Equation (2.39) can be
rewritten using the ionosphere-free pseudorange measurements; the same relations remain
valid, the only difference is that the ionospheric delay is canceled from the atmospheric de-
lay (it was included in the terms ai

r , which after the combination account only for the tro-
pospheric delay). The new observables obtained have reduced precision (compared to the
original pseudoranges), this is accounted for in the definition of the stochastic model (next
Section).

The fault free nominal biases bi
0 introduced in the ARAIM algorithm are assumed (for

the moment) to be always absent for any code measurement. These biases are introduced
to tackle the non-Gaussianity of the actual observations, mainly due to nominal code cor-
relation peak deformations: the underlying idea is that the actual distribution can be over-
bounded by a pair of Gaussian distributions displaced from the zero mean, better than by a
variance inflated single Gaussian distribution. For simplicity, and given that their influence
on the results is often very small, in the following these biases are neglected.
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The functional model in Equation (2.39) represents the state of standard operations, that
is the case in which the system is working properly without any fault. In the case of a fault
affecting the system we can expect some satellite measurements to be biased. For our simu-
lations in Chapter 7 we will consider mainly the case of a single satellite measurement to be
biased or the case of two satellites measurements to be simulateneously biased.

If the measurement from satellite i is affected by anomaly, we have:

E(ρi

r
) = E(ρi

r
| No Fault)+∇i (2.41)

where E(ρi

r
| No Fault) stands for the expectation in the fault-free hypothesis, the right hand

side of each line in Equation (2.39), and ∇i is the bias (positive or negative) affecting the
observation.

To solve the nonlinear problem of Equation (2.39), the observation equations are lin-
earized: the vector function G(x) is approximated as G(x) ≈G(x0)+∂xT G(x0)(x − x0), where
x0 is a vector of approximate values for the unknown parameters and ∂xT G(x0) is the m ×n

matrix of partial derivatives. When the higher-order terms in the approximation of the vec-
tor function G(x) may be neglected, the linearized model to solve becomes E(y) = G(x0)+
∂xT G(x0)(x − x0). This can be written as E(∆y) = ∂xT G(x0)∆x, where ∆y = y − y0 (with y0 =
G(x0)) is known as the vector of incremental observations and ∆x = x − x0 is known as the
vector of incremental parameters. Redefining the observation vector y = ∆y and the un-
known parameters vector x = ∆x, and defining the geometry matrix A = ∂xT G(x0), we can
write this linear model as in Equation (2.2):

E(y) = Ax or y = Ax +e

with E(e) = 0.

2.8.2. STOCHASTIC MODEL
As described in previous Section, the expectation of the pseudo-range code measurements at
each epoch is expressed by Equation (2.39), the functional model of GNSS code observations.
After the above-mentioned information available on atmospheric (tropospheric) delay, po-
sition and clock of the satellites has been exploited, the expectation of the measurements is
in fact a function of 3+ Nconst variables (receiver position and clock offsets), where Nconst

is the number of constellations. The collection of the measurements is a stochastic process,
affected by random errors generated by thermal noise at the receiver, multipath, residual
tropospheric error and satellites clock and orbit errors (see Table 7.1). We write therefore:

y = E(y)+e (2.42)

The error vector e is modelled to have a multivariate normal distribution:

e ∼ N (0,Qy y ) (2.43)

with Qy y a diagonal matrix with theσGPS2

i
andσGal 2

i
as diagonal elements (depending whether

the satellite i belongs to GPS or Galileo constellation). The standard deviations σGPS
i

and

σGal
i

are defined in Table 7.1. As reported in Table 7.1, the total standard deviation of each

ionosphere-free observation is made up of three contributions,σi =
√

σ2
U R A

+σ2
tr opo +σ2

user ,
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of which the last one, due to the receiver thermal noise and by multipath, is affected by the
combination across the frequencies. Carrier phase smoothing is assumed to be performed
over 100 seconds as recommended in [72], with the standard Hatch algorithm [39]. Note that

with this approach the risk of occurrence of an anomaly (as for instance a cycle slip) affecting

the carrier phase measurements is disregarded. It is assumed therefore that a separate integrity

monitoring procedure assures the integrity risk connected with the carrier phase smoothing is

below a certain threshold. For the moment the approach is followed as it is commonly em-

ployed in literature but we stress the absence of an assessment of the risk related to cycle slip

detection algorithms.

The stochastic model parameters that are used in the simulations in Chapter 7 are listed
in Table 7.1; they are based on [48] and [49] and are employed also in other recent simula-
tions as in [50] and [11].

2.9. GNSS ANOMALIES AND THEIR MODELS
The observation model described in Sections 2.7 and 2.8 implies the adoption of the mean

shift model (see Section 2.7) to represent the occurrence of anomalies in the navigation sys-
tem. This means it is assumed that in case of anomaly only the mean of one or more obser-
vations will be biased (by the unknown amount ∇i in Equation (2.34)), but not their standard
deviation. The model in Section 2.7 furthermore assumes that each anomaly (alternative hy-
pothesis) is uncorrelated to any other (the probabilities pi are fixed). These assumptions
are justified by the record of system anomalies registered and by the type of most common
anomalies affecting GNSS measurements. Fundamentally, it is assumed that the occurrence
of both mean shift and variance inflation at the same time is extremely more unlikely than
the occurrence of just one of the two, so that such an event can safely be neglected. Further-
more it is reckognized that the occurrence of variance inflation is a less critical event than a
mean shift, and can be protected against by taking care of the latter.

We do not provide here a detailed description of the GNSS anomalies, but we just list
the main categories of High Dynamics Threats (HDTs) and provide references for more in-
depth study. As previously mentioned, the HDTs are threats that cannot be monitored by the
ground control system, as opposed to the Low Dynamics Threats (LDTs). The most common
HDTs affecting a single measurement at a time can be categorized in:

• Clock and ephemeris estimation errors, see [38], [91], [86], [37], [42]

• Signal deformations, see [46]

• Code-carrier incoherency, see [35], [70]

From the snap-shot perspective (thus considering a single epoch of time), and working with
just a single type of measurement per satellite, an outlier in a single satellite is believed to be
the main threat (in terms of probability of occurrence). The satellites are to a large extent in-
dependently operating devices, typically at huge distances from each other (we mentioned
an example of clock runoff in Section 1.4). In the receiver, a tracking channel is assigned to
each satellite in view, and these channels work (in high-end equipment) in parallel, typically
independently from each other (signal tracking is done on a per satellite basis). Of course
multiple (different) outliers (for different satellites) can occur at the same time. With refer-
ence to the alternative hypotheses defined in Equation (2.34), with ∇yi = Cyi

∇i , this means
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that the main Cy s to consider will be the canonical unit vectors of Rm or m×q matrices made
up of different canonical unit vectors of Rm , e.g.:

Cy1 =











1
0
...
0











or Cym+1 =















1 0
0 1
0 0
...

...
0 0















in case the first satellite is believed to be affected by an anomaly or the first two satellites are
believed to be affected by two different anomalies.

Anomalies that specifically affect more than one satellites at a time (wide failure errors)
are furthermore described in [10]. Among these, constellation faults may happen (e.g. thr-
ough upload of incorrect navigation messages, and may impact a full constellation), see [10],
[103]. Finally we shall consider common errors/anomalies in propagation as ionosphere,
troposphere and multipath: the tropospheric delay is typically a small effect (and one can
correct sufficiently well for this error source), ionosphere gradients/fronts effects are sup-
posed to cancel out with the use of ionosphere-free combination (only second order delay
effects would be of concern, but significant second order effects are regarded as extremely
unlikely events), and multipath very much depends on the local satellite-receiver geometry
and can thereby be considered on a per satellite basis (typically outlier-like).

2.10. INTEGRITY REQUIREMENTS
Depending on the aircraft’s approach mode, it must operate with different ALs. As previously
defined, the AL is defined as the error tolerance not to be exceeded without issuing an alert,
whereas the PL defines the error bound provided by the integrity system. The PL must al-
ways be smaller than the AL, so the requirements become more stringent with decreasing
AL. Table 2.1 lists the most common approach modes with the associated ALs, according to
the International Civil Aviation Organization (ICAO) standards and recommended practices
(SARPs) [46].

SBAS systems are aiming at providing integrity down to the LPV-200 level. LPV-200 is a re-
cently introduced approach mode that provides lateral performance with vertical guidance
down to a decision height of 200 feet. At the moment, GBAS is the only GNSS based system
that can provide the integrity performance necessary for precision approach up to CAT-III,
but is rarely implemented by civilian airports because does not provide the advantages of a
reduced ground segment that SBAS provides (and is still under development).

2.11. SUMMARY AND CONCLUSIONS
In this Chapter we introduced the concept of integrity in navigation and of RAIM, and we
provided a mathematical definition of the RAIM problem (Equations (2.11)-(2.15)). We out-
lined the functions that a RAIM algorithm should fulfil, and defined its input, output and
performance parameters. These definitions constitute a starting point for the development
of a RAIM algorithm, and can help to understand the different approaches that can be taken
to tackle the problem and the different algorithms already available in literature, that will be
presented in the following of the dissertation. Later in the Chapter we introduced the general
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Table 2.1: Performance requirements for landing of civil aircraft (ICAO SARPs [46] and [27]).

Aircraft Phase
of Flight

Accuracy Integrity Maximum Proba-
bilities of Failure

(2σ or 95%) Alert Limits (4-5σ) Time to
Alert

Integrity Continuity
Vertical Horizontal Vertical Horizontal

NPA, Initial
Approach,
Departure

N/A
0.22-
0.74
km

N/A
1.95-3.7
km

10-15 s 10−7/hr 10−4/hr

LNAV/VNAV

20 m

220 m
50 m

556 m

10 s
1.2×
10−7 /
150 s

4.8×10−6

/ 15 s

LPV

16 m 40 m

APV I 35 m

APV II 8 m 20 m

6 sLPV 200
4 m

35 m

Precision
Approach CAT I 10 m

Precision
Approach CAT
II/III

< 2.9 m < 6.9 m 5.3 m < 17 m < 2 s
< 10−9 /
150 s

< 4× 10−6

/ 15 s

observation model that will be considered here onwards, in particular the GNSS observation
model and its linearized equivalent. The GNSS anomalies’ models were introduced and jus-
tified, and a set of typical integrity requirements for aviation was provided.



3
POSSIBLE APPROACHES TO RAIM

On the basis of the definition given in Section 2.4.1, the RAIM problem is for large part an
estimation problem. In fact we want to find a function x̂(y) that maps the measurements
y into the position domain. On the other hand it is not just an estimation problem since
we want to determine also a subdomain Ω of the full measurement domain for which the
estimation must work, guaranteeing some properties for the estimator distribution.

Since we must perform an estimation, we can distinguish three main approaches:

• FDE procedure: we adopt the standard estimation rule, for instance the Best Linear
Unbiased Estimation (BLUE, characterized by highest accuracy in fault free condi-
tions), and we implement a Fault Detection and Exclusion (FDE) algorithm: in case
the BLUE is not satisfying the integrity requirements (too large PHMI), we can switch
to different estimators, normally still BLUE for a modified set of measurements (for
instance a subset of the original measurements set). Practically a different BLUE is
applied depending on which hypothesis H is likely to hold true. The DIA algorithm,
covered in Chapter 5, is an example of this type of approach.

• Robust estimation: we adopt/develop a new estimation rule tailored to integrity. In-
stead of employing the BLUE we can give up on some accuracy in fault-free conditions
in change of enhanced integrity (see Sections 3.4 and 3.5).

• Robust estimation & FDE: a combination of both methods above is possible.

In this Chapter we consider separately the two main approaches (the third option is not
analyzed in this work). First we consider the simple case of no fault possibly occurring, to
show that even in this case the BLUE is generally not the best solution in terms of integrity,
and that the RAIM problem is strictly related to the estimation problem.

The last Section of the Chapter presents furthermore the main methods used in statistics
to tackle the same or similar problems that show up in RAIM — e.g. detection and identifi-
cation of outliers — and compare them to the different RAIM approaches.

3.1. FAULT-FREE CASE
We defined the observable model of interest in Section 2.7. In this Section we restrict the
analysis only to the special case in which only the null hypothesis H0 can hold true. The
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standard estimator employed under this assumption in aviation, as well as in most other
disciplines, is the BLUE (formula given in Equation (3.7)). The BLUE has the highly desirable
qualities of being unbiased and of maximizing the accuracy. On the other hand, maximizing
the accuracy does not imply maximizing the integrity. We show here that the BLUE does not
necessarily guarantee maximization of the integrity, in the simple fault-free case.

Suppose the model describing the measurements is simply the fault-free model (P (H =
H0 = 1):

y = Ax +e cf. Equation (2.2)

with e ∼ N (0,Qy y ), x unknown but Qy y known. The distribution of the observable y is sim-
ply:

fy = N (Ax,Qy y ) (3.1)

The BLUE applied to the model relating to the null hypothesis reads:

x̂0 = (AT Q−1
y y A)−1 AT Q−1

y y y (3.2)

We want now to solve the RAIM problem for this case. Suppose to use a linear function for
x̂ = F (y):

x̂(y) = Ly (3.3)

Then the distribution of the estimator is easily obtained:

x̂ ∼ N (L Ax,LQy y LT ) (3.4)

The problem to solve is finding L and Ω that satisfy Equations (2.13) and (2.12).
Suppose now to further simplify the problem such that, at least for some special A, Ω can

be chosen as the full domain of the observable; the problem becomes to minimize P (x̃ − x ∉
ΩAL|y ∈ Ω̃) = P (x̃ −x ∉ΩAL), as with the approach defined in Equation (2.16). It can be easily
seen that the solution will very much depend on the shape of the required ΩAL .

We are in fact looking at finding the matrix L I for which the integral of the multivariate
distribution N (L Ax,LQy y LT ) outside the region ΩAL is minimized:

L I = argmin
L

∫

Rn \ΩAL

N (L Ax,LQy y LT ) (3.5)

whereas in case of using an unbiased estimator we would have:

L I = argmin
Lu

∫

Rn \ΩAL

N (0,LuQy y LT
u ) with Lu A = 0 (3.6)

The BLUE, which reads:

x̂0 = (AT Q−1
y y A)−1 AT Q−1

y y y (3.7)

minimizes the trace of LuQy y LT
u , but not necessarily the integral in the equation. Therefore

even choosing to use an unbiased estimator the solution to minimizing the integral over the
multivariate distribution will generally not be the BLUE.
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3.2. MODEL WITH FAULTS — BLUE APPLICATION
We consider here the application of standard BLUE to the general case that foresees the oc-
currence of possible anomalies. The model for this general case was given in Section 2.7. The
BLUE applied to the model relating to the null hypothesis reads:

x̂0 = (AT Q−1
y y A)−1 AT Q−1

y y y cf. Equation (3.7)

Since x̂0 is a linear function of y , it is possible to propagate the distribution of the measure-
ments y as in Equation (2.38) into x̂0, in the position domain. It is in fact:

x̂0 ∼ p0 · f x̂0|H0 +
NHa
∑

i=1
pi · f x̂0|Hai

(3.8)

with
{

f x̂0|H0 = N (x,Q x̂0 x̂0 )
f x̂0|Hai

= N (x +∇x̂i ,Q x̂0 x̂0 ) ∀i = 1, . . . , NHa

(3.9)

Q x̂0 x̂0 can be obtained by the propagation law of variance, Q x̂0 x̂0 = (AT Q−1
y y A)−1.

Since the estimation function has been chosen, the integrity problem becomes now the
determination of the acceptance region Ω. In general once we have the joint distribution
f x̂0,y (x̂0, y), from Equations (2.38) and (3.8) (still with the unknown parameters ∇) and the
region Ω it is possible to compute the quantities in Equations (2.13) and (2.12), that will be
therefore function of the unknown bias sizes ∇. As previously mentioned, it is possible to
assign a prior distribution to ∇, or just employ a conservative approach and perform a max-
imization of the risk over the possible ∇ values to consider a worst-case scenario. Once one
of these possible approaches has been adopted, the quantities in Equations (2.13) and (2.12)
will be fully computed. Ω must be chosen based on this computation, to at least satisfy the
requirements on continuity and integrity.

Instead of using a simple estimator as the BLUE for the null hypothesis, it is possible to
switch to different estimators depending on the observation taken. This is the principle of
the FDE algorithms, explained in Section 3.3.

3.3. FDE PROCEDURE
The observation model defined in Section 2.7 foresees the occurrence of different hypothe-
ses, assigned to the fault-free case (null hypothesis H0) and to the occurrence of different
types of anomalies (alternative hypotheses Hi ). In this set-up, an FDE can naturally apply.
As the name suggests, the scope of an FDE procedure is to detect whether an anomaly is af-
fecting the system (detect whether the null hypothesis or an alternative is holding true), and,
in case of detection, exclude/isolate the anomaly, adapting the observation model in such a
way that the navigation is still available.

In a common FDE procedure, typically the BLUE is applied to the model corresponding
to the hypothesis H that is more likely (or safer to use). Once it has been decided which hy-
pothesis is most likely to hold true (this decision is made through a statistical testing proce-
dure), the estimator to be used is the BLUE for the model corresponding to that hypothesis.

Fundamentally x̂(y) in this approach will be constituted by different linear functions of
the observable, each corresponding to different subdomains of the full Ω domain, assuming
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the form in Equation (3.7) when the null hypothesis H0 is considered most likely, or con-
versely different forms x̂i (corresponding to one of the NHa alternative hypotheses) when
they are designated to be most likely.

The model under an alternative hypothesis Hi , as from Equation (2.34), reads:

Hi : y = Ax +Cyi
∇i +e (3.10)

and, defining Ai = [A Cyi
], the BLUE for x and ∇i under Hi is:

[

x̂i

∇̂i

]

= (AT
i Q−1

y y Ai )−1 AT
i Q−1

y y y (3.11)

In case Cyi
is a canonical unit vector or a matrix which column are canonical unit vectors, i.e.

only single satellite faults and combinations of satellite faults are considered (as from Sec-
tion 2.9, this is most often the case in GNSS applications), x̂i can be computed employing
the BLUE formula in Equation (3.7) but removing the faulty observations from the measure-
ment vectors and ignoring the corresponding column from matrix A, with a result equivalent
to Equation (3.11). Equivalently, the following formula could be applied:

x̂i = (AT Q−1
y yi

A)−1 AT Q−1
y yi

y (3.12)

with Q−1
y yi

obtained from Q−1
y y substituting the diagonal elements corresponding to the faulty

observations with zero. Using this formula means completely de-weighting the observations
corresponding to the (assumed) faulty measurements. The equivalence between the above
listed different formulae for x̂i is demonstrated in Appendix C.

If we imagine Ω to be subdivided in subdomains, Ω0 corresponding to the null hypoth-
esis, Ω1, Ω2, . . . , ΩNHa

corresponding to the alternative hypotheses (but for which still a so-
lution that satisfies the integrity requirement can be found), for y belonging to each of these
subdomains a different linear function x̂(y) can be defined. To summarize, we have:

y ∈Ω :























y ∈Ω0 x̂ = x̂0

y ∈Ω1 x̂ = x̂1
...
y ∈ΩNHa

x̂ = x̂NHa

(3.13)

y ∉Ω : Alert

Ω corresponds to the realizations y that ‘relate’ to hypotheses on the model for which still
the corresponding estimator distribution satisfies the integrity requirement, hypotheses that
can be either fault-free or faulty. In this approach the switching to a different x̂i is based on
the capability of identifying which hypothesis is most likely true — for this scope we recur to
hypothesis testing. Figure 3.1 represents schematically the FDE approach.

Again, as explained in the previous section, once the estimation rule has been chosen
(together with the approach to treat the bias size), it is possible to compute the integrity risk
as function of only Ω, for any geometry (and Qy y ). In this case Ω is split into different sub-
domains, one for each different hypothesis on the state of the system, therefore the problem
becomes how to choose the best subdivision and size of these domains to maximize the con-
tinuity and minimize the integrity risk.
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Figure 3.1: FDE scheme: observation space Rm on the left, estimators on the right. The acceptance region Ω,
subset of Rm , is subdivided in different subsets to each of which corresponds a different estimation rule.

3.4. ROBUST ESTIMATION

We have seen how in an FDE procedure the monitoring system selects the hypothesis (on the
state of the system) that is judged most trustworthy and determines the position solution
on the basis of the corresponding model. A drawback of this approach is that there is not
much room left for indecisiveness among different hypotheses: if for instance two (or more)
hypotheses have similar likelihood of occurrence, with a FDE procedure we may be forced
to choose only one of them. Robust estimation may allow to go for solutions that result as a
‘compromise’ between different hypotheses.

Robust estimation is a relatively new field of statistics and its main aim is to provide es-
timators that are not unduly affected by outliers in the measurements and are resistant to
deviations from the nominal observation model, while still maintaining a good accuracy un-
der this model [78]. In a RAIM algorithm, we can consider to employ an estimator different
from standard BLUE, and optimized from the integrity point of view. If we allow the use of
any function for the estimation x̂(y), the distribution of the estimator has to be found by the
pdf transformation rule. The problem will traduce into looking for the function x̂(y) and for
the acceptance region Ω that minimize the probability of hazardous misleading information
PHMI (Equation (2.12)) satisfying the continuity requirement in Equation (2.13) or viceversa.

This approach is adopted for instance in [50], where they try to look for an estimator
that maximizes integrity, with the only constraint of unbiasedness. This estimation is made
adding to the standard BLUE a vector lying in the left null space of the geometry matrix A. For
each geometry, finding the optimal modifier vector constitutes a multi-dimensional opti-
mization problem and can be solved using a numerical method (a modified Newton method
for instance). In this approach the optimization is made regardless of the observation that
will be taken, and it is based on a worst-case assumption for the bias size affecting the mea-



3

38 3. POSSIBLE APPROACHES TO RAIM

surements — therefore the estimator is not optimal for all the possible observations. An
optimization that takes into account all the possible observations as well would result even
more complex and of difficult practical implementation (high computational load).

An alternative way to look at this problem is by recurring to a Bayesian perspective, and
is discussed in the following section.

3.5. ROBUST ESTIMATION VIA BAYESIAN APPROACH
When searching for an optimized estimation rule, the adoption of a Bayesian perspective1

is an alternative that allows to look at the problem in a reverse perspective. In the Bayesian
approach a fundamental step is added to the problem, at the very beginning: in our classical
approach the actual position x of the aircraft is a deterministic unknown parameter, and we
work on probability distributions as if they were conditioned on the actual value x of the
position; with a Bayesian approach instead the actual position is considered as an unknown
parameter (state of nature), to which a probability distribution can be assigned, prior and
post the measurements (so x can be considered a random variable x → x). A full procedural
but also theoretical step, of assignment of prior knowledge to the unknown parameter, is
therefore added.

With a Bayesian perspective it is possible to obtain a posterior probability for the state
of nature, when the measurements have been drawn: fx|y (x|y). This means that after the
measurements we directly infer on the probability of the state of nature being a certain value.
With the classical approach instead the results have a different meaning: considering the
confidence regions for instance (supposing one-dimensional), [a,b] : P (a ≥ x ≥ b) ≥ k, the
probability statement is always only made on the confidence bounds, not on the parameter
x. The results are conditioned on a statement about the true (but unknown) position x: if
the true position is x, then the confidence region will come to be within these values around
the unknown x with a certain probability.

Sometimes a confidence region is interpreted (wrongly) in reverse way: once the real-
izations of [a,b] are determined, one would say that the true parameter x is inside those
bounds with probability k. As mentioned this is not the meaning of the result from a classical
approach; nevertheless this result is normally obtained by assuming a Bayesian perspective
and assigning a non-informative prior to the parameter x. With a non-informative prior any
value for the parameter would be equally likely, therefore the (almost2) full information on
the parameter will be obtained through the measurements.

The possible advantage of the adoption of a Bayesian perspective in our integrity prob-
lem lies in the fact that it is possible to obtain the posterior distribution fx|y (x|y) directly
after the measurements, and decide for an estimate x̂ therefore based on this distribution.
Given in fact the distribution of the measurements as in Equation (2.38) and assuming a
non-informative prior for the unknown parameters x ∼ 1 (U (−∞,+∞)), the posterior distri-
bution of x is obtained by direct application of the Bayes rule, and the posterior probability
of PF, conditioned on the measurements:

PPF |y = P (x̂ −x ∉ΩAL|y) (3.14)

1An alternative can be the use of the inversion problem theory as developed by Tarantola [96], which also makes
use of priors (non-informative or informative) and leads to the same results.

2In some cases non-informative priors actually provide prior information to the problem — special care has to
be taken in the choice of these priors [7].
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can be determined as well as a function of x̂. Since the PPF |y can be written as a function
of x̂, an estimation rule that minimizes this probability can be obtained. Once we have
the rule we can go back to determine an acceptance region Ω and the prior quantities of
Equations (2.13) and (2.12). Nevertheless this Bayesian approach results quite complex and
computationally expensive. Furthermore it requires to assign prior distributions to the un-
known ∇i parameters (either non-informative priors or special priors assuring robustness of
the procedure), which are sometimes difficult to justify. Proposals for a Bayesian approach
to RAIM are presented in Appendix D, [82] and [19].

The Bayesian approach can be applied also in an FDE procedure. The extension of the
Bayesian theory to fault detection (through hypothesis testing) is quite straightforward, since
it reduces to determining the posterior probabilities for occurrence of faults (or any hypoth-
esis considered possibly occurring). As mentioned also in the following, the Bayesian theory
has been developed also in the fields of hypothesis testing, multiple comparisons and subset
selection [7], [67].

3.6. STATISTICAL TOOLS OF AN FDE PROCEDURE
The FDE approach is by far the most widely adopted in the current RAIM algorithms. In the
rest of this dissertation we will in fact restrict our analysis to FDE procedures. In this Section
we present the tools available in statistics to deal with the RAIM problem and develop an
FDE procedure. The basic theories of statistical hypothesis testing, Multiple Comparisons
and Subset Selection, topics tightly connected among each others, are presented.

3.6.1. STATISTICAL HYPOTHESIS TESTING IN LINEAR MODELS
FDE procedures (introduced in Section 3.3) are based on statistical hypothesis testing, the
theory of which goes back to Neyman-Pearson (1933) [77]. In fact in an FDE procedure tests
statistical tests are normally performed to determine which hypothesis (fault-free/faulty) on
the system state is most likely to hold. The theory on hypothesis testing in linear models
presented in the following is based on [101].

A statistical hypothesis is an assertion or conjecture about the probability distribution of
one or more random variables, for which a random sample will be available (mostly through
measurements) [101]. The hypotheses defined in Section 2.7 are an example of statistical
hypotheses. We keep using here the capital H to denote an hypothesis. The general structure
of a statistical hypothesis therefore is as follows:

H : y ∼ fy (y |x) (3.15)

with x fully or partially specified.
In standard (binary) hypothesis testing two hypotheses are set ahead: a null hypothesis

H0 and an alternative Ha ; following the hypotheses are tested to determine which of them
best fits the observations. A test of a statistical hypothesis is a rule or procedure in which a
sample of observable y is used to decide whether or not to reject H0. A test of a statistical
hypothesis is completely specified by the critical region in the observation space Rm (m the
dimension of y). The critical region of a test is the set of sample values of y for which H0 is
to be rejected. If we denote the critical region by U ⊂ Rm , we can define the test by the rule:

reject H0 if y ∈U (3.16)



3

40 3. POSSIBLE APPROACHES TO RAIM

and do not reject H0 if y ∉U . The decision rule, in binary hypothesis testing, can be aggre-
gated to a single dimension. This means we can define a scalar test statistic, say T , function
h of the observable (therefore a mapping from Rm to R), T = h(y), that contains all the in-
formation necessary to take the decision of choosing between H0 and Ha (a property called
sufficiency of the test statistic). The critical region U is mapped accordingly on the real line
R, into the new critical region (that we denote with K ). The test reads then:

reject H0 if T ∈ K (3.17)

and do not reject H0 if T ∉ K . We can define furthermore the acceptance region of the test,
ΩT = R −K (or ΩT = R\K ), complement of K to R, .

In a binary decision scenario as the one described, there are two possible states of the
system, H0 and Ha , and two possible decisions (accept H0 or reject H0 and go for Ha). This
yields a total of four combinations, which are listed in Table 3.1.

Table 3.1: Type of errors in statistical hypothesis testing, case of binary decision between null (H0) and alterna-
tive hypothesis (Ha).

Result of the test
Unknown reality H0 Ha

H0 OK FA (type I error)
Ha MD (type II error) OK

In two out of four combinations, the decision made is correct (marked by OK in the Ta-
ble). In the other two, the decision is incorrect and a testing error is made. We distinguish
two types of errors:

• Type I error, or False Alarm (FA): rejection of H0, when in fact H0 is true

• Type II error, or Missed Detection (MD): acceptance of H0, when in fact H0 is false

The probability PF A or α of a type I error, also called significance of the test, is:

PF A =α= P (T ∈ K |H0) =
∫

K
fT |H0 (T |H0)dT (3.18)

The probability PMD or β of a type II error is:

PMD =β= P (T ∉ K |Ha) = 1−
∫

K
fT |Ha (T |Ha)dT (3.19)

Instead of β, it is also possible to monitor its complement to 1, known as the power of the
test, γ:

γ= 1−β (3.20)

Once the distribution of the test statistic is known, at least under the null hypothesis H0, a
critical region can be defined by setting a value for the significance of the test α.

In this work only linear(ized) models are analyzed, therefore we focus here on statistical
hypothesis testing in linear models. The problem is, once observations have been made,
to decide between competing linear models that could describe the observed phenomenon
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or process. Furthermore all observables are assumed to have a normal distribution, and
different hypotheses differ only in the specification of the functional model. The models
considered are all Gauss-Markov models [101].

Given is a linear model (to which our GNSS model can be simplified):

y = Ax +e cf. Equation (2.2)

with
e ∼ N (0,Qy y ) cf. Equation (2.35)

where y is the vector of measurements (m entries), x is the unknown position vector (n en-
tries), A is the m ×n geometry matrix and e the error vector (m entries).

The above system represents the state of standard or nominal operations, that is the case
in which the system is working properly without any fault. This state is considered as the
null hypothesis H0. The case of a fault affecting the system constitutes instead a different
state, described by an alternative hypothesis Ha , under which the linear model assumes a
different form. We write therefore:

H0 : y = Ax +e

Ha : y = Ax +Cy∇+e
(3.21)

where Cy is a m×q matrix which represents the ‘signature’ of the errors in the measurements
and ∇ is a q sized vector that contains the sizes of the biases in each degree of freedom (q) of
Cy .

To test Ha against H0, the Delft school developed the Uniformly Most Powerful Invariant
(UMPI) test statistic (through application of the Generalized Likelihood Ratio (GLR) crite-
rion), which reads:

T q = êT
0 Q−1

y y Cy (C T
y Q−1

y y Qê0ê0Q−1
y y Cy )−1C T

y Q−1
y y ê0 (3.22)

where ê0 = y −Ax̂0 is the vector of residuals computed considering the null hypothesis hold-
ing true (x̂0 being the position estimator under the null hypothesis, Equation (3.7)). The vec-
tor of residuals is obtained through Best Linear Unbiased Estimation (BLUE). More details
on the Delft hypothesis testing theory are given in Chapter 5.

The statistic T q can be also written in alternative formulations, as shown in [99], which
are given in Section 5.1.1 (Equation (5.1)), where the Detection Identification and Adaptation
(DIA) procedure is introduced.

The test statistic T q is χ2 distributed:

H0 : T q ∼χ2(q,0) and Ha : T q ∼χ2(q,λ) (3.23)

with noncentrality parameter:
λ=∇T Q−1

∇̂∇̂∇ (3.24)

where Q−1
∇̂∇̂

=C T
y Q−1

y y Qê0ê0Q−1
y y Cy , Qê0ê0 = P⊥

A Qy y P⊥T
A and P⊥

A = I − A(AT Q−1
y y A)−1 AT Q−1

y y .
Knowing (though only partially in case of Ha holding true) the distributions of the test

statistic under the different hypotheses, we can define a critical region K (to reject the null
hypothesis) on the basis of the error probabilities defined in Equations (3.18) and (3.19). For
this test statistic, the critical region is one sided, of the type:

K : Tq > k (3.25)
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with k the test threshold (or critical value). For instance, requiring a determined (maximum)
FA rate (or significance, α) for the test, the critical region K (in fact the threshold k) can be
accordingly set.

The theory above constitutes the basis of statistical hypothesis testing.

3.6.2. MULTIPLE COMPARISONS
The theory on statistical hypothesis testing presented in the previous Section applies to the
simple case of testing a null hypothesis against one alternative hypothesis. In our GNSS case,
as in many other statistical testing problems, it is necessary to compare the null hypothesis of
fault-free state against multiple alternative hypotheses, corresponding to the different types
of anomaly that can affect the system — the different Cyi

in the model in Equation (2.36). The
statistical hypothesis testing theory described so far allows to develop for instance the UMPI
test for each binary case of testing the null hypothesis against any of the alternatives, but
how to combine the results of each different UMPI test? We are facing a problem of Multiple
Comparisons (MC).

We present in the following an example of what type of problem is to be solved. Suppose
a simple case in which a decision has to be made among 4 different alternatives: a fault-
free case, two one-dimensional anomalies and one bi-dimensional anomaly combination
of the two one-dimensional ones. Such a scenario can result out of a linear model as in
Equation (2.2) with two observables y

1
and y

2
(m = 2), and no unknown parameter (n =

0). Each one-dimensional alternative hypothesis stands for the presence of a bias in one of
the measurements, whereas the bi-dimensional alternative hypothesis represents the case
of both measurements being biased. The model in the null hypothesis is:

y = c0 +e e ∼ N (0,Qy y )

For simplicity we can assume c0 =
[

0
0

]

and Qy y = I2.

COMBINATION OF ONE-DIMENSIONAL TESTS

For each of the two one-dimensional alternative hypothesis a UMPI test can be written. The
UMPI test for a one-dimensional hypothesis, obtained from Equation (3.22) with q = 1, is the
so-called w-test (w) in the TU Delft theory. More details on the testing theory are given in
Chapter 5. Suffice it to know for the moment that the w-test statistic is in fact the projection
of the residual vector ê = P⊥

A y onto the anomaly-specific signature vector Cyi
. In the special

case considered, the w-tests simply coincide with the measurements themselves, w 1 ≡ y
1

and w2 ≡ y
2
.

In Figure 3.2 the decision regions for the one-dimensional UMPI tests (w-tests) are shown
for the simple case considered. The test statistics can normally be fully represented on the
space R(A)⊥, which in this case is simply R2, since matrix A is rank 0. In testing linear models
in fact only the projection of y onto R(A)⊥ is of interest, to discriminate between hypotheses.

The space R(A)⊥ represents the space of the redundancy of the system, and the coherency
of the redundant measurements can be measured on this space. For the definition that we
gave to the w-tests, the axes in figure represent the two different projections of Cyi

(Cy1 and
Cy2 ) on R(A)⊥, which in this particular example are perpendicular, and along which the two
test statistic w1 and w2 are measured.
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Figure 3.2: Testing of null hypothesis against two one-dimensional alternative hypotheses: Tukey-like detec-
tion regions, based on the use of one-dimensional tests only (w-tests). The overline stands for the mean of
the random variable: the null hypothesis reads E(w i ) = 0 (for any i ) whereas the alternative hypotheses read
E(w i ) 6= 0.

For each w-test, the acceptance region is a strip centered at the origin and extending
indefinitely in the direction perpendicular to the corresponding w-test statistic axis. In Fig-
ure 3.2 the rejection regions for the first w-test, with test statistic w1, are denoted by w̄1 > 0
and w̄1 < 0 (with w̄1 = E(w1), the overline standing for the variable mean), and the rejection
regions for the second w-test are denoted by w̄2 > 0 and w̄2 < 0; this signifies that in those
areas the alternative hypotheses, which read in fact w̄1 6= 0 and w̄2 6= 0, are to be accepted.

Just putting together the detection regions for the one dimensional anomalies, we can
determine the rejection regions for the two dimensional anomaly involving the combina-
tion of the two one-dimensional ones by simply intersect the rejection regions of the w-tests
(in figure, the areas denoted by both w̄1 and w̄2 different from zero (w̄1 ≷ 0 and w̄2 ≷ 0).
These represent the standard detection regions employed in methods such as Tukey (only
for observations characterized by Qy y =σ2I ) or Bonferroni [68].

MULTI-DIMENSIONAL TESTS

When we want to add instead a test that specifically addresses the multi-dimensional anoma-
lies (in this case bi-dimensional), this would result in a circular detection region, as in Fig-
ure 3.3. In fact the UMPI test statistic that monitors these general anomalies, in this par-
ticular case, is T 2 = ‖w‖2 (in the general case, the test statistic for the most comprehensive
alternative hypothesis is equivalently the length, in the metric defined by Qy y , of the pro-
jection of the measurements on R(A)⊥, ê). The use of the multidimensional test is standard
practice in ANOVA procedures also to control the total significance α of the tests [3]. The use
of the ANOVA F-test can be compared to the use of the Overall Model Test (OMT) in the De-
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tection Identification and Adaptation (DIA) procedure (the TU Delft original FDE procedure
described in detail in Chapter 5): in fact it coincides with the UMPI test in case of unknown
variance for the maximum q that is monitored in the problem at hand (q < m −n and q = 2
in the example of Figure 3.2). The test is first run to check for a general inconsistency in the
measurements, then single w-tests are run to identify the specific one-dimensional incon-
sistencies. With reference to the figure, first the OMT is run, and this means first we check
whether the realization lies inside the circle in the centre. If this is the case, the null hypothe-
sis is not rejected. Otherwise, we run in addition the single w-tests separately, and depending
on how many are rejected we make our choice on the observations to exclude (same areas as
in Figure 3.2).

Depending on the choice of the threshold for the OMT with respect to the w-test thresh-
old, it may happen that the circle intersects the detection regions of the w-tests, as in Fig-
ure 3.3. This is the case for instance when the same significance α is chosen for both OMT
and w-tests (this approach is used in the Least Significant Difference (LSD) method, see Sec-
tion 5.2.2), but also when other criteria for the thresholds setting are used (for instance in the
B-method, see Section 5.2.2). Note that there are 4 small regions in red in Figure 3.3 outside
the inner cirle but still inside the acceptance regions for the single w-tests for which the de-
cision to take according to this procedure is not clear. They represent, to say, a dimensional
inconsistency in the procedure.

In multiple comparison approaches this general consistency test is usually run only for
anomalies of the highest dimension allowed, that is, as in the OMT, for anomalies with q =
m −n degrees of freedom, where m is the total number of observations and n the number
of unknown parameters, as in model (2.2). This means only one-dimensional tests are run
for identification purposes; the reason for this is that in most general cases m can be a large
number and the dimension of the ‘anomaly’ (in general multiple comparisons problems),
say q , can be large as well, so that the total number of tests to be run,

(m
q

)

only for the di-
mension q , would become unacceptably large. In the GNSS positioning case instead, given
the dimensions of the model, the use of multidimensional tests can be still acceptable. In
Figure 3.4 the procedure for standard OMT followed by w-tests is shown.

Using the simple regions in Figure 3.2 is a possible and quite natural choice — but note
that the representation refers to uncorrelated one-dimensional tests, in most practical cases
(as the common w-tests case in GNSS positioning) correlation should be taken into account.
Such type of detection regions are employed in the Tukey and Bonferroni methods, which are
in fact widely adopted especially in the cases when the alternative hypotheses (comparisons)
to be considered are well-defined already before collecting the measurements.

As well it is possible to combine the circular acceptance region for the bi-dimensional
(multi-dimensional) hypothesis testing with the detection regions in Figure 3.3. This method
requires as mentioned to run a larger number of tests, since the number of bi-dimensional
alternative hypotheses to test for is likely the number of combinations of any pair of one-
dimensional alternative hypotheses, but it is more powerful in detecting bi-dimensional
(multi-dimensional) alternative hypotheses. As a general rule, beside all the tests for one-
dimensional, two-dimensional or even higher-dimensional specific alternative hypotheses,
running an OMT for alternative hypotheses of the highest dimension is always recommended,
as safeguard against the most generic anomalies.
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Figure 3.3: Detection regions for one-dimensional anomaly testing combined with the detection region for
multi-dimensional anomaly testing.

Figure 3.4: Multiple-steps procedure for a simple example with m = 2 and n = 0, in which first a multi-
dimensional test is run and afterwards (in case of rejection) uni-dimensional tests are employed for identifica-
tion. Examples of these procedures are the Fisher’s LSD method [68] or the Baarda’s OMT+w-tests method [5].
In these procedures the multi-dimensional test is the OMT, relating to the highest dimension possible for the
fault; hence in case of OMT rejection but no rejection for any of the w-tests (last line of last block on the right),
the presence of a general anomaly not specifically identifiable would be declared3.

P-VALUES

The use of p-values as discriminants between 1 or 2 dimensional more likely alternatives is
as well possible [33]. The p-value is defined as the probability, under the assumption of a hy-
pothesis H , of obtaining a result equal to or more extreme than what was actually observed.

3In the scheme in Figure 3.4 the case of OMT rejection but no rejection of any of the w-tests leads to acceptance
of H3 because in this special simple case H3 represents the occurrence of the most general type of anomaly.
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Considering for instance a test characterized by a right-sided rejection region (of the type
K : T > k), for any realization T0 of the test statistic T , the corresponding p-value is defined
as:

p(T0) =
∫+∞

T0

fT |H (T |H)dT (3.26)

When different tests are employed to test against hypotheses with different dimensions, the
p-values can be used as discriminants to choose which of the alternative should be preferred:
the test statistic that realizes the smallest p-value indicates the alterative hypothesis that
challenges most the null hypothesis, since its realization is the most unlikely to occur in H0.

The use of p-values in the particular example considered would lead to decision regions
indicatively as in Figure 3.5 (the detection regions are bounded by the circle and by the
purple lines). The corresponding procedure is given in Figure 3.6. As Figure 3.5 suggests,
with this method the choice for a higher dimensional anomaly would come slightly easier
than with the previous method, which therefore privileges the choice for lower dimensional
anomalies. In fact as visible in figure the area corresponding to w̄1 > 0∩ w̄2 > 0 is bigger and
includes some part of the regions that in the Tukey approach foresee only single detection.
With the Tukey method in fact the threshold (with associated significance α1) to be exceeded
for detection of one-dimensional anomaly must be reached by all the w-tests regardless the
realization of the other ones, but of course simultaneous occurrence of high values of the
w-test statistics is less likely under the null hypothesis. This p-value criterion seems espe-
cially reasonable noticing the areas in red in Figure 3.3, for which with the Tukey method the
decision to take would be unclear (whereas instead the p-values method leads to a choice
for bi-dimensional anomaly present). There is anyway controversy about the use of p-values
as measure of support of different hypotheses, see [75] and [6].

TEST-RATIOS

An alternative criterion to discriminate between hypotheses of different dimensions is the
use of the value of the UMPI test statistic divided by its threshold (so called ‘test-ratio’).
Fundamentally the ratio between each test statistic and its threshold is computed, for each
alternative hypothesis, and the largest of these ratios indicates the most likely alternative
hypothesis. This method has been proposed in [24] and implemented also more recently
(for instance in [54] and [20]), mainly on the basis of empirical reasons. The thresholds for
the different test statistics are chosen to obtain the same power in detecting a bias of a spe-
cific size (Minimum Detectable Bias MDB), following the same approach as for the Baarda
method [5] (see also Section 5.2.2, the B-method).

We want to point out that, if the thresholds for the different tests were chosen to have the
sameα instead, this method would result as an approximate form of the p-values method. To
explain this, suppose that the realization of a test is exactly equal to the threshold: then the
corresponding p-value is exactly α and the test-ratio is 1. If another test (for an alternative
hypothesis to compare with the first) results in a p-value smaller than α, its corresponding
test-ratio value is larger than 1 and both p-value and test-ratio methods would select this
last alternative hypothesis. This suggests that in the ‘vicinity’ of the threshold value (i.e. for
realizations of the test statistics that lie close to the threshold) the two methods should yield
the same result.
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Figure 3.5: Detection regions relative to the p-values method (purple lines) in comparison with other methods
detection regions. Note that the purple line start at the intersection of the edges of the detection regions of
OMT and w-tests, since in those points the p-values for both tests are the same, and tend then to align with
the edges of the detection regions of the single w-tests, since from the H0 acceptance region the OMT loses its
influence.

Figure 3.6: Procedure accordingto the p-values method. It is also possible, alternatively than here in the second
step, to reject the null hypothesis if any of the test statistics exceeds its threshold.

3.6.3. SUBSET SELECTION THEORY

In this Section we present the basics of the Subset Selection theory, which is a topic very
much related to Multiple Comparisons (in fact, some Subset Selection methods employ tools
borrowed from MC theory and from hypothesis testing theory). Subset Selection deals with
the problem of choosing a subset of parameters (from an original pool of candidates) that
is able to describe ‘thoroughly’ a certain phenomenon/observation. This subset should in-
clude the parameters that are actually involved in the physical process behind the obser-
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vation taking, parameters that should be included in the model that describes the physical
process. If we consider a linear model as in Equation (2.2), the problem of selecting how
many and which parameters should be part of x is a linear Subset Selection problem.

In our RAIM problem, the parameters x in Equation (2.2) are already fixed — they ‘have
to’ be chosen to build up the model. On the other hand, we have seen defining our GNSS
observation model as in Equation (3.21) that extra parameters can show up in the distribu-
tion functions of the observables, parameters describing the effect of a possible anomaly. As
in statistical hypothesis testing, a decision has to be made whether including or not extra
parameters in the definition of the model, choosing a particular hypothesis instead of an-
other (see Equation (3.21)). Differently from hypothsis testing though, Subset Selection pro-
cedures usually do not start from a predetermined ‘favored’ hypothesis, the null hypothesis
H0, and test then to check if there is enough evidence to reject it, but instead they lay all the
alternative hypotheses/models (possible subsets of parameters) on the same level, without
any predetermined preference. An exception is the Spjøtvoll method, which instead employs
explicitly the tools of hypothesis testing, and Bayesian methods in general, that explicitly set
prior probabilities for the adoption of each alternative model [67].

The problem of selecting the correct subset of satellites to exclude from the full set of
satellites in view is equivalent to the problem of starting from the pool of parameters x and
∇ for every observation and determining which subset of these parameters fits best some
measured data, as in a linear regression problem. With reference to the model presented in
Equation (3.21), adding an extra parameter to the original set x adopted in the linear model is
equivalent to excluding the observation from one satellite from the model. This equivalence
is proved in Appendix C. Excluding q satellites means adding q extra regression parame-
ters (for a total of n + q), represented by the vector ∇. The parameters to be estimated are
therefore the n standard unknowns (dimensions of x) plus eventually q biases in the mea-
surements.

STANDARD MODEL

The general model adopted in linear regression is:

y = Ai xi +e (3.27)

where y is the observable vector of m measurements, Ai an m ×n matrix (n unknown), xi

an n-dimensional vector of unknown regression parameters and e ∼ N (0,σ2In), with σ often
unknown. The case e ∼ N (0,σ2In) is the case of homoskedastic errors, whereas in case of
Qy y simply diagonal we would have the heteroskedastic case.

With comparison to the model in Equation (3.21), we can see that in this most general
case there is not a fixed geometry matrix A, i.e. there are no parameters to be necessarily
included in the regression. The actual Ai is unknown, though in most cases many compet-
itive models are proposed, each characterized by a peculiar Ai (that could be associated to
different hypotheses Hi ). There is normally no distinction among a null and the alternative
hypotheses, all models represent in fact competitive alternative hypotheses.

Another standard model, usually adopted in Analysis of Variance (ANOVA) problems, is
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the following:

y =











1
1
...
1











x0 +Cyi
∇+e (3.28)

where x0 is the expected value of the measurements and again y is the observable vector of m

measurements, Cyi
an m×q matrix (q unknown) and e ∼ N (0,σ2Im), with σ often unknown.

In this case, differently from the previous model, the parameter x0 has to be included among
the regression parameters. With comparison to the model in Equation (3.21), we can see
that we have the same structure as in the alternative case, with A being in this case a simple
column vector of ones (n = 1), and Qy y having a simpler form. As said there is standardly no
distinction between null and alternative hypothesis. q is unknown, the parameters x0 and ∇
have to be estimated for many different alternative Cyi

with different q , and the objective is
to find the best subset of parameters apt to estimate the observable. In fact this is equivalent
to having many different alternative hypotheses, one for each possible subset of parameters
(and hence Cyi

), among which to choose the most fit to the measurements collected.

MINIMAL WSSE
With reference to the statistical Subset Selection theory [67], looking at the Weighted Sum of
Squared Errors (WSSE) is the typical approach when trying to find subsets that fit well a set
of data. Choosing the subset with lowest WSSE (also referred to as weighted Residuals Sum
of Squares RSS) is the common method of selection among subsets with the same number
of variables.

The WSSE (W SSE = êT Q−1
y y ê) is equivalent to the OMT statistic for the model under con-

sideration, which distribution is a χ2(0,m −n −q) under hypothesis of correct choice of the
model, therefore small values or values close to the expectation m −n − q represent more
likely realizations under such hypothesis.

For our application we consider only small numbers for the value q of satellites possibly
simultaneously failing (it is very unlikely to have q > 3 in practice), and the total number of
combinations of n + q subsets out of the total m (with double constellation m < 30) never
grows too large (< 105), therefore it is always possible to compute the WSSE for all the pos-
sible subsets candidate to fit the observations4. For each number of variables (n +q), there-
fore for each dimension of the anomaly q , the best candidate subset is thereby found as the
one generating the minimum WSSE. The problem is that when the number of parameters
used for regression increases, the WSSE always decreases. If the WSSE was used in ‘absolute’
sense, it would always go for the most relaxed model (with largest number of parameters),
therefore some additional criteria are necessary to select among subsets with different q . In
the following some possible approaches are presented, while more details on each method
can be found in Appendix E.

SPJØTVOLL METHOD

Once the best candidates for exclusion for each failure dimension q have been identified,
these subsets can be directly compared across different dimensions using the Spjøtvoll test

4In case it is unfeasible to perform an exhaustive search among all the subsets there exist methods to speed up
the search among the subsets, see [67].
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[94], [67]. The Spjøtvoll test is a significance test that can be used to test whether a larger sub-
set of variables or a subset with extra parameters performs significantly better than another
smaller subset or not. This method is designed to guarantee a maximum total significance

for any possible comparison with other subsets, therefore, similarly to the Scheffé method, it
is quite conservative, i.e. tends to favor the null hypothesis. More details on this method are
in Appendix E.1.

STEPWISE REGRESSION

The Spjøtvoll method is characterized by great generality since it is apt to test an original
model against any alternative one, without any particular restriction. The null model can
either be nested to the alternative or not — two models are said to be nested in case one
is a special case of the other, or, in terms of corresponding hypothesis, one hypothesis im-
plies the other (e.g. a pair of satellites failing and only one of the two failing). To compare
nested models, i.e. subsets of parameters contained or containing each other, it is possi-
ble to employ the UMPI test, which corresponding test statistics in this case have a known
distribution (differently from the case of non-nested models). Starting from the candidate
subsets it is possible to perform tests only on other subsets which are contained or contain
the original candidates; that means subsets that have either extra parameters added or re-
moved from the original considered. In this case the distribution of the single test statistics
(formulae in Appendix E.2) is well known, a χ2 distribution in case of known variance and
an F distribution in case of unknown variance. The thresholds for each test can be set on
the basis of such distribution, and acceptance rejection regions of the type of Figure 3.2 can
be employed. Since the unknown variance case is the most common in linear regression,
the tests thresholds are the so called F-to-enter (and F-to-exit) values in [67]. This test can
be used to check whether or not one should include a further variable in the original can-
didate subset (forward selection method) or to take out instead a variable from the original
candidate subset (backward elimination method, parameter significance test in our theory).
The total significance of each step of the method can be approximated conservatively using
Bonferroni or Šidác methods. Forward selection and backward elimination methods are de-
scribed in Appendix E.2. The combination of forward selection and backward elimination is
usually referred to as stepwise regression.

MSEP AND MALLOWS’S C p

Another common approach in subset selection, to decide also the dimension of the subset
of variables that best models the observations, is looking at the Mean Squared Error of Pre-
diction (MSEP) [67], that in our terminology is the Mean Squared Error of the observable
estimation, instead of the WSSE. The MSEP is the expectation of the actual error we make
when estimating the expected value of the observable (E(y)). The best candidate subset will
be found by minimizing the MSEP or, equivalently, the Mallows’s C p statistic. The MSEP can
be estimated only under the assumption that the subset being considered does not contain
already wrong parameters that would lead to a bias in the estimation. Instead a bias in the
estimated parameters or observations can only be due to omission of necessary parameters.
The idea behind this method is that when the number of variables used for estimation in-
creases, the random error (the variance of the estimator) will increase but the bias due to
possible omission of important variables will instead decrease; therefore we would look for
minimizing the sum of the two contributions, finding the point at which the influence from
the omission of variables becomes small. More details on the method are in Appendix E.3.
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We consider the Mallows’s C p method not completely adequate to the RAIM problem: we
would suggest this method for cases in which we have from the onset no clue of what model
we should choose for our null hypothesis. This method can give a good indication on the
subset of variables that can model the observations when there is no prior information at
all about which variables or which number of variables are best suited to form the obser-
vation model. For our problem we usually strongly favor the models with smaller number
of variables; therefore we would suggest procedures that employ tests to accept/reject our
predetermined null hypothesis (of fault free state or fault of small dimension).

OTHER METHODS

There exist other methods that foresee the choice of the subset of parameters that minimizes
or maximizes certain quantities describing the quality of the fit. The Akaike’s Information
Criterion (AIC) is the equivalent of the Mallows’s C p developed in information theory, and
it is based on the minimization of the expectation of the Kullback-Leibler mean informa-
tion [1]. The final result is the same as Mallows’s.

Also the R2
ad j

statistic, the adjusted coefficient of multiple determination, can be used as

a measure of fit of the models [67], [71]. Similarly to the C p and AIC criteria, this method

foresees the selection of the model that maximizes a certain quantity (the R2
ad j

) that mea-

sures the goodness of the fit. The use of the R2
ad j

statistic is fundamentally equivalent to the

use of the F statistic described in the previous Section, which resulted to be quite liberal as
a method. In fact the R2

ad j
method tends to select bigger subsets than the C p method. More

details on these methods are given in Appendix E.3.
Other methods from MC theory can be employed as well, based on the assumption of

a null hypothesis and the adoption of detection and identification tests that may reject the
null hypothesis and select one of the alternatives. For instance the p-values, as introduced
in Section 3.6.2, can be used to choose among the alternative hypotheses. More details on
this method are in Appendix E.3.

Furthermore, there exist Bayesian methods for subset selection that allow to weigh the
different models on the basis of a-priori probabilities assigned to each [67]. These methods
are not discussed in this dissertation. More details on Bayesian inference and hypothesis
testing in linear models are in Appendix D.

3.7. FDE-BASED RAIM PERFORMANCE COMPUTATION
In this Section we discuss the computation of the RAIM performance parameters c and PHMI

defined in Section 2.4 in Equations (2.8) and (2.27). In Section 3.3 we have seen that an FDE
procedure foresees the division of Ω, the acceptance region of the full RAIM algorithm, in
multiple decision regions Ωi s. Furthermore in an FDE procedure it is standard practice to
monitor some performance parameters strictly related to the underlying hypothesis testing
theory, as the probabilities PF A and PMD defined in Equations (3.18) and (3.19) and intro-
duced also in Section 2.6. In this Section we try to define some relationships existing between
the RAIM performance parameters and the FDE related performance parameters, that may
ease the computation of the RAIM performance when employing an FDE procedure.

Since all the FDE related performance parameters are probabilities conditioned on the
occurrence of a particular hypothesis, we determine here relationships between the PHMI|Hi

and PF A′ |Hi , i.e. the RAIM performance parameters under each particular hypothesis. In
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case the prior probability of occurrence of the hypotheses is known as in the model defined
in Section 2.7, the actual PHMI and PF A′ can be determined as:

PHMI = p0PHMI|H0 +
∑NHa

i=1 pi PHMI|Hi

PF A′ = p0PF A′ |H0 +
∑NHa

i=1 pi PF A′ |Hi

with the same notation adopted in Section 2.7.
Let us consider first the simple case in which an Exclusion (or Adaptation) of the model is

not foreseen by the procedure (only Fault Detection is performed) and therefore a Detection
of a fault results directly in an Alert. In this case the regions Ω1,Ω2, . . . ,ΩNHa

do not exist, but
there is only one simple acceptance region Ω≡Ω0. In this case we have:

PHMI|H0 = P (PF ∩NO|H0) = P (x̂0 −x ∉ΩAL ∩ y ∈Ω0|H0)

PHMI|Ha = P (PF ∩MD|Ha) = P (x̂0 −x ∉ΩAL ∩ y ∈Ω0|Ha)

PF A′ |H0 = P (F A|H0) = PF A = P (y ∉Ω0|H0)

PF A′ |Ha = P (C D|Ha) = P (y ∉Ω0|Ha)

(3.29)

where NO stands for Nominal Operation, i.e. no detection when H0 is holding true, and CD
stands for Correct Detection, i.e. detection when an alternative hypothesis Hi holds true (NO
and CD therefore stand for the events designated with OK in Table 3.1, the correct outputs of
the tests). In terms of test statistics, we have:

PHMI|H0 = P (x̂0 −x ∉ΩAL ∩ T ∈ΩT |H0)
PHMI|Ha = P (PF ∩MD|Ha) = P (x̂0 −x ∉ΩAL ∩ T ∈ΩT |Ha)

PF A′ |H0 = P (F A|H0) = PF A = P (T ∉ΩT |H0)
PF A′ |Ha = P (C D|Ha) = P (T ∉ΩT |Ha)

(3.30)

where we indicate with T the set of the generic test statistics employed by the algorithm and
again with ΩT the generic acceptance region of the full set of tests.

Most often the PHMI|H0 , the risk under the null hypothesis, is considered negligible. In
fact by design this quantity is always many orders of magnitude smaller than the required
P

r eq

HMI, and many RAIM algorithms neglect its computation. On the other hand in the case
of the PF A′ , as mentioned already in Section 2.5.3, the contributions under the alternative
hypotheses, the PF A′ |Ha , are often neglected. This is because these contributions are re-
lated to the occurrence of the anomalies, the Hi , and therefore are not a full ‘responsibility’
of the RAIM algorithm. An Alert that occurs when an anomaly is present, even though the
RAIM algorithm could have detected and successfully excluded it, is normally not consid-
ered the result of a deficiency of the algorithm. It can be argued in fact that the requirement
on continuity for the RAIM algorithm in Equation (2.13) should only address the fault-free
hypothesis. We will see in the following that many RAIM algorithms employ the approxima-
tion:

PF A′ ≈ PF A′ |H0 ≡ PF A (3.31)

In case of a ‘full’ FDE procedure, which foresees possible exclusions of faulty measure-
ments and multiple iterations of the Detection and Exclusion steps, the computation be-
comes more complex. First of all we note that the regions Ω1,Ω2, . . . ,ΩNHa

introduced in
Section 3.3 are usually not explicitly defined in an FDE procedure, but they result as combi-
nations/intersections of the acceptance/rejection regions of the statistical tests that are run
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during the procedure. The main complication is that after a Detection and Exclusion the
RAIM algorithm could (and should) attempt to give a new position solution, but with the
positioning being again available a new risk is generated (the possibility that the new po-
sition solution is not correct). This new risk is generated both by a Correct Detection and
Exclusion and (especially) by a Wrong Detection and Exclusion (WD and WE). The PHMI|Ha

in this case is not given only by the second of Equations (3.29), i.e. by the probability of
simultaneous MD and PF, but also by a term including the cases of CD and WD (followed
by exclusion/adaptation and no further Alarm). The computation of the PHMI in case of
exclusion/adaptation of the model is treated in more detail in Section 6.5, where multiple
iterations of an FDE procedure are analyzed.

Similar considerations have to be made also for the PF A′ computation. Considering for
instance the PF A′ |H0 computation, in fact, it is necessary that a Detection occurs multiple
times through the different iterations of the algorithm, so that the exclusion/adaptation of
the model is not successful. This means that PF A′ |H0 results as the probability of occurrence
of a combination of multiple FA (from multiple tests). This probability was introduced al-
ready in Section 2.5.3, as total probability of FA, PF Atot :

PF A′ |H0 ≡ PF Atot

More details on its computation are in Section 6.5.

3.8. SUMMARY AND CONCLUSIONS
In this Chapter we have given an overview of the most relevant tools available in statistics to
deal with the RAIM problem. In the following of this dissertation, as mentioned, we will fo-
cus specifically on some FDE procedures. Robust estimation is left aside; many recent RAIM
algorithms including ARAIM are borrowing though some elements from robust estimation
theory to optimize the positioning from an integrity point of view, with promising results.
The main issue with robust estimation techniques is the resulting complication in obtaining
performance parameters such as the PHMI, since often the distribution of the position es-
timator cannot be determined in closed form. Furthermore current RAIM algorithms need
anyway to include some form of fault detection, because the ability of detecting anomalies
and isolate malfunctioning satellites, not to be used in the following epochs, is considered
a fundamental function of the integrity monitoring algorithm. Therefore at the moment ro-
bust estimation can possibly be applied, but always combined with an FDE procedure.

The FDE procedures that we are going to analyze in the following chapters make funda-
mentally use of the Multiple Comparisons and Subset Selection theories presented in this
Chapter, sometimes with minor variations. The LS RAIM (Section 4.1) employs a simple bi-
nary hypothesis testing method (null hypothesis against one single alternative hypothesis).
The ARAIM (Section 4.2) employs a single step Bonferroni Multiple Comparison method, as
described in Section 3.6.2 (though tests of higher dimensionality are combined with one-
dimensional tests, not a common procedure in literature); the exclusion mechanism shares
the minimal WSSE principle with the Subset Selection theory, but presents also original
elements (exclusion confirmation tests). The DIA procedure (Chapter 5) employs a two
steps Multiple Comparison procedure, with a multi-dimensional test preceding the one-
dimensional tests, as described in Section 3.6.2; the exclusion mechanism is then based on
the forward selection method (stepwise regression), described in Section 3.6.3.
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Subset Selection methods other than forward selection and minimal WSSE methods are
not employed in current RAIM algorithms. Nevertheless, it is opinion of the author that they
could constitute valid complements for the Exclusion mechanism. In fact Subset Selection
methods can push (when opportune) towards simultaneus detection and exclusion of mul-
tiple observations at a time. This can be a desirable quality because it reduces the risk of
detecting and excluding wrong measurements leaving the faulty ones undetected — it will
be shown in the following (Section 6.5 and Chapter 7) that wrong exclusion are particularly
detrimental for integrity. It has to be noted anyway that many methods are fundamentally
equivalent to each other, as for instance the minimal C p and minimal R2

ad j
criteria are equiv-

alent to employing UMPI tests, but with different choices for the thresholds (different signif-
icance). Even the p-values method gives results similar to the application of the UMPI tests.
Some equivalences between Subset Selection methods are discussed in Appendix E.

One issue with the RAIM application is that the a-priori probabilities of the alternative
hypotheses should better be taken into account when selecting the subsets of satellites to
exclude, whereas they are mostly disregarded by the Subset Selection methods described.
Furthermore the specific RAIM application requires to monitor and contain the PHMI, and
this need may overcome the desire of individuating the most likely alternative hypothesis.
Multiple Comparison methods that allow easier computation of the probabilities of correct
or wrong identification of a fault (monitored FA and MD probabilities) are preferred com-
pared to other methods such as minimal C p or p-values.

In the following of the dissertation we will focus on FDE procedures employed in the most
popular RAIM algorithms currently in use or development. These FDE procedures are based
on statistical testing (MC procedures), for which computation of fundamental performance
parameters as FA and MD rate is quite straightforward. All RAIM algorithms need to focus
on the reliability of their FDE procedure — monitoring the impact of faults on the solution
domain. It becomes also practically important that the FDE methods employed are able to
compute the risk (PHMI) involved in the procedure without a too high computational effort.
This is the main reason why most Subset Selection methods have not been taken into con-
sideration for most RAIM algorithms — though in future availability of higher computation
capabilities may steer the choice towards that directions.

The overview of the statistical methods given in this Chapter will serve as backgroung
and point of reference for the RAIM algorithms that are described in the following Chapters.
In those algorithms the hypothesis testing tools are applied to the specific RAIM problem
and tailored to its specific requirements. Some methods are preferred to others because of
the ease of computation of some performance parameters, as mentioned earlier: therefore
it is opinion of the author that some of the methods described in this Chapter (for instance,
the Bayesian approach or the p-values method), for which there is no room in current RAIM
approaches, may deserve more attention and study in the future.
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OVERVIEW OF APPROACHES TO RAIM IN

AVIATION

In this Chapter the RAIM algorithms currently in use or in testing phase in aviation will be
reviewed. As mentioned in the Introduction (Chapter 1), we can subdivide these RAIM al-
gorithms in ‘first generation’ algorithms, in use today, and ‘second generation’ algorithms
(absolute RAIM), under development/testing and proposed as algorithms of the future.

RAIM algorithms have been investigated since the late 1980s, starting with publications
by Lee [58], Brown et al. [16], [17], and Brenner [15]. As main representative and reference
of the first generation RAIM algorithms we present here the Weighted RAIM algorithm, also
referred to as Least-Squares-Residuals (LS) RAIM or (in the following) Standard RAIM, pro-
posed by Walter and Enge [107]. This algorithm is still in use today, typically implemented in
aviation grade GPS receivers, to provide low-precision lateral integrity only [92]. As of today
no RAIM implementation exists for any application requiring integrity in the vertical plane
(i.e. precision approaches), which has more stringent certification requirements.

Following, we present the Advanced RAIM (ARAIM), also referred to as Multiple Hypothe-
sis Solution Separation (MHSS) RAIM, which concepts were first introduced in [17] and [81].
This is the (absolute) RAIM algorithm currently being mostly investigated for aviation appli-
cations, though it has not yet assumed a definitive shape. The ARAIM algorithm is designed
to provide protection also against vertical errors and fully exploit MCDF GNSS capabilities.
It needs nevertheless support from an ARAIM ground-monitoring network compliant with
the necessary safety requirements (through the Integrity Support Message, ISM).

4.1. STANDARD RAIM — SLOPE-BASED METHOD
Todd Walter and Per Enge [107] proposed the method of the Weighted Receiver Autonomous
Integrity Monitoring (Weighted RAIM), based on the previous work of Lee [58], Brown et
al. [16], [17], and Brenner [15], which is a simple yet powerful method to check the validity
of the observations. The Weighted RAIM algorithm, to which we will refer also as Standard
RAIM since represents the latest update of the baseline methods most cited in the MOPS [72],
checks the consistency of the Weighted Least Square Estimation (WLSE) to detect errors from
measurements. It processes all satellites range measurements and computes a test statistic, a
single scalar carrying information on the consistency or ‘health’ of the measurement system.
When the test statistic exceeds a determined threshold, a failure is declared.
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This Section critically reviews the Weighted RAIM approach developed in the above men-
tioned key paper [107] in aviation integrity, and proposes possible modifications. A brief
summary of the Walter and Enge’s paper is provided in Section 4.1.1, together with a brief
description of the Weighted Least Squares Estimation (WLSE) for the resolution of a redun-
dant linear system. This is the method commonly used to solve the linearized observabtion
model of GPS range measurements and constitutes the background for the development of
the integrity theory.

The review of the method is carried on through Section 4.1.2, which is organized in five
subsections. First the set up of the test statistic and its threshold is analyzed, and a small er-
ror in [107] in the derivation of the test statistic’s Cumulative Distribution Function is high-
lighted. Following, the method to determine whether a satellite geometry can guarantee suf-
ficient navigation integrity or not, based on the calculation of a simple quantity, the Vslope ,
is reviewed. An alternative to this approach is then proposed: a simulation based on actual
GPS data has been run to validate the theoretical analysis and the results are presented. Next
subsection — as an extension of the method — focuses on the choice of the test statistic
for the Identification algorithm. The advantage of using a different type of test, the w-test,
rather than the Overall Model Test (OMT) is demonstrated (these tests are covered in detail
in Chapter 5. Then the definition of the quantity Vslope and its threshold are reviewed, and
possible ways to improve the algorithm and in particular to compute the PHMI are proposed.
Finally we present the standard RAIM algorithm in detail.

4.1.1. STANDARD RAIM BASIC CONCEPTS
In Walter and Enge’s work [107] a Weighted RAIM implementation is described. The method
proposed consists of a first algorithm to detect errors in the range measurements, to warn
timely the user when the navigation information cannot be relied on, and of a second algo-
rithm to determine whether the satellite geometry at hand can provide sufficient integrity,
i.e. determine when integrity is available.

First the Weighted Least Squares Estimation (WLSE) is introduced as the common method
to obtain a positioning solution from a redundant set of measurements. The WLSE of user
position is based on the linearized observation model of GNSS range measurements. After
the linearization, the general observation model is:

y = Ax +e (4.1)

where y is the m ×1 measurement vector; x is the 4×1 unknown parameter (position and
clock bias); A is the observation matrix and e is the m×1 Gaussian measurement noise. The
measurements weight matrix W is commonly chosen diagonal, as these measurements are
assumed to be uncorrelated. The WLSE of x is:

x̂ = (AT W A)−1 AT W y

and the residuals vector ê is:
ê = y − Ax̂

Since it is impossible to evaluate the positioning error x̂ − x directly (since we do not
know the true position x), we have to assess it by examining other quantities. The OMT
method, which computes the weighted squared norm of the measurements residuals, is used
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to judge the goodness of the WLSE of the position [107]. The weighted squared norm of the
measurements’ residuals, or the Weighted Sum of Squared Errors (WSSE), is defined as:

W SSE = êT W ê (4.2)

and it is equivalent to
W SSE = yT W (I −P A) y (4.3)

where P A = A(AT W A)−1 AT W is the projector matrix onto the space R(A). Taking Q−1
y y as

a special Weighted matrix W , with Qy y the variance matrix of the measurements, gives us
Best Linear Unbiased Estimation (BLUE). Alongside the reviewed paper treatment, in the
following only the case W =Q−1

y y will be considered, since this choice yields the most precise
results for position estimation.

In [107], the variable
√

W SSE is used as test statistic rather than W SSE itself to detect a
big bias in the range domain. We denote this test statistic with T , T ≡

√

W SSE . If this statis-
tic exceeds a certain threshold k, the estimated position is assumed badly biased; otherwise,
it is assumed acceptable. This threshold is chosen to meet the probability of False Alert re-
quirement, which coincides with the probability of False Alarm since the algorithm is made
up of a single step. W SSE is distributed as χ2 with m−4 degrees of freedom (in case of single
constellation), assuming E(e) = 0.

If a range error from one measurement occurs, the expected value of the test statistic will
increase along with an increase in the expected position error. It depends on the satellite
geometry how the error in the range domain propagates into the position domain. In [107] is
stated that a relation of simple linear proportionality holds between the test statistic T and
the absolute position error, a relation that turned out not to hold exactly true. In a simple
two-dimensional graph, plotting T on the horizontal axis and the absolute position error on
the vertical axis, the relation is represented by a straight line (see Figure 4.1, dashed lines),
with a steepness given by:

Vslope =
|S3i |σi

√

1−P Ai i

(4.4)

with S = (AT Q−1
y y A)−1 AT Q−1

y y and σi =
√

Qy yi i
=σyi

. The value of the steepness Vslope can be
used to decide whether the ongoing satellite geometry can guarantee integrity. A threshold
for the Vslope can be set and, if it is exceeded, integrity is declared unavailable. The maximum
allowable Vslope is set based on AL, PHMI and decision threshold of the test statistic. The use
of Vslope is the main concern of this review and is addressed from Section 4.1.2 onwards; the
setting of a threshold for the Vslope is referred as an algorithm to prune out bad geometries
and treated in Section 4.1.2.

4.1.2. ANALYSIS AND REVIEW

TEST STATISTIC THRESHOLD

In [107], the CDF (Cumulative Distribution Function) of T ≡
√

W SSE is presented as:

FT (k) =
∫k2

0

1

Γ( m−4
2 )

s
m−4

2 −1exp(−s)d s

where Γ is the gamma function1, m is the number of satellites in use, k is the threshold of the
test (that can assume any value) and FT is the CDF of T .

1The gamma function is defined as Γ(a) =
∫∞

0 xa−1e−x dx.
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Yet it is not fully correct. By applying the CDF transformation law, the integral upper limit
in the above equation reduces to its half. Thus the CDF of the random variable

√

W SSE is
found to be:

FT (k) =
∫ k2

2

0

1

Γ( m−4
2 )

s
m−4

2 −1exp(−s)d s (4.5)

Suppose we have chosen a threshold k, the probability of false alarm PF A can be obtained by

PF A =Q(k) = 1−FT (k)

Reversely, k can be computed as:
k =Q−1(PF A).

where Q is defined as Q(k) = 1−FT (k), and Q−1 is the inverse function of Q.
For convenience, several typical values have been calculated beforehand and stored for

later use (see Table 4.1). This table in [107] is correct.
A requirement on the PF A is set for the algorithm determined from the requirement P

r eq

F A′

defined in Section 2.4.1. Since in the standard RAIM only one χ2 test is run, an Alarm from
the test corresponds to an Alert from the full algorithm, therefore PF A can be used effectively
to approximate PF A′ .

Table 4.1: Critical values for given probabilities of FA and number of satellites

m \ PF A 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9

5 2.5758 3.2905 3.8906 4.4172 4.8916 5.3267 5.7307 6.1094
6 3.0349 3.7169 4.2919 4.7985 5.2565 5.6777 6.0697 6.4379
7 3.3682 4.0331 4.5943 5.0894 5.5376 5.9503 6.3348 6.6964
8 3.6437 4.2973 4.8490 5.3360 5.7773 6.1838 6.5629 6.9195
9 3.8841 4.5293 5.0739 5.5548 5.9907 6.3924 6.7672 7.1198
10 4.1002 4.7390 5.2779 5.7539 6.1853 6.5831 6.9543 7.3037
11 4.2983 4.9317 5.4660 5.9379 6.3657 6.7602 7.1283 7.4749
12 4.4822 5.1112 5.6416 6.1100 6.5346 6.9262 7.2917 7.6359

RANGE ERROR TO POSITION ERROR PROPAGATION

During normal operation, the test statistic, given by the W SSE , is small and also the position
error is small. If, however, a range error in one of the satellites occurs, the expected value of
the test statistic will become bigger while also the expected position error will become bigger.
It depends on the satellite geometry how the error in the range domain propagates into the
position domain. In [107] it is stated that this relation is a straight line, with a steepness given
in Equation (4.4):

Vslope =
|S3i |σi

√

1−P Ai i

cf. Equation (4.4)

if using the square root of the W SSE on the horizontal axis and the absolute position error
on the vertical axis. On the horizontal axis, the decision threshold is set by the probabil-
ity of false alarm. The maximum allowable Vslope is set by alert limit and the probability
of misleading information. Under the acceptable probability of false alarm and mislead-
ing information, for any geometry with a Vslope larger than the maximum allowable Vslope ,
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the integrity is declared unavailable. The geometrical interpretation of Vslope is given in Ap-
pendix F.

The straight line obtained from Equation (4.4), however, is only valid for (infinitely) large
range errors, see Figure 4.1. To find the actual relation between the W SSE and the absolute
position error |x̂3 − x3|, with x3 the true, but unknown position, we have to calculate the
expectations of both the test statistic and the position error, for a growing range error in a
satellite. It is assumed that only one range at a time might suffer a range error.

If we assume, like before, that the range measurements are normally distributed, than
the W SSE has a m −4 dimensional Chi-squared distribution W SSE ∼ χ2(m −4,λ). The ex-
pectation for the W SSE is then given by:

E(W SSE) = m −4+λ (4.6)

with λ the non-centrality parameter. Under the null-hypothesis λ will be zero while if there
is a range error/bias the non-centrality parameter becomes:

λ=∇yT W (I −P A)∇y (4.7)

where ∇y is the range error/bias vector, which contains all but one zeros. This only holds
if we assume that only a single satellite might fail at a time. To get the expectation of T =
√

W SSE , it is not allowed to simply take the square root of E(W SSE) because:

E(
√

W SSE) 6=
√

E(W SSE) (4.8)

So, the non-linear mean propagation law should be used. Suppose:

v =G(u) (4.9)

then the mean propagation law is given by the approximation:

v̄ ≈G(ū)+
1

2
trace(∂2

uuT G(ū)Quu) (4.10)

where ū and v̄ are the mean of u and v respectively.
Applying the non-linear propagation law, the expectation of T becomes:

E(T ) ≈
p

m −4+λ−
(m −4)+2λ

4(m −4+λ)
3
2

(4.11)

For the expectation of |x| = |x̂3 − x3|, we assume, in line with earlier assumptions, that the
distribution of x is a normal distribution x ∼ N (µ,σ2). The expectation of the absolute value
|x| can then be calculated by:

E(|x|) =
∫+∞

−∞
|x|

1
p

2πσ
exp

{

−
1

2

(x −µ

σ

)2
}

d x (4.12)

Where µ is calculated from the range error vector ∇y by:

µ= S3i∇y (4.13)
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Evaluation of this integral leads to the following expression:

E(|x|) =
2σ
p

2π
exp

{

−
µ2

2σ2

}

+µ
[

Φ

(µ

σ

)

−Φ

(

−
µ

σ

)]

(4.14)

where Φ(z) is the normal distribution function of a standard normal random variable z.
Proof. The mean of the distribution can be calculated as the mean of |x|with x ∼ N (µ,σ2):

E(|x|) =
∫+∞

−∞
|x|

1
p

2πσ
exp{−

1

2

(x −µ

σ

)2
}dx =

∫+∞

0
x

1
p

2πσ
exp{−

1

2

(x −µ

σ

)2
}dx −

∫0

−∞
x

1
p

2πσ
exp{−

1

2

(x −µ

σ

)2
}dx

and with the change of variable x−µ
σ = z:

E(|x|) =
∫+∞

− µ
σ

1
p

2π
(σz +µ)exp{−

1

2
z2}dz −

∫− µ
σ

−∞

1
p

2π
(σz +µ)exp{−

1

2
z2}dz

This finally leads to:

E(|x|) =
2σ
p

2π
exp{−

µ2

2σ2
}+µ

(

Φ

(µ

σ

)

−Φ

(

−
µ

σ

))

(4.15)

This equation clearly shows that even if µ= 0 (i.e. E(x) = 0), we have E(|x|) = 2σp
2π

6= 0. ä
In Figure 4.1, the two expectations given by Equations (4.11) and (4.14) are plotted (solid

lines) together with the Vslope given by Equation (4.4) (dashed lines), which is the equation
given in paper [107]. On the horizontal axis is the expectation of the test statistic, while on
the vertical axis is the absolute value of the expectation of the error in the vertical direction.
The approximation by Equation (4.4) reproduces the actual curves for very big errors. As
can be seen in the graph, the approximation does not overbound the real error for all the
satellites and hence may pose an extra, unaccounted integrity risk.

A LINEAR RELATION BETWEEN SQUARED RANGE ERROR AND SQUARED POSITION ERROR

As shown in the previous section, the relation between the expected value for the test statistic
and the expectation for the vertical position error, is not a linear function, as was suggested
by [107]. It is, however, possible to describe a linear relation between the test statistic and the
position error. In this case we use the W SSE as test statistic and not

√

W SSE . This simplifies
the calculation of the expected value for the test statistic. For the vertical position error, in-
stead of using |x̂3−x3|, which has an unfamiliar distribution function, we use the normalized
squared vertical position error, (x̂3 − x3)2/σ2

x̂3
. This results in a Chi-squared distribution for

both the vertical position error and for the test statistic. The expectation for the test statistic
is as in Equation (4.6):

E(W SSE) = m −4+λ (4.16)

with λ as given by Equation (4.7). The expectation of the normalized squared position error
becomes:

E

(

(x̂3 −x3)2

σ2
x̂3

)

= 1+λx̂3 (4.17)
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Figure 4.1: This figure shows the Vsl ope ’s as proposed in [107] and the lines as calculated from the expecta-
tions given by Equations (4.11) and (4.14), for a simulated satellite constellation. The range error in ∇y varies
between 0 and 50m for each satellite. This range error can be translated into a non-centrality parameter by
Equation (4.7).

where:

λx̂3 =
(E(x̂3)−x3)2

σ2
x̂3

(4.18)

If we now draw the same picture as given in Figure 4.1, but in this case the E(W SSE) on the
horizontal axis and the E((x̂3 − x3)2/σ2

x3
) on the vertical axis, an error will propagate along a

line with the slope:

V ′
slope =

λx̂3

λ
=

S2
3i
σ2

yi

(1−P Ai i
)σ2

x̂3

(4.19)

The given line will start from [m −4,1], for a range error/bias equal to zero.
In Figures 4.3 to 4.7, the new V ′

slope
’s as calculated by Equation (4.19) are given by the

dashed black lines, together with simulated data. At the end of each V ′
slope

’s the associ-

ated PRN number is given. The horizontal line indicates the Alert Limit and the vertical the
threshold for the test statistic (the W SSE). In these simulations, the threshold is set such,
that the probability of false alarm is 10−4, and the vertical Alert Limit (V AL) for |x̂3 − x3| is
set to 20m. This alert limit can be translated to a critical value for a χ2 distribution, thus for
(x̂3 −x3)2/σ2

x̂3
, by:

ALχ2 =
V AL2

σ2
x̂

(4.20)

The simulated data consist of 100,000 measurements at a single epoch, and are given by the
red dots. Along the horizontal axis, the W SSE and along the vertical axis the squared posi-
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Bias NO HMI CD FA’ Figure

0m 0.99987 0 0 0.00013 Figure 4.3
15m @ PRN 10 0.69928 0.02777 0.01018 0.26277 Figure 4.4
25m @ PRN 10 0.011 0.01405 0.55385 0.4211 Figure 4.5
15m @ PRN 2 0.38064 2e−5 9e−5 0.61925 Figure 4.6
25m @ PRN 2 0.00025 0 0.00132 0.99843 Figure 4.7

Table 4.2: Result of the 5 simulation cases: fraction of NOs, HMIs, CDs and FA’s of the total measurements in
case of fault-free case or presence of a bias in the measurement from PRN10 or PRN2. The results for each of
the five cases are shown in more detail in the dedicated figures.

tion error are given. The expectation is given by the green dot. Along both axes a separate
plot is given for the marginal probability distribution (along that axis), the distribution is
given by the blue line and the expected value by the green line. The simulations are run for
5 cases, one nominal case without error, and four cases where an error of 15m or 25m is
given to either PRN10 or PRN2, which represent the two extreme cases (largest and smallest
values) for the V ′

slope
. In Table 4.2, the fraction of measurements falling in the four different

regions of the plot shown in Figure 4.2, i.e. Nominal Operation (NO), Hazardly Misleading
Information (HMI), Successful Detection (SD) and False Alert (FA’), are given. Figures 4.3 to
4.7 correspond to the 5 cases considered. In the figures it is clearly visible that, as expected,
the expected value travels along the V ′

slope
. One obvious conclusion one can draw from the

results given in Table 4.2 is that with a very shallow V ′
slope

, such as PRN2, a range error will re-
sult in a very high number of correct detections in the sense that the test statistic is too high.
However, the actual position error is not exceeding the AL. So there is a correct detection in
the range domain, but it is a FA’ in the position domain (but not a False Alarm, FA). This is
caused by the fact that errors in ranges with low V ′

slope
contribute very little to the position-

ing error. To solve this problem, each satellite could be tested on its own, e.g. the w-test,
see the next section. Also, the threshold could be set to each individual case. In that case,
a satellite with a small V ′

slope
will have a higher threshold for the test statistic than satellites

with a large V ′
slope

. In this case the probability of a measurement exceeding the alert limit
or the test statistic threshold is equal for each satellite. In a sense the integrity is traded for
continuity, all within the safety bounds of course.

POWER DIFFERENCE BETWEEN OMT AND W-TEST

RAIM mainly consists of two algorithms, a detection algorithm and an identification (or ex-
clusion) algorithm. The standard algorithms employed are the Overall Model Test (OMT)
and the w-test. A brief introduction to these two methods is presented later in this section.
Many other algorithms for fault detection or identification have been proposed in literature
(e.g. Parity Method and Range Comparison Method), but their equivalence to the aforemen-
tioned two methods has been demonstrated (see [18]).

In general testing of linear models, if the possible occurring error signatures are un-
known, it is advisable to use the OMT as a means of detection. The OMT guarantees pro-
tection against any type of faults possibly affecting the system.

On the other hand, when, as in the analyzed GPS case, we have a clue beforehand on the
error signatures that can occur, it is advisable to run ‘specialized’ tests, such as the w-tests.
In the case at hand it is assumed that single satellite faults are highly more likely than others
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Figure 4.2: The four regions of interest: Normal Operation (NO), Hazardly Misleading Information (HMI), Cor-
rect Detection (CD) and False Alert (FA’).

(for instance multiple satellite simultaneous faults), therefore it is advisable to run m (as the
number of satellites in view) w-tests as detection/identification algorithm.

As outlined in the summary, Walter and Enge propose to run the OMT as a complete
and optimal detection algorithm. Instead the method proposed in this chapter is to run
multiple tests. First an OMT is performed as a general check, always necessary to control the
overall consistency of the data. Afterwards, since it is highly probable that a fault, if present,
affects only one satellite rather than a whole set of measurements (this is a conventional
hypothesis), m w-tests should be run (see Chapter 5). The choice of multiple tests generates
the issue of choosing a threshold for each test: the overall probability of False Alarm/False
Alert of the full procedure will have to comply with the requirements.

Detailed analysis of OMT and w-test can be found in [101] and in [99]. They were intro-
duced in Section 3.6.1, and they are discussed in much more detail in Chapter 5, as they are
the main tests run in the Delft DIA. Here a brief overview is provided.

In hypotheses testing of linear models (Section 3.6.1) the null hypothesis H0 usually reads
’no fault’ (therefore the measurements y are distributed as expected), while the alternative
hypothesis Ha reads ’measuring fault’ and E(y) = Ax +∇y , as described by Equation (3.21).
∇y =Cy∇ represents the error (or bias) vector, with Cy a m×q matrix that describes the bias
signature and the vector ∇ that states the size of the bias. q depends on the choice for the
alternative hypothesis, and represents the degrees of freedom of the error.

The application of the Generalized Likelihood Ratio test (see [101]) to linear models leads
to the choice of the test statistic reported in Equation (3.22), which can be written also:

T q = ∇̂T
Q−1

∇̂∇̂∇̂ (4.21)

where ∇̂ is the estimator of the bias vector ∇ and Q∇̂∇̂ is its variance matrix. Under the null
hypothesis H0 (no faults):

T q ∼χ2(q,0)

Under the alternative hypothesis Ha (satellite failure) instead:

T q ∼χ2(q,λ)
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Figure 4.3: Simulation result for the nominal case, without errors.

In this case the non-centrality parameter λ assumes the value:

λ=∇T Q−1
∇̂∇̂∇=∇T C T

y Q−1
y y Qê0ê0Q−1

y y Cy∇ (4.22)

λ= ‖P⊥
A Cy∇‖2

Q−1
y y
=∇yT Q−1

y y P⊥
A ∇y (4.23)

with ∇ = E(∇̂) and P⊥
A = I −P A, and where the norm of a vector v in the metric defined by

the positive definite matrix M is defined as ‖v‖M =
p

vT M v . As a special case, in the OMT
the parameter q assumes the maximum value allowable by the observations redundancy,
i.e. m −n, with n = 4 in case of single constellation GNSS. In case q = 1 (w-test), instead, the
expression for the test can be simplified:

T 1 =
∇̂2

σ2
∇̂

(4.24)

with distribution under H0:
T 1 ∼χ2(1,0)

and under Ha :
T 1 ∼χ2(1,λ)

The main difference between the two tests is the degree of freedom of the χ2 distribution
under the two hypotheses: unity in the w-test versus m −4 for the OMT. This translates into
higher power for the w-test, when testing for that specific single outlier, given the same ab-
solute value of the bias in the observation (∇ is fixed and λ is the same).

In Figure 4.8 an example is shown of how the power varies with the number of degrees of
freedom of the χ2 distribution, given λ. These results have been obtained from the cumula-
tive distribution function of the non-central χ2 for a significance level α of 10−5.
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Figure 4.4: Simulation result for a 15m error on PRN10.

The w-test corresponds to the case q = 1 and exhibits the highest power (in case of equal
non-centrality parameter) when detecting an error with a single degree of freedom, being
unable to detect errors in other dimensions.

As an example, if nine satellites are in view (m = 9) and λ as the non-centrality parameter
is chosen to be equal to the value 40, the resulting χ2-distribution will have q = 9− 4 = 5
degrees of freedom. The power of the OMT in this case can be easily retrieved from the
graph, slightly less than 0.87, while the w-test (q = 1) exhibits a power of approximately 0.97.

A formal demonstration of the optimality (in detecting specific errors) of the w-test is in
Appendix G.

PRUNING OUT OF BAD GEOMETRIES

In [107] the Vslope defined by Equation (4.4) is chosen as a discriminant to make the decision
whether the current satellite geometry can guarantee integrity to the required level or not. As
previously stated, Equation (4.4) can be corrected and replaced with Equation (4.19) for more
proper results. Still this way only the OMT is implemented as a detection test. Following the
reasoning in the previous section, as a next step a Vslope should be developed but by applying
the w-test.

In any case, neglecting for the moment how it is computed, the Vslope can be used to
assess the availability of integrity for a particular geometry. A threshold can be set for the
Vslope : when the threshold is exceeded integrity is declared unavailable for the satellite ge-
ometry at hand. This way an algorithm to prune out bad geometries can be implemented.

In [107] the formula for the Vertical Protection Level (VPL) is set by the maximum value
reached by the slope (here is reported the formula as it appears in Walter and Enge’s paper):

V PL ≡ max
i

(Vslopei
)k +kMDσx̂3 i = 1,2, . . . ,m (4.25)

A Vslopei
is in fact computed for each satellite and the maximum value is considered. The for-

mula can be connected to Figure 4.9. The diagram shows the distribution of the test statistic
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Figure 4.5: Simulation result for a 25m error on PRN10.

and vertical position error and linked to it the quantities that show up in the above equa-
tion. The PL defines the confidence interval, symmetric around the position estimator, for
the actual aircraft position. k is the threshold of the test statistic, and maxi (Vslopei

)k is the
corresponding bias in the vertical position estimation. Hence kMDσx̂3 represents the margin
between the expectation of the error in the vertical position corresponding to the expecta-
tion of the test statistic equal to its critical value, and the threshold set by the PL. kMD stands
for the number of standard deviations of normal distribution that yield a tail probability of
PMD . As long as PL < AL (Alert Limit), the integrity is guaranteed. Therefore, the Alert Limit
defines a threshold for the VPL and, using formula 4.25, a threshold for the maxi (Vslopei

).
Note first of all that PMD should be set a-priori, and no method to do it is given in [107].

The standard definition of PMD as in [95]:

PMD =β= P (No Alarm | Fault) (4.26)

equivalent to the definition given in Equation (3.19), cannot apply correctly in this case, since
in Figure 4.9 this quantity seems to mainly relate with the position error distribution.

In view of successive implementation of the Standard RAIM algorithm (full algorithm
given in Section 4.1.4) we give here an interpretation for this PMD and how it should be com-
puted. Let us refer to it with P ′

MD , to distinguish it from the actual PMD , defined as in Equa-
tion (4.26). The P ′

MD can be obtained as:

P ′
MD = P

r eq

HMI/
Nsat
∑

1
Psati

(4.27)

with Psati
a-priori probability of hazardous fault in satellite i as given in Table 4.4 (ARAIM

input). The rationale for this choice is given by the following approximated relation:

PHMI ≈ pa ·β ·PPF |Ha
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Figure 4.6: Simulation result for a 15m error on PRN2.

where pa is the prior probability of occurrence of a fault, that represents the alternative hy-
pothesis Ha , β= PMD is the (actual) probability of Missed Detection and PPF |Ha is the Prob-
ability of Positioning Failure, that is the probability of the error in the solution exceeding the
AL (uncorrelated with the event of non-detection), under the assumption of a failure occur-
ring. This approximation, already proposed in Section 3.7, neglects the risk that is present in
the fault-free hypothesis (which is very small), therefore it is actually a lower bound for the
PH M I . The correct relation would be:

PHMI = pa ·β ·PPF |Ha +p0 · (1−α) ·PPF |H0

where p0 = 1− pa is the probability that no failure would occur (null hypothesis H0) and
(1−α) is the probability of no detection in that case; the second term is therefore assumed to
be negligible. Assuming that only single satellite failures are possibly occurring, we have pa ≤
∑

i Psati
(with the assumption of failures being mutually exclusive events, and that only single

satellite faults are possible). In the following the VPL and the PHMI are computed in such a
way that P ′

MD PPF ≤ P
r eq

HMI (Equation (4.31)), so with the choice for P ′
MD in Equation (4.27)

such inequality is equivalent to PHMI ≤ P
r eq

HMI.
Another, and probably the main, comment to Figure 4.9 is that the distribution of test

statistic and vertical position error is shown as an ellipsoid centered at a value of the test
statistic equal to the threshold k. This is in fact the only case to which the relation in equa-
tion can apply. Considering the one-dimensional case as in the Weighted RAIM paper, x3

standing for the vertical position, the probability of occurrence of HMI (PHMI) is defined:

PHMI = P (T < k ∩|x̂3 −x3| > AL) (4.28)

and here we only base the computation on:

PHMI|Ha = P (T < k ∩|x̂3 −x3| > AL|Ha) (4.29)
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Figure 4.7: Simulation result for a 25m error on PRN2.

with the alternative hypothesis Ha reading: ∇x̂3 6= 0 and fixed to a specific value. That is, the
bias in the vertical measurement is fixed to the value corresponding to a test statistic equal
to the threshold k in the absence of noise. We show in Appendix H that Equation (4.25) can
in fact be obtained only in this particular scenario (and with further approximations).

Figure 4.10 instead shows an example of an actual case: the simulated realizations of
the vertical position error (on the vertical axis) against the test statistic (on the horizontal
axis), in the case of a bias present in the measurements from satellite PRN10. Occurrences of
Hazardous Misleading Information can be visualized on the graph: such events are the dots
falling in the colored area labelled with ‘HMI’, in the left-up corner. The situation can thus be
much different from the particular case in Figure 4.9. Note furthermore that the error |x̂ − x|
is not Gaussian distributed but half-normal, as discussed previously in this Section.

Two main remarks can thus be made on the approach described:

• In this approach only one size of all the possible measurement range biases is consid-
ered, i.e. the bias corresponding to the case that the expected value of the test statistic
equals the threshold k. There is no proof this is the worst case scenario or the most
probable occurrence.

• No proper explanation on which value to adopt for PMD is given, and what meaning is
given to this quantity.

Alternative approaches that could possibly solve these issues are the following:

• A calculation similar to the previous, applied to a single bias size, could be made for
all (or many) possible bias sizes; the one that presents the worst results (highest PHMI)
would then be taken in consideration (worst case scenario).

• It would be even possible to consider probability distribution functions for the range
biases, especially if any assumption can be made on the effects of occurring faults.
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Figure 4.8: Detection power against number of degrees of freedom of the test distribution q = m −n, for differ-
ent values of the non-centrality parameter λ

This approach would allow to weight differently the possible occurring faults, on the
basis of a priori assumptions, but increases by far the computation complexity.

Another point to stress was already discussed in previous section: the test used to calcu-
late the Vslope for each satellite is the OMT; instead the w-test should be used. Each w-test
can generate, for each satellite, one Vslope , that is to be preferred in the algorithm to prune
out bad geometries, to determine integrity availability.

4.1.3. SUMMARY AND CONCLUSIONS
The standard and most referenced [72] approach to integrity developed in [107] and imple-
mented in current integrity algorithms (for low precision lateral navigation only [92]) has
been described and reviewed. The main shortcomings have been pointed out and possible
solutions have been proposed. In particular:

• An error in the derivation of the Cumulative Distribution Function for the test statistic
used as OMT has been corrected in Section 4.1.2, Equation (4.5).

• Some approximations for the calculation of the relation between range error and posi-
tion error (Vslope in Equation (4.4)) have been revisited and the use of Vslope has been
inserted in the general theory of detection and validation of linear models developed
by TU Delft (Section 4.1.2). Also in Section 4.1.2 a simple relation between range er-
ror and position error together with a new definition for the Vslope (Equation (4.19))
have been proposed. The validity of the relation has been confirmed by the results of
a simulation based on an actual GPS geometry.

• It has been pointed out that the Overall Model Test (OMT) is not the most powerful test
statistic for the GPS application (Section 4.1.2). The assumption that only one satellite
would fail at a time justifies the use of w-tests as detection algorithm. The advised
testing procedure is to run in parallel an OMT and a w-test for each satellite possibly
failing. The choice for the thresholds for each test has to be made coherently with the
requirement of False Alarm probability.
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Figure 4.9: Visual representation of the Vsl ope and of the method to determine the VPL, with reference to Equa-
tion (4.25).
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Figure 4.10: Simulated results for vertical position errors (on the vertical axis) and test statistic realizations (on
the horizontal axis) in the case of bias present in the measurements from satellite PRN10.
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• Finally the fundaments of the algorithm to prune out bad geometries by means of the
Vslope have been analyzed, and its flaws pointed out (Section 4.1.2). In particular some
lack of clarity has been found in the use of a fundamental term (Probability of Missed
Detection), and the assumption on the bias size affecting the faulty system has been
found unjustified. A definition for the PHMI has been provided and alternatives to the
previous use of the Vslope have been proposed.

Table 4.3: Specific input to Standard RAIM (complement to Table 7.3).

Parameter Description Value

P ′
MD Maximum allowed probability of non-

detecting a hazardous fault
A-priori

4.1.4. STANDARD RAIM ALGORITHM
The full Standard RAIM algorithm is here reported in detail. The baseline input for the
algorithm, common to all the other RAIM algorithms, is given in Tables 7.1, 7.3 and 7.4
(the values reported are the ones employed in the numerical simulations in Chapter 7).

1. Input (extra over Tables 7.1, 7.3 and 7.4) is in Table 4.3. This P ′
MD is computed in

the author’s implementation (for the simulations in Chapter 7) as:

P ′
MD = P

r eq

HMIver
/

Nsat
∑

1
Psati

with Psati
a-priori probability of hazardous fault in satellite i as given in Table 4.4

(ARAIM input). This P ′
MD is only employed for the computation of the VPL, and not

for the PHMIver computation.

2. Check if the redundancy is sufficient:

{

Continue procedure if Nsat > 3+Nconst

Declare Alert if Nsat ≤ 3+Nconst
(4.30)

3. Compute the threshold for the T =
√

W SSE statistic:

k =
√

χ2i nv
Nsat−3−Nconst

(P
r eq

F A′
ver

)

where χ2i nv
Nsat−3−Nconst

is the inverse of the cumulative distribution function of a cen-

tral χ2 distribution with Nsat −3−Nconst degrees of freedom and P
r eq

F A′ is defined in
Table 7.3.
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4. Compute a Missed Detection threshold kMD :

kMD =Φ
−1(1−P ′

MD )

with Φ being the cumulative distribution function of a zero mean standard Gaus-
sian distribution. Use of just a one-sided integral means neglecting the probability
of occurrence of a dangerous position estimation error on the side opposite to the
measurement bias direction influence, see the following Equation (4.31).

5. Determine geometry integrity availability:

(a) Compute Vslopei
for each satellite i :

Vslopei
=

|S3i |σyip
1−P Ai i

with S = (AT Q−1
y y A)−1 AT Q−1

y y , P A = A(AT Q−1
y y A)−1 AT Q−1

y y and σyi
=

√

Qy yi i
.

(b) Compute Vertical Protection Level (VPL) and/or the PH M Iver :

V PL = maxi (Vslopei
)k +kMDσx̂3 x̂3

PHMIver = (
∑

i Psati
)

(

1−Φ

(

V AL−maxi (Vslopei
)k

σ2
x̂3 x̂3

))

(4.31)

where σx̂3 x̂3 is the standard deviation of the vertical component (third com-
ponent) of the parameter estimator x̂ = S y and Φ being the cumulative dis-
tribution function of a zero mean standard Gaussian distribution. See Sec-
tion 4.1.2 and [107] for an explanation of these formulas. The formula for the
PHMIver is obtained directly from the VPL equation.

(c) Check if the integrity is guaranteed:

{

Continue procedure if V PL ≤V AL

Declare Alert if V PL >V AL
(4.32)

or equivalently:
{

Continue procedure if PH M Iver ≤ P
r eq

H M Iver

Declare Alert if PH M Iver > P
r eq

H M Iver

(4.33)

6. Compute test statistic T :

T =
√

êT Q−1
y y ê

7. Check consistency of the measurements: compare the computed T statistic with
the threshold k. If:

T > k

then an Alert is declared. Otherwise standard operations can continue with the
parameter estimate x̂ = Sy .
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4.2. ARAIM
As an advanced version of standard RAIM, ARAIM is intended to provide integrity moni-
toring at user level, that is simply exploiting the GNSS signals available at the receiver with
minimum aid from ground stations or other auxiliary means. The redundancy of the GNSS
is exploited to self-check the ‘health’ of the system. The integrity monitoring provided by the
RAIM would finally increase the availability and continuity of the navigation service.

As of today, the main reference in the topic of integrity for aviation is [107], with the
Standard RAIM reviewed in the previous Section. As we pointed out, Standard RAIM was
developed for the single GPS constellation and has been found generally suboptimal, even
though presenting a very practical and efficient approach. With respect to Standard RAIM,
according to [11] ARAIM provides the following improvements:

• Standard RAIM is not proven to be always conservative. ARAIM instead provides a
proof of safety ([11],[10]).

• Standard RAIM is not really tailored for the explicit computation of the integrity risk (it
is based mainly on probability of False Alarm and Missed Detection), whereas ARAIM
is ([81]).

• Standard RAIM does not employ the best test to identify possibly faulty satellites, re-
sulting in lower detection power than theoretically possible. ARAIM employs different
tests, which are more tailored to detecting faults that have sensible impact on the po-
sition estimate ([17],[13]).

• Standard RAIM accounts only for faults in one satellite per time (single failure), whereas
ARAIM is designed to account for multi-dimensional faults as well ([11],[10]).

• Standard RAIM is designed only for GPS whereas ARAIM is designed to fully exploit the
potential of the multi-constellations GNSS available ([11],[10]).

• Standard RAIM is based on single frequency observations, whereas ARAIM foresees the
use of dual-frequency observations to remove first order ionospheric delay ([11],[10]).

Finally, ARAIM aims at fulfilling the requirements for vertical guidance in demanding ap-
proaches as LPV200 or Cat I and replacing SBAS-GBAS. This review of ARAIM is mostly based
on [81], [11], [8], [10], [12], [26], [17], [13].

4.2.1. ARAIM BASIC CONCEPTS

As mentioned in the introduction, ARAIM is based on the use of Multi-Constellation GNSS
and on dual frequency measurements. ARAIM also relies on a ground system that provides
nominal performance and fault rates for all the constellations (Integrity Support Message,
ISM), as described in [11], [8]. The use of this further information from a ground system is
foreseen by second generation RAIM concepts, and is deemed necessary to comply with the
safety requirements. The ISM can furthermore have quite long latency times (one message
per several minutes [8]).

From a statistical point of view, ARAIM is based on the following concepts:
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• Multiple Hypothesis approach with a-priori probabilities: the measurement system
is supposed to be in one out of a set of different possible states described by multiple
hypotheses, to each of which is assigned an a-priori probability of occurrence. The
fault-free state is the null hypothesis, whereas an alternative hypothesis is considered
for each anticipated failure mode, that is for each combination of satellites failures to
which is assigned a significant prior probability. The PHMI is computed by the sum of
the PHMIs under the different hypotheses weighted on the base of their prior probabil-
ities.

• Solution Separation (SS) as test statistics: to discriminate between hypotheses, to
eventually exclude faulty measurements, the difference between the position solutions
under the different alternative hypotheses and the null hypothesis is computed and
used as a test statistic. For each alternative hypothesis considered a difference vector
(SS) is computed and a test is run for each of the position components of the vector.

These two basic concepts are explained in the following.

MULTIPLE HYPOTHESIS APPROACH

The ARAIM Multiple Hypothesis approach is based on the type of distribution for the observ-
able introduced in Section 2.7. With respect to that baseline model, further assumptions are
made on the type of anomalies that can affect the system (a maximum number of satellites
simultaneously failing is set, and constellation faults are introduced), and specific approxi-
mations are introduced to simplify the computation of the PHMI.

As previously mentioned, an alternative hypothesis is considered for each combination
of satellites failures. First it is necessary to compute the maximum number Nsat ,max of satel-
lites simultaneously failing to be monitored, then an alternative hypothesis will be raised for
each combination of 1 to Nsat ,max satellites. The number Nsat ,max is computed on the basis
of the a-priori probability assigned to the fault of a single satellite.

In fact an a-priori probability Psat , j is assigned to the event of satellite j failing, and the
probability of a combination — let us refer to it as combination i , which subset of failing
satellites is indexed by vector i d xi — of r satellites failing is computed as pi =

∏

j∈i d xi
Psat , j

(the failures of the satellites are treated as independent events). When r increases the prob-
ability of the corresponding combination of faults decreases, therefore after a certain value
it can be considered negligible.

Furthermore, different alternative hypotheses are also considered for the events of con-
stellation failures (one alternative hypothesis for each constellation part of the system), and
to each of these hypotheses an a-priori probability of fault, Pconst , is set ahead.

The PHMI can be computed under each different hypothesis. The total integrity risk re-
sults as a weighted sum of the PHMI|Hi

under the different hypotheses, where the weights are
the prior probabilities assigned to the different hypotheses. This approach was described
in Section 2.7. We defined the random variable H representing the state of the system,
and its possible realizations: H0 the fault-free (null) hypothesis and Hi the alternative hy-
potheses, representing the different possible types of anomalies affecting the system, with
i = 1, . . . , NHa (NHa the total number of alternative hypotheses considered). Once prior prob-
abilities are associated to the occurrence of the different hypotheses, the variable H has a
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prior PMF:

H ∼



















P (H = H0) = p0

P (H = H1) = p1
...
P (H = HNHa

) = pNHa

cf. Equation (2.37)

The distribution of the observable y depends therefore on the state of the system, so that we
can write for the marginal distribution of y (equivalent to Equation (2.38)):

y ∼ p0 · fy |H0 +
NHa
∑

i=1
pi · fy |Hi

(4.34)

with the conditional distributions being multivariate normal distributions. In particular:
{

fy |H0 = N (Ax,Qy y )

fy |Hi
= N (Ax +∇yi ,Qy y ) ∀i = 1, . . . , NHa

(4.35)

where ∇yi is the bias (due to an anomaly) affecting the set i of faulty observations, and is
unknown. The distribution of y is therefore a mixture of Gaussian distributions, weighted by
the prior probabilities of faults.

The position solution given to the pilot in standard operation is:

x̂0 = (AT Q−1
y y A)−1 AT Q−1

y y y (4.36)

where A is the satellite geometry matrix relative to the epoch considered and Qy y is the vari-
ance matrix of the observable used for integrity2 This is in fact the BLUE for the unknown
position x in the fault-free hypothesis. Under each hypothesis the PHMI|Hi

(the PHMI under
the hypothesis Hi , see Equation (2.27) for the PHMI definition) is computed as:

PHMI|Hi
= P (x̂0 −x ∉ΩAL ∩ y ∈Ω|Hi ) (4.37)

where x is the unknown true position, ΩAL is the ‘integrity region’ around the true position
whose boundaries are the Alert Limits (AL) and Ω is the acceptance region for the observ-
able, that includes all the measurements for which the tests run do not lead to exclusion
or Alert. Due to the unknown nature of the y distribution as assumed in Equation (2.36),
this PHMI|Hi

cannot be computed. It is possible nevertheless to compute approximations or
upper bounds for it, making some assumptions on the size of the biases affecting the mea-
surements ∇y .

In ARAIM the PHMI|Hi
in Equation (4.37) is computed as:

PHMI|Hi
= P (x̂0 −x ∉ΩAL ∩ T SSi

∈ΩTi
|Hi ) (4.38)

where T SSi
is the vector of SS test statistics run for the alternative hypothesis Hi and ΩTi

is
its acceptance region, bounded by the thresholds ki , which are the thresholds for the first
iteration of the algorithm. Use of this formula is not fully correct and it is interpreted as an
approximation, in addition to the one necessary to tackle the unknown nature of the bias. In
fact Equation (4.38) is not precise for two reasons:

2In the ARAIM algorithm two different variance matrices for the observable are employed, one for integrity
computation and one for accuracy computation. Nevertheless in this dissertation only one variance matrix
will be employed, for both purposes. This approach simplifies the problem and is in line with the standard TU
Delft approach to the testing problem.
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1. all the possible iterations of the algorithm should be taken into account in the com-
putation of the PHMI|Hi

(which is an a-priori probability), because each new iteration
adds a further contribution to the risk (after an exclusion it is possible that no Alert
will be given). This consideration was made already in Section 3.7. This issue is also
addressed in [51].

2. all the tests, for all the alternative hypotheses, should be taken into account in the com-
putation of PHMI|Hi

(say T SSs
∈Ωks

for all s = 1,2, . . . , NHa and not just the specific index
i ). What happens for instance if a wrong detection occurs, i.e. a test different than T SSi

leads to rejection? A decision to reject the null hypothesis and go for hypothesis Hi can
also come from testing for Hs 6=i . The issue of taking into account the following steps of
exclusion and further detection rises again.

More comments on these shortcomings are in Section 4.2.4.
At this point the approximation to tackle the unknown nature of the bias sizes comes into

place. An upperbound for Equation (4.38) is derived in ARAIM as described in Appendix J.
The upperbound is fundamentally based on the following two inequalities:

PHMI|Hi
= P (x̂0 −x ∉ΩAL ∩ T SSi

∈ΩTi
|Hi ) ≤ P (x̂0 −x ∉ΩAL|T SSi

∈ΩTi
, Hi )

P (x̂0 −x ∉ΩAL|T SSi
∈ΩTi

, Hi ) ≤ P (x̂0 −x ∉ΩAL|T SSi
= ki , Hi ) (4.39)

The equality in the first line would hold in case P (T SSi
∈ΩTi

) = 1. This is equivalent to as-
sume that the tests are always accepted. The second line instead means assuming that the
tests are not only always accepted, but the test statistics always assume the most extreme val-
ues that do not lead to rejection. These approximations, especially the second one, are quite
crude (for any possible actual bias size the probability of occurrence of a particular value
of the test statistic is infinitesimal), and result in quite loose upper bounds for the PHMI. I
believe these approximations are made because of the complexity of computing the prob-
ability of Missed Detection for all the tests run and for all possible bias sizes. The example
in Appendix K shows how these approximations lead to more conservative results than the
assumption of a worst-case bias scenario.

Figure 4.11 describes the Multiple Hypothesis concept, as proposed in [81], [8], for a sin-
gle position dimension (for instance the vertical, the concept being the same for the other
dimensions). The position estimator x̂0 is supposed to be distributed around the true posi-
tion x with a Gaussian distribution under the null hypothesis H0. The other Gaussian dis-
tributions in the figure are instead the distributions of x̂0 in each case of the corresponding
alternative hypothesis holding true, they are centered at a distance from x corresponding
to the threshold value of each test statistic (SS statistic) and are weighted with the a-priori
probability assigned to the corresponding alternative hypothesis. In the figure the threshold
value is indicated as |x̂a − x̂0|max because it is the maximum value that the SS statistic can
assume without leading to an exclusion or an Alert. The PHMI is computed as the sum of
the integrals of all x̂0 distributions outside the ALs (around the true position x), i.e. as the
integral of the full (multimodal) marginal distribution of x̂0, not conditioned on the hypoth-
esis, which results out of the weighted sum of the conditional distributions. The biases in
the positioning that correspond to the displacement of the Gaussian distributions in the al-
ternative hypotheses are not known a-priori, but the use of |x̂a − x̂0|max , the threshold value
of the corresponding SS test, is justified by the approximations made in Equation (4.39), that
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allow to replace the prior distribution with the one conditioned after the measurements. As
mentioned more details on this approximation are in Appendix J.

The PHMI for a single component, vertical for instance, is therefore computed in ARAIM
as:

PHMIver = 2Φ

(−V AL

σx̂0,3

)

+
NHa
∑

i=1
piΦ

(−V AL+ki ,3

σx̂i ,3

)

(4.40)

where ki ,3 is the threshold value for the SS test for the i th alternative hypothesis and for the
vertical component (3r d ), Φ is the cumulative distribution of a standard normal distribution,
σx̂0,3 and σx̂i ,3 are the standard deviation of the vertical component respectively of the posi-
tion solution x̂0 under the null hypothesis and x̂i under the i th alternative hypothesis. Note
that this formula also contains a small approximation, since the contributions to the risk
coming from the tails of the distributions under the alternative hypotheses on the far side
from the closest AL are neglected. This formula is a little simplified with respect to the final
one adopted in the algorithm (given in Section 4.2.5) which takes into account also nominal
biases in the measurements and PHMI allocated to un-monitored faults.

Figure 4.11: Sketch of the ARAIM Multiple Hypothesis concept, from [81], [8]: probability distribution (approx-
imated) of the position estimator in the null hypothesis x̂0 once the measurements have been collected. The
PHMI is computed as the integral of this distribution over the position domain outside the ALs.

SOLUTION SEPARATION TESTS

The tests employed in ARAIM are designed to monitor the effect of the faults only in the
position domain. These tests were first presented in [17] and justified mainly on the basis of
heuristic and empirical reasons. A comparison between SS tests and standard UMPI tests is
proposed in [47]: whereas the UMPI test can detect any type of anomaly, the SS focuses only
on anomalies that affect the position estimation; nevertheless the results of the two tests are
equivalent in case of one-dimensional anomalies.

In the SS approach, the difference between the position solutions under the different
alternative hypotheses and the null hypothesis is computed for every alternative hypothesis.
Each of these differences constitutes a different SS vector. If we characterize each alternative
hypothesis by a different subscript i , any of the Solution Separation vectors can be written
as:

T SSi
= ∇̂x̂i = x̂0 − x̂i (4.41)
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where x̂0 and x̂i are the position solutions obtained respectively employing the null and the
alternative model:

x̂0 = (AT Q−1
y y A)−1 AT Q−1

y y y = S y

x̂i = (AT Q−1
y yi

A)−1 AT Q−1
y yi

y = Si y
(4.42)

where Qy y is the diagonal variance matrix of the observable and Q−1
y yi

is obtained from Q−1
y y

replacing the diagonal elements corresponding to the faulty satellites in hypothesis Hi with
0 (this means giving zero weight to such observations). In fact the position solution in the
alternative hypotheses considered by ARAIM can be computed simply removing the faulty
observations from the measurement vectors, with a result equivalent to applying the BLUE to
the model in Equation (2.34), leading to the formula in Equation (3.11). This is demonstrated
in Appendix C.

For each of these SS vectors, the three position components (North, East, Up) are treated
separately as different test statistics. The SS tests are run comparing the test statistics just in-
troduced to a corresponding threshold (different for each test). If the threshold is exceeded,
the system is believed to be in the corresponding alternative hypothesis, and an adaptation
of the model is performed (the suspected faulty satellite(s) is/are excluded from the set of
measurements, for instance). The statistical distribution of the test statistics is known and
thresholds for the tests statistics are set on the basis of continuity considerations: each test
draws from the total continuity budget. In the basic ARAIM algorithm the allocation of con-
tinuity among the different alternative hypotheses is not optimized: the continuity budget
is equally split among all the possible failure modes. If say PF Aver is the continuity budget
(False Alarm rate) allocated for the vertical component, and NHa is the number of alterna-
tive hypotheses considered, then:

PF Aver−test =
PF Aver

NHa

is the FA rate required to each test for the vertical component. This sub-optimal continuity
allocation is pointed out already in [11] and methods to improve the allocation are described
in [9]. Simply splitting evenly the overall FA budget among the faults can be quite inefficient,
since some faults are highly more likely than others, and may deserve a larger portion of total
continuity budget.

If any of the SS tests lead to rejection of the fault-free hypothesis, a measurements ex-
clusion has to be made. To decide how many and which measurements to exclude from the
model, a selection method is applied, regardless of which SS test rejected the null hypothe-
sis. To select the subset of satellites most likely to be faulty, a χ2 statistic is computed for all
the subsets i :

χ2
ex,i = yT (Q−1

y yi
−Q−1

y yi
A(AT Q−1

y yi
A)−1 AT Q−1

y yi
)y (4.43)

where Q−1
y yi

is obtained from Q−1
y y replacing the diagonal elements corresponding to the satel-

lites reputed faulty in the i th alternative hypothesis with 0. For each size of the subsets, the
best candidate for exclusion is the one that realizes the smallest value of the above χ2 test
statistic. The details of theexclusion algorithm are given in the algorithm description (Sec-
tion 4.2.5). The fact that the SS tests do not automatically individuate the best candidates for
exclusion is a peculiar choice of the ARAIM algorithm.
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4.2.2. COMPARISON BETWEEN SS TESTS AND UMPI TESTS
A detailed comparison between SS tests and UMPI tests is presented in Appendix I.
UMPI tests were introduced in Section 3.6.1, and are discussed in more detail in Chapter 5.

4.2.3. ARAIM BASELINE ARCHITECTURE

Figure 4.12: ARAIM baseline architecture: block diagram.

The ARAIM algorithm architecture is shown in Figure 4.12. The formulae employed at
each stage are shown in next section. Each step is described in the following:

1. Input: main input to the algorithm are the observations y , the geometry matrix A, the
variance matrix Qy y , the nominal biases b, and the a-priori fault probabilities Psat , j

Ű– via Integrity Support Message (ISM). The list of input extra over the standard one is
reported in Table 4.4.

2. Determine the number of faults to monitor: on the basis of the prior probabilities
Psat , j , the maximum number of satellites simultaneously failing with probability larger
than a pre-determined threshold is determined.

3. Compute test statistics: three tests statistics, for each dimension (North, East, Up) are
computed for each failure mode, plus oneχ2 statistic for an overall sanity check (equiv-
alent to the OMT). This sanity check is run to account for possible anomalies that can-
not be detected by the other tests since these anomalies affect a larger number of mea-
surements and/or are due to unexpected sources. In the standard DIA procedure, the
OMT is run before the identification tests, cf. Chapter 5. We note that in ARAIM the
PF Aχ2 (False Alarm rate) allocated to the sanity check as well as its missed detection

probability do not enter in the computation of the PHMI. The PF Aχ2 is considered in

the total continuity allocation, but, as for the other tests, the correlation between this
test statisitc and the others is neglected.
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4. Tests (comparison of test statistics with their threshold): first the solution separation
test statistics are compared to their threshold, and if none of the tests leads to rejec-
tion of the null hypothesis also the overall check is made. In case at least one solution
separation test leads to rejection of the null hypothesis, the algorithm proceeds with
adaptation of the model (exclusion of faulty satellites). In case instead the χ2 test leads
to rejection (after acceptance of the SS tests), an Alert would be given directly (unavail-
ability of the navigation service). If no test leads to rejection of the null hypothesis, the
algorithm proceeds to the Protection Levels computation step (step 6).

5. Exclusion: the suspected satellites corresponding to the alternative hypothesis reputed
most likely are excluded, and afterwards the procedure is started again with the up-
dated model (there are little modifications in the algorithm when it is run after a pre-
vious exclusion but these will be discussed later). To find the most likely alternative
hypothesis a χ2 statistic is computed for each alternative hypothesis and the one re-
sulting with the minimum value is selected.

6. Compute Protection Levels (PL): the Multiple Hypothesis approach is applied to deter-
mine the PLs, in such a way that the sum of the Probabilities of Hazardous Misleading
Information (PHMI) under each different hypothesis is smaller than the total pre-set
upper limit for the PHMI. This is done considering the distribution of the position es-
timator being distributed as a sum of Gaussian distributions, weighted by the prior
probabilities assigned to each hypothesis.

7. Check on PLs and on the other performance parameters: if the PLs are too large com-
pared to the requirements for safe flight, an Alert is raised and the system is declared
unavailable. If instead the requirements are fulfilled, standard operations can con-
tinue and integrity is guaranteed.

Note that after an exclusion has been performed, additional tests statistics are run to
account for the eventuality of a Wrong Exclusion (WD), the exclusion of satellites that in fact
are not faulty, which can finally affect also the computation of the PLs.

As further remark we add that the ARAIM procedure includes the computation of other
two performance parameters, just before step 8: the accuracy a and the Effective Monitoring
Threshold (EMT). Accuracy was already defined (in particular as accuracy parameters the
95% and the 99.99999% position error bounds in fault free condition are computed), whereas
th e EMT is the 99.999% position error bound holding for any system state (even in case of
fault). The EMT is fundamentally the same type of bound as the Protection Levels, but for a
looser probability requirement: it serves as a protection from faults that are not large enough
(in terms of biases in the measurements) to ensure detection. It makes sense to compute the
error bound for a different probability confidence because the distribution of the position
estimator is not a unimodal Gaussian distribution when all possible states of the system are
considered. In this dissertation anyway the computation of the EMT will not be analyzed.

4.2.4. SUMMARY AND CONCLUSIONS
ARAIM constitutes the new generation RAIM and a huge step forward with respect to the
Standard RAIM. On the other hand, as already mentioned, the ARAIM algorithm is still a
work in progress, in its more advanced forms, and is currently in experimental phase. In
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this dissertation we described only the baseline algorithm (mainly based on [11]). This algo-
rithm is reckoned to be still sub-optimal from different points of view. We list here the main
remarks to the baseline algorithm:

• We highlighted already in Section 4.2.1 that not all the possible iterations of the al-
gorithm are taken into account in the computation of the PHMI. Starting from Equa-
tion (4.37), the actual PH M I |Hi

for a multiple steps algorithm should be computed:

PHMI|Hi
= P (x̂0 −x ∉ΩAL ∩ T 1

SS ∈Ω
1
T |Hi )+

∑Nsteps,max

s=2 P (x̂s −x ∉ΩAL ∩ T s−1
SS ∉Ω

s−1
T ∩ T s

SS ∈Ω
s
T |Hi )

(4.44)

where x̂s , T s
SS Ω

s
k

are the position solution, the test statistics (all the tests, for any i ) and

the tests acceptance regions at the s th step of the algorithm and Nsteps,max is the total
number of steps that can be possibly run. In the new paper [14] on ARAIM exclusion
the computation of the risk is slightly modified to take into account the exclusion tests
that are run after the exclusions are performed. Still the successive iterations of the
algorithm (after the first one) are not properly considered for the computation of the
risk (see [51] for a possible solution of the problem).

• The RAIM requirement P
r eq

F A′ on the FA’ rate is translated by ARAIM to a requirement
on the PF A of the first detection step of the algorithm, as if the algorithm was made of
a single test/iteration (see Equation (3.31), when instead PF Atot (for the full procedure)
should be computed.

• The computation of the PHMI through Equation (4.40), obtained by means of the ap-
proximation described in Section 4.2.1, may, as discussed, result quite conservative
(see Appendix K for a comparison with a different approximation).

• The ARAIM employs SS tests instead of UMPI tests. Those tests are analyzed and com-
pared in detail in Appendix I. As result of this analysis, both SS and UMPI tests are not
optimal for the integrity problem — therefore the preference for the SS with respect to
the UMPI test can be discussed. Furthermore, in case of one-dimensional anomalies
the SS tests are redundant: in fact the same statistic is measured three times, one time
for each position component. Finally in the ARAIM the SS tests are only a trigger for
further tests that will constitute the identification step, so the SS steps are actually used
only as detection step. Since different SS tests are run for each possible alternative hy-
pothesis, one would expect that the tests that lead to rejection will automatically iden-
tify the possibly dangerous measurements to exclude, therefore the need to run extra
identification tests should be justified.

• The ARAIM exclusion process, including tests to check for wrong exclusions, is in ex-
perimental phase. Due complexity of the underlying statistical problem, the formulae
employed for such steps of the procedure are often subject to modifications. For in-
stance the choice of the threshold in Equation (4.61) of the algorithm description is
taken from [11] where it is not justified. In the more recent paper [14] the threshold is
instead computed as:

ki ,excl ,l =−σ∇x̂excl ,i ,l ·

Φ
−1

(

1−θ
2NHa

p0
pi

(

1− Psat ,unmoni tor ed−Pconst ,unmoni tor ed

P
r eq

HMIver
+P

r eq

H M Ihor

))
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with Psat−thr esh , Pconst−thr esh and θ are pre-determined input to the algorithm, see
Table 4.4 and Section 4.2.5. In this new paper the computation of the risk is slightly
modified to take into account the exclusion tests that are run after the exclusions are
performed, and the thresholds for the exclusion tests are derived accordingly. As pre-
viously mentioned anyway the successive iterations of the algorithm (after the first
detection and exclusion) are not considered for the computation of the risk and of the
thresholds. Also the parameter θ was not present in the 2012 description [11], but only
in the more recent paper [14]. It represents the integrity allocation between confirmed
and not confirmed exclusions but it is not well explained how to choose the value for
this parameter (should be comprised between 0 and 1).

Table 4.4: Specific input to the ARAIM algorithm (complement to Table 7.3).

Name Description Source

Psat , j Prior probability of fault in satellite j ISM
Pconst ,q Prior probability of a fault of constella-

tion q (several satellites)
ISM

Psat−thr esh Threshold for the integrity risk coming
from unmonitored satellite faults

Requirement

Pconst−thr esh Threshold for the integrity risk coming
from unmonitored constellation faults

Requirement

P
r eq

F A′
χ2

Continuity budget allocated to False
Alerts for the χ2 test

Requirement

4.2.5. ARAIM ALGORITHM
The baseline input for the algorithm, common to all the other RAIM algorithms, is given
in Tables 7.1, 7.3 and 7.4 (the values reported are the ones employed in the numerical
simulations in Chapter 7).

1. Input (in addition to Tables 7.1, 7.3 and 7.4) in Table 4.4.

2. Check if the redundancy is sufficient:

{

Continue procedure if Nsat > 3+Nconst

Declare Unavailable if Nsat ≤ 3+Nconst
(4.45)

3. Compute the maximum number of satellites simultaneously failing, to be moni-
tored, Nsat ,max :

Nsat ,max = max(r ) :
(
∑Nsat

k=1 Psat ,k )r

r ! > Psat−thr esh

with r < Nsat −3−Nconst

(4.46)

The solution of this relation can be found iteratively. Equation (4.46) is presented
in [11] (precisely in Appendix C of [11], a complete proof is absent though).
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4. Compute the probability of occurrence of an unmonitored satellite fault,
Psat ,unmoni tor ed :

Psat ,unmoni tor ed =
(
∑Nsat

k=1 Psat ,k )Nsat ,max+1

(Nsat ,max +1)!
(4.47)

5. Compute the maximum number of constellations simultaneously failing moni-
tored, Nconst ,max :

(a) Compute:

Pnoconst =
Nconst
∏

q=1
(1−Pconst ,q ) (4.48)

the probability of no constellation fault occurring.

(b)
If: Nconst ≥ 3 and

1−Pnoconst −Pnoconst
∑Nconst

q=1
Pconst ,q

1−Pconst ,q
> Pconst−thr esh

then: Nconst ,max = 2
else: Nconst ,max = 1

(4.49)

6. Compute the probability of occurrence of an unmonitored constellation fault,
Pconst ,unmoni tor ed :

If: Nconst ,max = 1

then: Pconst ,unmoni tor ed = 1−Pnoconst −Pnoconst
∑Nconst

q=1
Pconst ,q

1−Pconst ,q

else, if: Nconst ,max = 2

then: Pconst ,unmoni tor ed = 1−Pnoconst

(

1+
∑Nconst

q=1
Pconst ,q

1−Pconst ,q

)

−

Pnoconst
∑

q1<q2

Pconst ,q1
1−Pconst ,q1

Pconst ,q2
1−Pconst ,q2

(4.50)

where the last summation (over q1 < q2) is a summation over all the possible com-
binations of two constellations.

7. Compute the total number of fault modes to be considered in the algorithm (num-
ber of alternative hypotheses):

NHa =
Nsat ,max

∑

r=1

(

Nsat

r

)

+
Nconst ,max

∑

q=1

(

Nconst

q

)

where the first term represents the satellite fault modes and the second term the
constellation fault modes.

8. Define subsets of satellites to be tested for faults (one subset for each alternative
hypothesis):

For i = 1,2, . . . , NHa build a subset i of r satellites, indexed by an r -components
vector i d xi , which contains the satellites reputed faulty in the corresponding
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alternative hypothesis. The first
∑Nsat ,max

r=1

(Nsat

r

)

subsets (satellite faults) contain
all the possible combinations of r satellites among the complete set, with r =
1,2, . . . , Nsat ,max . The remaining subsets (constellation faults) instead contain the
satellites belonging to the different constellations reputed faulty in the different
hypotheses, or to the different combinations of constellations. In this last case to
each subset we can assign also a ci d xi , a vector containing the indexes of the con-
stellations contained in the subset.

9. Compute the prior probability of occurrence of each fault mode:

pi =
∏

j∈i d xi

Psat , j with i ≤
Nsat ,max

∑

r=1

(

Nsat

r

)

for each satellite fault mode. For the constellation fault modes instead:

pi =
∏

q∈ci d xi

Pconst ,q with i >
Nsat ,max

∑

r=1

(

Nsat

r

)

10. Detection and identification of faults:

(a) Compute SS test statistics:

T SSi
= ∇̂x̂i = x̂0 − x̂i i = 1,2, . . . , NHa (4.51)

with:
x̂0 = (AT Q−1

y y A)−1 AT Q−1
y y y = S y

x̂i = (AT Q−1
y yi

A)−1 AT Q−1
y yi

y = Si y
(4.52)

where Q−1
y yi

is obtained from Q−1
y y replacing the diagonal elements corre-

sponding to the satellites reputed faulty in the i th alternative hypothesis (sub-
set i , satellites indexed by i d xi ) with 0.

(b) Compute SS test thresholds:

A threshold is set for each of the three position components of x (which has
3+ Nconst components), therefore three thresholds for each failure mode i .
The thresholds ki ,l (for the position components l ) are set based on the avail-
ability requirement. They are defined by:

ki ,l = K f a,lσ∇̂x̂i ,l
with l = 1,2,3 (4.53)

where:

K f a,1 = K f a,2 =−Φ−1

(

P
r eq

F A′
hor

4NHa

)

K f a,3 =−Φ−1

(

P
r eq

F A′ver t

2NHa

) (4.54)

with Φ being the left side of the cumulative distribution function of a zero
mean unit Gaussian distribution. σ∇̂x̂i ,l

is the standard deviation of the SS
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test statistic, that is obtained as the square root of the l th diagonal element
of:

Q∇̂x̂i
= (S −Si )Qy y (S −Si )T (4.55)

(c) Perform SS tests: For i = 1,2, . . . , NHa :
{

Accept H0 if |∇̂x̂i ,l | ≤ ki ,l ∀l = 1,2,3
Reject H0 if ∃ l (l ∈ {1,2,3}) : |∇̂x̂i ,l | > ki ,l

(4.56)

where ∃ l means ‘exists at least one l ’. Note that l = 1 and l = 2 individuate
the horizontal components, whereas l = 3 the vertical component. If H0 is
rejected, go to step 9. Otherwise, in case this is the first run of the algorithm
(no satellite has been excluded yet) go to step 12, whereas in case an exclusion
has already been performed go to step 11.

11. Check if the redundancy is sufficient to exclude satellites:
{

Continue to step 10 if Nsat > 3+Nconst +1
Declare Alert if Nsat ≤ 3+Nconst +1

(4.57)

12. Perform Fault exclusion:

(a) First exclusion attempt:

To select the subset of satellites most likely to be faulty, iex , a χ2 statistic is
computed for all the subsets i :

χ2
ex,i = yT (Q−1

y yi
−Q−1

y yi
A(AT Q−1

y yi
A)−1 AT Q−1

y yi
)y (4.58)

where Q−1
y yi

is obtained from Q−1
y y replacing the diagonal elements corre-

sponding to the satellites reputed faulty in the i th alternative hypothesis (in-
dexed i d xi ) with 0. For each size r of the subsets, the best candidate for ex-
clusion is determined as:

iexr = argmin
i

{χ2
ex,i |size(i d xi ) = r } i = 1,2, . . . , NHa (4.59)

In this way, a candidate subset for exclusion iexr is found for each size r of the
monitored subsets. First the candidate with r = 1 is chosen, iex1 . In general,
at the nth exclusion attempt iexn is chosen (the other candidate subsets with
r 6= 1 are to be saved).

The measurement corresponding to the faulty satellite of iex1 is removed from
the model. Anew , Qnew

y y and ynew are the geometry matrix, the measurement
covariance matrix and the observable re-constructed after exclusion: ynew

does not include the measurements from the excluded satellites, Anew is ob-
tained from A taking out the rows corresponding to the excluded satellites
and Qnew

y y instead is obtained from Qy y removing both rows and columns
corresponding to the excluded satellites. Nsat is also updated accordingly
(N new

sat = Nsat − 1. With this new input we move back to step 2 and the al-
gorithm is repeated.
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(b) nth (1 < n ≤ Nsat ,max) exclusion attempt:

In this case, we go back to the original A, Qy y , y , as they were before any exclu-
sion was performed, say A0, Qy y0 , y0. With reference to the candidate subsets
for exclusion iexr found in the first exclusion attempt, iexn is chosen this time.
The measurements corresponding to the faulty satellites of iexn are removed
from the original model, constituted by A0, Qy y0 , y0. Anew , Qnew

y y and ynew

are the geometry matrix, the measurement variance matrix and the observ-
able re-constructed after exclusion: ynew does not include the measurements
from the excluded satellites, Anew is obtained from A0 taking out the rows cor-
responding to the excluded satellites and Qnew

y y instead is obtained from Qy y0

removing both rows and columns corresponding to the excluded satellites.
Nsat is also updated accordingly. With this new input we move back to step 2
and the algorithm is repeated.

(c) nth (Nsat ,max < n ≤ Nsat ,max +Nconst ,max) exclusion attempt:

In this case, we go back to the original A, Qy y , y , as they were before any exclu-
sion was performed, say A0, Qy y0 , y0. With reference to the candidate subsets
for exclusion iexr found in the first exclusion attempt, if this is step number
n = Nsat ,max +1 the subset iexr best candidate for exclusion corresponding to
single constellation fault is selected, otherwise the subset iexr best candidate
for exclusion corresponding to double constellation fault is selected. Again
the measurements corresponding to the selected subset are removed from
the original model, constituted by A0, Qy y0 , y0. Anew , Qnew

y y and ynew are the
geometry matrix, the measurement variance matrix and the observable re-
constructed after exclusion; Nsat is also updated accordingly. With this new
input we move back to step 2 and the algorithm is repeated.

(d) nth (n > Nsat ,max +Nconst ,max) exclusion attempt:

Alert is declared because a number of satellites larger than allowed would
need to be excluded.

13. Check for Wrong Exclusion (WE) (only if exclusion was performed)

(a) Compute WE test statistics

In this step we consider again the original A, Qy y , y , as they were before
any exclusion was performed, say A0, Qy y0 , y0 (these are necessarily different
from the current A, Qy y and y , which are the result of previous exclusions).
Compute, for any i :

x̂0i = (AT
0 Q−1

y y0i
A0)−1 AT

0 Q−1
y y0i

y = S0i y

where Q−1
y y0i

is obtained from Q−1
y y0

replacing the diagonal elements corre-

sponding to the satellites reputed faulty in the i th alternative hypothesis (sub-
set i ) with 0.

Compute a test statistic for each position component l , and for each i :

∇x̂excl ,i ,l = x̂i ,l − x̂0i ,l (4.60)
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(b) Compute WE test thresholds:

The threshold for each WE test is computed as:

ki ,excl ,l =−Φ−1
(pi

2

)

σ∇x̂excl ,i ,l (4.61)

with σ∇x̂excl ,i ,l the square root of the l th element of the diagonal of Q∇x̂excl ,i :

Q∇x̂excl ,i = (S0i −S′
i )Qy y (S0i −S′

i )T (4.62)

where S′
i

is obtained from Si by adding extra columns of zeros in correspon-
dence to the measurements excluded during the previous steps.

(c) Check Exclusion consistency:

{

Confirm Exclusion if ∇x̂excl ,i ,l > ki ,excl ,l ∀i , l

Do not confirm Exclusion if ∃{i , l } : ∇x̂excl ,i ,l ≤ ki ,excl ,l
(4.63)

The computation of the PLs and of the PHMI changes depending on whether
or not the exclusion is confirmed by these tests.

14. Check consistency of the measurements

(a) Compute T OMT (χ2 distributed) test statistic:

The T OMT statistic is computed as:

T OMT = yT (Q−1
y y −Q−1

y y A(AT Q−1
y y A)−1 AT Q−1

y y )y (4.64)

(b) Compute T OMT test threshold:

kχ2 =χ2i nv
Nsat−3−Nconst

(1−P
r eq

F A′
χ2

) (4.65)

where the operator χ2i nv
Nsat−3−Nconst

is the inverse of the cdf of a central χ2 dis-
tribution with Nsat −3−Nconst degrees of freedom.

(c) Determine overall consistency of measurements:

{

Accept H0 if TOMT ≤ kχ2

Reject H0 if TOMT > kχ2
(4.66)

If H0 is rejected the sanity check is not passed and an Alert has to be declared.

15. Compute VPL and/or PHMIver

(a) Case No Exclusion performed or Exclusion performed and Confirmed

The VPL is the solution of equation:

2Φ
(

b0,3−V PL

σx̂0,3

)

+
∑NHa

i=1 piΦ

(

ki ,3+bi ,3−V PL

σx̂i ,3

)

=

P
r eq

HMIver

(

1− Psat ,unmoni tor ed−Pconst ,unmoni tor ed

P
r eq

HMIver
+P

r eq

HMIhor

) (4.67)
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where b0,l and bi ,l are the (maximum possible) biases on the l th compo-
nent of the position solution under null and alternative hypotheses due to
the nominal biases bnom, j in the pseudoranges, and are computed as:

b0,l =
∑Nsat

j=1 |S(l , j )|bnom, j

bi ,l =
∑Nsat

j=1 |Si ,(l , j )|bnom, j
(4.68)

As from Equation (4.67), the integrity risk computed from the algorithm,
PHMIver , can be obtained substituting the V PL with V AL:

PHMIver =
(

1− Psat ,unmoni tor ed−Pconst ,unmoni tor ed

P
r eq

HMIver
+P

r eq

HMIhor

)−1

·
[

2Φ
(

b0,3−V AL

σx̂0,3

)

+
∑NHa

i=1 piΦ

(

ki ,3+bi ,3−V AL

σx̂i ,3

)]

(4.69)

Details on the computation of PL and PHMI described above are in Sec-
tion 4.2.1.

A method to solve the PL equation is shown below, Section 4.2.6.

(b) Case Exclusion performed and Not Confirmed

The Vertical PL (VPL) is the solution of equation:

2Φ
(

b0,3−V PL

σx̂0,3

)

+
∑NHa

i=1 piΦ

(

ki ,3+bi ,3−V PL

σx̂i ,3

)

=

piex P
r eq

HMIver

(

1− Psat ,unmoni tor ed−Pconst ,unmoni tor ed
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) (4.70)

where b0,l and bi ,l are defined in Equation (4.68) and iex identifies the subset
of satellites excluded.

As from Equation (4.70), the integrity risk computed from the algorithm,
PH M Iver , can be obtained substituting the V PL with V AL:

PH M Iver = p−1
iex
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(4.71)

where iex identifies the subset of satellites excluded in the previous step.

16. Check if the integrity is guaranteed:

{

Continue standard operations if V PL ≤V AL

Declare Alert if V PL >V AL
(4.72)

Or equivalently:

{

Continue standard operations if PH M Iver ≤ P
r eq

H M Iver

Declare Alert if PH M Iver > P
r eq

H M Iver

(4.73)
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4.2.6. VPL NUMERICAL COMPUTATION (ARAIM)
We report here a method (from [11]) to compute numerically the ARAIM VPL. Equa-
tion (4.67) can be solved using a half interval search. With:

f (V PL) = 2Φ

(

V PL−b0,3

σx̂0,3

)

+
NHa
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)

the equation to solve is:
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This search can be started with the following lower and upper bounds:
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The iterations stop when:
|V PLup −V PLlow | ≤ T OLPL

where T OLPL is the tolerance accepted for the PL.





5
DIA PROCEDURE

The Detection Identification and Adaptation (DIA) procedure is an FDE method originally
developed by TU Delft for geodetic networks applications. The theory underlying the proce-
dure can be found in [4], [5], [97], [99] and [101]. The DIA method can be readily applied to
GNSS navigation applications. As a RAIM algorithm though, the DIA method lacks a straight-
forward way to compute the PHMI; this computation is strictly required in a RAIM algorithm
— mind the definition given in Chapter 2 of the RAIM problem.

5.1. BASIC FORMULATION

5.1.1. LINEAR MODEL
The DIA procedure is based on the statistical hypothesis testing theory for linear models in-
troduced in Section 3.6.1, and presented in more detail for instance in [101]. In Section 3.6.1
we introduced the linear model (to which our GNSS model can be approximated) represent-
ing the system in fault-free state:

y = Ax +e cf. Equation (2.2)

with e ∼ N (0,Qy y ), where y is the vector of measurements (m entries), x is the unknown po-
sition vector (n entries), A is the m ×n geometry matrix and e the error vector (m entries),
which is assumed to be normally distributed. We assigned this model to the null hypothe-
sis H0, and we introduced an alternative hypothesis Ha , describing the case an anomaly is
affecting the system:

H0 : y = Ax +e

Ha : y = Ax +Cy∇+e
cf. Equation (3.21)

where Cy is a m×q matrix (the theory for the case Cy a vector was first developed by Baarda,
and extended to the case of a matrix by Teunissen) which represents the ‘signature’ of the
errors in the measurements and ∇ is a q sized vector that contains the sizes of the biases in
each degree of freedom (q) of Cy .

In view of Detection and Identification of alternative hypotheses, i.e. testing the alterna-
tive hypothesis Ha with the error signature described throught the m × q matrix Cy against
the null hypothesis H0, the Delft school developed the UMPI test statistic, which reads:

T q = êT
0 Q−1

y y Cy (C T
y Q−1

y y Qê0ê0Q−1
y y Cy )−1C T

y Q−1
y y ê0 cf. Equation (3.22)
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where ê0 = y −Ax̂0 is the vector of residuals computed considering the null hypothesis hold-
ing true (x̂0 being the position estimator under the null hypothesis). The vector of residuals
is obtained through Best Linear Unbiased Estimation (BLUE), and Qê0ê0 = P⊥

A Qy y P⊥T
A . This

is historically the first formulation of the test, presented in [5] for the one-dimensional case.
This UMPI test can also be shown to follow from the Generalized Likelihood Ratio (GLR).

The statistic T q can be also written in alternative formulations as shown in [99]:

T q = êT
0 Q−1

y y ê0 − êT
a Q−1

y y êa = ||ê0||
2
Q−1

y y
−||êa ||

2
Q−1

y y

T q = (ŷ
0
− ŷ

a
)T Q−1

y y (ŷ
0
− ŷ

a
)

T q = ∇̂T
C T

y P⊥T
A Q−1

y y P⊥
A Cy ∇̂

T q = ∇̂T
Q−1

∇̂∇̂
∇̂

(5.1)

where êa = y − Ax̂a −Cy ∇̂ is the vector of residuals computed considering the alternative

hypothesis holding true, with ∇̂ the BLUE of the bias ∇, whereas ŷ
0
= Ax̂0 and ŷ

a
= Ax̂a +

Cy ∇̂ are respectively the vectors of estimators for the means of the observables in null and
alternative hypotheses, and P⊥

A = I − A(AT Q−1
y y A)−1 AT Q−1

y y is the projector onto the space

R(A)⊥, P⊥
A = I − A(AT Q−1

y y A)−1 AT Q−1
y y . As evident in the first expression of Equations (5.1),

the UMPI test statistic T q is in fact the measurement-residual squared norm separation. The
expression in Equation (3.22) can be particularly handy since it is solely based on the residual
vector computed under the null hypothesis ê0.

This test statistic is χ2 distributed:

H0 : T q ∼χ2(q,0) and Ha : T q ∼χ2(q,λ) cf. Equation (3.23)

with noncentrality parameter:

λ=∇T Q−1
∇̂∇̂∇ cf. Equation (4.7)

where Q−1
∇̂∇̂

=C T
y Q−1

y y Qê0ê0Q−1
y y Cy .

For any 1 ≤ q < m −n many different tests can be run, corresponding to alternative hy-
potheses characterized by different choices of Cy . Only in case q = m −n all the possible
choices for a Cy matrix (with rank m −n) lead to the same test statistic, as we will see later.

In case Cy is chosen to be a vector (m×1 matrix), the possible error is restricted to a single
dimension, ∇ is a simple scalar and q = 1. In this case the corresponding test statistic T 1 can
be equivalently substituted by the w-test w , which is normally distributed:

w =
∇̂
σ∇̂

(5.2)

and is:
H0 : w ∼ N (0,1) and Ha : w ∼ N (∇w,1) (5.3)

with ∇w = ∇
σ∇̂

, and the test is two sided, one sided in case |w | is considered. It is in fact

T 1 = w 2. The test statistic in Equation (5.2) can be written also as:

w =
C T

y Q−1
y y ê0

√

C T
y Q−1

y y Qê0ê0Q−1
y y Cy

(5.4)
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as function of the residual vector computed under the null hypothesis ê0, with Cy a vector.
When we assume that failures in one measurement at a time are the major threat, we

can adapt the model to this kind of threat, restricting ourselves to take into consideration
only those types of errors and testing against them. In this case we would choose each Cy

as a canonical unit vector of the space Rm (for instance Cy1 = [1 0 · · · 0]T in case the first
measurement y1 is considered to be faulty).

Of course, to take into account the possibility of any of the measurements failing, m dif-
ferent alternative hypotheses are foreseen. For each of these m hypotheses the correspond-
ing test statistic has to be computed. This procedure is called data snooping, and foresees the
use of the corresponding w-tests. For each Cyi

a canonical unit vector for the i -th compo-
nent, with i = 1,2, . . . ,m, the corresponding w i is computed by Equation (5.2) with Cy =Cyi

,
∇=∇i etc. In case Qy y is diagonal, the w-tests for data snooping have the simple formula:

w i =
ê0i

σê0i

for i = 1,2, . . . ,m (5.5)

Beside the single satellite fault threats, or some other possible faults with defined signa-
ture (q and Cy ) that can be expected for any particular reason, there is always to consider the
possibility that the system is affected by a general unanticipated inconsistency. Therefore it
is standard practice to perform an Overall Model Test (OMT), to protect the system from non
anticipated errors/faults of any possible type (except those for which Cy ∈ R(A), which are
never detectable). The OMT is performed allowing the error to assume the maximum pos-
sible dimensionality, so that q = m −n. In this case CyOMT is a m ×m −n matrix with rank
m −n and [A | CyOMT ] is a full rank m ×m matrix, and the corresponding ∇OMT is a m −n

components vector. The test statistic reads:

T q=m−n = êT
0 Q−1

y y ê0 (5.6)

It is T m−n |H0 ∼χ2(m −n,0) and the test is one sided, accept H0 if Tm−n ≤ kOMT.
The standard DIA procedure actually foresees the computation of the OMT as the first

step (detection), followed then by the identification step in which particular types of error
are tested for. This is explained in next Section.

5.1.2. DIA STEPS
The traditional DIA procedure from the Delft school foresees the following steps:

1. Detection: once the measurements are collected, the OMT is computed (Equation (5.6))
and compared to the respective threshold kOMT. Note that it must be m > n (the re-
dundancy of measurements is necessary), otherwise the DIA cannot be implemented,
and unavailability should be declared.

(a) If the test is passed, i.e. Tm−n ≤ kOMT, the system can be considered available and
no further action is required.

(b) If the test is not passed, i.e. Tm−n > kOMT, and m ≤ n + 1 (identification is not
possible), an alert is declared (unless it is possible to re-do all the measurements,
in which case the Detection step can be repeated).
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(c) If the test is not passed, i.e. Tm−n > kOMT, and m > n + 1 (identification can be
possible) we go to the second step.

The Detection step constitutes a safeguard against all possible types of errors (except,
as stated above, the cases in which Cy ∈ R(A)); specific tests as w-tests and data snoop-
ing assume specifically formulated hypotheses, but are not effective against non an-
ticipated errors.

2. Identification: In this step an attempt is made to determine whether the anomaly de-
tected in the previous step can be attributed to some type of anticipated error. These
anticipated errors should be characterized by a particular signature, which can be
one- or multi-dimensional, i.e. their corresponding Cy in the model of Equation (3.21)
should be a matrix m×q with q < m−n. Let NHa be the total number of specific alter-
native hypotheses anticipated. Let also NHaq

be the number of alternative hypotheses
characterised by dimensionality q . For the case q = 1 the corresponding optimal de-
tection test is the w-test, Cy in that case may represent a linearized signal refraction
model for instance, or be a canonical unit vector for the data snooping case. A T q is
therefore computed based on the formula in Equation (5.1.1) for each anticipated al-
ternative hypothesis (characterized by a different Cy ), and compared to a threshold kq .
For each T q with same dimensionality q the same threshold kq is normally used, since
all T q have the same distribution under the null hypothesis. With this choice, the max-
imum of the T q for each dimension q considered is compared to the threshold kq . The
maximum of the T q is chosen since a larger value corresponds to a lower probability
that the measurements can be considered to be a sample from the distribution under
the null hypothesis. We can have two cases:

(a)
max

i
T qi

≤ kq ∀i : 1 ≤ i ≤ NHaq
∀q (5.7)

In this case, unless all measurements can be re-taken (in which case we can go
back to step 1), an alert should be declared, since it is not possible to identify a
particular type of fault and therefore perform an adaptation of the model, whereas
in the previous step an unanticipated error has been detected.

(b)
∃q : max

i
T qi

> kq ∀i : 1 ≤ i ≤ NHaq
(5.8)

In this case, we distinguish two cases:

• The threshold was exceeded only for one value of the dimension q : the corre-
sponding maxi T qi

identifies the most likely alternative hypothesis/anomaly
affecting the system.

• The threshold was exceeded for more than one value of the dimension q : it
is necessary to choose between the corresponding alternative hypotheses. A
possible criterion of choice is to pick the one which T q realization is associ-
ated with the lowest p-value (see [33], from which especially [75] and [6]). An
alternative is to compare the statistics T q /kq , as proposed in [24].

Furthermore, after the anomaly has been identified, the following two cases can
occur:
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• It is possible (and opportune) to take re-measurements of the identified faulty
observations: in this case, new measurements should be taken and we can
go back to step 1 with the new set of measurements.

• Re-measurements are not foreseen (this is generally the case for GNSS model):
in this case adaptation should be attempted, and we move to step 3.

Case of data snooping. It is very common to consider anomalies that affect only one
measurement at a time as more likely and frequent. This is the case of the data snoop-
ing, that was described in the previous Section. For data snooping m w-tests are com-
puted, in addition eventually to other possible T q ’s relating to other specific alternative
hypotheses.

Case of Qy y diagonal. In case of Qy y diagonal, the w-tests relative to the data snooping
have the simplified expression given in Equation (5.5).

3. Adaptation: The model has to be adapted/updated, since it is not possible to have
new measurements to replace the previously considered faulty. The most likely alter-
native state in which the system can be was identified in the previous step. In general,
adaptation is made switching the model from the null to the more likely alternative
one, identified in previous step. Therefore the model is updated in such a way that the
alternative model corresponding to the identified hypothesis becomes the new null
hypothesis model. This means:

H0new : y = Ax +Cyi d
∇+e

where Cyi d
is the Cy associated to the previously identified alternative hypothesis. Once

the choice for the new model is made we can move back to step 1 and the procedure
is repeated with the new model for the new null hypothesis H0new and with new alter-
native hypotheses. The new null hypothesis model has now a decreased redundancy
compared with the original one, since now there are n +q parameters to be estimated
(∇ can be estimated now). The redundancy left is m −n − q . Note that with a smaller
value for the redundancy the model has become weaker: the precision of the estima-
tors and the reliability of the system have degraded. It is important to keep track of this
weakening.

Case of data snooping. In this case switching to the alternative hypothesis is equiv-
alent to excluding one measurement from the model (this equivalence is proved in
Appendix C). The measurement corresponding to the maximum w-test must be ex-
cluded. Once the identified measurement is excluded, the measurements y and the
geometry matrix A are updated, i.e. the alternative model is adopted. Therefore we
will move back to step 1 with now m = m −1, and the procedure is repeated. As noted
before with m = m −1 the model becomes weaker, so it is important to keep track of
this weakening.

Fundamentally with hypothesis testing we compare the likelihood of the measurements
being drawn under different hypotheses and next we make a hard decision on which hy-
pothesis to use in the sequel — we adapt the model to an alternative one in case the original
corresponding to the null hypothesis is no longer considered trustworthy.
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Even when using only data snooping, with the described iterative procedure not only
single failures but also multiple failures can be detected, since after a first adaptation another
anomaly can be detected in the following iteration of the algorithm.

5.1.3. REMARK ON THE DETECTION OF MULTIPLE FAILURES
It has to be noted that when only data snooping is applied (only one-dimensional faults are
anticipated), even if the algorithm can detect multiple failures through iteration, it will not
be the most powerful in this circumstance, since a different Cy should be used in the model.
In fact, in case q measurements are considered possibly faulty at the same time, the best way
to test it (in the sense of maximum detection power, with a UMPI test) is to consider an alter-
native hypothesis as in the second line of Equation (2.2) with in this case Cy directly an m×q

matrix (for instance Cy = [Cy1 Cy2 Cy3 ] in case the first three measurements are supposed
faulty, where Cyi

is a canonical unit vector as before). To write the UMPI test, it is neces-
sary to know which q measurements are faulty. When there is no knowledge about which
q measurements are possibly faulty among the m available, and no knowledge about the
number q of possibly simultaneously failing observations either, all possible combinations
of q observations, for any possible value of q , should be considered, each of which setting
a different alternative hypothesis. If we set a maximum number r of observations simul-
taneously failing to monitor (as it is practice in the ARAIM procedure), the total amount of
alternative hypotheses to test against with specific tests will be the sum of the combinations
of q observations out of m, for all the q considered:

NHa =
r

∑

q=1

(

m

q

)

(5.9)

NHa can rapidly grow to very large values, providing heavy computational load to an even-
tual algorithm. For instance, with 30 satellites in view and r = 3 we would have NHa = 4525
alternative hypotheses to monitor.

5.1.4. SETTING THE THRESHOLDS
We have defined the test statistics to employ in Equations (5.1.1) and (5.1), and in Equa-
tions (5.2) and (L.2) for the special case q = 1, and we know their distributions under the null
hypothesis:

H0 : w ∼ N (0,1); T q ∼χ2(q,0)

Under the alternative hypotheses, the distributions depend on the actual sizes of the biases
∇, which are unknown:

Ha : T q ∼χ2(q,λ)

Ha : w ∼ N (∇w,1)

where:
λ=∇T Q−1

∇̂∇̂
∇

∇wi = ∇
σ∇̂

(5.10)

The standard DIA procedure with reliability analysis foresees an a-priori setting of the
parameters α and β (or α and γ) which are the error I and error II probabilities, for each test
individually. In fact, once for a single test α is fixed the threshold is defined, and a choice
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for β defines the reliability associated to the test. The probability of False Alarm α and the
probability of Missed Detection β are defined, for general T q and w-test (w subscript):

PF A =α= P (T q > k|H0)

PF Aw =αw = P (|w | > k|H0)
PMD =β= P (T q < k|Ha)

PMDw =βw = P (|w | < k|Ha)

(5.11)

The power γ is simply defined as γ= 1−β. Once β is fixed, it is possible to infer on the actual
size of the measurements bias, and on the bias generated in the position solution that can
be detected (or better, that is left undetected with probability β), that is on the reliability of
the test. This is explained in the next section.

5.1.5. REMARKS ON α AND β CHOICE IN MODERN GNSS RAIM
Typical values chosen in the DIA implementation in geodetic applications were originally
(in the ’60s and ’70s for instance) α= 0.05, 0.01 or even 0.001, and β= 0.2, for each single w-
test. This was due to the high cost related to carrying out a geodetic re-measurement in the
field, hence high cost of a False Alarm. It has to be noted that with increasing availability of
GNSS measurements, with new constellations being deployed in space, it will be possible to
discard a large number of measurements at first inspection yet maintaining the availability
of the positioning system. GNSS observations are becoming relatively ‘cheap’, and the high
redundancy can allow one to choose values of α much larger than in the past (larger False
Alarm rate), thereby gaining detection power.

5.1.6. INTERNAL AND EXTERNAL RELIABILITY
Reliability describes the ability of the system to check itself for modeling and measurement
errors, and therefore describes the performance of the tests. Internal reliability refers specif-
ically to the capability and effectiveness of the test to detect errors affecting the observation,
and it is quantified by the power of the test given a determined size of the bias ∇, or con-
versely by the minimum size |∇MDB| of the error that can be detected with a pre-set power.
Since it is standard practice to fix the value of the power γ= 1−β, we will refer mainly to the
second definition.

With reference to Equations (5.11), once β is fixed, given the threshold k that was deter-
mined by the choice for α, we can retrieve the corresponding λ or ∇w for the w-tests. The
reliability can be retrieved directly from ∇w for the w-tests with a scalar error size, whereas
for the general T q with q > 1 the possible ∇ vectors describe an ellipsoid in Rq once λ is
fixed (see Equation (4.7)); also for the case q > 1 hence ∇ is constrained to lie on a surface
(ellipsoid) and the influence of such bias in the position domain (external reliability) is con-
strained accordingly (the position bias must lie on an ellipsoid as well). This is described in
detail in the following.

As from Equations (5.11), when fixing the value for β the distribution of the test under
the alternative hypothesis will be consequently determined. In particular, the corresponding
value of the non-centrality parameter λ can be retrieved through computing (numerically)
the inverse of the cumulative (non-central) χ2 or normal distribution function. The relation
between λ and the bias size is:

λ=∇T C T
y Q−1

y y Qê0ê0Q−1
y y Cy∇ (5.12)
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In case of q = 1 the value of ∇ is uniquely determined (apart from its sign):

|∇| = |∇MDB| =
√

λ

C T
y Q−1

y y Qê0ê0Q−1
y y Cy

=

√

√

√

√

∇w2

C T
y Q−1

y y Qê0ê0Q−1
y y Cy

(5.13)

In the case of data snooping and of Qy y diagonal the last equation can be simplified as:

|∇MDBi
| =σyi

√

√

√

√

∇w2
i

1−σ2
ŷi

/σ2
yi

(5.14)

where the subscript i refers to the i -th observation (as in Section 5.1.1). With these formulae
(Equations (5.13) and (5.14)) the MDB can be easily retrieved from ∇w (the equivalent of λ
for the w-test, λ=∇w2).

External reliability instead refers to the impact an undetected error of size |∇MDB| has on
the estimator of the unknown position x. Range bias and position bias are related by the
simple linear relation:

∇x̂ = (AT Q−1
y y A)−1 AT Cy∇ (5.15)

To find the incidence of the bias size |∇MDB| (when q = 1) on the position solution we can
compute the corresponding ∇x̂MDB:

∇x̂MDB =±(AT Q−1
y y A)−1 AT Cy |∇MDB| (5.16)

This is the bias induced in the solution, once an error of size |∇MDB|, detectable with power
γ, remains undetected (with probability β). On the basis of this value, considering integrity
applications, it is possible to decide whether the number of measurements available and the
geometry A is adequate to guarantee integrity or the system should be declared unavailable
instead. In general, as mentioned in Section 2.1, not the full vector ∇x̂ will be of interest for
integrity check, but only some components of it (for instance the solution for the clock error
is not typically of interest in GNSS), that we can represent as a linear combination (through
matrix L) of it, let us say ∇x̂int:

∇x̂int = L∇x̂ (5.17)

Applying this transformation all the relations written for ∇x̂ can be transposed to ∇x̂int (and
viceversa).

Once the impact that the measurements bias has on the position estimator is known,
through the external reliability parameter ∇x̂MDB, the full probability distribution of the esti-
mator is known (conditioned on that specific reference bias size). Therefore, if a safety region
Ωx (ΩAL in Chapter 2 is the equivalent region for RAIM application) around the true position
x is defined, it is possible to compute the probability that the position solution will be inside
this region, i.e. the probability P (x̂ ∈ Ωx |Ha). This probability, together with ∇x̂MDB, rep-
resent ‘general’ purpose measures of the reliability of the position solution and of the DIA
algorithm. These reliability considerations could naturally be extended to the RAIM prob-
lem, in which P (x̂ ∈Ωx) is of main interest. The application of the DIA to the RAIM problem,
based in fact on the reliability aspect, is dealt with in Chapter 6.

It is opportune to stress here that the DIA performance parameters discussed so far, i.e.
False Alarm and Missed Detection probabilities (α and β) and the MDB just introduced, ap-
ply only to the binary situation of one alternative hypothesis tested against the null hypothe-
sis and they do not describe instead the overall quality of the full DIA procedure. The overall
performance of the DIA procedure is discussed in Section 5.3.
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5.2. OMT + W-TESTS DIA
We focus here onwards on one of the most common DIA implementation, the one fore-
seeing the use of OMT and w-tests only — therefore restricting the identification only to
one-dimensional threats (though possibly employing the procedure in an iterative way). In
particular it is common to choose the w-tests for data snooping, but the following analysis
applies to any type of w-tests.

5.2.1. BASIC DIA STRUCTURE AND NOTATION
Let NHa1

be the number of one-dimensional alternative hypotheses monitored by our algo-
rithm (NHa1

= m in case of data snooping). We denote by subscript i , with i = 1, . . . , NHa1
,

each variable related to a particular one-dimensional hypothesis, therefore to a particular
w-test. Instead the subscript OMT is used for the OMT (as in Section 5.1.1).

The different hypotheses on the state of the system that can possibly hold are hereby
defined:

H0 : y = Ax +e

Hi : y = Ax +Cyi
∇i +e dimCyi

= m ×1

rank([A Cyi
]) = n +1 i = 1, . . . , NHa1

HOMT : y = Ax +CyOMT∇OMT +e dimCyOMT = m × (m −n)

rank([A CyOMT ]) = m

(5.18)

with Cyi
possibly, though not necessarily, the canonical unit vectors for data snooping.

The w-tests and OMT will have the following distributions under the null hypothesis:

H0 : w i ∼ N (0,1); T m−n ∼χ2(m −n,0)

Under the alternative hypotheses, the distributions depend on the actual sizes of the biases
∇OMT and ∇i , which are unknown:

HOMT : T m−n ∼χ2(m −n,λOMT)
Hi : w i ∼ N (∇wi ,1)

where with HOMT we refer to the hypothesis of overall inconsistency tested for with the OMT,
with Hi we consider the alternative hypothesis corresponding to the i th w-test, and:

λOMT =∇T
OMTQ−1

∇̂OMT
∇OMT

∇wi = ∇i

σ∇̂i

(5.19)

Note that under a hypothesis Hk 6=i the w-test w i follows a yet different distribution, de-
pendent on the correlation between the w-tests. More specifically, under Hk it holds w i ∼
N (ρi k∇wk ,1), where ρi k is the correlation coefficient between the w-test statistics (ρi k =
C (wi ,wk )

σwi
σwk

=, with C (wi , wk ) the covariance between the two w-test statistics).

The OMT is run in the Detection step, as previously described, and reads:

Tm−n ≤ kOMT No Detection — Nominal Operations
Tm−n > kOMT Detection — Identification required

(5.20)

There is to note that for the case of the OMT, an infinite number of choices for the CyOMT

are possible, as long as [A | CyOMT ] is a full rank m ×m matrix, as seen in Section 5.1.1. We
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said in Section 5.1.1 that for the general T q with q > 1 the possible ∇ vectors describe an el-
lipsoid in Rq (once the non-centrality parameter λ is fixed), therefore one may argue that for
different choices of CyOMT , different ellipsoids are obtained for the corresponding ∇OMT, and
it is not possible to infer on the actual bias ∇ affecting the measurements. This is not true; in
fact the probability of occurrence of Tm−n < kOMT is only (given m and n) dependent [99] on
λOMT and:

λOMT = ‖∇OMT‖2
Q−1

∇̂OMT

This equation shapes an ellipsoid in Rm−n and for any different but proper choice of CyOMT

it will generate the same bound (ellipsoid) for the general bias ∇y = CyOMT∇ in Rm that can
affect the measurements. Different results from different CyOMT are only re-parametrizations
of the same ellipsoid. This is because the OMT monitors the residuals vector on all its degrees
of freedom and is explained also later in Section 5.2.21.

With reference to the Identification step previously described, only the case q = 1 is con-
sidered, therefore Equations (5.7) and (5.8) simply reduce to:

maxi |wi | ≤ kw ∀i : 1 ≤ i ≤ NHa1
No identification

maxi |wi | > kw ∀i : 1 ≤ i ≤ NHa1
Identification

(5.21)

with kw the threshold for the w-tests. The coupling of the thresholds kOMT and kw between
OMT and w-tests is dealt with in next section.

5.2.2. OVERALL MODEL TEST AND W-TESTS
As mentioned in Section 5.1.6, it is necessary to establish some criteria to define the thresh-
olds for OMT and w-tests/data snooping, and a relation between them. This is a problem
of simultaneous statistical inference, since at the same time it is necessary to choose among
multiple possible hypotheses, and many different approaches have been developed. In the
following we describe three of them, with reference to [5] and [68].

B-METHOD

A possible approach (proposed by Baarda [5]) is the B-method, in which the main idea is
to assure the same reliability for OMT and w-tests with regard to a certain error. Given αw ,
βw and λw the significance, the type II error probability and the non-centrality parameter of
the w-tests (the same for all the w-tests), and αOMT, βOMT and λOMT again the performance
parameters for the OMT, the B-method requires:

βOMT =βw for ∇y =∇yMDB =Cyi
∇iMDB =Cyi

∇OMTMDB

λOMT =λw for ∇y =∇yMDB =Cyi
∇iMDB =Cyi

∇OMTMDB

(5.22)

that means, depending on which alternative hypothesis holds true (from Equation (5.26)):

HOMT : λOMT =∇T
OMTMDB

Q−1
∇̂OMT

∇OMTMDB =λw

Hi : λw =
∇2

iMDB

σ2
∇̂i

=λOMT
(5.23)

1Note also that T m−n = t T Q−1
t t , where t is the misclosures vector (cf. [99]), so that an upperbound for the test

fully bounds the misclosures vector.
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With these choices, OMT and w-tests will have the same reliability. This means they will
be able to detect biases of the same size with the same power, the OMT being used for detec-
tion purpose and thereafter the w-tests for identification purpose. To clarify the concept we
report here an example.

Example. Given is A = [1 1 1]T , Qy y = I3, therefore we have m = 3 measurements for
n = 1 unknown parameter. We can define a w-test choosing Cyw = [1 0 0]T , which addresses
the first measurement, whereas for the OMT a possible choice is:

CyOMT =





1 0
0 1
0 0



 (5.24)

Suppose we defined a threshold for the w-test such that βw = 0.2 for a ∇MDB = 3. This means
that if a bias of size 3 is actually present in the first measurement, it will be detected with
80% probability with this specific w-test. The threshold set on the OMT applying the B-
method is such that, when the same bias of size 3 (therefore the MDB) is present in the first
measurement, it will be detected as well with 80% probability. In fact we have ∇OMTMDB =
[3 0]T (same bias vector ∇y = [3 0 0]T applied to the measurements) and for the variances:

σ2
∇̂i

= 1.5 and Q∇̂OMT
=

[

2 1
1 2

]

(5.25)

Applying the corresponding formulas for the non-centrality parameters to the two cases
(Equation (5.23)) leads to the same λOMT = λw = 6 for both w-test and OMT. But the B-
method sets the threshold of the OMT statistic to give the test the same power (equivalently
same β) for the same non-centrality parameter, therefore same power and β are obtained for
the same bias (∇y) in the measurements. The idea of the B-method is that the same error
should be detected with same probability by OMT and specific w-tests.

Note that Q∇̂OMT
(1,1) and σ∇̂w

are different, but still we obtain λOMT = λw = 6. This is
because λ as determined in Equation (4.7) can be written also as (see [99]):

λ= ‖P⊥
A Cy∇‖2

Q−1
y y
= ‖P⊥

A ∇y‖2
Q−1

y y
(5.26)

so that the non-centrality parameter both for OMT and w-test is the same regardless the
choice made for CyOMT . This is further explained in Figure 5.3, where the β behaviours are
shown for the w-test and the OMT for the particular choice of ∇=∇MDB.

Let us go back to the general B-method. As a result of the choice made for setting the
thresholds, we have αOMT > αw . This is naturally due to the fact that the w-test is the most
powerful test in detecting an error with the particular signature it addresses, which means
it shows the lowest significance level of all possible tests (so also lower than the OMT) for a
chosen size of the MDB and a chosen power γ.

In Figure 5.1 (taken from [5]) the space of R(P⊥
A ) (as an example) is shown, i.e. perpendic-

ular to the space of A with respect to the metric defined by Q−1
y y (P⊥

A being the projector onto

the space perpendicular to A with the metric defined by Q−1
y y ), on which we can represent all

the w-tests performed. Remember that the value of the test statistic w equals the length of
the projection of vector ê0 onto vector P⊥

A Cy (and ê0 = P⊥
A y); in fact, from [101]:

P⊥
A Cy ∇̂ = ê0 − êa
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Figure 5.1: Space R(P⊥
A ), acceptance regions of different w-tests, in this case for a Qy y identity matrix. On the

right highlighted the combined acceptance region, where no test is rejected.

and, pre-multiplying by PP⊥
A

Cy
:

P⊥
A Cy ∇̂ = PP⊥

A
Cy

ê0

because êa is perpendicular to the space R(A Cy ), from which:

w2 = T1 = ‖P⊥
A Cy ∇̂‖2

Q−1
y y
= ‖PP⊥

A
Cy

ê0‖2
Q−1

y y

We can therefore represent the w-tests on axes P⊥
A Cy in the R(P⊥

A ) plane. The acceptance
region in terms of ê0 of the i -th w-test is represented in this plane by the strip comprised
between the two parallel rects at ±k perpendicular (in the metric defined by Q−1

y y ) to the

corresponding P⊥
A Cyi

. We can see how the intersection of the acceptance region of different
w-tests can create a closed region around the origin.

The acceptance region for the OMT is instead represented by a circle (in the metric de-
fined by Q−1

y y ). In the case of the B-method, the intersection of the perimeter of the circle
with the w-tests axes will be beyond (at a distance larger than) the thresholds defined for
each w-test. This is sketched in Figure 5.2. This causes acceptance of the OMT whereas the
w-test(s) would be rejected.

The highlighted brown regions in the figure correspond to the cases in which the OMT
gets rejected but the w-tests are (both) accepted, therefore the cases in which adaptation is
not possible and which result in direct unavailability for our RAIM application.

The fact that the intersections of the perimeter of the circle with the w-tests axes are
beyond the thresholds defined for each w-test follows directly from the choice of same β

for defined λ for all the w-tests and the OMT. Choosing one of the w-tests for instance, the
corresponding alternative hypothesis with defined λw will determine a distribution for the
residuals ê0. The missed detection probability β is simply the integral of this distribution
over the acceptance region, and in case the threshold for the OMT is chosen the same as
for the w-test (Figure 5.4), the integral will always be smaller, the detection region for OMT
being contained by the one for the w-test. Therefore with the B-method the OMT threshold
is always larger than the squared w-test’s threshold (the OMT threshold is the square of the
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Figure 5.2: Space R(P⊥
A ), example of acceptance regions for w-tests and for OMT following S-method, B-method

and LSD method, in case of Qy y identity matrix (the axes for the w-tests are not necessarily perpendicular). The
highlighted brown regions correspond to the cases in which the OMT gets rejected but the w-tests are accepted,
therefore would cause direct unavailability in our RAIM application.

distance from the origin). Figure 5.3 shows β and α for the OMT and for a w-test for the
example case in which m −n = 2 and λw = ∇2

MDBw
/σ2

∇̂w
= 6. It is clear as for same β, the

threshold for the OMT will be larger than the squared threshold for the w-test, but at the
same time αOMT >αw .

One practical issue with the B-method is that with increased redundancy m −n the sig-
nificance of the test αOMT tends to grow to very large values, with consequent large tendency
to conservativeness. This behaviour is shown for instance in [99] (at page 136 in Figure C.1).

S-METHOD

The Scheffé method (S-method) [90] is a reknown method in the field of simultaneous sta-
tistical inference (see [68], [3], [66]). This method, as the B-method, combines the classicist
approach to detect general divergence from the null hypothesis (with the F or χ2 test) with
the multiple comparisonist approach through which one wants to choose among specific
alternative hypotheses. The following description is mainly based on [68].

With reference to Figure 5.1, if we imagine an infinite number of different w-tests for a
corresponding infinite number of possible alternative hypotheses, we can imagine these to
be represented by strips bounded by couples of parallel lines around the origin and extend-
ing to infinity perpendicularly away from the w-axis. As a matter of fact, each w-test tests
for errors of a specific signature (vector Cy ), and their values grow along specific directions
away from the origin, the axes P⊥

A Cy in the space R(P⊥
A ). Any possible w-test can also be

defined by a linear combination of m −n other linearly independent w-tests. The strips of
the w-tests acceptance regions would span all possible directions, so we can deduce that the
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Figure 5.3: β and α for the OMT and for a w-test for different choices of threshold, case in which m −n = 2
and λ= 6. It is reported in particular the squared w-test because of easier comparison with the OMT case. The
thresholds are chosen for same value of β, following the B-method. It is clear that for the same β the threshold
for the OMT will be larger than the squared threshold for the w-test, but at the same time αOMT >αw .

intersection of all the acceptance regions will result in a circular area around the origin, or an
hyper-sphere in the general case (always in the metric defined by Q−1

y y ). A circle is the shape
of the acceptance region of the OMT, therefore the OMT constitutes a protection against all
possible alternative hypotheses. Now for each w-test we set the threshold at the same dis-
tance from the origin, that is for the same value of residuals vector length. In this way the
circular region is tangent to all the line segments defining the acceptance regions for the
w-tests, or to say it in a different way, the thresholds for the w-tests are determined by the
projection of the circle onto the w-tests axes. The threshold for the w-test will be computed
therefore as:

accept H0 whenever |wi | < kw

with kw :
∫k2

w

0 χ(m −n,0) =αOMT
(5.27)

that is, the threshold kw for the w-tests is exactly the square root of the threshold used for
the OMT.

Therefore the method is based on the following: first a threshold for the OMT is set based
on a predefined significance αOMT. Then the threshold for the w-tests is obtained by the
intersection of the circle determined by the choice of the threshold with the w-tests axes.
The S-method is sketched in Figure 5.4 (taken from [5]).

Comparing with the B-method, the OMT acceptance region of the S-method is smaller, as
we previously mentioned, with αOMT >αw even more pronounced than with the B-method.
Differently from the B-method, the Scheffé method does not require an approach in two
steps, since there are no cases in which a rejection from a w-test could have been instead ac-
cepted by the OMT. Similarly as for the B-method, if instead of starting by setting a threshold
for the OMT we start from the threshold for the w-tests, with increased redundancy m −n

the significance of the test αOMT tends to grow to very large values, with consequent large
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Figure 5.4: Space R(P⊥
A

) , acceptance regions of OMT and a w-test for the S-method.

tendency to conservativeness. This is true to an even larger extent than with the B-method.
The Scheffé testing procedure can be summarized in the following steps (distinction be-

tween detection and identification steps is mainly for clarity purpose2):

1. The thresholds for OMT and w-tests are set: if we want to fix the total significance of
the procedure, then first αOMT =αtot is set and the threshold for the w-tests is decided
accordingly, otherwise the threshold for the w-tests is first set for instance based on
reliability reasons and the threshold for the OMT follows.

2. The OMT is run (detection step): if the null hypothesis is not rejected, then there is no
need to go further in the procedure and a fault-free case is declared.

3. Once the OMT has led to rejection of the null hypothesis, the w-tests are run (identifi-
cation step):

• if any of the w-tests exceeds the threshold, then the maximum modulus w-test
identifies the type of anomaly most likely to be present. Identification of the
anomaly can possibly lead to adaptation of the model and re-application of the
procedure.

• if none of the w-tests exceeds its threshold, identification is not possible, and a
general (non-anticipated) anomaly is declared.

The Scheffé method is not only restricted to the specific testing problem described but is
of more general application in the context of simultaneous multiple comparisons. Given a

2As mentioned OMT and w-tests can be run at the same time because if a w-test gives rejection the OMT will
reject as well (the tests are coherent).
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linear model as in Equation (2.2), we can consider L = {l = (l1, . . . , ln)} a d-dimensional lin-
ear subspace of the n-dimensional space. The Scheffé technique gives confidence intervals
on the linear combinations l T x for all l ∈L .

In fact if L is a d ×n matrix whose rows form a basis for L , then Lx would represent
all possible linear combinations of x in L . Given that the standard BLUE estimator x̂ =
(AT Q−1

y y A)−1 AT Q−1
y y y , Lx̂ has distribution:

Lx̂ ∼ N (Lx,LQ x̂ x̂LT )

A linear hypothesis on x has the form:

H0 : Lx =φ0

and the likelihood ratio test (against an alternative Ha : Lx 6=φ0) is:

T d = (Lx̂ −φ0)T (LQ x̂ x̂LT )−1(Lx̂ −φ0)

which has a χ2(d ,0) distribution. Setting a threshold to the test based on a confidence α will
complete the testing procedure. Graphically, this is equivalent to check whether the point
φ0 is contained in the 1−α confidence ellipsoid centered at Lx̂.

To extend this concept to our specific case, we consider the same model as in Equa-
tion (2.2) in the general alternative hypothesis:

Ha : y = Ax +Cy∇+e ∇ 6= 0

with Cy∇ as general as possible, i.e. Cy an m × (m −n) matrix and ∇ an m −n dimensional
vector. The null hypothesis H0 reads ∇ = 0, therefore the application of the just described
Scheffé method results in a standard ellipsoidal confidence region around the origin for the
vector ∇, with corresponding test statistic:

T m−n = ∇̂T
Q−1

∇̂∇̂∇̂ ∼χ2(m −n,0)

This is the standard OMT. Note that this problem formulation is equivalent to a parameter
significance test [99] performed on the parameters [xT ∇T ]T , namely on ∇. In fact in the
alternative hypothesis the whole vector of parameters is considered and solved for, whereas
in the null hypothesis a constraint is given to some linear combination of the parameters (in
this case on the subvector ∇). This means testing whether the extra parameters ∇ are actually
needed to describe the original observations model.

The OMT therefore accounts for all the possible linear combinations of all the possible
redundant extra parameters that could describe the system, whereas the w-tests accounts
for just one extra parameter.

FISHER’S LSD METHOD (LEAST SIGNIFICANT DIFFERENCE TEST )
The LSD test first proposed by Fisher is based on two steps as the B-method, first the OMT
and following the multiple specific tests (comparisons), which are the w-tests in our case. In
the LSD method, the thresholds are chosen in such a way that all the tests performed have
the same significance level. That is:

αOMT =αw
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The test results in a detection region similar to the one for the B-method (in Figure 5.2). With
respect to the S-method and similarly to the B-method, this test requires distinction in two
steps, since as it can be seen in figure the acceptance area of the OMT intersects with the
rejection areas of the w-tests — this means some observations could lead to acceptance of
H0 using the OMT but rejection when testing with the w-tests, therefore the order of testing
assumes importance.

The rationale behind this approach is simply that if we used a certain significance level
to decide between acceptance or rejection of null hypothesis, why should we use a different
significance level to decide whether we belong to one of the specific alternative hypotheses?
This also eliminates the issue of the increase of significance of the OMT with the increase of
the redundancy m−n. On the other hand, no consideration is made on the reliability of this
test. Also the S-method lacks of any specific analysis of the reliability aspects.

Table 5.1 compares the three methods described, summarizing their main selection prin-
ciples.

Table 5.1: Summary of the simultaneous inference methods discussed and their main underlying principles.

Method Principle

S-method kOMT = k2
w (same threshold)

B-method βOMT =βw for ∇y =∇yMDB (same power)
LSD method αOMT =αw (same significance)

5.2.3. REMARKS ON THE THREE MULTIPLE COMPARISON METHODS DESCRIBED
In the author’s opinion, detection and exclusion of faults in a RAIM algorithm must be based
on external reliability aspects. The rationale behind the choice between acceptance or rejec-
tion of the fault-free hypothesis should be related to the risk of occurrence of a Positioning
Failure, i.e. an error in the position solution that exceeds a given safety requirement, the Alert
Limit (AL). The only method that is strictly based on reliability reasoning is the B-method.
Within this view, the S-method appears overly conservative whereas the LSD method is not
conservative. The B-method assures same reliability only when considering the binary case
of one alternative hypothesis to the null hypothesis, and only for a particular choice of β. For
our integrity problem we would have to consider instead the overall procedure performance
and the full range of β. In this view, if it is not feasible to monitor over different β choices, it
would make sense to employ the S-method instead.

As a further remark, with the use of different prior probabilities, as proposed in the fol-
lowing, the OMT can be employed to detect only the faults that cannot be detected by the
w-tests (therefore more unlikely). In this way the OMT would have a role complementary to
the w-tests. This possible approach is explored in Section 6.6.

5.3. OVERALL PERFORMANCE OF THE DIA PROCEDURE
In the previous Sections, we considered a RAIM procedure based on an OMT and the w-
tests. We analyzed in particular only the performance parameters α and β for each test by
itself. Considering the procedure as a whole instead, it is important to compute the overall
performance, that is taking into account all the tests together, that are run at the same time
or in succession. In the following we focus on the most common case of data snooping,
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therefore the case in which m w-tests are run (Na1 = m). Furthermore it is assumed that Qy y

is diagonal.

5.3.1. DIA IDENTIFICATION PERFORMANCE
Let us leave out for the moment the OMT and consider only the w-tests. This means we
consider only the Identification step. Remember that the rule for the step was defined in
Equation (5.21), such that the general no identification case occurs when:

max
i

wi ≤ kw ∀i : 1 ≤ i ≤ Na1 = m (5.28)

FALSE ALARM

For each single w-test we defined α in Equation (5.11). In case a total PF Atot is set instead, it
is:

PF Atot =αtot = P (w M ∉Ωw (kw )|H0) (5.29)

where w M |H0 ∼ Nm(0,Qw w ) is the vector of all m w-tests andΩw (kw ) is the hyper-rectangular
acceptance region in Rm enclosed by the thresholds kw of each w-test. Defining D = diag(σ−1

êi
)

the diagonal matrix which diagonal elements are the σ−1
êi

, it is w M = Dê = DP⊥
A y (under as-

sumption of data snooping and Qy y diagonal) and Qw w = DP⊥
A Qy y P⊥T

A D . The probability
in Equation (5.29) in fact corresponds to the intersection event constituted by all the w-tests
being smaller than the threshold. This results in:

αtot = 1−
∫

Ω(k)
Nm(0,Qw w )dwM (5.30)

We chose to make this region an hyper-cube with same threshold kw for each w-test, since
the same w-test value corresponds to the same probability that the related measurement
has been drawn from the unbiased distribution. This choice can be discussed, the choice of
different thresholds for the w-tests can optimize integrity, but requires much higher compu-
tational effort. Note that Qw w is rank defect, since its rank is m −n (but it is a square m ×m

matrix). Therefore the integration over an hypercube in Rm in Equation (5.29) is equivalent
to an integration over a closed figure in the Rm−n sub-space in which the w distribution is
lying.

An upper bound for the total αtot can be obtained by the formula [102] (Šidác approxi-
mation):

αtot ≤ 1−
m
∏

i=1

[

2Φ

(

k

σwi

)

−1

]

= 1−
m
∏

i=1
[2Φ(k)−1] (5.31)

as σwi
= 1, where Φ(x) is the standard normal CDF. The equality holds when the w-tests are

uncorrelated.
The total PF Atot here considered is the actual probability of FA only in case the algorithm

is made up of a single identification step (with m tests simultaneously or in parallel), or let
us say, it is the PF Atot within one identification step of the algorithm. In case multiple steps
are foreseen (as for instance with iterative DIA), a FA can be followed (after adaptation) by
another test, therefore the probability of FA of the successive steps has to be considered.
These considerations are exposed in Section 6.5. Till then we will analyze the performance
of the procedure as if it was constituted by a single step.
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Figure 5.5: Example of acceptance/rejection regions in R(A⊥). The region in green is the acceptance region of
the w-tests (Ωw (kw )), while the remaining area in orange is the rejection region and generates False Alarm in
the fault-free case.

MISSED AND WRONG DETECTION

Another issue to consider is the occurrence of wrong detections/identifications. This is es-
pecially related to the reliability of the system. We consider again the distribution of each
test under the corresponding alternative hypothesis:

Hi : w i ∼ N (∇wi ,1) for i = 1,2, . . . ,m (5.32)

with ∇wi = ∇i

σ∇̂i

. If we fix a value for the probability of Missed Detection PMD :

PMDi
=βi = P (|w i | ≤ kw |Hi ) for i = 1,2, . . . ,m (5.33)

to a value PMD1 =β1 (same for all i ) we can retrieve the so called Minimum Detectable Bias,
MDB, that is the value of ∇i that satisfies the previous equation.

With the previous equation we are considering each w-test separately, disregarding the
possibility of wrong detections. A proper formulation should take into account that even if
the correct w-test statistic exceeds the threshold, at the same time another one may be larger
and a wrong detection may take place.

We must define then better the cases of Missed Detection (MD) and Wrong Detection
(WD). For the MD we therefore consider only the case in which none of the w-tests is rejected,
when in reality the corresponding (to the w-test considered) alternative hypothesis holds
true:

PMDi
=βi = P (w M ∈Ωw (kw )|Hi ) (5.34)
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Let us deal with the WD now. The WD, the case |w i | ≤ |w j | ∩ |w j | ≥ kw |Hi for any j , is
sometimes referred to in literature as a type III error (the type I refers to the FA, and the type II
to the MD), see for instance [34]. In case the algorithm is made of a single identification and
exclusion step, it is possible to treat this type III error as equivalent to the MD probability,
but in case the algorithm foresees multiple steps it makes sense to distinguish between type
II and type III errors. This because an MD causes the algorithm to stop and deliver a (likely)
incorrect solution, whereas a WD leads to further identification steps with the chance of a
subsequent correct detection. The type III error can be therefore defined:

Def. WD: rejection of H0 and acceptance of H j 6=i ∀ j when in fact Hi is true.

Therefore, with reference also to Table 5.2, we distinguish the probability of MD previ-
ously stated in Equation (5.34) from the probability of Wrong Detection:

PW Di
=κi = P (

m
⋃

j=1 j 6=i

(|w j | > kw ∩|w i | < |w j |) |Hi ) (5.35)

This means that a WD related to a fault in the i th observation (hypothesis Hi ) occurs when
the maximum of the w-tests is not wi , the one corresponding to the faulty observation, but
w j , and it does exceed the threshold. A WD would occur also if more than one ‘wrong’ w-test
exceeds the threshold (this eventuality is taken into account by considering the union of the
events in the formula). With respect to a FA (which could also be considered a sort of wrong
detection), the difference is that a detection occurs when there is something to be detected.
Just not the right one is detected.

Table 5.2: Different types of errors in a detection problem with multiple alternative hypotheses. The simple
case of two alternative hypotheses (m = 2) is considered, and correspondingly two w-tests are run in parallel,
in one step of identification. The probabilities on each row add up to a probability of one.

Result of the test
Unknown H0 H1 H2

reality |w1| ≤ kw , |w2| ≤ kw |w1| > kw , |w1| > |w2| |w2| > kw , |w2| > |w1|
H0 OK α1 (type I error) α2 (type I error)
H1 β1 (type II error) OK κ1 (type III error)
H2 β2 (type II error) κ2 (type III error) OK

The probability in Equation (5.33) is easily computed through integration of a normal
distribution (remembering the distribution of w i |Hai

in Equation (5.32)), whereas to find
the probabilities in Equations (5.34) and (5.35) it is necessary to integrate the multivariate
normal distribution of the w-tests w M over the region Ωw (kw ) in the first case, and over a
region Γi (kw ) = {wM ∈ Rm : ∃ j 6= i , |w j | > kw ∩|wi | ≤ |w j |} in the WD case. That is:

βi =
∫

Ωw (kw ) Nm(∇wMi
,Qw w )dwM

κi =
∫

Γi (kw ) Nm(∇wMi
,Qw w )dwM

(5.36)

where ∇wMi
= DP⊥

A ∇yi with ∇yi the bias vector ∇yi =Cyi
∇i . An example of regions Γi (kw )

and Ωw (kw ) is shown in Figure 5.6 for a two-dimensional case. Together with Equation (5.30)
the above Equation (5.36) determines the formulas for the errors probabilities for the identi-
fication step of the DIA procedure.
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Figure 5.6: Example of acceptance/rejection regions in R(A⊥). The region in orange denoted by MD (Ω(kM )) is
the acceptance region of the w-tests, and generates Missed Detection in case a fault is present (presence of the
bias ∇w). The region denoted by WD is Γ1(kM ), referring to the case of occurrence of H1, an outlier in the first
measurement. The diagonal lines are driven by selecting the maximum of the w-tests.

An upperbound for the MD probability in Equation (5.36) can be simply obtained using
the formula for the binary case [100]:

βi ≤
∫+kw

−kw

N (∇wi ,1)dwi =Φ(kw −∇wi )−Φ(−∇wi −kw ) (5.37)

where Φ indicates the cumulative distribution function of a zero mean unit Gaussian distri-
bution. This equation represent an upperbound for the MD probability because, with com-
parison with Equation (5.36), the integration is now carried out over a strip delimited by the
thresholds kw which contains the acceptance region Ωw (kw ), and the integrand is always
positive.

Let us look at the MDB now. Fixing a value for βi = β0i , it is possible to know the size of
the bias that we can detect with determined confidence. To do so it is necessary to invert
Equations (5.36), that is possible numerically as long as the region Ω(k) is symmetric respect
to the origin. Also the sign of ∇wi is not important, ±∇wi yielding the same βi . The function
βi (|∇wi |) (as said the sign of ∇wi is not important) is invertible because it is continuous and
differentiable (it is the integral of a multinormal distribution) and is monotonously decreas-
ing with |∇wi |. This can be demonstrated by means of Anderson’s theorem in [2]. As a result,
considering the function βi (|∇wi |) and fixing a confidence value for the missed detection
βi =β0i , the MDB can be retrieved as:

|∇wi |MDB =
|∇i |MDB

σ∇̂i

=β−1
i (β0i ) (5.38)
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With regard to the WD probability instead, an upperbound can be obtained as:

κi ≤ min

{
∫

Λi (kw ) Nm(∇wMi
,Qw w )dwM

∫

Ψi (kw ) Nm(∇wMi
,Qw w )dwM

(5.39)

where the integration regions Λi (kw ) and Ψi (kw ) are defined as:

Λi (kw ) = {wM ∈ Rm : ∃ j 6= i , |w j | > kw }
Ψi (kw ) = {wM ∈ Rm : ∃ j 6= i , |w j | > |wi |}

(5.40)

Λi (kw ) describes the region in which any of the ‘wrong’ (w j 6=i ) w-test statistic exceeds the
critical value (regardless of being larger or smaller than wi ), whereasΨi (kw ) describes the re-
gion in which any of the ‘wrong’ (w j 6=i ) w-test statistic is larger than wi (regardless of exceed-
ing or not the threshold). These regions (Λi (kw ) and Ψi (kw )) are shown in Figure 5.7. Fun-
damentally the two expressions represent two upperbounds to the WD probability, therefore
we can choose the tightest of the two.

We first define the specific WD probabilities, κi j :

κi j = P (|w j | > kw ∩|w i | < |w j | |Hi ) (5.41)

which is the probability that a WD occurs selecting specifically w j (for a particular j ) instead
of wi . Applying the Bonferroni inequality, we have:

κi ≤
∑

j 6=i

κi j (5.42)

Now we can find the two equivalent upperbounds of Equation (5.39) for each κi j :

κi j ≤ min

{

∫−k
−∞ N (∇w j |Hi ,1)dw j

∫+∞
0 f|w j−w i |(|w j −wi |)

(5.43)

The upperbounds in Equation (5.39) can thus be computed as:

κi ≤ min







∑

j 6=i (1−Φ(kw −∇wi ))+
∑

j 6=i (1−Φ(kw +∇wi ))
∑

j 6=i

(

Φ

(

(σwi w j
−1)∇wi

2−σ2
wi w j

)

+Φ

(

(−σwi w j
−1)∇wi

2−σ2
wi w j

))

(5.44)

The second equation can be obtained remembering that:

w j −w i ∼ N ((σwi w j
−1)∇wi ,2−σ2

wi w j
)

The first upperbound is monotonously increasing with the bias size ∇ whereas the second
one is monotonously decreasing. The upperbound given by the minimum of the two first
increases to reach a maximum and then decreases monotonically with increasing bias size.
This behaviour is visible in Figure 5.13, where the upperbound is applied to an actual geom-
etry.

Until now we have considered only the identification step of the DIA, that is only the set
of w-tests to be run.
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Figure 5.7: Example of regions Λi (kw ) and Ψi (kw ) employed to determine an upperbound to the WD prob-
ability. The regions Λ1 and Ψ1, relative to a failure in satellite 1, are in orange in the picture, which shows
a two-dimensional R(A)⊥ space. Both Λ1 and Ψ1 contain the actual Γ1 region, previously defined (see Fig-
ure 5.6).

5.3.2. DIA DETECTION PERFORMANCE — ADDITION OF THE OMT

When detection is made by means of the OMT, significance and MD probability of an iter-
ation of the DIA coincide with the αOMT and βOMT , performance of the OMT. Therefore, if
originally a value for αw was set, the αOMT is derived employing the B-method (or another
of the methods described in Section 5.2.2), and that corresponds to the significance of a full
algorithm iteration. Alternatively, one could start from αOMT and determine αw using an
inverse approach.

This means that when the OMT is run first, the w-tests only control the WD probability.
Nevertheless, with the B-method, the MD probabilities of w-tests and OMT are strongly re-
lated — equal for a specific size of the bias, the MDB. In the GPS example of next Section,
we show that with the adoption of the B-method the difference between MD probabilities of
OMT and w-tests are very small for any size of the measurement biases. This result supports
the adoption of the B-method for integrity monitoring purposes.

There is to note that in case of use of the B-method, there is a chance that the OMT de-
tects an anomaly but none of the w-tests identifies it — occurrence resulting in an Alert. The
probability of this type of occurrences cannot be computed analytically but it is generally
quite small. In next Section this probability is estimated (by means of Monte Carlo integra-
tion) for a particular geometry.

It can be interesting to note that, when the w-tests are run following the OMT, they will
follow a distribution that is different from the standard normal (since conditional on the
detection). Knowledge of this distribution could be useful to determine the probability of
(not) identifying after a detection (the event just discussed above), or actual (more precise)
probabilities of WD and CD. This conditional distribution is analyzed in Appendix L.
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5.3.3. AN EXAMPLE
We consider here an example GPS geometry and we compute for it the performance pa-
rameters αtot , βi , κi and |∇wi |MDB using both correct formulae (Equations (5.30), (5.36)
and (5.38)) and approximated ones (Equations (5.31), (5.37) and (5.44)). The skyplot of the
geometry considered is shown in Figure 5.8.

The variance matrix Qy y of the observables, employed in the computation, is diagonal
and based on the elevation of the satellites. In fact for each observable we used the relation:

σyi
=σc

(

1+3exp

(−eli

el0

))

where σc = 0.3m is the reference standard deviation, eli is the elevation of the i th satellite
and el0 = 10◦ is the reference elevation.

Figure 5.8: Skyplot with PRN numbers. Configuration with m = 8 satellites.

Figure 5.9 shows the results for αtot obtained by MC numerical integration and by the
approximation in Equation (5.31), for increasing values of the significance of each single w-
test (αi ) and therefore decreasing value of the threshold kw . The upperbound is quite tight,
and exceeds the actual value by about 30%.

Figure 5.10 shows the computedβi through MC integration of Equation (5.36) and through
the approximated (upperbounded) Equation (5.37). The normalized difference of the two
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Figure 5.9: Total significance for the all m w-tests run together (first detection step), for increasing significance
of each single w-test. Results of MC integration and of analytical approximation. For αi = 0.001 we have αtot ≈
0.007.

computations is shown in Figure 5.11. We can see that the relative error is generally smaller
than 10%, and in almost all cases smaller than 20%. This means that, if for instance for ∇= 5
we have β = 10−3 with respect to a fault in a certain satellite, then the error βappr ox −β ≈
10−4. Note in Figure 5.10 that for a zero value of the bias size the curves for the βi all start
from the value 1−αi = 0.999 in the approximated (upperbounded) case, and from the value
1−αtot ≈ 0.993 for the actual numerical computation.
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Figure 5.10: MD probabilities computed through MC integration of Equation (5.36) on the left and through the
approximated Equation (5.37) on the right. The bias size ∇ on the horizontal axis is measured in meters, the
threshold of the w-tests is set such that αi = 0.001.

Figure 5.12 shows the WD probabilities (κi ) as functions of the size of the bias in the faulty
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Figure 5.11: Normalized difference between the MD probabilities computed by the approximated formula in
Equation (5.37) and by MC integration of the actual formula in Equation (5.36), shown separately in Figure 5.10:
(βiappr ox −βiMC )/βiMC .

satellite, given a fixed αi = 10−3, obtained through MC integration. We can notice that all the
curves start from the same value, for a zero value of the bias size. This is due to the fact that
the w-tests distribution is symmetric with respect to all the bisectrix (or divisory planes) that
separate the different detection regions shown in Figure 5.6. The detection region can in fact
be divided in m different sub-regions, each relative to a different w-test. The probability of
w M falling in any of these sub-regions is just the same in case of zero bias size. In m −1 out
of m cases w M would fall in a wrong region (corresponding to WD), therefore all curves in
figure start from the value κ0 = m−1

m
(1−αtot ).

Figure 5.13 shows the approximated values as obtained by Equation (5.44) for the same
case of Figure 5.12. As we can see, the upperbound is quite conservative, this is likely due to
the high correlation present among the w-tests.

Finally, we consider the use of the OMT for detection, based on the B-method. Fig-
ure 5.14 shows αOMT in comparison with αtot as obtained from the multiplicity of w-tests
(shown previosly in Figure 5.9), for different values of αw . In the same Figure it is also shown
the probability of detection but no identification (rejection by the OMT but acceptance of
all the w-tests), indicated with the greek letter ζ. We can see that for small values of αw ,
αOMT is larger than both the actual and the upperbound (given by the Šidác approximation)
of the αtot of the combined w-tests, whereas for larger values of αw it becomes sensibly
smaller. This means that for larger values of αw employing the OMT for Detection (with
the B-method) results in a higher detection power even in case of single satellite faults. ζ

results instead generally negligible compared to αtot for any αw . Figure 5.15 shows the dif-
ference βOMTi

−βiappr ox , with the βiappr ox computed with the approximating formula in Equa-
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Figure 5.12: Probability of WD κ as a function of the size of the bias in the faulty satellite, with a fixed α= 10−3

and therefore fixed threshold for the w-tests, for the 8 satellites in view. Each curve exhibits a global extremum
before decreasing monotonically and asymptotically to zero.

tion (5.37), i.e. the difference between the MD probability of OMT and w-tests (note that the
difference is zero for the MDB, from the principle of the B-method). The graph shows that
this difference is very contained.

5.4. SUMMARY AND CONCLUSIONS
The DIA procedure is a well established method for outlier detection in geodesy. It employs
the most powerful test (UMPI) for the detection and identification of generic or (anticipated)
specific anomalies and, with the B-method, defines a valid rationale for the choice of the
thresholds of each single test.

Regarding the application of the DIA procedure to the RAIM problem, this is naturally
possible, provided a direct way to compute the main RAIM parameters, in particular the
PHMI, is defined — the reliability monitoring provided by the DIA has to be extended to be
able to cope specifically with the RAIM case. In a PHMI monitoring set up the use of the B-
method in not necessarily justified, and the choices of the input parameters for the method,
e.g. α and β of each test can be discussed. An adaptation of the standard DIA algorithm for
the RAIM case is proposed in Chapter 6.

In Chapter 7 the standard DIA is compared by means of simulations to the other RAIM
algorithms discussed. To allow the comparison, the following choices have been made for
the set up of the DIA algorithm:

• The maximum number of allowed iterations of the procedure is three. This choice is
due to the assumption, employed also by the other algorithms tested in the simula-
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Figure 5.13: Approximated probability of WD κ, via Equation (5.44) as a function of the size of the bias in the
faulty satellite, with a fixed α = 10−3 and therefore fixed threshold for the w-tests, for the 8 satellites in view.
Each curve exhibits a global extremum before decreasing monotonically and asymptotically to zero.
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Figure 5.14: PF A for the DIA Detection step (OMT), in comparison with the total PF A in case of Detection based
on the w-tests for data snooping, for varying significance of the individual w-tests, αw (on the horizontal axis).
Also shown the probability of rejection of the OMT but acceptance of all the w-tests (ζ).
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Figure 5.15: Difference between the MD probabilities of the OMT (βOMTi
) and the (approximated) MD proba-

bilities of the w-tests βiappr ox .

tions, that the occurrence of an anomaly affecting three or more satellites has prob-
ability of occurrence much lower than the requirement on the PHMI (see also the for-
mula employed in ARAIM, Equation (4.46)); this means that three (or more) satellites
should never be considered faulty simultaneously, and therefore excluding more than
two satellites is assumed unnecessary.

• The αOMT , same for each iteration of the procedure, is set equal to the PF A′ require-
ment given in Table 7.3 — in the standard DIA we would fix instead the αi of the w-
tests. This choice is made to assure that the requirements on PF A′ is satisfied and to
better compare the algorithm with the other ones, since the tests total significance is
fixed. With this choice the possible multiple iterations are not taken into account (for
the performance computation).

• The thresholds for the w-tests kw are determined applying the B-method in reverse

fashion, starting from the significance of the OMT. The details of this variant of the
method are in the algorithm description, Section 5.5, highlighted in italic.

5.5. DIA ALGORITHM
In Baarda’s DIA algorithm [4] [5] the OMT, run for detection purpose, precedes the w-
tests, run for identification (iterative data-snooping). The baseline input for the algo-
rithm, common to all the other RAIM algorithms, is given in Tables 7.1, 7.3 and 7.4 (the
values reported are the ones employed in the numerical simulations in Chapter 7).
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Table 5.3: Specific input to the Baarda’s DIA algorithm.

Name Description Source

β≡ PMD Maximum allowed probability of non-
detecting a fault (usually set to 0.8)

A-priori

αw ≡ PF Aw False Alarm probability for each w-test,
testing the null versus a single alterna-
tive hypothesis test

A-priori

1. Input (extra than Tables 7.1, 7.3 and 7.4) in Table 5.3.

2. Check if the redundancy is sufficient:

{

Continue procedure if Nsat > 3+Nconst

Declare Alert if Nsat ≤ 3+Nconst
(5.45)

3. Detection:

(a) Compute T m−n (χ2 distributed) test statistic:

The T m−n statistic is computed as:

T m−n = yT (Q−1
y y −Q−1

y y A(AT Q−1
y y A)−1 AT Q−1

y y )y (5.46)

(b) Compute T OMT test threshold:

Compute first the w-tests thresholds:

kw =
√

χ2i nv
1 (1−PF Aw ) (5.47)

where the operator χ2i nv
1 is the inverse of the CDF of a central χ2 distribution

with 1 degree of freedom. Compute:

λ0 : χ2cd f

(1,λ0)(k2
w ) = PMD (5.48)

where χ
2cd f

(1,λ)) stands for the CDF of a non-central χ2 distribution with 1 de-
gree of freedom and non-centrality parameter λ. λ0 can be found iteratively,
solving for instance the following minimization:

λ0 = argmin
λ

: χ2cd f

(1,λ) (k2
w ) ≤ PMD (5.49)

Compute the T m−n test threshold:

kOMT =χ2i nv
(Nsat−3−Nconst ,λ0)(PMD ) (5.50)

where χ2i nv
(Nsat−3−Nconst ,λ0) stands for the inverse CDF of a non-central χ2 distri-

bution with Nsat−3−Nconst degrees of freedom and non-centrality parameter
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λ0. The choice of the above described thresholds for OMT and w-tests follows
the B-method [4] [5], as described in Section 5.2.2.

In the simulation implementation (Chapter 7), to better compare with the

other algorithms, the total PF Atot is fixed instead of PF Aw . Two versions of DIA

are implemented, for each of which the threshold for the OMT is computed as:

DIA-k1 kOMT =χ2i nv
Nsat−3−Nconst

(1−PF A′)

DIA kOMT =χ2i nv
Nsat−3−Nconst

(1− 3
p

PF A′)
(5.51)

where the operator χ2i nv
Nsat−3−Nconst

is the inverse of the cdf of a central χ2 dis-

tribution with Nsat −3−Nconst degrees of freedom. The choice for the DIA on

the second line is due to the fact that a maximum of 3 iterations are performed

in the simulation implementation (see Section 6.5.1 for more details on this

approximated formula).

(c) Determine overall consistency of measurements:

{

Accept H0 if TOMT ≤ kOMT

Reject H0 if TOMT > kOMT
(5.52)

If H0 is rejected an Identification has to be made, go to step 4. Otherwise
standard operation is continued with solution estimate:

x̂ = (AT Q−1
y y A)−1 AT Q−1

y y y = Sy

.

4. Identification (only if H0 was rejected by OMT):

(a) Check whether the redundancy is sufficient to exclude satellites:

{

Continue procedure if Nsat > 3+Nconst +1
Declare integrity unavailable if Nsat ≤ 3+Nconst +1

(5.53)

(b) Compute w-tests statistics: compute a w i test statistic for each satellite i

(data snooping):

w i =
ê i

σêi

for i = 1,2, . . . , Nsat cf. Equation (5.5)

where ê0i
is the i th component of the residuals vector ê and σêi

is the i th

diagonal element of the residuals covariance matrix Qê ê determined with:

ê = (INsat − A(AT Q−1
y y A)−1 AT Q−1

y y )y = P⊥
A y

Qê ê =Qy y − A(AT Q−1
y y A)−1 AT = P⊥

A Qy y P⊥T
A

(5.54)

Note that Qy y is assumed diagonal to apply Equation (5.5).
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(c) Recall the w-tests thresholds computed with Equation (5.47).

In the simulation implementation (Chapter 7) the following procedure is ap-

plied. Compute:

λ0 = argmin
λ

: χ2cd f

(Nsat−3−Nconst ,λ)(kOMT) ≤ PMD (5.55)

where χ
2cd f

(Nsat−3−Nconst ,λ) stands for the CDF of a non-central χ2 distribution with

Nsat −3−Nconst degrees of freedom and non-centrality parameter λ. λ0 can be

found iteratively. Compute:

kw =
√

χ2i nv
(1,λ0)(PMD ) (5.56)

where χ
2cd f

(1,λ0)) stands for the CDF of a non-central χ2 distribution with 1 de-

gree of freedom and non-centrality parameter λ0. The choice of the above de-

scribed thresholds for OMT and w-tests is equivalent to the application of the

B-method [4] [5] in reverse order, starting from the OMT threshold to obtain the

w-tests thresholds.

(d) Identify faulty satellite:

If:
max

i
wi ≤ kw ∀i : 1 ≤ i ≤ Nsat cf. Equation (5.21)

Declare Alert, since it is not possible to identify a particular type of fault and
perform an adaptation of the model, whereas the OMT rejected H0. Else, find:

(e)
iex = argmax

i
wi ∀i : 1 ≤ i ≤ Nsat (5.57)

Satellite iex has to to be excluded from the model. Go to step 5.

5. Adaptation:

The measurement corresponding to the faulty satellite iex is removed from the
model. New geometry matrix, measurement variance matrix and observable vec-
tor, respectively Anew , Qnew

y y and ynew , are re-constructed after exclusion: ynew

does not include the measurement from the excluded satellite, Anew is obtained
from A taking out the row corresponding to the excluded satellite and Qnew

y y in-
stead is obtained from Qy y removing both row and column corresponding to the
excluded satellite. Also Nsat is correspondingly updated, N new

sat = Nsat−1. With this
new input we move back to step 2 and the algorithm is repeated until finally either
standard operation is continued with a position estimate or Alert is declared.



6
DIA APPLIED TO RAIM

In the previous Chapter we introduced the DIA procedure, and discussed the basic principles
of this FDE algorithm. Strengths and weaknesses of the procedure were highlighted. We also
pointed out that the DIA procedure cannot directly fulfill the role of a RAIM algorithm due to
lack of a direct computation of the PHMI. In this Chapter a modification (and an extension)
of the basic procedure is proposed, in order to comply with the requirements of a RAIM
algorithm and to optimize the associated performance.

6.1. SPECIFIC APPLICATION NEEDS

With reference to Section 2.4, we have seen that a RAIM algorithm needs as input the pa-
rameters α0 and P

r eq

HMI. To satisfy both those requirements, it has to be able to compu-
tate/estimate the PHMI and α as functions of each other for each geometry: in such a way
the availability of the geometry under consideration can be determined. The standard DIA
as described in previous Chapter is based on a prior choice for the α and β of the tests that is
mostly arbitrary, to be tuned to each specific application. In this sense, RAIM can represent
a specific application, that requires monitoring of the parameter PHMI.

The adaptation of the DIA procedure proposed in this Chapter consists in the develop-
ment of a method to estimate/upperbound the PHMI relative to an observation geometry in
order to determine the availability of the geometry. This method also exploits the particular
statistical model introduced in Section 2.7, foreseeing the assignment of prior probabilities
to the alternative hypotheses. The assignment of prior probabilities is not required for the
application of the standard DIA procedure, therefore the method proposed in this Chapter
provides a way to exploit the extra information constituted by these prior probabilities.

Beside this integrity monitoring addition to the standard DIA, the standard role of the
OMT is also discussed (Section 6.6). Alternatives to the B-method are taken into consider-
ation to set the threshold of the OMT as well as the option to run the OMT in parallel with
the w-tests. In the latter case both OMT and w-tests would assume the purpose of Detection
(and Identification). This option would constitute a real modification to the standard DIA
algorithm — we will refer to this algorithm as adapted DIA.
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6.2. PHMI COMPUTATION FOR THE DIA — INTRODUCING PRIOR

INFORMATION
In previous Chapter we have described the DIA procedure and determined its performance
in terms of α, β, κ and MDB. We have seen in Section 2.5 that other performance parameters
are to be evaluated when monitoring the integrity of the system, in particular the PHMI.

In this section a method to compute the PHMI is proposed, based on the following con-
cepts:

1. Prior probabilities of occurrence of each hypothesis are introduced: a prior probability
for the occurrence of the fault-free hypothesis and a prior probability for the occur-
rence of each fault mode envisioned, following the model presented in Section 2.7.

2. An assumption of a worst-case bias is made: in case of an anomaly affecting the mea-
surements (fault mode), the bias present in the measurements will be unknown. For
computation of the PHMI we conservatively assume that the bias is always of the size
that maximizes the PHMI.

In this approach, as described in section 2.7, the hypothesis H in which the system lies
describes a state of nature, and is considered as a random variable, H . This variable can
assume the values H0, H1, . . . , HNHa

where NHa is the number of alternative hypotheses con-
sidered, and is characterized by a PMF. To each occurrence H = Hi is assigned therefore a
probability mass pi . The hypotheses are furthermore constructed in such a way to always

represent mutually exclusive events. It holds
∑NHa

i=0 pi = 1.
In Sections 6.3 and 6.4 an upperbound for the PHMI is obtained for a single iteration of

the DIA procedure. In Section 6.5 the case of multiple iterations is instead considered. The
PHMI is a function of the FDE procedure employed, in the same way as it is function of the
position estimator in use. We will in fact see that the two different procedures, based on one
or multiple iterations, lead to a different PHMI — result that should steer the choice between
the two algorithms.

6.3. PRIOR PROBABILITIES AND PHMI CONTRIBUTIONS UNDER

EACH HYPOTHESIS
Recall the definitions of PPF and absolute PHMI in Equations (2.24) and (2.26):

PPF = P (x̂ −x ∉ΩAL)
PHMI = P (PF ∩No Alert)

Considering the first iteration of the algorithm, in case of a fault (alternative hypothesis Ha)
no Alert will occur in case of Missed Detection (MD), and the PHMI|Ha can be computed as in
Equation (3.29):

PHMI|Ha = P (PF ∩No alert|Ha) = PPF |MDHa
·βHa = PPFHa

·βHa (6.1)

where the last equivalence is true if test statistics and position error are independent (and
this is the case when employing UMPI tests, as long as the input is normally distributed).
Note that we employed here the subscript Ha to indicate the probabilities of MD and PF
under (conditioned on) that hypothesis — βHa and PPFHa

— and that βHa = P (No Alert|Ha).
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Assuming that the different hypotheses are mutually exclusive events (this is a quite com-
mon assumption for single satellite failures), the total PHMI is obtained as a sum of the
P (H M I ∩ Hi ) = pi P (H M I |Hi ), the contributions of the different hypotheses being deter-
mined with Equation (6.1):

PHMI =
∑t

i=0 P (H M I ∩Hi ) =
=

∑t
i=0 pi ·βi ·PPFi

(6.2)

where with the subscript i we mean that the quantity refers to (is conditioned on) the hy-
pothesis Hi . Now we just have to find a way to compute βi and PPFi

, or an upperbound for
them.

In the following we consider for simplicity the case xi nt one-dimensional, say xi nt = x3,
the third component of the full parameter vector x. This can for instance represent the case
when only the integrity for one position dimension, the vertical, is monitored. We have for
the conditional probability of PF:

PPFi
= P (|x̂3 −x3| > VAL|Hi ) (6.3)

Suppose we use, as in the DIA procedure, the BLUE x̂ = (AT Q−1
y y A)−1 AT Q−1

y y y = S y under the
null hypothesis as estimator x̂. Under each alternative hypothesis Hi the distribution of x̂3
is known as function of the bias size vector ∇i relative to that hypothesis. In fact under the
Hi hypothesis x̂3 has distribution:

x̂3|Hi ∼ N (x3 +∇x̂3i
,σ2

x̂3
) (6.4)

with ∇x̂3i
= S3 j Cyi

∇i (as from Equation (5.15)), where S3 j is the third row of matrix S =
(AT Q−1

y y A)−1 AT Q−1
y y . Therefore PPFi

can be computed as a function of ∇i as the integral of
a normal distribution:

PPFi
(∇i ) = P (|x̂3 −x3| > VAL|Hi ) =Φ

(

S3 j Cyi
∇i −V AL

σx̂3

)

+Φ

(−S3 j Cyi
∇i −V AL

σx̂3

)

(6.5)

with Φ being the cumulative distribution function of a standard normal distribution. βi , as
function of ∇i , was already approximated in Equation (5.37) as:

βi ≤Φ(k −∇wi )−Φ(−∇wi −k) (6.6)

Putting together Equations (6.5) and (6.6) to determine the PH M I |Ha defined in Equation (6.1)
as function of ∇i , we have:

PHMI|Hi
(∇i ) ≤ [Φ(k −∇wi )−Φ(−∇wi −k)] ·

[

Φ

(

S3 j Cyi
∇i−V AL

σx̂3

)

+Φ

(−S3 j Cyi
∇i−V AL

σx̂3

)] (6.7)

Note that in case of multi-dimensional xi nt , the reasoning described so far still holds true,
and the only difference is that the PPF cannot be computed as a simple integral of a standard
normal distribution but requires the integration of a multinormal distribution outside an
integrity region ΩAL (as in Equation (2.24)).



6

126 6. DIA APPLIED TO RAIM

6.4. WORST-CASE BIAS
The PHMI|Hi

has been expressed in Equation (6.7) as a function of the bias size ∇i . At this
point we apply the worst-case bias approach, and look for the bias size that maximizes the
PHMI. We have to distinguish here between single satellite faults and multiple satellite faults.
In the first case only the size of the bias is unknown, whereas in the second case both bias
direction and size are unknown — therefore it is necessary to find a worst-case bias direction
and a worst-case bias size.

6.4.1. SINGLE SATELLITE FAULTS
In case of single satellite fault, we maximize directly each of the terms PHMI|Hi

(∇i ) over ∇i

and perform a weighted sum as in Equation (6.2), where the weights are the a-priori proba-
bilities of occurrence of each hypothesis. This maximization can be made directly employ-
ing a line-search algorithm. This method has been already employed in many other RAIM
works, for instance [60] and [52]. As a final result we have, for the PHMI relative to the single
component x3:

PHMI ≤
∑NHa

i=0 pi ·
max∇i

{

[Φ(k −∇wi )−Φ(−∇wi −k)] ·
[

Φ

(

S3 j Cyi
∇i−V AL

σx̂3

)

+Φ

(−S3 j Cyi
∇i−V AL

σx̂3

)]} (6.8)

Figure 6.1: Position error and w-test distributions. On the horixontal axis is the w-test statistic for a faulty mea-
surement, on the vertical axis the position error. The ellipse represents their joint distribution for a determined
size of the bias affecting the measurement. The center of the ellipse moves along a straight line (in figure) when
the bias size changes, as can be seen from Equations (5.3) and (5.15). The integral of the joint distribution
over the area labeled as PHMI|Hi

corresponds to Equation (6.7), the PHMI conditioned on the occurrence of that
special fault with that particular size of the bias. w and x̂ are assumed uncorrelated in the diagram.

To explain this PHMI computation we refer to Figure 6.1. The ellipse represents the joint
distribution of w-test and position error, which is a simple bivariate normal distribution,
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supposed a certain bias affects the measurement corresponding to the w-test considered
(note that in case x is multi-dimensional the joint distribution will be a multivariate normal
distribution with the corresponding extra degrees of freedom, whereas if we consider also
the full distribution of the w M vector we would have a multivariate normal distribution with
m − 1 extra degrees of freedom). With a different bias, the ellipse would be translated to a
different position, but its shape, size and orientation would be the same. The Alert Limit
and the threshold are pre-set, therefore the conditional PHMI|Hi

is determined computing
the integral of the joint distribution over the area correspondingly labeled PHMI|Hi

, which is
the integrity risk associated with this particular choice of fault and bias size. Since the bias
size is not known, to be on the safe side a worst-case scenario is considered, that means the
bias size that maximizes the integrity risk is foreseen, and the PHMI|Hi

in Equation (6.7) is
computed for all possible bias sizes. This computation is shown in Figure 6.2.
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Figure 6.2: PHMI|Ha , as computed in Equation (6.1), in dependence of bias size for different choices of the
threshold k. On the horizontal axis is the size of the bias ∇i , on the vertical axis the PHMI|Ha , in case of fault in
satellite PRN26 from the skyplot in Figure 5.8. Each parabolic blue line represents a different threshold k, in
this example ranging from α= 0.0357 to α= 2×10−9.

This graph shows how, for different values of the threshold k, the integrity risk varies
with the size of the bias. For many different values of the threshold, a blue line is traced,
which shows a sort of parabolic shape: with increasing bias size, the risk increases up to a
certain maximum and then decreases again. The maximum of each curve corresponds to
the worst-case bias for each choice of the threshold. Each curve cannot be asymptotically
increasing because the PHMI is the product of PPF = P (|x̂3 − x3| > AL) and βi , of which the
first term is usually increasing with the bias size but converging to a maximum of 1 (since it is
a probability, bounded in [0,1]), and the second term is instead decreasing with the bias size
(for the usual unimodal type of distribution, see [99] for the case of simple approximation
in Equation (5.37)), tending to zero in the limit ∇→ 0. Therefore the product is either only
decreasing or has a parabolic trend, finally decreasing once the convergence of the first term
to 1 has been reached. The monotonously decreasing behavior of the second term for the



6

128 6. DIA APPLIED TO RAIM

actual case of βi as in Equation (5.36) can be demonstrated again by means of Anderson’s
theorem in [2]. This proves that a worst-case bias that maximixes Equation (6.8) exists. The
worst-case bias size ∇W Ci

for each satellite i can be expressed as:

∇W Ci
= argmax∇i

(βi ·PPFi
) =

argmax∇i

{

[Φ(k −∇wi )−Φ(−∇wi −k)] ·
[

Φ

(

S3 j Cyi
∇i−AL

σx̂3

)

+Φ

(−S3 j Cyi
∇i−AL

σx̂3

)]} (6.9)

In Appendix M results for the computation of the PHMI and related quantities for the
geometry in Figure 5.8 are reported.

6.4.2. MULTIPLE SATELLITE FAULTS
In case of multiple satellite fault, to determine the worst-case bias it is necessary to first de-
termine the worst-case bias direction and only then find the worst-case bias size, by means
of a line-search algorithm as in the single satellite case. The worst-case bias direction can be
found analytically as explained in the following.

WORST-CASE BIAS DIRECTION

We want to find the worst-case direction for the bias ∇y , given Cy (which means the worst
case direction of ∇) from the integrity point of view, i.e. the bias direction that maximizes
‖∇x̂‖ (or some other function of ∇x̂, e.g. |∇x̂3|) and at the same time minimizes the de-
tection power of the test. To minimize the detection power we can find the bias direction
that minimizes the non-centrality parameter λ. To maximize ‖∇x̂‖Qx̂ x̂

, we can maximize the
length of the projection onto R(A) of ∇y , ‖P ACy∇‖Q−1

y y
. Since λ is the squared length of the

projection of Cy∇ onto R(A)⊥, in this case the problem is equivalent to finding the vector
lying on R(Cy ) that forms the largest angle with R(A)⊥.

The tangent of this angle, that we call ϕ (see also Appendix F, and [99]), can be written as:

tanϕ=
‖P ACy∇‖Q−1

y y

‖P⊥
A

Cy∇‖Q−1
y y

(6.10)

The problem consists in finding the elements of vector ∇ that maximizes this tangent, keep-
ing the length of the vector constant/fixed ‖∇|‖ = 1 (changing only its direction):

∇W C D = argmax
∇

tanϕ with ‖∇‖= 1 (6.11)

By Linear Algebra, the maximum of tanϕ is given (see also [99]) by the largest eigenvalue of:

(C T
y P⊥T

A Q−1
y y P⊥

A Cy )−1C T
y P T

A Q−1
y y P ACy

From a geometrical point of view, the worst-case direction of ∇ solution of the problem is
given by any vector lying in the space R(PCy A), obtained from the projection of A onto R(Cy ).
Multiple directions can be solutions of the problem, depending on the dimension of R(A).

In case we intend to monitor only one dimension of the position solution at a time, for
instance |∇x̂3|, then there is only one direction (disregarding its sign) solution of the prob-
lem. The worst-case direction for this particular case was derived also in [51]. The equivalent
of tanϕ to be maximized in this case is:

s =
|∇x̂3|

‖P⊥
A

Cy∇‖Q−1
y y

(6.12)
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The problem is equivalent to finding the maximum of:

s2 =
|∇x̂3|2

‖P⊥
A

Cy∇‖2
Q−1

y y

=
(LSCy∇)2

∇T C T
y P⊥T

A
Q−1

y y P⊥
A

Cy∇
(6.13)

where:

L =



















0
0
1
0
...
0



















and S = (AT Q−1
y y A)−1 AT Q−1

y y

This is the same type of problem as in Equation (6.11). The maximum s2 coincides with the
largest eigenvalue of:

(C T
y P⊥T

A Q−1
y y P⊥

A Cy )−1C T
y ST LT LSCy

In this case, this matrix is derived from an outer product (since C T
y ST LT is a q × 1 vector),

therefore it has only one non-zero eigenvalue (corresponding to the maximum s2), which
value is:

s2
max = LSCy (C T

y P⊥T
A Q−1

y y P⊥
A Cy )−1C T

y ST LT (6.14)

Substituting this value for s2 in the expression in Equation (6.13), we find by inspection that
the worst-case direction for ∇ is:

∇W C D = (C T
y P⊥T

A Q−1
y y P⊥

A Cy )−1C T
y ST LT (6.15)

WORST-CASE BIAS SIZE

Once the worst-case bias direction is known (Equation (6.15)), the worst-case bias size can
be found following the same procedure as for single satellite fault case. That is, maximizing
Equation (6.8), with a line-search algorithm.

The DIA algorithms implemented in the simulations of Chapter 7 do not take into ac-
count multiple satellite faults in the PHMI computation (their contribution is assumed negli-
gible).

6.5. SUCCESSIVE ITERATIONS
In Sections 5.1.4 and 5.1.6 we analyzed the performance of the OMT and of the w-tests in the
simple binary context H0 vs Ha . In Section 5.3 we considered the multiplicity of the w-tests
and analyzed the performance of the full Identification step, in which the w-tests are run at
the same time. Later in Section 5.3, we coupled the Identification step with the Detection
step (with the OMT), and analyzed the performance of the two combined steps, Detection
and Identification, which together complete a full algorithm iteration1.All quantities com-
puted (α, β, κ) up to previous Chapter therefore refer only to one iteration of the RAIM al-
gorithm, the first one, i.e. the first round of Detection, Identification and Adaptation. This
can be considered as the first round of the whole iterative procedure, which can end imme-
diately if no adaptation is required, but can also entail further iterations. Therefore, while

1By iteration we mean any round of the procedure, including the first one.
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the computed α, β, κ measure the performance of the first step, it is the performance of the
whole algorithm, i.e. the total performance resulting from the succession of the DIA steps,
that has to be eventually monitored.

At each iteration of the DIA algorithm, depending on which hypothesis holds true, the
following events can occur:

H0 : False Alarm or

No Alarm (Nominal Operations)
Hi : Missed Detection or

Detection and Correct Identification or

Detection and Wrong Identification (Wrong Detection)

Note that in case we are considering an iteration of the algorithm different from the first,
H0 refers to an already adapted model, resulting from an earlier adaptation step (from the
previous iteration).

Suppose as an example that only two full iterations of DIA are attempted, that is, the
algorithm foresees a new detection step after a first exclusion is performed, but if the new
detection step leads to a further rejection the algorithm stops and an Alert is declared. Then,
the possibly occurring events are the ones shown in Tables 6.1 and Tables 6.2, respectively in
the cases of H0 and Hi holding true. The events of False Alarm, Missed Detection and Wrong
Detection are indicated with respectively the notation FA, MD and WD.

Table 6.1: Scheme of the possible occurring events in case of a RAIM algorithm made up of two successive DIA
iterations, case of null hypothesis H0 holding true. The subscripts 1 and 2 refer to the corresponding iteration
of the procedure.

H0

Step 1 No Detection (Nominal Operations) Detection (F A1) & Exclusion
Step 2
(New
tests)

(No step 2) No Detection (Nomi-
nal Operations)

Detection → FA
(F A2|F A1)

Table 6.2: Scheme of the possible occurring events in case of a RAIM algorithm made up of two successive DIA
iterations, case of alternative hypothesis Hi holding true. The subscripts 1 and 2 refer to the corresponding
iteration of the procedure.

Hi

Step 1 MD1 Correct Detection &
Exclusion

W D1 & Exclusion

Step 2
(New
tests)

(No step 2) No De-
tection
(Nominal
Operations)

Detection
F A2|C D1

Correct
Detec-
tion
(Alarm)

W D2|W D1

(Alarm)
MD2|W D1
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6.5.1. PHMI COMPUTATION FOR MULTIPLE ITERATIONS
As from Equation (6.1), the PHMI|Ha for an algorithm made up of a single iteration is com-
puted:

PHMI|Ha = P (PF ∩No alert|Ha) =
P (x̂0 −x ∉ΩAL ∩ T ∈ΩT |Ha)

(6.16)

where x̂0 is the position estimator under the null hypothesis (for a single iteration algorithm),
T stands for all the test statistics computed and ΩT is the whole acceptance region for the
tests. When a multiple step algorithm is foreseen, this equation becomes:

PHMI|Ha = P (x̂0 −x ∉ΩAL ∩ T 1 ∈ΩT1 |Ha)+
∑Ni ter,max

s=2 P
(

x̂s−1 −x ∉ΩAL ∩ T s ∈ΩTs ∩
⋂

j<s T j ∉ΩT j
|Ha

) (6.17)

where x̂s , T s ΩTs are the position solution, the test statistics (all the tests run for the specific
step s) and the tests acceptance regions at the s th step of the procedure and Ni ter,max is the
total number of iterations that can be possibly run in the procedure. In particular x̂s is the
position estimator that is chosen after the tests T s led to rejection of the null hypothesis and
the model was accordingly adapted (at that stage).

The formula for the total PHMI|Ha in Equation (6.17) presents extra terms over the PHMI|Ha

computed in case of single step (Equation (6.16)), thus it may seem that running multiple
iterations causes an increase of the PHMI. In fact, while the PHMI increases, with multiple
iterations the total probability of False Alarm consistently decreases. The total probability
of False Alarm under the null hypothesis H0, which can approximate the probability of False
Alert for the whole algorithm, is computed as:

PF Atot = P (T 1 ∉ΩT1 ) ·
Ni ter,max

∏

s=2
P

(

T s ∉ΩTs

∣

∣

∣

∣

∣

⋂

j<s

T j ∉ΩT j

)

(6.18)

In case of a correct Detection and Exclusion, the subsequent iteration of the FDE procedure
could lead anyway to a FA, e.g. the case of F A2 in Table 6.2, a case which is not included
in the formula in Equation (6.18), since we are fundamentally interested only in the PF A

under the fault-free hypothesis (as discussed in Sections 2.5 and 3.7). Therefore, if we want
to keep constant the PF Atot , the acceptance regions Ω can be made smaller, and as final result
the total PHMI will eventually decrease. The PF Atot as computed in Equation (6.18) can be
upperbounded by:

PF Atot ≤ (PF As )Ni ter,max (6.19)

where PF As is the FA probability (assumed constant) of each detection step. The equality
holds in case successive rejections of the null hypothesis are independent events (but they
are not). The smaller or equal relation holds because there is a negative correlation between
the occurrences of FAs, i.e. the occurrence of a FA in a first algorithm iteration reduces the
probability of occurrence of an FA in the following iteration. Therefore the PF As of each iter-

ation can be set at the value PF As = (PF Atot )
1

Ni ter,max .
Let us go back now to Equation (6.17). Note that the event T j ∉ΩT j

corresponds to either
WD or CD:

T j ∉ΩT j
≡W D or C D

The probability of occurrence of such events depends on the size of the bias affecting the
measurements. It is possible to find a worst-case bias which maximizes the probability of
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occurrence of these events (in particular of the WD), in a similar way as considered in Sec-
tion 6.4.

For easier computation of Equation (6.17), the probability of the event T j ∉ΩT j
can be

approximated with the PW D (κ), since in case of CD the PPF can be considered negligible.
The PW D (κ) can be approximated with the upperbound in Equation (5.44). Therefore a
simpler expression for Equation (6.17) can be:

PHMI|Ha = P 1
PFHa

β1
Ha

+
∑Ni ter,max

s=2 P
(

PFs |
⋂

j<s W D j , Ha

)

P
(

MDs |
⋂

j≤s W D j , Ha

)

P
(
⋂

j<s W D j , Ha

) (6.20)

where the subscript of each quantity (superscript in case of PPF and βHa ) stands for the
corresponding iteration of the algorithm. As a result, the upperbound for the total PHMI can
be written as:

PHMI ≤
∑NHa

i=0 pi max∇i

{

P 1
PFi

β1
i
+

∑Ni ter,max

s=2 P
(

PFs |
⋂

j<s W D j , Hi

)

·
P

(

MDs |
⋂

j≤s W D j , Hi

)

P
(
⋂

j<s W D j , Hi

)} (6.21)

In Equation (6.20), whilst P 1
PFHa

can be computed with Equation (6.5) (for a single dimen-

sion) and β1
Ha

can be easily approximated, all the other quantities conditioned on previous
WDs are not easy to estimate since the conditional distribution of the remaining measure-
ments after a WD is not anymore Gaussian. Because of this it may be necessary to upper-
bound the conditional PMD with 1.

PHMI|Ha = P 1
PFHa

β1
Ha

+
Ni ter,max

∑

s=2
P

(

PFs |
⋂

j<s

W D j , Ha

)

P

(

⋂

j<s

W D j , Ha

)

(6.22)

Now it is possible to approximate P
(

PFs |
⋂

j<s W D j

)

with the corresponding unconditional
probability. This approximation is reasonable, but is not conservative. The alternative would
be to upperbound also P

(

PFs |
⋂

j<s W D j

)

with 1. As a result we can write the upperbound
for the total PHMI as:

PHMI ≤
∑NHa

i=0 pi max∇i

{

[Φ(k −∇wi )−Φ(−∇wi −k)] ·
[

Φ

(

S3 j Cyi
∇i−V AL

σx̂3

)

+

Φ

(−S3 j Cyi
∇i−V AL

σx̂3

)]

+
∑Ni ter,max

s=2

{

∏

j<s κ
s
i

[

Φ

(

Ss
3 j

C s
yi
∇i−V AL

σs
x̂3

)

+Φ

(

−Ss
3 j

C s
yi
∇i−V AL

σs
x̂3

)]}} (6.23)

where the superscript s indicates the iteration to which each quantity refers and κ stands for
the probability of WD that can upperbounded with Equation (5.44).

In the simulation of Chapter 7, the PHMI is computed in the multiple iterations DIA algo-
rithm employing Equation 6.21, via numerical approximation (Monte Carlo integration).

6.5.2. IMPACT OF MULTIPLE ITERATIONS ON INTEGRITY
As we have mentioned, the PHMI relative to any geometry depends on the FDE procedure
employed. In this chapter we have analyzed a single iteration of the DIA procedure, for which
we have obtained an upperbound of the PHMI in Equation (6.8), and a multiple iterations
DIA procedure, for which an upperbound was given in Equations (6.21) and (6.23). Now the
simple question arise: does allowing multiple iterations of the DIA decrease or increase the
PHMI for any geometry? Or similarly, is the upperbound in Equation (6.8) larger or smaller
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than the one in Equation (6.21)? The first question is of more theoretical interest, whereas
the second is more practical. Results from the simulations (discussed in Chapter 7) show that
multiple iterations of the DIA procedure result in both larger PHMI, and larger upperbounds
of it, for most of the geometries analyzed.

This result may come as quite counter-intuitive. In fact, we would expect that the capa-
bility of excluding faults and consequently adapting the observation model should allow a
substantial increase of the significance of the detection tests, with consequent increase of
power and reduction of PMD . In reality instead this effect, which corresponds to a shrink-
ing of the term P 1

PFHa
β1

Ha
in Equation (6.20), is overruled by the addition of the new terms

connected to WDs in the equation. There is to note that, even though the PHMI increases
when multiple iterations are allowed, so does the detection power of the procedure, and to a
much larger extent. As a result the procedure guarantees a significantly larger continuity in

case of faults (see also the simulation results in Chapter 7). In view of this consideration, we
maintain a preference for the multiple iteration algorithm, as long as the increase of risk is
contained and still within the navigation requirements.

The reason why WDs are particular detrimental to integrity is that in case of a WD, the
successive iteration of the algorithm becomes much less effective than expected — it be-
comes extremely more difficult to find the actual faulty satellite once a WD has occurred.
Furthermore the position estimation is strongly jeopardized in case of a WD, both because of
the weakening of the geometry after exclusion, and because of the upraising of an extra bias
conditioned on the WD. The mathematical root-cause of the problem, that makes extremely
more difficult to monitor the risk after a WD, is that after the first iteration of the procedure
we have to deal with a conditional distribution of the remaining measurements. Theoretical
performance parameters that can be computed for the first iteration of the procedure do not
constitute good approximations for the successive iterations — PMD|W D cannot be approx-
imated by the theoretical unconditional PMD in Equation (6.20), as well as PPF |W D should
not be approximated by the theoretical unconditional PPF . This is especially true in case of
WD, but in principle holds also in case of CDs (though experience shows that the effects are
generally small in this case).

Figure 6.3 can be helpful to understand why PMD|W D is sensibly larger than the theoret-
ical unconditional PMD in the second iteration of the DIA algorithm. The detection space
(R(P⊥

A )) in the simple case of two correlated w-tests is shown. The dark green area in the
centre is the region of acceptance of both w-tests, and, in case an anomaly is affecting the
system, a projection of the measurement falling in that area would represent an MD. Light
green and yellow areas correspond to single detection of a fault by w-test (during the full
iterative procedure): light green areas are characterized by single w-test statistic exceeding
the threshold in the first iteration of the DIA, whereas yellow areas correspond to both w-test
statistic exceeding their threshold. The pink areas represent the cases for which a double
detection would occur, employing the iterative DIA procedure. Let us consider a different
procedure in which instead of excluding a satellite at a time we instead exclude directly at
the first iteration all the satellites which w-test statistic exceeds the threshold: in this case all
the areas in yellow in Figure (as well as the pink areas) would correspond to a double exclu-
sion. This indicates that in an iterative procedure the correlation between the w-tests can
make the detection after the first iteration much more difficult. Note furthermore that in
case of no correlation between the w-tests, the yellow areas and pink areas in Figure would
coincide (Figure 5.5).
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Figure 6.3: Detection/identification areas in the space R(P⊥
A

) for the DIA (iterative) procedure, in the simple
case of two correlated w-tests. The dark green area correspond to no-detection (MD), the light green and yel-
low areas correspond to single satellite identification and exclusion and the pink areas correspond to double
satellite identification and exclusion (through two iterations of the algorithm). As an example, computed w1

and w2 statistics corresponding to point P in the graph imply only one exclusion, because with the first DIA
iteration satellite 1 is excluded (w1 > w2 > k at the first iteration), and at the second iteration w2 < k, due to the
(large) correlation between w-tests, and no further satellite is excluded.

This issue leads to the conclusion that the standard exclusion mechanism of the DIA is
not optimal, and, in general, any iterative exclusion method based on a forward selection
approach neither. Even though not fully based on forward selection, the ARAIM exclusion
method is equally affected by this problem, since exclusion of a single satellite is similarly
prioritized with respect to simultaneous multiple exclusions (before excluding two or more
satellites, the algorithm first attempts to exclude a single satellite).

6.6. ROLE OF THE OMT
In the standard DIA procedure the OMT constitutes the Detection step of the procedure,
whereas the w-tests are used for Identification. This means that the OMT is run first and
only if it leads to rejection, the w-tests are consequently run. In this Section we discuss upon
the possible roles of the OMT, as a Detection test as in the DIA procedure or alternatively as
an Identification test for special types of fault, at the same level of the w-tests.

6.6.1. THE OMT AS DETECTION STEP
The OMT is run beforehand, and if no detection is made there is no need to run the w-tests.
The threshold for the OMT can be set based on the requirement on the total PF Atot of the
algorithm. The following questions arise: how to set subsequently the thresholds for the
w-tests and how to compute the PHMI? We consider here a few options:

• The Scheffé method: this method assures that any failure that would lead to a rejection
of a w-test is also detected by the OMT. Therefore the computation of the PHMI can be
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made safely using Equation (6.2) (and therefore Equation (6.8)). The problem of this
method is that it is very conservative, and would result in high loss of testing power and
a overly-conservative computed PHMI. Furthermore, with this method it is possible
that the OMT rejects the null hypothesis whereas all the w-tests accept it — this would
lead to Alert with no clear reason.

• The B-method: to apply the method a choice should be made on the β or MDB values
to employ. For instance we could choose as MDB the smallest of the worst-case biases
found for each w-test using the method in Section 6.4. There is no warranty though
that this worst-case bias is the worst-case bias when using the OMT as a detection test,
since these bias sizes were obtained considering the use of the w-tests as detection
tests.

• PHMI computation based on OMT detection: instead of computing the PHMI consid-
ering the w-tests as detection tests as in Section 6.2, the computation could follow a
similar procedure but assuming that the detection comes from the OMT. A worst-case
bias can be found for each satellite, and a PHMI as well (likely different from those with
the w-tests), with formula:

PHMI =
t

∑

i=0
P (Hi ) ·βOMTi

·PPFi
(6.24)

as opposed to Equation (6.2), where βOMTi
is the MD probability when using the OMT

for Detection. In this way the w-tests are used only for Identification purpose, and
are not used to determine the PHMI. Therefore no threshold for the w-tests is needed.
Identification is just based on finding the maximum value of the w-tests. In this way all
OMT detections lead to an Adaptation of the model (exclusion), and there is no chance
of an Alert being raised directly after Detection without an attempt of Adaptation.

The reason why, in Multiple Comparisons, methods like Scheffé’s are employed, is that
maximum care is given to the control of the FA rate — it is very important to legitimate
the identification of a specific anomaly, therefore it is important to assure an upper-
bound to the FA rate of a single identification step. This is not the case for GNSS based
navigation, because an FA in a single identification step means an exclusion of a satel-
lite, and generally few satellites can be excluded from the model with no problem and
without leading to any disservice.

In any case, using the OMT as a Detection step results in an increase of the computed
PHMI, given a fixed PF Atot of the procedure. This is due to the lower power of the OMT com-
pared to the w-tests in detecting the one-dimesional faults (see Figure 5.3), based on which
the PHMI is computed. Among the Multiple Comparisons techniques, the Scheffé method
is employed only when it is required to test for un-planned (non-anticipated) comparisons,
because otherwise the method has a sensibly lower power than other methods (Tukey, Bon-
ferroni etc.).

The use of the OMT as a Detection test somewhat implies that the same weight is given
to any type of anomaly, because it has the same power in detecting any type of anomaly —
a single satellite fault, or an anomaly affecting two or more satellites etc. This seems appro-
priate when the different types of faults have the same a priori probability of occurrence, but
not in case different type of faults are assigned different a priori probabilities.
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6.6.2. THE OMT AS IDENTIFICATION TEST

The OMT could be employed in parallel with the w-tests to detect and identify types of faults
different from those addressed by the w-tests. The w-tests can be employed to detect anoma-
lies with one degree of freedom, whereas the OMT can be employed to detect the anomalies
characterized by all other signatures.

The OMT has more power than the w-tests in detecting a multi-dimensional anomaly.
The idea behind the use of the OMT only for detection of multi-dimensional anomalies is
that the prior probabilities of occurrence of the (anticipated) one-dimensional anomalies are
generally much higher than the prior probabilities of occurrence of the multi-dimensional
ones. This difference in a-priori probabilities should be taken into account when setting the
thresholds for the detection of different faults. If the a-priori probability of occurrence of
a hypothesis is smaller, we can likely tolerate a larger β for it (assuming similar associate
probabilities of PF). We elaborate on this in the following.

We can consider the anomalies addressed by the w-tests as a subset of the general set of
all anomalies possibly affecting the system, detectable by the OMT (i.e. with the exception of
the anomalies that can never be detected, with Cy ∈ R(A)). The type of anomaly affecting the
system is fully characterized by the matrix Cy in Equation (3.21); we define C the set of all
the Cy of all the possible anomalies that can affect the system, and Cw1 the set of anomalies
detectable by data-snooping, i.e. characterized by canonical unit vectors as Cy . We assume
that the iterative DIA procedure, in which up to Nsteps,max steps of DIA are run, is able to
deal properly with anomalies constituted by combinations of up to Nsteps,max canonical unit
vectors; therefore we can add these anomalies to set Cw1 to obtain the set Cw , which contains
all the anomalies detectable by w-tests iterative procedure. The set Cw is a subset of C ,
Cw ⊂ C . The OMT has to be run to provide a protection against the anomalies that belong
to C \Cw , that are not detectable by the w-tests, or at least not with sufficient power.

If we assign a priori probabilities to the hypotheses of occurrence of faults, say P (Hw1) to
single satellite faults and P (HOMT ) to multi-dimensional faults, and we recall the total PHMI

as sum of the contributions coming from each hypothesis as in Equation (6.2), we can write
each contribution as:

PHMI,Hw1 = P (Hw1)βHw1 PPFHw1

PHMI,HOMT = P (HOMT )βHOMT PPFHOMT

(6.25)

From these equations we can see that if P (Hw1) >> P (HOMT ) and PPFHw1
≈ PPFHOMT

(same
order of magnitude), then we can accept to have a lower power in detecting multi-dimension-
al faults (βHOMT >βHw1 ) to have similar contributions to the total PHMI from each fault. This
assumption is quite realistic, since non-anticipated faults are extremely unlikely.

6.6.3. NEED OF RUNNING THE OMT
We can consider to first choose a threshold kOMT loose enough to not require an OMT test
to be actually run, i.e. such that any OMT rejection would always coincide with a rejection of
some w-tests. We explain the concept in the following. The m w-tests run in the DIA proce-
dure describe by themselves a closed acceptance region in R(A)⊥ (m −n dimensional). The
acceptance region of the OMT is a hyper-ellipsoid in R(A)⊥. It is always possible to circum-
scribe the hyper-ellipsoid acceptance region of the OMT around the acceptance region of
the w-tests: in this way the whole rejection region of the OMT is always inside the rejection
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region of the w-tests. The acceptance region of the w-tests Ωw is characterized by:

Ωw : ê i ≤σêi
kw , i = 1,2, . . . ,m

where kw is the threshold for each w-test. We can write this acceptance region in terms of
the misclosures vector t = B T ê (with B any m × (m −n) matrix such that B T A = 0, see [98]):

Ωw ≡Ωt : t j ≤ kt j
, j = 1,2, . . . ,m −n

with

kt = B T











σê1 kw

σê2 kw
...

σêm kw











Now since for the OMT statistic it holds T m−n = t T Q−1
t t t , we can find the threshold for the

OMT that would circumscribe the OMT rejection region outside the w-tests rejection region
as:

kOMT = max
t∈Ω

(t T Q−1
t t t ) (6.26)

With respect to the methods to set the OMT threshold considered in Section 5.2.2, i.e. B-
method, S-method and LSD method, this approach would yield the largest threshold for
the OMT — the OMT acceptance region would completely include the w-tests acceptance
region, whereas in the other methods it intersects or is completely inside the w-tests accep-
tance region, as can be seen in Figure 5.2.

With the choice of such threshold for the OMT, or of a larger threshold, the OMT is in fact
not needed, since any anomaly that it could detect would anyway be detected by at least one
of the w-tests employed in the identification step. Therefore, if the threshold for the OMT is
set on the basis of a criterion different than B-method, S-method or LSD, for instance with
a method inspired by Section 6.6.2 or on the basis of an a priori allocation of the PF A (as in
ARAIM), it can be useful to compare it with the limiting value computed via Equation (6.26).
If the threshold exceeds this value, there is actually no need to run the OMT (as long as w-
tests are run for detection/identification).

6.7. SUMMARY AND CONCLUSIONS
In this chapter we discussed the application of the DIA algorithm to the RAIM problem. The
following additions/modifications have been proposed with respect to the standard DIA al-
gorithm:

• A method to estimate the PHMI for a satellite geometry as a function of the thresholds
choice for the tests has been proposed (Section 6.2), based on the worst-case bias ap-
proach (Equation (6.9)). This allow to set the thresholds for the tests in order to satisfy
the requirement P

r eq

HMI, so that the integrity is guaranteed for the geometry under con-
sideration. In standard DIA the choice of the αi for the w-test is somewhat arbitrary
and depends on the specific application: this means that this PHMI estimation falls
within the need of a specialization of the DIA to the application at hand. A method
to determine the worst-case bias in case of multi-dimensional fault was furthermore
proposed (Section 6.4.2).
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• A method to take into account the possible multiple iterations of the DIA algorithm
has been proposed (Section 6.5.1), in order to compute the total PHMI and αtot of the
algorithm (Equations (6.19), (6.20), (6.22)). The standard performance evaluation for
the DIA procedure does not analyze in detail the possibility of multiple iterations of
the algorithm.

• Possible different roles (other than the Detector one) for the OMT have been envi-
sioned (Section 6.6). In particular, beside using the OMT beforehand as detector, and
renouncing to run the w-tests in case of OMT acceptance, it is proposed to run OMT
and w-tests in parallel, with responsibility of both Detection and Identification. This
proposal is linked to the fact that, for low values of αi and large number of satellites
in view, the significance of the OMT (employing the B-method) tends to be sensibly
larger than the significance of the multiple w-tests run (as total multiple testing). The
change of the role of the OMT would constitute a consistent modification for the DIA
algorithm; regarding the use of the OMT for Detection instead, methods different from
the B-method were also discussed.

In the simulation implementation (Chapter 7), two different versions of adapted DIA are run.
In the first version only one iteration of DIA is considered, whereas in the second multiple
iterations (a maximum of three) are taken into account. The computation of the PHMI for
each geometry is made by Monte Carlo (MC) integration. In both versions, the following
choices have been made:

• The OMT is run after the w-tests (parallel detection/identification)

• The threshold for the OMT is set based on a previous allocation of the total P
r eq

F A′ among
anticipated faults and not-anticipated, using the same approach as in ARAIM: only
a small part of the total P

r eq

F A′ is allocated to general non-anticipated faults, and the
threshold for the OMT is chosen to guarantee that significance of the test.

Table 6.3: Specific input to the adapted DIA algorithm.

Name Description Source

Psat ,i Prior probability of fault in satellite i ISM
PF Aχ2 Continuity budget allocated to False

Alerts for the OMT (χ2) test
Requirement

6.8. ADAPTED DIA ALGORITHM (DIA-W )
In this adapted DIA algorithm the w-tests precede the OMT, and they are run for both
detection and identification purposes (as iterative data-snooping). The OMT is run af-
terwards, to detect extra anomalies undetectable by w-tests. The baseline input for the
algorithm, common to all the other RAIM algorithms, is given in Tables 7.1, 7.3 and 7.4
(the values reported are the ones employed in the numerical simulations in Chapter 7).
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1. Input (extra than Tables 7.1, 7.3 and 7.4) in Table 6.3.

2. Check if the redundancy is sufficient:
{

Continue procedure if Nsat > 3+Nconst

Declare Alert if Nsat ≤ 3+Nconst
(6.27)

3. Determine the maximum number of satellites simultaneously failing, to be moni-
tored, Nsat ,max . This can be set a-priori or computed through Equation (4.46), as
in ARAIM.

4. Determine geometry integrity, for both single iteration and multiple iteration
cases:

(a) Determine the FA rate allocated to each iteration of the algorithm (in case of
multiple iterations):

P i ter
F A = (P

r eq

F A′
ver

)
1

Nsat ,max (6.28)

(b) Compute w-tests thresholds for a single iteration:

k si
w =Φ

−1





(1−P
r eq

F A′
ver

)
1
m +1

2



 (6.29)

with Φ being the left side of the cumulative distribution function of a zero
mean unit Gaussian distribution. This formula is obtained inverting Equa-
tion (5.31), which is obtained from the Šidác approximation as described in
Section 5.3.

(c) Compute w-tests thresholds for multiple iterations:

kmi
w =Φ

−1





(1−P
r eq

F Ai ter
)

1
m +1

2



 (6.30)

(d) Compute P si
HMIver

for single iteration:

P si
HMI ≤

∑Nsat

i=0 P (Hi ) ·max∇i
{

[

Φ(k si
w −∇wi )−Φ(−∇wi −k si

w )
]

·
[

Φ

(

S3 j Cyi
∇i−V AL

σx̂3

)

+Φ

(−S3 j Cyi
∇i−V AL

σx̂3

)]}

cf. Equation (6.8)

with P⊥
A = INsat − A(AT Q−1

y y A)−1 AT Q−1
y y , S = (AT Q−1

y y A)−1 AT Q−1
y y , σx̂3 the third

diagonal element of Q x̂ x̂ = (AT Q−1
y y A)−1 and σêi

the i th diagonal element of
the residuals variance matrix Qê ê determined with:

Qê ê =Qy y − A(AT Q−1
y y A)−1 AT = P⊥

A Qy y P⊥T
A

With this formula for each satellite we search for a worst-case bias, the bias
that maximizes the product PPF PMD . For the computation of the PMD the
one-dimensional approximation is employed. The above formula was de-
rived in Section 6.2. This maximization can be solved by iterative search.
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(e) Compute P mi
HMIver

for multiple iterations:

P mi
HMIver

≤
∑Nsat

i=0 pi max∇i

{[

Φ(kmi
w −∇wi )−Φ(−∇wi −kmi

w )
]

·
[

Φ

(

S3 j Cyi
∇i−V AL

σx̂3

)

+Φ

(−S3 j Cyi
∇i−V AL

σx̂3

)]

+
∑Nsat ,max+1

s=2

{

∏

j<s κ
s
i

[

Φ

(

Ss
3 j

C s
yi
∇i−V AL

σs
x̂3

)

+Φ

(

−Ss
3 j

C s
yi
∇i−V AL

σs
x̂3

)]}}

cf. Equation (6.23)

with values for κ obtainable from Equation (5.44), or employ the more general
Equation (6.21), with Monte Carlo integration (the latter method is employed
for the simulations in Chapter 7). Also this maximization can be solved by
iterative search.

(f) Check if the integrity is guaranteed:






































Continue procedure allowing multiple iterations (adaptations) if
P mi

HMIver
≤ P

r eq

H M Iver

Continue procedure but do not allow multiple iterations (adaptations) if
P mi

HMIver
> P

r eq

H M Iver
but P si

H M Iver
≤ P

r eq

H M Iver

Declare Alert if
P mi

HMIver
> P

r eq

H M Iver
and P si

H M Iver
> P

r eq

H M Iver

(6.31)

(g) Choose the w-test threshold kw : if multiple iterations are allowed, kw = kmi
w ,

otherwise kw = k si
w .

5. Detection and Identification of single satellite faults:

(a) Compute w-tests statistics:

w i =
ê i

σêi

for i = 1,2, . . . , Nsat cf. Equation (5.5)

where ê0i
is the i th component of the residuals vector ê determined with:

ê = (INsat − A(AT Q−1
y y A)−1 AT Q−1

y y )y = P⊥
A y (6.32)

Note that Qy y is assumed diagonal.

(b) Detect single satellite faults:

if
max

i
wi ≤ kw ∀i : 1 ≤ i ≤ Nsat cf. Equation (5.21)

No single satellite fault is identified, go to step 6. Else, if no multiple iterations
of the DIA are allowed, declare Alert; otherwise, continue to next step.

(c) Check whether redundancy is sufficient to exclude satellites:
{

Continue procedure if Nsat > 3+Nconst +1
Declare Alert if Nsat ≤ 3+Nconst +1

(6.33)
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(d) Identify faulty satellite:

iex = argmax
i

wi ∀i : 1 ≤ i ≤ Nsat cf. Equation (5.57)

Satellite iex has to to be excluded from the model. Go to step 5.

6. Adaptation:

The measurement corresponding to the faulty satellite iex is removed from the
model. New geometry matrix, measurement variance matrix and observable vec-
tor, respectively Anew , Qnew

y y and ynew , are re-constructed after exclusion: ynew

does not include the measurement from the excluded satellite, Anew is obtained
from A taking out the row corresponding to the excluded satellite and Qnew

y y in-
stead is obtained from Qy y removing both row and column corresponding to the
excluded satellite. Also Nsat is correspondingly updated, N new

sat = Nsat−1. With this
new input we move back to step 2 and the algorithm is repeated until finally either
standard operation is reached with a position estimate, or an Alert is declared.

7. Check for other generic anomalies:

(a) Compute T m−n (χ2 distributed) test statistic:

The T m−n statistic is computed as:

T m−n = yT (Q−1
y y −Q−1

y y A(AT Q−1
y y A)−1 AT Q−1

y y )y (6.34)

(b) Compute T m−n test threshold:

kOMT =χ2i nv
Nsat−3−Nconst

(1−P
r eq

F A′
χ2

) (6.35)

where the operator χ2i nv
Nsat−3−Nconst

is the inverse of the CDF of a central χ2 dis-
tribution with Nsat −3−Nconst degrees of freedom.

(c) Determine overall consistency of measurements:

{

Accept H0 if Tm−n ≤ kOMT

Reject H0 if Tm−n > kOMT
(6.36)

If H0 is rejected an Alert has to be declared. Otherwise standard operation is
continued with solution estimate:

x̂ = (AT Q−1
y y A)−1 AT Q−1

y y y = Sy

.





7
SIMULATIONS AND RESULTS

In this Chapter the RAIM algorithms discussed so far, i.e. Standard RAIM, ARAIM and DIA,
are tested and compared by means of numerical simulations. Different geometries are an-
alyzed to assess the availability of each algorithm and observations from GPS and Galileo
constellations are simulated in different scenarios, fault-free and faulty. The performance
of the full procedures are evaluated, in terms of Missed Detections, Hazardous Misleading
Informations, False Alert rates, compliance to the requirements, and quality of upperbounds
and approximations are assessed.

7.1. GNSS MODEL
The GNSS model employed for the simulations was presented in Section 2.8. The parameters
employed to build the stochastic model adopted for the simulations are given in Table 7.1.
The GNSS functional and stochastic model is part of the input required from the RAIM al-
gorithms, as described in Section 2.5, together with the navigation requirements (see next
Section). A 24 satellite GPS satellite constellation (based on [65]) and a 27 satellite Galileo
constellation (constructed as a 27/3/1 plus constellation as described for instance in [89]
with modified altitude after 2004 as described in [43]) are assumed (the nominal constella-
tions)1.

7.2. NAVIGATION REQUIREMENTS
The simulations are based on the CAT-I approach navigation requirements, that are reported
in Table 7.3. These correspond to the integrity requirements P

r eq

HMI, a0 and ΩAL introduced
in Section 2.5, input to the RAIM algorithm (a0 ≈ PF A′ as previously discussed). The simu-
lations and their analysis focus on monitoring of the vertical position coordinate, for which
the aircraft approach navigation requirements are often most difficult to fulfil. For this rea-
son the total P

r eq

HMI and PF A′ are split into vertical and horizontal components, and only the
vertical share is used as input for the RAIM algorithms. Parameters that result from the sim-
ulations of geometry and observations, and serve as input to the RAIM algorithms, are listed
in Table 7.4.

1Note anyway that the baseline Galileo constellation was recently reduced from 27 to 24 satellites.
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Table 7.1: Simulation parameters. ξ stands for the elevation of the satellite, in degrees.

Parameter Description Value

σGPS
U R A

GPS SV clock and orbit error used
for integrity (URA)

0.75 m

σGal
U R A

Galileo SV clock and orbit error
used for integrity (URA)

0.957 m

σtr opo,i Residual tropospheric error, for
satellite i

0.12 1.001
(0.002001+sin2 ξ)1/2 m

σGPS
MP,i GPS smoothed code multipath 0.13+0.53e−ξ/10 m

σnoi se,i Smoothed code receiver noise 0.15+0.43e−ξ/6.9 m

σGPS
user,i GPS smoothed code total noise

generated at user level

√

f 4
L1+ f 4

L5

( f 2
L1− f 2

L5)2

√

σ2
MP

+σ2
noi se

m

σGal
user,i Galileo smoothed code total

noise generated at user level
See Table 7.2

σGPS
i

GPS smoothed code total stan-
dard deviation used for integrity

√

σGPS2

U R A
+σ2

tr opo +σGPS2

user m

σGal
i

Galileo smoothed code total
standard deviation used for
integrity

√

σGal 2

U R A
+σ2

tr opo +σGal 2

user m

Table 7.2: Galileo Elevation Dependent SIS user error.

Elevation σGal
user Elevation σGal

user

5◦ 0.4529 m 50◦ 0.2359 m
10◦ 0.3553 m 55◦ 0.2339 m
15◦ 0.3063 m 60◦ 0.2302 m
20◦ 0.2638 m 65◦ 0.2295 m
25◦ 0.2593 m 70◦ 0.2278 m
30◦ 0.2555 m 75◦ 0.2297 m
35◦ 0.2504 m 80◦ 0.2310 m
40◦ 0.2438 m 85◦ 0.2274 m
45◦ 0.2396 m 90◦ 0.2277 m

7.3. ALGORITHMS TESTED
The algorithms tested are:

• Standard Slope RAIM — algorithm described in Section 4.1.4.

• ARAIM — algorithm described in Section 4.2.5.

• DIA procedure (maximum 3 iterations) with thresholds based on a single iteration
(only for study purpose) — algorithm described in Section 5.5, with threshold kOMT

computed with the specific formula for the DIA-k1 (Equation (5.51)). The algorithm is
in fact referred to in the following as DIA-k1.
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Table 7.3: Navigation requirements for CAT-I approach.

Parameter Description Value

P
r eq

HMI Total integrity budget 10−7

PHMIver Integrity budget for the vertical compo-
nent

9.8×10−8

P
r eq

HMIhor
Integrity budget for the horizontal com-
ponent

2×10−9

P
r eq

F A′ Continuity budget allocated to False
Alerts (the total continuity budget is 8×
10−6 per approach1 [46])

4×10−6

P
r eq

F A′
ver

Continuity budget allocated to False
Alerts for the vertical mode

3.9×10−6

P
r eq

F A′
hor

Continuity budget allocated to False
Alerts for the horizontal mode

9×10−8

V AL Vertical Alert Limit 10 m
H AL Horizontal Alert Limit 40 m

Table 7.4: Simulated parameters (geometry and measurements obtained during the simulation to be input to
the RAIM algorithms).

Name Description Source

Nconst Number of GNSS constellations Receiver
Nsat Number of satellites in view Receiver
A Nsat × (3 + Nconst ) satellites geometry matrix (one

clock parameter for each constellation)
Receiver

yi Pseudorange of satellite i after dual frequency cor-
rection, tropospheric correction, satellite clock er-
ror correction and smoothing are performed

Receiver

• DIA procedure (with maximum 3 iterations) — algorithm described in Section 5.5.

• Adapted DIA procedure (with maximum 3 iterations), with OMT following the w-tests
— algorithm described in Section 6.8. This algorithm is referred to in the following as
DIA-w.

Each algorithm is tuned in such a way that the total False Alarm probability (PF Atot ), as com-
puted by the algorithm itself, is within the requirement defined in Table 7.3 on the False
Alert probability (P

r eq

F A′ ) — as discussed in Section 3.7, the False Alert probability is not easily
computed/estimated, therefore it is always approximated with the False Alarm probability.

We have distinguished three implementations of the DIA procedure, indicated with DIA-
k1, DIA and DIA-w. Both DIA-k1 and DIA are characterized by the standard DIA proce-
dure, but in DIA-k1 the PF A′ computation is made as if no multiple iterations were allowed,
whereas in DIA it is based on the multiple iterations capability. In fact, likely for safety rea-
sons, in ARAIM the PF A′ is computed as if no adaptation can be successful; for comparison
purposes, also the DIA-k1 is implemented making the same approximation, i.e. the OMT
threshols is set as if a Detection would result immediately in an Alert. For both DIA-k1 and
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DIA a maximum of three iterations are run. This means that a maximum of two satellites
can be excluded, and after two exclusions a further Detection step is run again: then, if a
Detection occurs also this last time, Alert is declared. The third DIA algorithm tested, DIA-w,
is an adapted DIA algorithm that runs the OMT after the w-tests, as proposed in Section 6.6.

7.4. SIMULATIONS PROCEDURE
With reference to Figure 2.1, a RAIM algorithm first processes the satellite geometry, to de-
termine the availability of the integrity for such geometry (this is the reliability analysis in the
case of the DIA, Sections 5.1.6 and 6.3), and next checks the consistency of the measurements
within the assumed model. Therefore it is considered opportune to split the simulations into
two parts, geometry simulations and observation simulations:

1. Geometry simulations: once a location for the receiver is chosen, different satellite ge-
ometries are simulated, to compute the predicted performance of the different RAIM
algorithms. These simulations yield as a result the PHMI for each geometry and there-
fore the integrity availability (the estimated PHMI can be either smaller or larger than
the requirement). Actual observations are not simulated in this first step.

2. Observations simulations, to verify the actual performance of the algorithms. They are
organized as follows:

• Two reference satellite geometries are chosen — these geometries must be such
that integrity is available for all the algorithms tested (a-priori, ahead of measure-
ments).

• For the geometries chosen, GPS and Galileo observations are simulated in differ-
ent scenarios:

– Fault free case. This scenario allows to verify the total FA (and FA’) probability
— most of the RAIM algorithms tested use in fact approximate ways to com-
pute the FA rate, since closed form expressions do not exist for their testing
procedure, therefore the quality of the approximations can be checked.

– 1 pre-determined biased measurement (pre-determined single fault) — a
single satellite is considered faulty, the bias size to apply is chosen such that
its (un-detected) impact is not negligible, yet not too easy or obvious to de-
tect (see Section 7.6, the introduced biases are generally in the range of 5 to
10 meters). Two different cases for each geometry (two different satellites
assumed faulty, once at a time) are analyzed.

– 1 random biased measurement (random single fault) — a single satellite is
considered faulty, satellite and bias size are determined randomly

– 2 pre-determined biased measurements (pre-determined double fault) —
two satellites are considered faulty simultaneously, the bias sizes are chosen
again to have a sensible impact to the positioning without being too easy to
detect.

1The total continuity budget accounts also for disruptions coming from the ground segment (non-autonomous
integrity monitoring). The requirement per approach is considered equivalent to a requirement per epoch
since the duration of the approach is 150 seconds, but high correlation is present between successive obser-
vations and smoothing is performed over a 100 seconds window.
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– 2 random biased measurements (random double fault) — two satellites are
considered faulty simultaneously, satellites and bias sizes are determined
randomly.

• For each condition (state) of the system, apply the same RAIM algorithms, de-
scribed in Section 7.3.

Once the simulations are run, the performance of the methods are compared: from the
geometry simulations it is possible to compare the integrity risk that each method gives as
result (given a fixed continuity requirement of the navigation system); from the actual obser-
vation simulations it is possible to verify the performance predicted in the previous analysis,
to compare the power of each method in detecting faults, both hazardous and not hazardous,
and of course to finally check whether each method satisfies the integrity requirements.

7.4.1. SIMULATIONS OUTPUT
The output of a RAIM algorithm were discussed in Section 2.5. In particular, as results from
the geometry simulations we can compute the PHMI (for each algorithm), given the require-
ment on PF A′ being satisfied, whereas from the observation simulations we can count (for
each algorithm):

• Fault-free case:

1. N. of Alerts — from which we compute the actual PF Atot

2. N. of False Alerts (for completeness) — Alerts given when there is no Positioning
Failure (a PF might occur accidentally even when there are no faults), from which
we compute the actual PF A′

3. N. of Positioning Failures — positioning errors larger than the AL, from which we
compute the actual PPF

4. N. of HMI events — from which we compute the actual PHMI

5. N. of (wrong) Detections — this differs from the number of False Alerts because
detections can be followed by successful adaptation and not result in an Alert

• Faulty case:

1. N. of Alerts — from which we can possibly determine the cases in which the sys-
tem was available and no HMI occurred (N. of Epochs−Alerts−HMIs)

2. N. of False Alerts — Alerts given when there is no Positioning Failure

3. N. of Positioning Failures — positioning errors larger than the AL, from which we
compute the actual PPF

4. N. of HMI events — from which we compute the actual PHMI

5. N. of MD — at least one faulty satellite remaining undetected, and no healthy
satellite detected as faulty, from which we compute the actual PMD

6. N. of WD (Wrong Detections) — at least one healty satellite detected as faulty
and at least one faulty satellite remaining undetected, from which we compute
the actual PW D
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7. N. of OD (Over Detections) — detections and identification of a larger number
of faulty satellites than the actual one (but the faulty satellites are all correctly
identified), from which we compute the actual POD

8. N. of CD (Correct Detections) — correct detections and identifications, from which
we compute the actual PC D

Note that the first four performance parameters of the faulty case list are actually integrity
related parameters, whereas the others are more related to the general hypothesis testing
problem. For the last four parameters it holds furthermore:

PMD +PW D +POD +PC D = 1 (7.1)

except for the Standard RAIM, for which WD, OD and CD are not really defined (because no
exclusion is performed).

7.4.2. SIGNIFICANCE OF THE RESULTS
As these results are in fact output of a Monte Carlo simulation, their accuracy can be com-
puted employing the formula [101]:

σNp =
√

N p(1−p) (7.2)

where p is the actual probability of an event (for instance the actual PHMI), N the number
of samples simulated, Np the number of occurrences of that event and σNp the standard
deviation of Np . If we estimate a probability p from the empirical rate of occurrence of the
event:

p̂ =
Np

N
(7.3)

the standard deviation of the corresponding estimator can be computed as:

σp̂ =
√

N p̂(1− p̂)

N
(7.4)

For example, if we simulate N = 106 epochs and we count NMD = 2000 MDs, we can estimate
the PMD with Equation (7.3):

P̂MD = 2000/106 = 2 ·10−3

and the standard deviation of this estimator is (from Equation (7.4)):

σP̂MD
=

√

106 ·2 ·10−3 · (1−2 ·10−3)

106
∼= 4.47 ·10−5

7.5. GEOMETRY SIMULATION
First of all the Standard RAIM, the ARAIM and the DIA algorithms have been tested simu-
lating different geometries (but no actual measurements) to determine the availability that
they can assure. Given a fixed receiver position, at our GNSS observatory in Delft, the satel-
lite geometries over a 24 hour time stretch (the GPS constellation repeat period) have been
considered to compute the geometry integrity availability (the PHMI each geometry can guar-
antee). We believe that Delft location, at a mid-latitude, is representative for performance in
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Western Europe and US. The graph in Figure 7.2 shows the PHMI with respect to the verti-
cal dimension as computed by the three algorithms, for a full day. In Figure 7.1 it is shown
the skyplot of the period considered. Two computations are made for the DIA algorithm,
a first one based on a single iteration of the DIA, assuming thereofore that no exclusion is
attempted (this algorithm is not implemented in the next observation simulations), and a
second one based on 3 iterations DIA, for which up to two exclusions are allowed.
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Figure 7.1: Skyplot at TU Delft, during a full day.

7.6. OBSERVATIONS SIMULATION
The geometries shown in Figure 7.3 and Figure 7.4, that we will refer to as geometry A and
geometry B respectively, have been chosen to simulate 106 observations for the fault-free
case, for the cases of pre-determined single and double satellite fault, and for random single
and double satellite fault. 106 epochs are considered a sufficient amount to determine the
performance of the algorithms in a reliable way because probabilities of events in the order
of 10−4 or 10−5 can be estimated with reasonable accuracy. In fact, if we apply Equation (7.4)
to estimated probabilities p̂ of 10−4 and 10−5, we obtain respectively σp̂

∼= 10−5 and σp̂
∼=

3×10−5, which make the results reasonably significant. To check whether the requirement
on integrity is satisfied, probabilities of much lower order of magnitude have to be estimated
(at least of the order of 10−7 or 10−8), but if we assume that significant contributions to the
PHMI occur in practice only under the hypothesis that an anomaly is affecting the system
(i.e. the integrity risk under nominal operations is negligible), and that anomalies occur
with a known a-priori probability of the order 10−3-10−4, we can conclude that being able to
estimate in those cases probabilities of the order 10−4-10−5, becomes sufficient to estimate
correctly the PHMI.

The algorithms are compared setting the same PF A′ for each of them. The

PF A′ ≤ P
r eq

F A′

is computed for each algorithm following its own method. Furthermore each algorithm
computed a PHMI (an upperbound of it). The simulation shows whether these upperbounds
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Figure 7.2: Probability of Hazardous Misleading Information (PHMI) relative to the height estimation computed
through Standard RAIM (Equation (4.31)), ARAIM (Equation (4.69)) and DIA algorithms (Equations (6.8) and
(6.20)) during a full day. At the bottom, the number of satellites in view and the VDOP is reported for each
geometry. We can notice that the PHMI follows a similar behaviour when computed by any of the algorithms,
and, as expected, is highly positively correlated with the VDOP, and negatively correlated with the number of
satellites in view. We can notice furthermore that the ARAIM algorithm distinguishes itself from the others
in almost all the geometries in which the PHMI drops under about 10−10, i.e. the strongest geometries. This
distinct behaviour is mainly due to the fact that ARAIM computation explicitly takes into account multiple
satellite faults and constellation faults: the contribution of these faults is in fact generally negligible for PHMIs
larger than 10−9 but it becomes the main contribution in strong geometries, with larger number of satellites in
view.

are correct. The upperbounds for the PHMI computed by each algorithm are the following:

Geometry A







Standard RAIM: PHMI ≤ 1.1×10−8

ARAIM: PHMI ≤ 2.7×10−9

DIA (3 iterations): PHMI ≤ 4.4×10−10

Geometry B







Standard RAIM: PHMI ≤ 2.5×10−7

ARAIM: PHMI ≤ 8×10−8

DIA (3 iterations): PHMI ≤ 1.7×10−7
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We can see that the above upperbounds are (generally) close to the requirement P
r eq

HMI,ver
=

9.8×10−8. This is in fact the reason why these particular geometries have been chosen for
the simulations: the relative weakness of the geometries can allow us to witness a number
of HMIs sufficient to guarantee the significance of the results. Note that for geometry B the
Standard RAIM and DIA upperbounds exceed the original requirement P

r eq

HMI,ver
= 9.8×10−8,

and unavailability would be declared before taking the measurements; therefore the P
r eq

HMI,ver

is set in this case at 10−6. This geometry was chosen because it is one of the few in which the
estimated PHMI was larger for the DIA than for the ARAIM and because it is a reasonably
weak geometry, prone to show a significant number of HMIs.

Figure 7.3: Skyplot of geometry A employed for the observations simulation. PRN numbers from 1 to 24 stand
for the GPS satellites, from 61 to 90 for the Galileo satellites. In the circles are the satellites assumed faulty
during the simulations.

7.6.1. FAULT-FREE

Tables 7.5 and 7.6 show the results of 106 epochs of simulations for the fault-free case, for
geometries A and B respectively. Total number of Alerts, False Alerts, HMI events, Missed
Detections, Wrong Detections and Over Detections are reported for each of the algorithm
implemented. For this case (fault-free) it has been chosen:

P
r eq

F A′ = 10−4

instead of P
r eq

F A′ = 3.9×10−6 that was given in Table 7.3 and is employed in the next simula-
tions, because in this way we can be sure to witness a sufficient number of False Alerts (and
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Figure 7.4: Skyplot of geometry B employed for the observations simulation. PRN numbers from 1 to 24 stand
for the GPS satellites, from 61 to 90 for the Galileo satellites. In the circles are the satellites assumed faulty
during the simulations.

check if the PF A′ is correctly approximated by the algorithms). Analysis and conclusions are
presented in Section 7.7.

Table 7.5: Results of the 106 epochs of simulation for the fault-free case, geometry A. The algorithms tested are
Standard RAIM, ARAIM, DIA (maximum 3 iterations) with conservative threshold k1 (indicated with DIA-k1),
DIA (maximum 3 iterations) and adapted DIA (indicated with DIA-w).

Alerts False Alerts PFs HMIs WDs

Standard
RAIM

1.04×10−4 1.04×10−4 0 0 1.04×10−4

ARAIM 5.5×10−5 5.5×10−5 0 0 5.5×10−5

DIA-k1 0 0 0 0 1.04×10−4

DIA 8.3×10−5 8.3×10−5 0 0 4.6×10−2

DIA-w 1.2×10−5 1.2×10−5 0 0 4.4×10−2

7.6.2. SINGLE FAULT

For each geometry, two pre-determined single satellite fault cases have been simulated.
Geometry A. Table 7.7 shows the results of 106 epochs of simulation for the case of satel-

lite PRN69 failing with a bias size of 7m in geometry A. Table 7.8 instead shows the case
of satellite PRN89 failing with a bias size of 9m. Total number of Alerts, False Alerts, HMI
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Table 7.6: Results of the 106 epochs of simulation for the fault-free case, geometry B. The algorithms tested are
Standard RAIM, ARAIM, DIA (maximum 3 iterations) with conservative threshold k1 (indicated with DIA-k1),
DIA (maximum 3 iterations) and adapted DIA (indicated with DIA-w).

Alerts False Alerts PFs HMIs WDs

Standard
RAIM

1.23×10−4 1.23×10−4 0 0 1.23×10−4

ARAIM 6.5×10−5 6.5×10−5 0 0 6.5×10−5

DIA-k1 0 0 0 0 1.23×10−4

DIA 2.3×10−5 2.3×10−5 0 0 4.6×10−2

DIA-w 1×10−6 1×10−6 0 0 4.2×10−2

events, Missed Detections, Wrong Detections and Over Detections are reported for each of
the algorithms implemented.

Table 7.7: Results of the 106 epochs of simulation for the case of single satellite fault, in geometry A. Measure-
ments from satellite PRN69 have been biased by 7 meters. The algorithms tested are Standard RAIM, ARAIM,
DIA (maximum 3 iterations) with conservative threshold k1 (indicated with DIA-k1), DIA (maximum 3 itera-
tions) and adapted DIA (indicated with DIA-w).

Alerts False
Alerts

PFs HMIs MDs WDs ODs CDs

Standard
RAIM

0.8658 0.8657 4.0 ×
10−5

4 ×
10−6

0.1342 - - -

ARAIM 0.9426 0.9426 8 ×
10−6

3 ×
10−6

5.74×
10−2

5.8 ×
10−5

0 0.9426

DIA-k1 0 0 9 ×
10−6

9 ×
10−6

0.1342 7.3 ×
10−5

5 ×
10−6

0.8657

DIA 3.47×
10−4

3.47×
10−4

5 ×
10−6

5 ×
10−6

7.91×
10−4

1.20×
10−4

1.58×
10−2

0.9833

DIA-w 8.5 ×
10−5

8.5 ×
10−5

5 ×
10−6

5 ×
10−6

1.06×
10−4

9.9 ×
10−5

1.49×
10−2

0.9849

Geometry B. Table 7.9 shows the results of 106 epochs of simulation for the case of satellite
PRN74 failing with bias size of 8m in geometry B. Table 7.10 instead shows the case of satellite
PRN73 failing with bias size of 5m. Total number of Alerts, False Alerts, HMI events, Missed
Detections, Wrong Detections and Over Detections are reported for each of the algorithms
implemented.

We report here the standard DIA performance parameters for geometry B. For the case
of satellite PRN74 failing with a bias size of 8m (∇w = 6.3406), the DIA-k1 (employing the
B-method) has the following theoretical performance parameters:

βOMT = 0.2398
βw = 0.2343

αw = 9.8×10−9

where αw and βw are the significance and the MD probability of each single w-test. The DIA



7

154 7. SIMULATIONS AND RESULTS

Table 7.8: Results of the 106 epochs of simulation for the case of single satellite fault, in geometry A. Measure-
ments from satellite PRN89 have been biased by 9 meters. The algorithms tested are Standard RAIM, ARAIM,
DIA (maximum 3 iterations) with conservative threshold k1 (indicated with DIA-k1), DIA (maximum 3 itera-
tions) and adapted DIA (indicated with DIA-w).

Alerts False
Alerts

PFs HMIs MDs WDs ODs CDs

Standard
RAIM

0.9264 0.9264 0 0 7.36×
10−2

- - -

ARAIM 0.9735 0.9735 1 ×
10−6

0 2.65×
10−2

2.21×
10−4

0 0.9733

DIA-k1 0 0 1 ×
10−6

1 ×
10−6

7.36×
10−2

2.05×
10−4

5 ×
10−6

0.9262

DIA 3.20×
10−4

3.20×
10−4

0 0 2.16×
10−4

2.63×
10−4

1.58×
10−2

0.9838

DIA-w 9.7 ×
10−5

9.7 ×
10−5

0 0 2.5 ×
10−5

2.52×
10−4

1.51×
10−2

0.9846

has instead the following performance parameters:

βOMT = 0.0028
βw = 0.0018

αw = 2.9×10−4

We can see that the simulation results, with an MD rate of about 0.24 for the DIA-k1 and
2.8×10−3 for the DIA (in Table 7.9, MDs column), are in line with these theoretical values.
The DIA-k1 and the standard RAIM have the same MD rate, since detection is made through
the OMT (with threshold based on a single iteration).

Figure 7.5 provides a representation of the DIA integrity monitoring, similar to the SLOPE
representation in Figure 4.9 (employed by the Standard RAIM), for the specific geometry and
fault conditions described above. In the top graph the vertical positioning error (on the ver-
tical axis) is plotted against the w-test for PRN74 (on the horizontal axis), the test statistic
most influenced by the anomaly. In the middle graph instead the vertical positioning error
is plotted against the w-test for PRN89, which is the w-test most correlated with the first one.
The bottom graph shows instead the projection of the (simulated) measurements onto the
plane R(P⊥

A Cy ), with Cy = [Cy1 Cy2 ] and Cy1 , Cy2 the anomaly signature vectors for the faults
in satellites PRN74 and PRN89. In this plane (which lies in the detection space R(A)⊥) the ar-
eas corresponding to MD, WD and CD can be distinguished (WD and CD areas are separated
by the purple line in the middle). 104 observations (red dots) are reported in the graphs. It
can be seen that, due to the high correlation between the two w-test statistics, the probabil-
ity of WD is very high. The WD event, as previously mentioned, is almost as dangerous as
an MD event, because the chances of correctly detecting the anomaly after a WD are quite
scarce (the WD next ‘masks’ the actual anomaly).

To interpret the results in Table 7.9 (and generally of all Tables 7.7 to 7.10), we have to
remember that the occurrence of an anomaly in one of the satellites has a probability of
only pi = 10−4 (occurrence of an alternative hypothesis) therefore all the probability results
should be multiplied by that factor (as in the simulation all samples were affected by the
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Table 7.9: Results of the 106 epochs of simulation for the case of single satellite fault, in geometry B. Measure-
ments from satellite PRN74 have been biased by 8 meters. The algorithms tested are Standard RAIM, ARAIM,
DIA (maximum 3 iterations) with conservative threshold k1 (indicated with DIA-k1), DIA (maximum 3 itera-
tions) and adapted DIA (indicated with DIA-w).

Alerts False
Alerts

PFs HMIs MDs WDs ODs CDs

Standard
RAIM

0.7597 0.7594 4.44×
10−4

1.19×
10−4

0.2403 - - -

ARAIM 0.8494 0.8489 5.43×
10−4

7.9 ×
10−5

0.1506 1.06×
10−2

2 ×
10−6

0.8388

DIA-k1 0 0 5.49×
10−4

5.49×
10−4

0.2403 9.7 ×
10−3

1 ×
10−6

0.7500

DIA 1.41×
10−4

1.41×
10−4

5.98×
10−4

5.98×
10−4

2.8 ×
10−3

1.61×
10−2

1.36×
10−2

0.9674

DIA-w 4.5 ×
10−5

4.5 ×
10−5

6.00×
10−4

6.00×
10−4

8.55×
10−4

1.62×
10−2

1.24×
10−2

0.9705

anomaly). For instance, the PHMI|Ha reported in Table 7.9 for all the DIA algorithms, of about
6× 10−4, actually means a prior probability (PHMI) of 6× 10−8. Since the type of anomaly
chosen is practically the most dangerous among single satellite anomalies, this result ap-
pears in line to satisfy the original prediction by the algorithm (the DIA with 3 iterations gave
an upperbound of 1.7×10−7 to the PHMI, in Section 7.6).

To determine the significance of the results we apply Equation (7.4), with N = 106. For
the estimated P̂HMI|Ha = p̂ = 6× 10−4, for instance, we have σp̂

∼= 2.45× 10−5. This means
that the estimate is quite accurate, and the actual PHMI|Ha is comprised between 5×10−4 and
7×10−4 with probability larger than 99%.

For the case of satellite PRN73 failing with a bias size of 5m (∇w = 5.4476, Table 7.10), the
DIA-k1 has the following performance parameters:

βOMT = 0.5589
βw = 0.5668

αw = 9.8×10−9

The DIA has instead the following performance parameters:

βOMT = 0.0271
βw = 0.0221

αw = 2.9×10−4

Also in this case the simulation results are in line with the theoretical values.
Finally random single satellite faults have been simulated, for both geometries A and B.

The results are shown in Tables 7.11 and 7.12. 106 epochs have been simulated, each of which
presenting a bias of random size (uniformly random between 0 and 15 meters) in the obser-
vation from a single satellite chosen randomly as well among the full set. Note that the prior
probability of occurrence of any of the single satellite faults is assumed to be pi

∼= 1.4×10−3

in geometry A and pi
∼= 1.2×10−3 in geometry B (because there are respectively respectively

m = 14 and m = 12 satellites in view, and satellite faults are assumed uncorrelated).
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Table 7.10: Results of the 106 epochs of simulation for the case of single satellite fault, in geometry B. Measure-
ments from satellite PRN73 have been biased by 5 meters. The algorithms tested are Standard RAIM, ARAIM,
DIA (maximum 3 iterations) with conservative threshold k1 (indicated with DIA-k1), DIA (maximum 3 itera-
tions) and adapted DIA (indicated with DIA-w).

Alerts False
Alerts

PFs HMIs MDs WDs ODs CDs

Standard
RAIM

0.4419 0.4419 0 0 0.5581 - - -

ARAIM 0.5396 0.5396 0 0 0.4604 3.38×
10−4

1 ×
10−6

0.5393

DIA-k1 0 0 0 0 0.5581 5.04×
10−4

5 ×
10−6

0.4414

DIA 2.03×
10−4

2.03×
10−4

4 ×
10−6

4 ×
10−6

2.71×
10−2

3.2 ×
10−3

1.52×
10−2

0.9545

DIA-w 5.7 ×
10−5

5.7 ×
10−5

4 ×
10−6

4 ×
10−6

1.22×
10−2

2.8 ×
10−3

1.34×
10−2

0.9715

7.6.3. DOUBLE FAULT

A case of pre-determined double satellite fault has been simulated in both geometries A and
B. Table 7.13 shows the results of 106 epochs of simulation for the case of satellites PRN69
and PRN89 failing in geometry A with bias size of respectively 6m and 8m. Table 7.14 shows
the results of 106 epochs simulations for the case of satellites PRN73 and PRN74 failing in
geometry B with bias size of respectively 4m and 7m. Total number of Alerts, False Alerts,
HMI events, Missed Detections, Wrong Detections and Over Detections are reported for each
of the algorithm implemented. The prior probability of the double satellite fault is assumed
to be pi = 10−8.

Finally random double satellite faults have been simulated. The results are shown in
Tables 7.15 and 7.16 for geometry A and B respectively. 106 epochs have been simulated, each
of which presenting biases of random size (uniformly random between 0 and 15 meters) in
the observations from a couple of satellites chosen randomly among the full set. The prior
probability of any double satellite fault is assumed to be pi

∼= 9.1×10−7 in geometry A and
pi

∼= 6.6× 10−7 in geometry B (because 91 and 66 are the number of combinations of two
satellites out of the m = 14 and m = 12 in view respectively). For a discussion of the results
we refer to Section 7.7.3.

7.6.4. GENERAL ANOMALY

Beside single and double satellite faults, a more generic anomaly has been simulated and
the results are shown in this section. The case of a bias affecting all the satellites of azimuth
between 70◦ and 150◦ in geometry A, i.e. PRN8, PRN10, PRN61, and PRN77 (see Figure 7.3),
has been simulated. This type of anomaly could exemplify the occurrence of a ionospheric
front in that specific sky region, in a single frequency observations context. The same bias
of 5m has been introduced in the four measurements at each simulated epoch. Table 7.17
shows the results of 105 epochs simulations. Total number of Alerts, False Alerts, HMI events
and Missed Detections are reported for each of the algorithm implemented. In this case an
MD means that no anomaly at all is detected and no satellites are excluded. If we would use
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Table 7.11: Results of the 106 epochs of simulation for the case of random single satellite fault, in geometry A.
The simulated bias size is a random value between 0 and 15 meters. The algorithms tested are Standard RAIM,
ARAIM, DIA (maximum 3 iterations) with conservative threshold k1 (indicated with DIA-k1), DIA (maximum 3
iterations) and adapted DIA (indicated with DIA-w).

Alerts False
Alerts

PFs HMIs MDs WDs ODs CDs

Standard
RAIM

0.5588 0.5577 1.11×
10−2

0 0.4312 - - -

ARAIM 0.5983 0.5983 0 0 0.4017 8.6 ×
10−5

0 0.5982

DIA-k1 0 0 0 0 0.4312 1.19×
10−4

0 0.5687

DIA 2.50×
10−4

2.50×
10−4

0 0 0.2575 1.00×
10−2

1.16×
10−2

0.7208

DIA-w 5.7 ×
10−5

5.7 ×
10−5

0 0 0.2371 7.80×
10−3

1.10×
10−2

0.7441

the same definition of MD as before, the MD rate would simply be the complement to one
of the Alert rate, since no algorithm can correctly detect a 4 satellites fault.

We can observe from the results that, as expected, the algorithms that employ the OMT
for detection perform better (are more likely to detect an anomaly) than those that employ
at first stage more specialized tests. In particular, among the algorithms that set their test
thresholds assuming a single iteration of the FDE mechanism, i.e. Standard RAIM (which
does not do exclusion though), ARAIM and DIA-k1, we can see that Standard RAIM and DIA-
k1 perform better than ARAIM (show fewer MDs), as they employ the OMT for detection.
Between the algorithms that assume multiple iterations instead, we observe a better perfor-
mance of the DIA with respect to the DIA-w, with fewer number of MDs, again thanks to the
use of the OMT for detection instead of the w-tests. We note furthermore that these last two
algorithms tend to (wrongly) adapt the model more frequently than the others, giving rise to
more numerous PFs.

7.7. ANALYSIS AND CONCLUSIONS
Going through the simulation results reported in Figure 7.2 and in Tables 7.5 to 7.16, we
can identify recurring patterns among the different scenarios. In the following we discuss
first the geometry simulations results (reliability analysis) and then the actual observation
simulations results, considering separately the two main aspects of the RAIM algorithms,
the integrity monitoring and the fault detection and exclusion (hypothesis testing).

7.7.1. GEOMETRY SIMULATIONS RESULTS

From Figure 7.2 we can notice that the PHMI follows a similar behaviour when computed
by any of the algorithms, and, as expected, is highly positively correlated with the VDOP,
and negatively correlated with the number of satellites in view. We can notice furthermore
that the ARAIM algorithm distinguishes itself from the others in almost all the geometries
in which the PHMI drops under about 10−10, i.e. the strongest geometries. This distinct
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Table 7.12: Results of the 106 epochs of simulation for the case of random single satellite fault, in geometry B.
The simulated bias size is a random value between 0 and 15 meters. The algorithms tested are Standard RAIM,
ARAIM, DIA (maximum 3 iterations) with conservative threshold k1 (indicated with DIA-k1), DIA (maximum 3
iterations) and adapted DIA (indicated with DIA-w).

Alerts False
Alerts

PFs HMIs MDs WDs ODs CDs

Standard
RAIM

0.5568 0.5451 1.18×
10−2

1 ×
10−6

0.4432 - - -

ARAIM 0.5749 0.5749 4.9 ×
10−5

0 0.4251 6.77×
10−4

7 ×
10−6

0.5742

DIA-k1 0 0 5.0 ×
10−5

5.0 ×
10−5

0.4432 6.82×
10−4

2 ×
10−6

0.5561

DIA 1.11×
10−4

1.11×
10−4

5.1 ×
10−5

5.1 ×
10−5

0.2620 1.47×
10−2

1.12×
10−2

0.7122

DIA-w 3.5 ×
10−5

3.5 ×
10−5

5.0 ×
10−5

5.0 ×
10−5

0.2476 1.23×
10−2

1.0 ×
10−2

0.7301

behaviour is mainly due to the fact that ARAIM computation explicitly takes into account
multiple satellite faults and constellation faults: the contribution of these faults is generally
negligible for PHMIs larger than 10−9 but it becomes the main contribution in the strong ge-
ometries, with larger number of satellites in view.

Figure 7.2 also shows that the upperbound of the PHMI computed by the DIA algorithm
based on single iteration (therefore without foreseeing any exclusion) is always smaller than
the upperbounds computed by Standard RAIM and ARAIM. The upperbound computed by
ARAIM tends to be smaller than Standard RAIM in weak geometries but larger in stronger
geometries (this is due to the fact that ARAIM takes into account double satellite faults in
the computation of the integrity risk). The DIA based on three iterations, on the other hand,
always (or almost) estimates a larger PHMI than the DIA based on one iteration; this estimate
is generally smaller than the ARAIM’s, except for few geometries (e.g. between 15:40 and
16:10).

These results signify that, as long as the upperbounds are correct, the DIA algorithms
(especially the one based on single iteration) guarantee higher availability than ARAIM and
Standard RAIM. This result is a consequence of the different methods used by DIA and ARAIM
to upperbound the PHMI, as described in Sections 4.2.1 and 6.4. The two methods to up-
perbound the PHMI are directly compared in Appendix K, where it is shown that for a sim-
ple model with one unknown parameter and four observations the upperbound determined
by ARAIM is about one order of magnitude larger than the DIA’s one. Note that the worst-
case bias method employed by the DIA algorithm is more computational expensive than the
ARAIM approximation.

As we mentioned, the DIA based on three iterations always estimates a larger PHMI than
the DIA based on one iteration. This means that, in weak geometries, it is possible that the
single iteration DIA can guarantee integrity, when the multiple iterations DIA cannot: re-
nouncing to attempting any exclusion, and simply declaring Alert in case of detection from
the OMT, can reduce the integrity risk enough to make the geometry available. The higher
risk associated with multiple iterations DIA means that performing exclusions, with the DIA
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Table 7.13: Results of the 106 epochs of simulation for the case of double satellite fault, in geometry A. Mea-
surements from satellites PRN69 and PRN89 have been biased by 6 and 8 meters respectively. The algorithms
tested are Standard RAIM, ARAIM, DIA (maximum 3 iterations) with conservative threshold k1 (indicated with
DIA-k1), DIA (maximum 3 iterations) and adapted DIA (indicated with DIA-w).

Alerts False
Alerts

PFs HMIs MDs WDs ODs CDs

Standard
RAIM

0.9994 0.9004 0 0 5.87×
10−4

- - -

ARAIM 0.9986 0.9985 1.01×
10−4

0 0.9754 1.93×
10−2

0 5.3 ×
10−3

DIA-k1 6.2 ×
10−5

6.2 ×
10−5

6.6 ×
10−5

6.6 ×
10−5

0.5381 1.93×
10−2

0 0.4422

DIA 2.69×
10−2

2.69×
10−2

6.0 ×
10−5

4.3 ×
10−5

1.34×
10−2

2.14×
10−2

0 0.9652

DIA-w 2.80×
10−2

2.80×
10−2

5.8 ×
10−5

3.8 ×
10−5

3.6 ×
10−3

2.14×
10−2

0 0.9750

method, introduces more risk (due to a larger WD rate) than what is saved by the reduction of
the MD rate (due to larger significance of the OMT, and therefore higher detection power: the
significance of the OMT can be increased in a multiple iteration procedure applying Equa-
tion (6.19)). As we previously mentioned, WDs are practically as dangerous as MDs, since
they may mask the actual anomaly, making it more difficult to detect.

Note again that the DIA method with a single iteration was not tested specifically in
the observation simulations because its performance would result identical to the Standard
RAIM.

7.7.2. INTEGRITY MONITORING — FAS AND HMIS

The fault-free simulations (Tables 7.5 and 7.6) show that all the algorithms analyzed respect
the requirement on P

r eq

F A′ , though all the DIA algorithms appear generally conservative (the
rate of FAs is significantly smaller than expected). This shows that the approximation for the
PF Atot computation in Equation (6.19) is quite conservative. We also register a larger rate of
WDs for DIA and DIA-w, this is due to the choice of smaller thresholds for the detection tests
(Equation (5.51)), and therefore a higher number of adaptations of the model (that anyway
do not result in Alerts).

In any scenario including failing satellites, we notice that for Standard RAIM and ARAIM
all the detections (WDs, ODs, CDs) lead to Alerts (and almost always False Alerts, since the
positioning failures occur at a much lower rate). This is expected for Standard RAIM because
no exclusion is foreseen in this algorithm, but it occurs also in ARAIM because the geome-
try selected is too weak to allow for exclusion. In fact ARAIM recomputes the PHMI (or the
PLs) after an exclusion is performed, and checks if this still complies with the requirements.
The geometries chosen for the simulations are quite weak and are just within the require-
ments, for each of the algorithms, therefore the PHMI computation update in ARAIM always
results in an Alert. On the other hand, successful exclusions are possible employing the DIA
algorithms, since the PHMI computation (before taking the measurements) includes wrong
exclusions occurrences (DIA computation based on 3 iterations, Equation 6.21). As a result
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Table 7.14: Results of the 106 epochs of simulation for the case of double satellite fault, in geometry B. Mea-
surements from satellites PRN73 and PRN74 have been biased by 4 and 7 meters respectively. The algorithms
tested are Standard RAIM, ARAIM, DIA (maximum 3 iterations) with conservative threshold k1 (indicated with
DIA-k1), DIA (maximum 3 iterations) and adapted DIA (indicated with DIA-w).

Alerts False
Alerts

PFs HMIs MDs WDs ODs CDs

Standard
RAIM

0.9037 0.9037 0 0 9.63×
10−2

- - -

ARAIM 0.8147 0.8146 6.1 ×
10−5

0 0.6814 0.3184 0 1.20×
10−4

DIA-k1 9 ×
10−6

7 ×
10−6

1.74×
10−4

1.74×
10−4

0.6037 0.3595 0 3.69×
10−2

DIA 6.39×
10−2

6.37×
10−2

4.79×
10−4

2.98×
10−4

0.1345 0.4102 0 0.4552

DIA-w 5.52×
10−2

5.50×
10−2

4.37×
10−4

2.64×
10−4

9.89×
10−2

0.4078 0 0.4933

all the DIA algorithms have by far a much smaller number of FAs. This lower FA’ rate in faulty
conditions can be a very desirable performance, in particular when, with a large number of
satellites in view, the likelihood of occurrence of an anomaly is not negligible. The results
of the random single satellite fault cases (Tables 7.11 and 7.12) suggest that, in case of bi-
ases smaller than 15 meters affecting single satellite measurements, the DIA algorithms can
guarantee a rate of FA’ several order of magnitude smaller than ARAIM.

With regard to the HMI rate, we observe that all the algorithms analyzed respect their
original prediction/upperbound (in Section 7.6). The lowest number of HMIs is observed
with the ARAIM algorithm, which results as the safest algorithm, though this is also due to
the fact that no exclusion was actually successful in ARAIM (all detections resulted in an
Alert). All algorithms performed safely in the scenarios analyzed.

7.7.3. FAULT DETECTION AND EXCLUSION — MDS, WDS AND ODS

The last four columns of the Tables 7.5 to 7.16 determine the detection and exclusion per-
formance of the different algorithms. DIA and DIA-w are more powerful than the other al-
gorithms: in fact a larger rate of CDs and a smaller rate of MDs is observed. This is due to
the fact that the possibility of performing additional iterations allows to sensibly increase
the significance (PF A) of the detection tests. We can see from Equation (5.51) how the signif-
icance of the tests is increased in the multiple iteration algorithm: to increased significance
corresponds increased power of the test. On the other hand this increased power leads also
to a larger number of WDs and ODs.

We note furthermore that Standard RAIM and DIA-k1 show the same MD rate in case of
single satellite faults, and that this MD rate is larger than with the ARAIM algorithm. This
is due to the fact that both Standard RAIM and DIA employ the OMT (χ2 test) for detection,
and this test is less powerful than the specific tests (SS tests or w-tests), with Bonferroni
adjustment, in detecting single satellite faults. Note that the B-method in the DIA procedure
guarantees equal power of OMT and w-tests, but not equal PF A: if we set the OMT to have the
same significance as the combination of w-tests (or SS tests), the final power will be different
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Table 7.15: Results of the 106 epochs of simulation for the case of random double satellite fault, in geometry A.
The simulated bias sizes are random values between 0 and 15 meters. The algorithms tested are Standard RAIM,
ARAIM, DIA (maximum 3 iterations) with conservative threshold k1 (indicated with DIA-k1), DIA (maximum 3
iterations) and adapted DIA (indicated with DIA-w).

Alerts False
Alerts

PFs HMIs MDs WDs ODs CDs

Standard
RAIM

0.8387 0.8085 3.02×
10−2

6 ×
10−6

0.1613 - - -

ARAIM 0.8412 0.8405 7.86×
10−4

2 ×
10−6

0.7804 7.6 ×
10−3

0 0.2120

DIA-k1 4.2 ×
10−3

3.2 ×
10−3

1.60×
10−3

6.35×
10−4

0.6745 1.20×
10−2

0 0.3135

DIA 1.81×
10−2

1.64×
10−2

1.80×
10−3

1.23×
10−4

0.4402 3.77×
10−2

0 0.5221

DIA-w 1.52×
10−2

1.38×
10−2

1.70×
10−3

3.15×
10−4

0.4194 3.12×
10−2

0 0.5494

(lower for the OMT in case of single satellite faults). The use of the w-tests for detection, as
in the adapted DIA, is more powerful even in a single iteration implementation.

7.7.4. SUMMARY AND CONCLUSIONS
In view of the simulation results reported above, we can gather the following conclusions,
classified under different performance parameters:

• Integrity requirements and safety

The results from the simulation show that the upperbounds on the PHMI of each algo-
rithm considered are satisfied, strongly suggesting that all algorithms are safe. Judg-
ing from the number of HMI events, Standard RAIM and ARAIM are the most con-

servative and safest algorithms, but this performance comes at the price of much a

lower continuity in case of a fault, due to a much lower capability to adapt the model
to the anomaly. We stress that if with the DIA-k1 algorithm we renounce to perform
any adaptation and we restrict to the first iteration, it would produce the same num-
ber of HMIs as the Standard RAIM — the increased risk is due to the choice made of
performing adaptation and increase the continuity also in case of fault. The results fur-
thermore suggest that in ARAIM the PHMI is significantly overestimated, whereas the
DIA algorithm is quite precise in risk estimation (the number of HMIs is in line with
the prediction), and can afford to attempt adaptations of the model. Nevertheless the
increased PHMI that comes with the adaptation of the model suggests that the current
DIA’s adaptation method is not yet optimal (see below).

• Integrity availability

The geometry simulations results, in Figure 7.2, show that the DIA algorithm’s upper-
bound to the PHMI based on single iteration is at least one order of magnitude tighter
than the ARAIM’s (which in turn is about one order of magnitude tighter than Stan-
dard RAIM). This means that DIA can guarantee higher integrity availability — in
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Table 7.16: Results of the 106 epochs of simulation for the case of random double satellite fault, in geometry B.
The simulated bias sizes are random values between 0 and 15 meters. The algorithms tested are Standard RAIM,
ARAIM, DIA (maximum 3 iterations) with conservative threshold k1 (indicated with DIA-k1), DIA (maximum 3
iterations) and adapted DIA (indicated with DIA-w).

Alerts False
Alerts

PFs HMIs MDs WDs ODs CDs

Standard
RAIM

0.8225 0.7711 5.2 ×
10−2

5 ×
10−6

0.1775 - - -

ARAIM 0.8190 0.8098 9.8 ×
10−3

5.11×
10−4

0.7863 2.98×
10−2

0 0.1838

DIA-k1 1.04×
10−2

3.7 ×
10−3

1.85×
10−2

1.18×
10−2

0.6878 4.52×
10−2

0 0.2670

DIA 3.66×
10−2

2.20×
10−2

1.90×
10−2

4.5 ×
10−3

0.4467 8.56×
10−2

0 0.4677

DIA-w 3.24×
10−2

1.88×
10−2

1.90×
10−2

5.4 ×
10−3

0.4377 7.81×
10−2

0 0.4842

Table 7.17: Results of the 105 epochs of simulation for a generic anomaly case, in geometry A. The algorithms
tested are Standard RAIM, ARAIM, DIA (maximum 3 iterations) with conservative threshold k1 (indicated with
DIA-k1), DIA (maximum 3 iterations) and adapted DIA (indicated with DIA-w).

Alerts False Alerts PFs HMIs MDs

Standard
RAIM

0.9527 0.9527 0 0 0.0473

ARAIM 0.8618 0.8618 2×10−5 0 0.1382
DIA-k1 0.9329 0.9329 2×10−5 0 0.0473
DIA 0.7438 0.7434 4.1×10−4 0 5×10−5

DIA-w 0.5021 0.5017 4.1×10−4 4×10−5 0.0149

the location considered with CAT I requirements the DIA (single iteration) is available
99.3% of the time whereas ARAIM only 95.8% of the time (Figure 7.2). The observation
simulations support the correctness of the DIA’s upperbounds and the conservative
character of the ARAIM’s one. The DIA based on three iterations (DIA) shows instead
similar availability as ARAIM (Figure 7.2) — but a much higher continuity in case of
occurrence of an anomaly (Tables 7.7 to 7.17). Note that in fact renouncing to exclude
satellites and adapting the observation model reduces the risk of HMI but comes to
the price of lower continuity in faulty cases: this is acceptable because the prior prob-
ability of occurrence of faults is assumed to be very small, but can become an issue to
take into account when the number of satellites in view is large.

• Testing effectiveness and detection power

The results from the simulation show that the DIA algorithm (based on multiple itera-
tions: DIA) is the most powerful method in detecting and identifying anomalies (see
for instance Tables 7.11, 7.12, 7.15, 7.16, the CDs column). The higher power is linked
to the possibility of sensibly increasing the significance of the detection tests, under
the assumption that successive iterations of the algorithm are to be run. Furthermore
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the DIA-w (employing w-tests for detection instead of the OMT) is more powerful in
detecting single and double anomalies than the standard DIA, in the same way as the
ARAIM is more powerful than DIA-k1 and Standard RAIM. The OMT results to be more
powerful than specific tests in detecting generic anomalies with more than 2 corrupted
measurements (Table 7.17). A preference between the two methods of detection (OMT
vs specific tests) can be expressed on the basis of the weight/probability that is given
to the occurrence of generic anomalies, compared to the one given to single satellite
faults.

A large detection power is a desirable property, but we can see from the results that
in the DIA algorithms a larger detection power corresponds also to larger WD and

OD rates (e.g. see Tables 7.7 to 7.17). While a larger detection power contributes to
a reduction of the PHMI, an associated larger WD (and OD) rate acts in the opposite
direction. The increase of WD is most likely the main issue in the DIA procedure, and it
is linked to the exclusion method employed (and most exclusion methods in general),
further discussed below.

• Exclusion mechanisms and position estimation

The observation simulations results provide us information on the performance of
the DIA exclusion (adaptation) mechanism (and in general of any iterative exclusion
method based on a forward selection approach). The ARAIM exclusion mechanism
performance cannot really be assessed because no adaptation was performed success-
fully by ARAIM in the scenarios analyzed — ARAIM requires much stronger geometry
or looser integrity requirements to allow exclusion to be performed (in this sense it is
a fairly conservative algorithm).

Regarding the DIA algorithm, we observe that multiple iterations do not result in an

improvement in the positioning/reduction of the risk (due to the increased rate of
Wrong Detections). Both geometry simulations (Figure 7.2) and observations simula-
tions (see Tables 7.7 to 7.17: HMI rate is higher in the DIA algorithms than in Standard
RAIM and ARAIM) show that the PHMI increases when multiple iterations of the DIA
are foreseen. The reason why WDs are particular detrimental to integrity is that in case
of WD, the successive iteration of the algorithm becomes much less effective than ex-
pected — it becomes extremely more difficult to find the actual faulty satellite once
a WD has occurred (see also Section 6.5.2). Furthermore the position estimation is
strongly jeopardized in case of a WD, both because of the weakening of the geome-
try after exclusion and because of the upraising of an extra bias in the position condi-
tioned on the WD. This leads to the conclusion that the standard exclusion mechanism
of the DIA is not optimal. Improvement could be made by introducing checks on the
WD probability, (similarly as to ARAIM, or employing Equation (5.44)) and making the
exclusion mechanism more selective, or considering exclusion of multiple satellites at
a time (with a different Subset Selection method).

The (mathematical) root-cause of the problem, that makes extremely more difficult to
monitor the risk after a WD, is that after the first iteration of the procedure we have to
deal with a conditional distribution of the remaining measurements. Theorical perfor-
mance parameters that can be computed for the first iteration of the procedure do not
constitute good approximations for the successive iterations. This is especially true in
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case of WD, but holds in principle also in case of CDs.
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Figure 7.5: Distribution of w-tests statistics and vertical positioning error, together with a detection space rep-
resentation, in case of observations from satellite PRN74 being biased by 8 meters (104 samples represented).
Top and middle graph plot on the horizontal axis the two w-test statistics of main interest (w1 for PRN74 and
w2 being most correlated to w1, most likely to wrongly detect the fault) against the positioning error on the
vertical axis. AL and w-test threshold are reported, with the corresponding HMI area. The bottom graph shows
instead the space R(P⊥

A
Cy ), the detection space, with the distribution of the projected measurements, where

the areas of MD, WD and CD can be identified.





8
CONCLUSIONS

8.1. SUMMARY AND RESULTS
In this thesis the RAIM problem has been introduced and given a mathematical formula-
tion. On the basis of such formulation the statistical approaches available in literature to
confront the problem have been reviewed and discussed, as well as the most popular RAIM
algorithms developed by the scientific community so far — Least Square Residuals RAIM
(Standard RAIM) and ARAIM. Next, the DIA procedure, the FDE method developed by TU
Delft, has been presented and its application to the RAIM problem proposed. The three
RAIM algorithms, Standard RAIM, ARAIM and DIA, have been implemented on software
and tested by means of simulations. The results showed that all the algorithms are gener-
ally able to monitor the integrity effectively and their performance can be measured and
compared. In the simulated scenarios the DIA algorithm based on single iteration delivered
higher availability than the other RAIM algorithms, whilst the multiple-iterations implemen-
tation delivered higher detection power and continuity. The results showed furthermore that
both the Exclusion methods employed by ARAIM and DIA are not optimal from the point of
view of maximizing the integrity — this led to the recommendation, for the development
of future RAIM concepts, of avoiding any prioritization of single exclusion with respect to
simultaneous multiple exclusions.

We now go through the dissertation in detail and highlight the main results of each chap-
ter.

• After the first introductory chapter, in Chapter 2 we introduced the concept of integrity
in navigation and of RAIM, and we provided a mathematical definition of the RAIM
problem (Equations (2.11)-(2.15)). We outlined the functions that a RAIM algorithm
should fulfil, and defined its input, output and performance parameters. We hope to
have clarified the many concepts and terms of which earlier definitions have led to
confusion or misunderstandings.

• In Chapter 3 we gave an overview of the most relevant tools available in statistics to
deal with the RAIM problem. Most RAIM algorithms currently in use and under devel-
opment make use of FDE procedures, which are based on Multiple Comparisons and
Subset Selection theories presented in this Chapter. The currently in use FDE meth-
ods can find their place among the other different methods, can be compared and
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discussed, and ideas for alternatives or modifications can arise. This is particularly
true when we consider that the Exclusion mechanism of current RAIM algorithms (in
particular ARAIM) is still a work in progress.

• In Chapter 4 the two RAIM algorithms for use in aircraft navigation most popular in
literature were reviewed: the classic Weighted RAIM by Walter and Enge (referred to as
Standard RAIM) [107] and the modern ARAIM developed by the Stanford group [11].
For both the procedures the full algorithm is provided. The Standard RAIM is a simple
and sound algorithm, which does not foresee exclusion of satellites and adaptation of
the observation model, and is not designed to cope with multiple satellite faults: the
main shortcomings were pointed out and possible solutions have been proposed. The
ARAIM algorithm is still a work in progress, in its more advanced forms, and is cur-
rently in experimental phase. We described only the baseline algorithm (mainly based
on [11]). This algorithm is reckoned to be still sub-optimal from different points of
view: most of the approximations employed have been discussed and ideas for im-
provement have been proposed. In particular:

– Not all the possible iterations of the algorithm are taken into account in the com-
putation of the PHMI (problem already addressed in [51]).

– The RAIM requirement P
r eq

F A′ on the FA’ rate is translated by ARAIM to a require-
ment on the PF A of the first detection step of the algorithm, as if the algorithm
was made of a single test/iteration , when instead PF Atot (for the full procedure)
should be computed.

– The computation of the PHMI through Equation (4.40), obtained by means of the
approximation described in Section 4.2.1, may result quite conservative (see Ap-
pendix K for a comparison with a different approximation).

– The ARAIM employs SS tests instead of UMPI tests, this choice can be discussed
(see Appendix I).

– The ARAIM exclusion process, including tests to check for wrong exclusions, is in
experimental phase. Some formulae from [11] are not justified and/or subject to
modifications.

• In Chapter 5 the DIA procedure was reviewed. The DIA procedure is a well established
method for gross error detection in geodesy developed by TU Delft. The application of
the DIA procedure to the RAIM problem for use in aircraft navigation is naturally pos-
sible, provided a direct way to compute the main RAIM parameters, in particular the
PHMI, is defined — the reliability monitoring provided by the DIA has to be extended
to be able to cope specifically with the RAIM case.

• In Chapter 6 we discussed the application of the DIA algorithm to the RAIM problem.
The following additions/modifications have been proposed with respect to the stan-
dard DIA algorithm:

– A method to upperbound the PHMI of a satellite geometry as a function of the
thresholds choice for the tests has been proposed (Section 6.2), based on the
worst-case bias approach (Equation (6.9)). A method to determine the worst-case
bias in case of multi-dimensional fault was furthermore proposed (Section 6.4.2).
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– A method to take into account the possible multiple iterations of the DIA algo-
rithm has been proposed (Section 6.5.1), to quantify/approximate the FA rate and
PHMI (Equations (6.19), (6.20), (6.22)).

– Possible different roles (other than the Detector one) for the OMT have been en-
visioned (Section 6.6).

• In Chapter 7 numerical simulations were run to compare Standard RAIM, ARAIM and
DIA procedure. After scrutiny of the results, the following conclusions on the perfor-
mance of the different algorithms were gathered:

– Integrity requirements and safety

The results from the simulation show that the upperbounds on the PHMI of each
algorithm considered are satisfied, strongly suggesting that all algorithms are safe.
Judging from the number of HMI events, Standard RAIM and ARAIM are the most
conservative and safest algorithms, but this performance comes at the price of a
much lower continuity in case of a fault, due to a much lower capability to adapt
the model to the anomaly. The results furthermore suggest that in ARAIM the
PHMI is significantly overestimated, whereas the DIA algorithm is quite precise in
its risk estimation.

– Integrity availability

The DIA algorithm’s upperbound to the PHMI based on a single iteration is at least
one order of magnitude tighter than the ARAIM’s (which in turn is about one or-
der of magnitude tighter than Standard RAIM). DIA can therefore guarantee a
higher integrity availability — in the location considered with CAT I requirements
the DIA is available 99.3% of the time, whereas ARAIM only 95.8% of the time. The
observation simulations support the correctness of the DIA’s upperbounds and
the conservative character of the ARAIM’s one. The DIA based on three iterations
shows instead a similar availability as ARAIM — but a much higher continuity in
case of occurrence of an anomaly.

– Testing effectiveness and detection power

The results from the simulation show that the DIA algorithm (based on multiple
iterations) is the most powerful method in detecting and identifying anomalies.
A large detection power is a desirable property, but we can see from the results
that in the DIA algorithms a larger detection power corresponds also to larger
WD and OD rates. While a larger detection power contributes to reduce the PHMI,
a larger WD (and OD) rate acts in the opposite direction. The increase of WD is
most likely the main issue in the DIA procedure, and it is linked to the exclusion
method employed (and exclusion methods in general), further discussed below.

– Exclusion mechanisms and position estimation

The ARAIM exclusion mechanism performance cannot really be assessed because
no adaptation was performed successfully by ARAIM in the scenarios analyzed —
ARAIM requires a much stronger geometry or looser integrity requirements to al-
low exclusion to be performed (in this sense it is a fairly conservative algorithm).

Regarding the DIA algorithm, we observe that multiple iterations do not result
in an improvement in the positioning/reduction of the risk (due to the increased
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rate of Wrong Detections). Both geometry simulations (Figure 7.2) and observa-
tions simulations show that the PHMI increases when multiple iterations of the
DIA are foreseen. The reason why WDs are particular detrimental to integrity is
that in case of a WD, the successive iteration of the algorithm becomes much less
effective than expected — it becomes extremely more difficult to find the actual
faulty satellite once a WD has occurred. Furthermore the position estimation is
strongly jeopardized in case of a WD, both because of the weakening of the ge-
ometry after exclusion and because of the upraising of an extra bias conditioned
on the WD. This leads to the conclusion that the standard exclusion mechanism
of the DIA is not optimal, and in general any iterative exclusion method based
on a forward selection approach. The (mathematical) root-cause of the problem,
that makes extremely more difficult to monitor the risk after a WD, is that after
the first iteration of the procedure we have to deal with a conditional distribution
of the remaining measurements. Theorical performance parameters that can be
computed for the first iteration of the procedure do not constitute good approx-
imations for the successive iterations. This is especially true in case of WD, but
holds also in case of CDs.

8.2. RECOMMENDATIONS AND FUTURE WORK
As it is apparent from the methods review and simulation results, all RAIM algorithms dis-
cussed have margin of improvement. Even though ARAIM performs safely, some of the ap-
proximations employed seem rather conservative and the exclusion mechanism seems not
particularly effective. The DIA algorithm is also safe, but its exclusion mechanism does not
appear to perform optimally.

RELIABILITY — PHMI COMPUTATION

From a reliability analysis point of view — i.e. prior computation of the PHMI based on the
satellite geometry alone — the DIA seems to perform better than ARAIM. For instance, the
worst-case bias approximation employed in the DIA to upperbound the PHMI is to be pre-
ferred over the corresponding ARAIM approximation. Also the method, proposed in this
dissertation, to compute the PHMI for multiple DIA iterations, performs well and allows to
monitor the risk associated with wrong exclusions. The method relies on Monte Carlo inte-
gration, but since the computation is based on the satellite geometry alone, it can be per-
formed in advance with respect to the epoch of observation. On the other hand, from the
exclusion/adaptation mechanism point of view, the simple method employed by the DIA
procedure appears to possibly incur into high risk of wrong exclusions and associated higher
risk of HMI: under this perspective the ARAIM algorithm, with its monitoring against wrong
exclusion, is acknowledging the problem and starting to propose possible solutions.

FDE PROCEDURE

One of the main weaknesses of the RAIM algorithms analyzed is the Exclusion (or Adapta-
tion) mechanism. Both ARAIM and DIA procedures reckognize that in many geometries —
given a requirement on the continuity — attempting exclusion introduces more risk than just
declaring an Alert (in ARAIM the risk is recomputed after a detection, and in the available ge-
ometries considered in the simulations it always exceeded the requirement). This suggests
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that the Exclusion methods employed are sub-optimal. We would like to have, ideally, an
Exclusion mechanism for which the possibility of excluding some satellites results in a lower
or at most equal PHMI for any geometry under consideration. If it is not possible to conceive
an exclusion method with such performance, then it may be better renouncing to any exclu-
sion/adaptation and performing only detection, or resorting to robust estimation methods.
Improvement could be made in the DIA by introducing checks on the WD probability (simi-
larly as to ARAIM, or employing Equation (5.44)) and making the exclusion mechanism more
selective, or considering exclusion of multiple satellites at a time (with a different Subset Se-
lection method, see Section 3.6.3). For instance, it could be possible to restrict the exclusion
of a single satellite to the cases in which only one w-test exceeds the threshold (excluding
two satellites or declaring Alert if multiple w-tests exceed their threshold), or/and introduce
a check on the correlation between w-tests and avoid to exclude a single satellite when its w-
test is highly correlated with another. Also methods as the p-value or C p methods could be
employed to possibly exclude multiple satellites at a time. Improvement to the ARAIM Exclu-
sion method could also be made, by modifying the exclusion confirmation tests or finding
less conservative ways to compute the risk after exclusion.





A
INTEGRITY — BAYESIAN VIEW

This Appendix constitutes an extension to Section 2.4, in which the RAIM problem was de-
fined. It provides an interpretation of the RAIM problem from a Bayesian point of view. As-
suming a Bayesian perspective, the probability distribution of the observable y can be con-
sidered to be fully known.

Let the observable y depend upon some parameter x we want to infer about. Suppose
that the probability distribution function of the observable y , fy (y), is fully known. This
means that either:

1. the parameter x is deterministically known or

2. the PDF of x is fully known.

Only the latter case is of interest for our problem.
The natural way of inferring about the actual realization of the parameter x, on the basis

of a measurement y , is to determine the posterior probability fx|y (x|y). Given everything
is known by hypothesis — i.e. prior distribution of state of nature x and distribution of the
observable conditioned on x, fy |x — the posterior probability can be obtained for any y .

We have:
fx,y = fy |x · fx

fy =
∫

Rn fx,y dx

fx|y =
fx,y

fy

(A.1)

If we write a function of the observable x̂ = F (y) (the estimation function), we can define
the following probability Probability of Positioning Failure:

PPF = P (x̂ −x ∉ΩAL) (A.2)

From fy and F (y) the distribution of x̂ can be obtained by transformation rule.
The probability in Equation (A.2) can anyway be decomposed in two parts to highlight

the posterior probability as:

PPF =
∫

Rm
P (x̂(y)−x ∉ΩAL|y) fy (y)dy (A.3)
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The probability P (x̂(y)− x ∉ ΩAL|y) can be computed knowing fx|y (x|y). We can find the
function x̂ = F (y) that minimizes the above probability, but also we can define a smaller
domain of integration, instead of the full y domain Rm :

P ′
PF =

∫

Ω

P (x̂(y)−x ∉ΩAL|y) fy (y)dy (A.4)

This means selecting only some measurements, and computing the risk of having a position-
ing error bigger than the AL only for them. This probability is always equal or smaller than
the probability in Equation (A.3). Actually, by properly choosing Ω, this probability can be
made small as desired. Therefore if minimizing the probability in Equation (A.3) is not suf-
ficient to guarantee the integrity (the minimum obtained is not small enough), it is possible
to resort to the selection of measurements employed in Equation (A.4), that would allow to
reduce further the risk of having a positioning failure.

Example. Let:

fx(x) =U (0,10) Uniform distribution between 0 and 10
fy |x(y |x) = 9

10 N (x,1)+ 1
10 N (x +5,1) Sum of two normal distributions

With the above conditional distribution fy |x(y |x), the measurements can be biased by the
amount 5 with respect the true position x with probability 1/10. We have:

fx,y (x, y) = 1
10 ( 9

10 Ny (x,1)+ 1
10 Ny (x +5,1)) ∀x ∈ [0,10], 0 otherwise

fy (y) =
∫10

0 fx,y (x, y)dx = 1
10 ( 9

10Φx |10
0 (y,1)+ 1

10Φx |10
0 (y −5,1)) =

= 1
10 ( 9

10Φx |10
0 (y,1)+ 1

10Φx |15
5 (y,1))

fx|y =
fx,y

fy

where the notation Φz |ba(µ,σ2) stands for the cumulative distribution between a and b of
a normal distribution with mean µ and variance σ2, for the random variable z. Figure A.1
shows the corresponding distribution fy (y), whereas Figure A.2 shows the conditional dis-
tributions fx|y (x|y) for three different realizations of y , y = 2,8,12.

Now we choose an estimator, x̂ = y (for simplicity). We set furthermore the ALs at a
distance 2 from the true position (arbitrarily).

Figure A.3 shows the quantity P (x̂(y) − x ∉ ΩAL|y) fy (y) (function of y)1. As in Equa-
tions (A.3) and (A.4), theP (x̂(y)− x ∉ ΩAL|y) fy (y) has to be integrated over its full domain
or over a region Ω of selected measurements. We can see that measurements between about
5 and 13 contains the highest risk density, therefore excluding measurements in this area can
be beneficial for integrity, in order not to let them contribute to the P ′

PF .

1This quantity has been computed numerically as a sum over the x domain, discretized in 1000 steps (x = 0 :
0.01 : 10).
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Figure A.1: Marginal distribution of the observable.
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Figure A.3: Probability density function for the Positioning Failure event, choosing arbitrarily AL = 2 and x̂ = y .



B
FORMULATION BASED ON PROTECTION

LEVELS

This Appendix constitutes an extension to Section 2.4, and provides an alternative definition
of the RAIM problem.

An alternative formulation of the RAIM problem can be made introducing the Protec-
tion Levels (PLs), which make the problem more complex but are said to provide more in-
formation to the user. The problem can be defined as: find a region Ω and an estima-
tion/detection rule that to the observable y ∈Ω assigns a position estimator x̂ and a random
region bounded by the PLs, ΩPL:

y ∈Ω→ [x̂,ΩPL] (B.1)

such that:
P (ΩPL ∈ΩAL ∩ y ∈Ω) ≥ 1−P

r eq

F A′ ∀x (B.2)

and

P (x̂ −x ∉ΩAL ∩ΩPL ∈ΩAL ∩ y ∈Ω) ≤ PHMI0 ∀x (B.3)

ΩPL, most likely of the same shape as ΩAL (cilindrical for instance), therefore would just out-
bound (circumscript) the confidence region for the estimator associated to the extremely
tight probability requirement on the PHMI.

Also in this definition we keep specifying the event y ∈Ω since it may be not possible to
determine a finite ΩPL for any y ∈ Rm . In case ΩPL can instead be chosen also of infinite size,
then would be possible to define x̂ and ΩPL for any y and we can formulate the problem as:
find an an estimation/detection rule that to the observable y assigns a position estimator x̂

and a random region bounded by the Protection Levels ΩPL:

y → [x̂,ΩPL] (B.4)

such that:
P (ΩPL ∈ΩAL) ≥ 1−P

r eq

F A′ ∀x (B.5)

and

P (x̂ −x ∉ΩAL ∩ΩPL ∈ΩAL) ≤ PHMI0 ∀x (B.6)

The idea of this formulation with Protection Levels is to provide the user with the further
position information connected with the PLs, ΩPL, which can be of course tighter than ΩAL.
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The PLs are typically employed in the so-called Stanford diagram, which provides a way
to represent graphically the integrity related events defined in Section 2.4, such as PFs and
HMIs. The Stanford diagram can be drawn only when the true position of the receiver (air-
craft) is known, therefore it is a tool employed for research/experimentation, not in real life
monitoring. It can be used to analyze a set of position solutions coupled with a relative
PL, obtained from simulated or real data. An example Stanford diagram is shown in Fig-
ure B.1, for the horizontal position. On the horizontal axis is the horizontal positioning error,
whereas on the vertical axis is the (H)PL (given from the WAAS). The bisectrix in the middle
splits the diagram in two parts: one containing the cases in which the PL overbounds the
positioning error and the other containing the cases in which the PL does not overbounds
the true error. The cases in which the PL does not overbound the position error constitutes
the occurrences of Misleading Information (MI), i.e. the RAIM monitoring did not provide a
correct information (bound to the position error). MIs are not necessarily hazardous event
(integrity failures): in fact to have a HMI the positioning error must be larger than the AL
(set at 30m in this example), while the PL stays smaller than the AL (rectangular area on the
lower-right angle). The cases in which the PL exceeds the AL represent the events of Alert, in
which the system becomes unavailable.

Figure B.1: Example of Stanford Diagram, for the horizontal positioning. On the horizontal axis is the horizontal
positioning error, whereas on the vertical axis is the HPL (given from the WAAS). A position solution obtained at
a certain epoch, together with its coupled PL, can be represented as a point on the graph. If the PL exceeds the
AL (set to 30m), an Alert is raised (System Unavailable), which can be anyway justified or unjustified depending
on the actual error. In case instead the PL is smaller than the AL, we have occurrence of NO (eventually with
Misleading Information) in case the actual error is smaller than the AL, and occurrence of HMI in case the
actual error is larger than the AL. Figure taken from [45].



C
EQUIVALENCE BETWEEN ADDITION OF

EXTRA UNKNOWN PARAMETERS AND

EXCLUSION OF OBSERVABLES FROM THE

MODEL

In this Appendix we demonstrate the equivalence of Equations (3.11) and (3.12) presented
in Section 3.3, with regards to the computation of x̂i . Given the null hypothesis:

H0 : E(y) = Ax cf. Equation (2.2)

we focus here on the following alternative hypothesis:

Ha : E(y) = Ax +Cy∇ cf. Equation (3.21)

with Cy the i th canonical unit vector of Rm or a m×q matrix made up of different canonical
unit vectors of Rm (say indexed by vector iq ), e.g.:

Cy =











1
0
...
0











(case i = 1) or Cy =















1 0
0 1
0 0
...

...
0 0















(case i2 = [1 2])

We demonstrate that this alternative hypothesis is equivalent to the following:

Ha : E(ỹ) = Ãx

where ỹ is obtained from y elimimating the i th component or the components with index

iq and Ã is obtained from A eliminating the i th row or the rows with index iq . The two
alternative hypotheses are equivalent in the sense that the BLUE of x (with its distribution)
under both the alternative models, x̂a , is the same, and so are consequently all the related
parameters, as residuals êa and estimated measurements ŷ

a
. To say in different words, we
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C. EQUIVALENCE BETWEEN ADDITION OF EXTRA UNKNOWN PARAMETERS

AND EXCLUSION OF OBSERVABLES FROM THE MODEL

show here that adding extra parameters to the model with the above peculiar choice of Cy is
equivalent to excluding/ignoring some of the available measurements (components of the
full vector y).

Proof. Starting from the alternative model in (3.21), we write the normal equations [101]
[98] for this model:

[

AT Q−1
y y A AT Q−1

y y Cy

C T
y Q−1

y y A C T
y Q−1

y y Cy

][

x̂a

∇̂

]

=
[

AT Q−1
y y y

C T
y Q−1

y y y

]

(C.1)

we perform a Gaussian elimination pre-multiplying both sides of the equation by matrix:
[

In −AT Q−1
y y Cy (C T

y Q−1
y y Cy )−1

0 Iq

]

to obtain the system:
[

AT Q−1
y y (Im −Cy (C T

y Q−1
y y Cy )−1C T

y Q−1
y y )A 0

C T
y Q−1

y y A C T
y Q−1

y y Cy

][

x̂a

∇̂

]

=
[

AT Q−1
y y (Im −Cy (C T

y Q−1
y y Cy )−1C T

y Q−1
y y )y

CyQ−1
y y y

]

We can now look just at the first row of the above system, and remembering that Im −Cy ·
(C T

y Q−1
y y Cy )−1C T

y Q−1
y y = P⊥

Cy
, the projector onto the space orthogonal to R(Cy ), we have:

AT Q−1
y y P⊥

Cy
Ax̂a = AT Q−1

y y P⊥
Cy

y

Applying the properties of the orthogonal projectors, Q−1
y y P⊥

Cy
= P⊥T

Cy
Q−1

y y P⊥
Cy

= P⊥T
Cy

Q−1
y y , and

defining Aa ≡ P⊥
Cy

A, we can write the above equation as:

AT
a Q−1

y y Aa x̂a = AT
a Q−1

y y y (C.2)

This is the standard normal equation for an observation model of the type E(y) = Aa xa .
Substituting the specific type of Cy adopted in our alternative hypothesis into the formula
for P⊥

Cy
, we can realize that this matrix has the form of an identity matrix (Im) except that the

i th row (or the rows indexed by iq ), which is all zeros. As a result Aa = P⊥
Cy

A, the projection of

A onto the space orthogonal to R(Cy ), is identical to A except for the i th row (iq rows), which
is made of all zeros. This means that the i th measurement (i th

q measurements) is ignored

from the original vector y , therefore Ha reads: E(ỹ) = Ãx. This concludes the proof. ä
We note here furthermore that computing x̂a with:

x̂a = (AT
a Q−1

y y Aa)−1 AT
a Q−1

y y y

as from the normal equation (C.2) is equivalent to employing the following formula (pre-
sented in Section 4.2), adopted in the ARAIM algorithm [11]:

x̂a = (AT Q−1
y ya

A)−1 AT Q−1
y ya

y

with Q−1
y ya

obtained from Q−1
y y by substituting the i th (i th

q ) diagonal element with zero. This

in fact means assigning infinite standard deviation to the i th observation, and effectively
completely de-weight/ignore such observation.



D
BAYESIAN APPROACH

In this Appendix we try to develop some basic ideas on the Bayesian approach to RAIM, as
mentioned in Section 3.5. The Bayesian approach assumes that the PDF of the observable
y is fully known, generally adopting non-informative prior distribution for the unknown pa-
rameters for which any a priori guess cannot be made. As reference Bayesian literature we
mention [7], [55] [62] [96]. A Bayesian RAIM has been proposed also in [82].

As described in Appendix A, given an unknown set of parameters x and a conditional dis-
tribution for the observable y , fy |x , the basic idea is to determine the posterior distribution
of the parameters x, fx|y (x|y). A prior distribution has to be assigned to x and the posterior
distribution fx|y (x|y) can be found employing the formulae in Equation (A.1).

Here we apply this approach to the GNSS model given in Section 2.7 (most often adopted
throughout the dissertation). In this model the unknown parameters are x, H and ∇i , and
for each of them a prior distribution has to be assumed. We analyze in the following different
choices for the prior distributions, and for each choice obtain the posterior distributions for
the occurrence of the hypotheses, fH |y , and for the position x, fx|y .

D.1. UNIFORM PRIORS
Given are the hypotheses:

Hi : E(y) = Ax +Ci∇i , i = 1,2, . . . ,k (D.1)

and the observable conditional distribution:

y |Hi ∼ N (E(y)|Hi ,Qy y ) (D.2)

Note that we shortened the notation from Cyi
to Ci and we did not explicitly consider the

null hypothesis H0 as a different hypothesis per se, since it can be readily included to the
model as a particular Hi with zero ∇i parameters, qi = 0. We take a Bayesian approach and
assume the following priors for the unknown parameters:

H ∼ P (H = Hi ) = pi , i = 1,2, . . . ,k

x j ∼ cx for − 1
2cx

≤ x j ≤+ 1
2cx

, j = 1,2, . . . ,n

∇iz
|H ∼

{

c∇ for − 1
2c∇

≤∇iz
≤+ 1

2c∇
, z = 1,2, . . . , qi , H = Hi

0 for H 6= Hi

(D.3)
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with cx and c∇ small constant scalars (the value given to cx turns out not to be important,
since this constant always cancels out in the next derivations, whereas this is not the case
for c∇), say cx → 0 and c∇ → 0. For x j it is also possible to use a standard improper non-
informative prior of the type:

x j ∼ cx or x j ∼ 1 for −∞≤ x j ≤+∞ , j = 1,2, . . . ,n (D.4)

with cx any constant scalar, which is not a proper PDF because its integral from −∞ to +∞
does not result in the unity, but such type of prior cannot be used for ∇i , unless all the hy-
potheses considered are characterized by the same qi (see for instance [7]).

We apply the Bayes rule to determine the posterior probability for the occurrence of the
hypotheses, H |y :

fH |y (H |y) =
fH ,y

fy
=

∫

x,∇ fx,∇i ,H ,y dxd∇
∑

H

∫

x,∇ fx,∇i ,H ,y dxd∇
(D.5)

where the integration over parameters x and ∇i is made between − 1
2cx

and + 1
2cx

for each

component of x, and between − 1
2c∇

and + 1
2c∇

for each component of ∇i . The joint distribu-
tion, computed as fx,∇i ,H ,y = fH

∏

j fx j

∏

z f∇iz
|H fy |H , writes:

fx,∇i ,H ,y = pi cn
x c

qi

∇
1

(2π)
m
2 |Qy y |

1
2

exp

(

−1
2‖y − Ax −Ci∇i‖2

Q−1
y y

)

,

∀i = 1,2, . . . ,k

(D.6)

The integral at the numerator of Equation D.5 can be developed as (∀i = 1,2, . . . ,k):

fH ,y =
∫

x,∇
fx,∇i ,H ,y dxd∇=

pi cn
x c

qi

∇
∫

x,∇i

1

(2π)
m
2 |Qy y |

1
2

exp

(

−1
2‖y − Ax −Ci∇i‖2

Q−1
y y

)

dxd∇=

pi cn
x c

qi

∇
1

(2π)
m
2 |Qy y |

1
2

∫

x,∇i
exp

(

−1
2‖y − ŷi‖2

Q−1
y y
− 1

2‖ŷi − Ax −Ci∇i‖2
Q−1

y y

)

dxd∇=

pi cn
x c

qi

∇
1

(2π)
m
2 |Qy y |

1
2

exp

(

−1
2‖y − ŷi‖2

Q−1
y y

)

∫

x,∇i
exp

(

−1
2‖ŷi − Ax −Ci∇i‖2

Q−1
y y

)

dxd∇=

pi cn
x c

qi

∇
1

(2π)
m
2 |Qy y |

1
2

exp

(

−1
2‖y − ŷi‖2

Q−1
y y

)

· (2π)
n+qi

2 |Q x̂ ′
i
,x̂ ′

i
|

1
2 =

pi cn
x c

qi

∇ (2π)
n+qi −m

2

(

|Q x̂ ′
i
,x̂ ′

i
|

|Qy y |

) 1
2

exp

(

−
1

2
‖y − ŷi‖2

Q−1
y y

)

(D.7)

where ŷi is the estimated measurement vector under hypothesis Hi and x̂ ′
i
=

[

x̂

∇̂i

]

. Note

that we employed the fact cx ,c∇ → 0 when computing the integral between − 1
2cx

and + 1
2cx

for each component of x, and between − 1
2c∇

and + 1
2c∇

for each component of ∇i :

∫+ 1
2c∇

− 1
2c∇

∫+ 1
2cx

− 1
2cx

exp

(

−
1

2
‖ŷi − Ax −Ci∇i‖2

Q−1
y y

)

dxd∇→ (2π)
n+qi

2 |Q x̂ ′
i
,x̂ ′

i
|

1
2

In case of adoption of the prior in Equation (D.4), there is no need to make any approxi-
mation for the parameter x, since the integration is from −∞ to +∞. The denominator of



D.1. UNIFORM PRIORS

D

183

Equation D.5 is simply the sum over the different i of the terms at the numerator above de-
rived. Therefore Equation D.5 can be written:

fH |y (H |y) =
pi c

qi

∇ (2π)
qi
2 |Q x̂ ′

i
,x̂ ′

i
|

1
2 exp

(

−1
2‖y − ŷi‖2

Q−1
y y

)

∑k
t=1 pt c

qt

∇ (2π)
qt
2 |Q x̂ ′

t ,x̂ ′
t
|

1
2 exp

(

−1
2‖y − ŷt‖2

Q−1
y y

) , i = 1,2, . . . ,k (D.8)

Furthermore we have:

Q−1
x̂ ′

i
,x̂ ′

i
=

[

AT

C T
i

]

Q−1
y y [A Ci ] =

[

AT Q−1
y y A AT Q−1

y y Ci

C T
i

Q−1
y y A C T

i
Q−1

y y Ci

]

(D.9)

from which:

|Q x̂ ′
i
,x̂ ′

i
|−1 = |AT Q−1

y y A| · |C T
i Q−1

y y Ci −C T
i Q−1

y y A(AT Q−1
y y A)−1 AT Q−1

y y Ci | (D.10)

so that in the fraction in Equation D.8 the term |AT Q−1
y y A| can be put in evidence and sim-

plified between numerator and denominator, and the remaining term can be reckognized as
the determinant of:

C T
i Q−1

y y Ci −C T
i Q−1

y y A(AT Q−1
y y A)−1 AT Q−1

y y Ci = C̄ T
i Q−1

y y C̄i =Q−1
∇̂i ∇̂i

(D.11)

with C̄i = P⊥
A Ci . On the other hand also the term ‖y − ŷi‖2

Q−1
y y

, squared norm of the projection

of y over R(A Ci )⊥, can be rewritten to highlight the effect of the extension of R(A) by means
of Ci :

‖y − ŷi‖2
Q−1

y y
= ‖y − ŷ0‖2

Q−1
y y
−‖ŷi − ŷ0‖2

Q−1
y y

(D.12)

where ŷ0 is the estimated measurement vector with the model E(y) = Ax (that is ŷ0 = P A y).

The term ‖y−ŷ0‖2
Q−1

y y
can be simplified between numerator and denominator of Equation D.8,

whereas the term ‖ŷi − ŷ0‖2
Q−1

y y
can be reckognized as the standard UMPI test statistic, and can

be written in the equivalent form ‖∇̂i‖2
Q∇̂i ∇̂i

.

Finally Equation D.8 can be rewritten in the form:

fH |y (H |y) =
pi wi

∑k
t=1 pt wt

(D.13)

with:

wi =





1

c
qi

∇ (2π)
qi
2 |Q∇̂i ∇̂i

|
1
2

exp

(

−
1

2
‖∇̂i‖2

Q∇̂i ∇̂i

)





−1

(D.14)

which in case of hypotheses characterized by equal qi simplifies to:

wi =





1

|Q∇̂i ∇̂i
|

1
2

exp

(

−
1

2
‖∇̂i‖2

Q∇̂i ∇̂i

)





−1

(D.15)
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D.2. GAUSSIAN PRIORS
Let us assume alternatively the following priors for the unknown parameters:

H ∼ P (H = Hi ) = pi , i = 1,2, . . . ,k

x ∼ N (x0,Qxx)

∇i |H ∼
{

N (∇0,i ,Q∇i∇i
) for H = Hi

0 for H 6= Hi

(D.16)

The joint distribution then writes:

fx,∇i ,H ,y = pi
1

(2π)
m+n+qi

2 |Qy y |
1
2 |Qxx |

1
2 |Q∇i ∇i

|
1
2

exp

(

−1
2‖y − Ax −Ci∇i‖2

Q−1
y y

)

·

exp
(

−1
2‖x −x0‖2

Q−1
xx

)

exp

(

−1
2‖∇i −∇0,i‖2

Q−1
∇i ∇i

)

,∀i = 1,2, . . . ,k

(D.17)

Define:

x ′
i =

[

x

∇i

]

, x ′
i 0 =

[

x0

∇i 0

]

, A′
i = [A Ci ]

The joint distribution can thus be written:

fx,∇i ,H ,y = fx ′
i
,H ,y = pi

1

(2π)
m+n+qi

2 |Qy y |
1
2 |Qx′

i
x′

i
|

1
2

·

exp(−1
2 ((y − A′

i
x ′

i
)T Q−1

y y (y − A′
i
x ′

i
)+ (x ′

i
−x ′

i 0)T Q−1
x ′

i
x ′

i

(x ′
i
−x ′

i 0))) , ∀i = 1,2, . . . ,k
(D.18)

If we define:

µi = (A′T
i Q−1

y y A′
i +Q−1

x ′
i
x ′

i
)−1(A′T

i Q−1
y y y +Q−1

x ′
i
x ′

i
x ′

i 0) (D.19)

then the argument of the exponential in the above joint distribution can be developed as:

−1
2 (yT Q−1

y y y +x ′T
i 0 Q−1

x ′
i
x ′

i

x ′
i 0 −2x ′

i
(A′T

i
Q−1

y y y +Q−1
x ′

i
x ′

i

x ′
i 0)+x ′T

i
(A′T

i
Q−1

y y A′
i
+Q−1

x ′
i
x ′

i

)x ′
i
) =

−1
2 (yT Q−1

y y y +x ′T
i 0 Q−1

x ′
i
x ′

i

x ′
i 0 −µT

i
(A′T

i
Q−1

y y A′
i
+Q−1

x ′
i
x ′

i

)µi+
(x ′

i
−µi )T (A′T

i
Q−1

y y A′
i
+Q−1

x ′
i
x ′

i

)(x ′
i
−µi ))

The numerator of the posterior distribution in Equation D.5 is obtained taking the integral
over x ′

i
of the joint distribution in Equation D.18. As a result we have:

fH ,y = pi
1

(2π)
m+n+qi

2 |Qy y |
1
2 |Qx′

i
x′

i
|

1
2

·

exp(−1
2 (yT Q−1

y y y +x ′T
i 0 Q−1

x ′
i
x ′

i

x ′
i 0 −µT

i
(A′T

i
Q−1

y y A′
i
+Q−1

x ′
i
x ′

i

)µi ))·
∫

x ′
i

exp(−1
2 (x ′

i
−µi )T (A′T

i
Q−1

y y A′
i
+Q−1

x ′
i
x ′

i

)(x ′
i
−µi ))dx ′

i
=

pi

|A′T
i

Q−1
y y A′

i
+Q−1

x′
i

x′
i

|−
1
2

(2π)
m
2 |Qy y |

1
2 |Qx′

i
x′

i
|

1
2
·

exp(−1
2 (yT Q−1

y y y +x ′T
i 0 Q−1

x ′
i
x ′

i

x ′
i 0 −µT

i
(A′T

i
Q−1

y y A′
i
+Q−1

x ′
i
x ′

i

)µi ))

(D.20)
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where we employed the fact that the integral at the third line is equal to (2π)
n+qi

2 |A′T
i

Q−1
y y A′

i
+

Q−1
x ′

i
x ′

i

|−
1
2 . For the posterior fH |y (H |y) =

fH ,y

fy
we thus have:

fH |y =

pi

|A′T
i

Q−1
y y A′

i
+Q−1

x′
i

x′
i

|−
1
2

(2π)
m
2 |Qy y |

1
2 |Q

x′
i

x′
i
|

1
2

exp(− 1
2 (yT Q−1

y y y + x′T
i 0 Q−1

x′
i

x′
i

x′
i 0 −µT

i
(A′T

i
Q−1

y y A′
i
+Q−1

x′
i

x′
i

)µi ))

∑k
t=1 pt

|A′T
t Q−1

y y A′
t+Q−1

x′t x′t
|−

1
2

(2π)
m
2 |Qy y |

1
2 |Q

x′t x′t
|

1
2

exp(− 1
2 (yT Q−1

y y y + x′Tt0 Q−1
x′t x′t

x′t0 −µT
t (A′T

t Q−1
y y A′

t +Q−1
x′t x′t

)µt ))

This expression can be simplified in case each hypothesis is characterized by equal Qx ′
i
x ′

i

(which means equal Q∇i∇i
, since Qx ′

i
x ′

i
is a block-diagonal matrix). This assumption can be

reasonable in case the different hypotheses are characterized by the same number of un-
known parameters, qi . In fact, if we suppose that each hypothesis is characterized by equal
Qx ′

i
x ′

i
, the term |Qx ′

i
x ′

i
|

1
2 at the denominator of fH ,y simplifies between numerator and denom-

inator of the expression above:

fH |y =

pi

|A′T
i

Q−1
y y A′

i
+Q−1

x′
i

x′
i

|−
1
2

(2π)
m
2 |Qy y |

1
2

exp(− 1
2 (yT Q−1

y y y + x′T
i 0 Q−1

x′
i

x′
i

x′
i 0 −µT

i
(A′T

i
Q−1

y y A′
i
+Q−1

x′
i

x′
i

)µi ))

∑k
t=1 pt

|A′T
t Q−1

y y A′
t+Q−1

x′t x′t
|−

1
2

(2π)
m
2 |Qy y |

1
2

exp(− 1
2 (yT Q−1

y y y + x′Tt0 Q−1
x′t x′t

x′t0 −µT
t (A′T

t Q−1
y y A′

t +Q−1
x′t x′t

)µt ))

Taking now the limit Qx ′
i
x ′

i
→+∞ we have:

A′T
i

Q−1
y y A′

i
+Q−1

x ′
i
x ′

i

→ A′T
i

Q−1
y y A′

i
=Q−1

x̂ ′
i
x̂ ′

i

µi → (A′T
i

Q−1
y y A′

i
)−1 A′T

i
Q−1

y y y = x̂ ′
i

x ′T
i 0 Q−1

x ′
i
x ′

i

x ′
i 0 → 0

As a result the term at the numerator (and each term of the sum at the denominator) be-
comes:

pi

|Qx̂′
i

x̂′
i
|

1
2

(2π)
m
2 |Qy y |

1
2

exp(−1
2 (yT Q−1

y y y − x̂ ′T
i

(A′T
i

Q−1
y y A′

i
)x̂ ′

i
)) =

pi
1

(2π)
m
2

( |Qx̂′
i

x̂′
i
|

|Qy y |

)
1
2

exp(−1
2 (yT Q−1

y y y − ŷT
i

Q−1
y y ŷi ))

But this is the same as Equation D.7 except for the multiplicative constants (2π)
n+qi

2 and
cn

x c
qi

∇ . Thus the posterior fH |y (H |y) becomes:

fH |y (H |y) =
pi wi

∑k
t=1 pt wt

(D.21)

with:

wi =





1

|Q∇̂i ∇̂i
|

1
2

exp

(

−
1

2
‖∇̂i‖2

Q∇̂i ∇̂i

)





−1

(D.22)

which coincides with Equation D.15.
In case instead each hypothesis is not characterized by equal Q∇i∇i

, the expression for
fH |y (H |y) does not simplify. If we assume for instance Q∇i∇i

= σ2Iqi
, i.e. equal variance for
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each component of ∇i , then |Q∇i∇i
| = σ2qi . When we take the limit σ → +∞ in the poste-

rior fH |y (H |y), we will have that the posterior probability for hypotheses characterized by qi

larger than others tends to zero. This result suggests that the procedure of taking the limit
Q∇i∇i

→+∞ does not work properly when comparing hypotheses with different number of
degrees of freedom qi . This is an expected result, because when we take the limit σ→+∞,
the prior distribution for the parameter ∇i becomes an improper prior. The use of improper
priors is not allowed when testing hypotheses with different number of degrees of freedom,
as this is equivalent to testing a point null hypothesis, and improper priors are not allowed
in such context (see for instance [7]).

D.3. SINGLE POINT PRIOR
Let us assume alternatively the following priors for the unknown parameters:

H ∼ P (H = Hi ) = pi , i = 1,2, . . . ,k

x ∼ 1 (uniform non-informative prior)

∇i |H ∼
{

1 for ∇i = ∇̂i and H = Hi

0 for ∇i 6= ∇̂i or H 6= Hi

(D.23)

where ∇̂i is the ML estimate of ∇i under the alternative hypothesis Hi . The prior for each
∇i is a single point priors, with all the probability mass concentrated in a specific value ∇̂i .
Furthermore this prior depends on the actual observation y , since ∇̂i is a function of the
observation y . In (D.23) the single point prior are expressed as a PMF, an equivalent notation
as PDF can be:

∇i |H ∼
{

δ(∇i −∇̂i ) for H = Hi

0 for H 6= Hi
(D.24)

where δ stands for the Dirac function. The joint distribution then writes:

fx,∇i ,H ,y = pi
1

(2π)
m
2 |Qy y |

1
2

exp

(

−1
2‖y − Ax −Ci∇i‖2

Q−1
y y

)

δ(∇i −∇̂i )

∀i = 1,2, . . . ,k

(D.25)

Equation (D.5) is employed to compute the posterior probability for the occurrence of the
hypotheses, H |y . The numerator can be developed as (∀i = 1,2, . . . ,k):

fH ,y =
∫

x,∇
fx,∇i ,H ,y dxd∇=

pi

∫

x,∇
1

(2π)
m
2 |Qy y |

1
2

exp

(

−1
2‖y − Ax −Ci∇i‖2

Q−1
y y

)

δ(∇i −∇̂i )dxd∇=

pi

∫

x
1

(2π)
m
2 |Qy y |

1
2

exp

(

−1
2‖y − Ax −Ci ∇̂i‖2

Q−1
y y

)

dx =

pi
1

(2π)
m
2 |Qy y |

1
2

∫

x exp

(

−1
2‖y − ŷi‖2

Q−1
y y
− 1

2‖ŷi −Ci ∇̂i − Ax‖2
Q−1

y y

)

dx =

pi
1

(2π)
m
2 |Qy y |

1
2

exp

(

−1
2‖y − ŷi‖2

Q−1
y y

)

∫

x exp

(

−1
2‖ŷi −Ci ∇̂i − Ax‖2

Q−1
y y

)

dx =

pi
1

(2π)
m
2 |Qy y |

1
2

exp

(

−1
2‖y − ŷi‖2

Q−1
y y

)

· (2π)
n
2 |Q x̂0,x̂0 |

1
2 =

pi (2π)
n−m

2

( |Q x̂0,x̂0 |
|Qy y |

) 1
2

exp

(

−
1

2
‖y − ŷi‖2

Q−1
y y

)

(D.26)
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where ŷi is the (ML) estimation of the observation vector y under hypothesis Hi and Q x̂0,x̂0 =
(AT Q−1

y y A)−1. Therefore Equation (D.5) can be written:

fH |y (H |y) =
pi exp

(

−1
2‖y − ŷi‖2

Q−1
y y

)

∑k
t=1 pt exp

(

−1
2‖y − ŷt‖2

Q−1
y y

) (D.27)

that can be rewritten in the form:

fH |y (H |y) =
pi wi

∑k
t=1 pt wt

(D.28)

with:

wi = exp

(

1

2
‖∇̂i‖2

Q∇̂i ∇̂i

)

(D.29)

This result is valid also comparing hypotheses with different qi . We can compute as well the
posterior distribution of the variable x from:

fx|y (x|y) =
fx,y

fy
=

∑

H

∫

∇ fx,∇i ,H ,y d∇
∑

H

∫

x,∇ fx,∇i ,H ,y dxd∇
(D.30)

The numerator of Equation (D.30) can be computed as:

∑

H

∫

∇i

fx,∇i ,H ,y d∇i =
k
∑

i=1
pi

1

(2π)
m
2 |Qy y |

1
2

exp

(

−
1

2
‖y − Ax −Ci ∇̂i‖2

Q−1
y y

)

(D.31)

and, given that the denominator is a summation over H of the terms in Equation (D.26), the
posterior can be obtained:

fx|y (x|y) =

∑k
i=1 pi

1

(2π)
m
2 |Qy y |

1
2

exp

(

− 1
2‖y−Ax−Ci ∇̂i ‖2

Q−1
y y

)

∑k
i=1 pi (2π)

n−m
2

( |Qx̂,x̂ |
|Qy y |

)

1
2

exp

(

− 1
2‖y−ŷi ‖2

Q−1
y y

)
=

∑k
i=1 pi exp

(

− 1
2‖y−ŷi ‖2

Q−1
y y

)

exp

(

− 1
2‖ŷi−Ax−Ci ∇̂i ‖2

Q−1
y y

)

∑k
i=1 pi (2π)

n
2 |Qx̂,x̂ |

1
2 exp

(

− 1
2‖y−ŷi ‖2

Q−1
y y

)

(D.32)

Noticing that the terms

1

(2π)
n
2 |Qx̂,x̂ |

1
2

exp

(

−1
2‖ŷi − Ax −Ci ∇̂i‖2

Q−1
y y

)

=

1

(2π)
n
2 |Qx̂,x̂ |

1
2

exp

(

−1
2‖Ax̂i − Ax‖2

Q−1
y y

)

are Gaussian distributions for the variable x, of the form N (x̂i ,Q x̂0,x̂0 ), with x̂i = (AT Q−1
y y A)−1

AT Q−1
y y (y −Ci ∇̂i ), the posterior distribution can be written as:

fx|y (x|y) =
k
∑

i=1

pi exp

(

1
2‖∇̂i‖2

Q∇̂i ∇̂i

)

∑k
t=1 pt exp

(

1
2‖∇̂t‖2

Q∇̂t ∇̂t

)N (x̂i ,Q x̂0,x̂0 ) (D.33)
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that is a multimodal Gaussian distribution, in which each single Gaussian is weighted by the
term:

f (Hi |y) =
pi exp

(

1
2‖∇̂i‖2

Q∇̂i ∇̂i

)

∑k
t=1 pt exp

(

1
2‖∇̂t‖2

Q∇̂t ∇̂t

)

i.e. the posterior probability of occurrence of hypothesis Hi as in Equation (D.28). This
means:

fx|y (x|y) =
k
∑

i=1
f (Hi |y)N (x̂i ,Q x̂0,x̂0 ) (D.34)

The use of the type of priors proposed in this section (single point priors) tends to favor
the hypotheses with largest qi , since the full prior probability is assigned to the ML estimate
of ∇i , which is the most likely value to occur given the measurements. With reference to
Equation (D.28) and (D.29), if two nested hypotheses with different qi have the same prior
probability pi , the hypothesis with larger qi will always have larger posterior probability of
occurrence. I considered adopting this type of prior in RAIM because it maximizes the pos-
terior probability of occurrence of an outlier (for instance, in case of testing the point null
hypothesis H0 against any Ha). In [7], this prior is adopted to maximize the posterior proba-
bility of occurrence of the alternative hypothesis in the testing of point null hypothesis prob-
lem.

D.4. CONSIDERATIONS ON THE PRIOR DISTRIBUTIONS
The result of previous Section may leave us a little puzzled, wondering why the posterior
distribution of x|y is a weighted sum of the Gaussian distributions N (x̂i ,Q x̂0,x̂0 ) and not
N (x̂i ,Q x̂i ,x̂i

). This is due to the use of the single point prior, that does not leave room to
the uncertainty on ∇i . Intuitively, we would like to have as result a posterior distribution for
the occurrence of the hypotheses as the one obtained in previous section, Equations (D.28)
and (D.29), but a posterior distribution for x|y of the form:

fx|y (x|y) =
k
∑

i=1
f (Hi |y)N (x̂i ,Q x̂i ,x̂i

) (D.35)

instead of the one in Equation (D.34).
This posterior distribution can in fact be obtained adopting as prior for ∇i the following:

∇i ∼
1

(2π)
q
2 |Q∇̂i ∇̂i

|
1
2

= const (D.36)

which is a non-informative prior, since it is just a constant. This result can be readily verified
substituting this expression to c

qi

∇ in Equation D.14. The use of such prior therefore results in
preserving the unknown nature of the bias size ∇i and at the same time maximizing the pos-
terior probability of occurrence of higher dimensional alternative hypotheses, as much as
the use of the single point prior presented in previous section (since the posterior fH |y (H |y)
is the same).



E
SUBSET SELECTION METHODS

This Appendix provides a coincise description of the most popular Subset Selection meth-
ods employed in linear regression. The concept of Subset Selection was introduced in Sec-
tion 3.6.3, and the main methods were mentioned. Subset Selection in fact deals with the
problem of choosing a subset of parameters (from an original pool of candidates) that is able
to describe ‘thoroughly’ a certain phenomenon/observation. This subset should include the
parameters that are actually involved in the physical process behind the observation taking,
parameters that should be included in the model that describes the physical process. Con-
sider the model in Equation (2.2) (or the model in Equation (3.27)): the problem of choosing
how many and which parameters to include in vector x (or ∇) is a Subset Selection model.
Choosing between the two hypothesis H0 and Ha in Equation (3.21) can be treated as a Sub-
set Selection problem, since there is to choose between two different subsets of regression
parameters.

E.1. SPJØTVOLL METHOD
Let us consider for the moment the simplified problem with Qy y = σ2Im . Suppose we want
to compare two subsets of parameters, composed of respectively q1 and q2 numbers of pa-
rameters, to which correspond the geometry matrices A1 and A2. The model to consider
is the one in Equation (3.27), A1 and A2 being two competitive Cy among which to choose.
Define instead At the actual (unknown) m × qt geometry matrix linking measurements to
parameters (the actual Cy ), to be found among different alternatives (of which A1 and A2 are
two possible choices). For the expectation of the measurements (that we will denote with η)
it holds:

E(y) = η= At xt

where At and xt are the actual unknown geometry matrix and regression parameters. If x̂ t

is the estimator related to the actual geometry matrix, x̂ t = (AT
t At )−1 AT

t y , we have:

(x̂ t −xt )T AT
t At (x̂ t −xt )

qt σ̂
2 ∼ F (qt ,m −qt ) (E.1)

for the case of unknown σ (case described in [94]), and:

1

σ2
(x̂ t −xt )T AT

t At (x̂ t −xt ) ∼χ2(qt ,0)

189
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in case of σ known. When instead of using At we use the most comprehensive geometry
matrix that we can consider in our problem of finding the best fitting regression function for
y among a pool of candidates, A (in the special case considered it can be A = [A1 A2]), with
a corresponding x̂ estimator, it can be proven (see [90]) that:

P (
(x̂ −x)T AT A(x̂ −x)

qσ̂2 ≤ Fα(q,m −q)) ≥ 1−α (E.2)

where x = E(x̂) and Fα(q,m−q) is the value of the F distribution corresponding to the signif-
icance α. That is, the error distribution when using a set of parameters larger than the actual
one, but still including the actual one, is overbound by an F distribution with all q degrees
of freedom. For the case σ known we have similarly:

P (
(x̂ −x)T AT A(x̂ −x)

σ2
≤χ2

α(q,0)) ≥ 1−α

When we employ the regression matrix A1, we come up with a measurement estimator
ŷ = A1x̂1, which expectation is η1 = E(ŷ). The Spjøtvoll method measures the goodness of fit
of a regression function (say A1x1) computing the quantity:

(η−η1)T (η−η1)

i.e. the squared length of the difference between η and η1. Since η1 = A1(AT
1 A1)−1 A1η, the

quantity in the expression above can be computed as:

ηT AT
1 (AT

1 A1)−1 A1η= ‖P A1η‖
2

which is the squared length of the projection of η on R(A1) (the subspace spanned by matrix
A1). The larger the value the better the fit. The difference of goodness between two regres-
sion functions (e.g. described by A1x1 and A2x2) can be therefore measured by the quantity:

ηT [A1(AT
1 A1)−1 AT

1 − A2(AT
2 A2)−1 AT

2 ]η=
xT AT [A1(AT

1 A1)−1 AT
1 − A2(AT

2 A2)−1 AT
2 ]Ax

(E.3)

If this quantity is bigger than zero the subset A1 performs better than subset A2, therefore our
aim is to infer on its value. Since η= At xt is unknown, also this quantity is unknown: to infer
whether it is larger or smaller than zero, we can estimate a confidence region for it. Having
a confidence region means having a lower and upper bound inside which the unknown is
expected to lie with a determined confidence (α): in our case, if both bounds are positive, we
can infer with the relative confidence α that the quantity is positive as well.

A confidence region for the quantity in Equation (E.3) can be defined exploiting the rela-
tion in Equation (E.2). Spjøtvoll derived this confidence region employing the Scheffé mul-
tiple comparison method. If both the bounds of this confidence region are bigger than zero,
then we can declare with the corresponding significance level that the quantity in Equa-
tion (E.3) is bigger than zero and therefore the subset A1 is significantly better than A2. The
bounds of the confidence region are derived in [67] and [94], here is shown a part of the
proof, to be complemented by the results obtained in [32].

As we have said the quantity (x̂ − x)T AT A(x̂ − x) is bounded by an F -distribution, as in
Equation (E.2). Now, given this bound, we want to derive the corresponding bound holding
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for the expression in Equation (E.3). Define C ≡ [A1(AT
1 A1)−1 AT

1 − A2(AT
2 A2)−1 AT

2 ]. The idea
is to find confidence bounds for all the quadratic functions xT C x, where C varies over all
symmetric matrices with real elements, while Equation (E.2) holds. This means for any C

we want to find the set of all possible values of xT C x when x is contained in the ellipsoid
(x̂−x)T AT A(x̂−x) ≤ qσ̂2Fα(q,m−q). Any given symmetric C matrix can be diagonalized by
a q×q matrix P such that P T R−1

xx P = I (with R−1
xx = AT A) and P T C P = D , with D diagonal with

diagonal elements d1,d2, . . . ,dq . If we define the vector γ̂= P x̂, our problem is equivalent to

finding the set of values γT Dγ can possibly assume when γ is in the sphere (γ− γ̂)T (γ− γ̂) ≤
qσ̂2Fα. Given λmi n and λmax the minimum and maximum roots, respectively, of

q
∑

i=1
d 2

i γ̂
2
i
/(di −λ)2 = qσ̂2Fα(q,m −q)

and let a = −min(mini di ,λmi n) and b = max(maxi di ,λmax), the final result is that xT C x is
bound with probability at least 1−α by:

K 1 ≤ xT C x ≤ K 2 (E.4)

where

K 1 = a
q
∑

i=1
di γ̂

2
i
/(a +di )−qσ̂2Fα(q,m −q) (E.5)

and

K 2 = b
q
∑

i=1
di γ̂

2
i
/(bb −di )+qσ̂2Fα(q,m −q) (E.6)

with exception of the following cases:

K 1 = 0 if all di ≥ 0 and
q
∑

i=1
γ̂2

i
≤ qσ̂2Fα(q,m −q), (E.7)

and

K 2 = 0 if all di ≤ 0 and
q
∑

i=1
γ̂2

i
≤ qσ̂2Fα(q,m −q) (E.8)

If both computed K1 and K2 are larger than zero, then subset A1 performs significantly better
than A2. Therefore the Spjøtvoll method procedure reads:

• Compute K1 and K2 with Equations (E.5), (E.6), (E.7) and (E.8)

• If K1 > 0 and K2 > 0 select A1, otherwise stay with A2.

Proof. The problem is determining the maximum and minimum of

T (γ) =
q
∑

i=1
diγ

2
i

subject to (γ− γ̂)T (γ− γ̂) ≤ c2 where c2 = qσ̂2Fα. We consider the case of finding the mini-
mum, the problem of finding the maximum being analogous.
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First consider the case when all di ≥ 0 and
∑

di>0 γ̂
2
i
≤ c2. In this case since the di are non-

negative T (γ) is always ≥ 0. Then the value 0 is obtained by setting γi = 0 for the indexes i

with di ≥ 0.
Next consider the case when all di ≥ 0 and

∑

di>0 γ̂
2
i
> c2. Then also

∑q

i=1 γ̂
2
i
> c2 and the

sphere (γ− γ̂)T (γ− γ̂) ≤ c2 does not contain the origin. The ellipsoid T (γ) =
∑q

i=1 diγ
2
i

is cen-
tered at the origin. The minimum of T (γ) when γ is in the sphere is obtained by expanding
the ellipsoid until it touches the sphere. The minimum is therefore obtained at some point
satisfying (γ− γ̂)T (γ− γ̂) = c2.

Finally consider the case when not all di ≥ 0. We can write:

T (γ) =
∑

di<0

di (γi − γ̂i + γ̂i )2 +
∑

di>0

diγ
2
i

Any value of T (γ) with (γ− γ̂)T (γ− γ̂) ≤ c2 can be decreased by increasing |γi − γ̂i | for some
γi with di < 0 and letting γi − γ̂i having the same sign as γi . Hence the minimum takes place
for a γ on the sphere (γ− γ̂)T (γ− γ̂) = c2.

Similarly it can be shown that, apart from the exception in the theorem, the maximum of
T (γ) is also attained for (γ− γ̂)T (γ− γ̂) = c2.

The solution to the problem of finding the minimum and maximum of γT Dγ subject to
(γ− γ̂)T (γ− γ̂) = c2 can be found from the results in [32]. There the expressions of K1 and K2

are derived. This completes the proof. ä
Since the acceptance/rejection intervals for the hypothesis testing of this approach are

obtained through the Scheffé multiple comparison method, they are tailored to comparisons
with any possible subsets of size smaller or equal q . This means that the significance α refers
to testing against all possible combinations of subsets of size smaller or equal q . This is the
reason why the Spjøtvoll method is considered to have a certain degree of conservativeness
(from a MC point of view), meaning that tends to prefer the null hypothesis, and rejects it
only when there is very strong evidence against it1.

Note that for our application certain parameters to be included in the candidate subsets
are already defined (the n parameters for unknown position and clock error), so that a vari-
ation of the method described must be applied, also described in [94]. In our case in fact
the regression functions have the form Ax +Cy∇, where the variables x are to be included in
every regression function. Furthermore we can consider a known variance matrix Qy y . For
this problem instead of using Equation (E.2), we can start from:

P ((∇̂−∇)T Q−1
∇̂∇̂(∇̂−∇) ≤χ2

α(q,0)) ≥ 1−α (E.9)

where q is the number of columns of the most comprehensive Cy considered, which should
include the true Cyt . The method applies in the same way, with the correct substitution to
be made (AT A with Q−1

∇̂∇̂
and qσ̂2Fα(q,m −q) with χ2

α(q,0)).

E.2. FORWARD AND BACKWARD SELECTION METHODS — UMPI
TESTS

In case we want to compare two subsets such that one is fully contained in the other (nested

models), the standard UMPI test can be defined and the corresponding test statistic has a

1In view of RAIM applications instead, this would mean that the method tends to have low power in detecting
anticipated alternative hypotheses, since it is equally powerful in detecting any type of alternative.
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known distribution, which is not always the case for the general test statistic derived by
Spjøtvoll. Defining H0 the hypothesis of anomaly in q1 satellites (subset 0), characterized
by design matrix A0 = [A Cy0 ], and Ha the hypothesis of anomaly in q2 > q1 satellites (subset
a), characterized by design matrix Aa = [A Cya ], the UMPI test statistic is:

T q2−q1
= êT

0 Q−1
y y ê0 − êT

a Q−1
y y êa (E.10)

where ê0 = P⊥
A0

y and ê2 = P⊥
Aa

y . For this test statistic it holds:

H0 : T q2−q1
∼χ2(q2 −q1,0)

Ha : T q2−q1
∼χ2(q2 −q1,λ)

(E.11)

with:
λ=∇T Q−1

∇̂∇̂∇ cf. Equation (4.7)

where ∇ is the bias sizes vector for the eventual anomaly present in the q2 − q1 satellites
that complement the set 0 of faulty satellites to the set a (hypothesis Ha). It can be shown
furthermore that the statistic in Equation (E.10) is actually the parameter significance test,
developed by the TU Delft school, on the q2−q1 additional faults. The parameter significance
test is presented in [101]. The derivation of the equivalence is in the following.

Proof. Ha can be defined as:
Ha : E(y) = A2x2

with x2 the unknown n+q2-components vector including q2 components for the bias vector
and A2 a m ×n + q2 geometry matrix including the ‘bias geometry’ in the last q2 columns
(A2 ≡ Aa). The null hypothesis would read:

H0 : E(y) = A2x2 C T x2 = 0

with:
C T =

[

0 Iq2−q1

]

stating that the extra q2 −q1 components of x are not significant and can be set to zero. The
PDF of the observable y under the two hypotheses reads:

H0 : fy (y |x2) = 1
(2π)m/2 det(Qy y )1/2 e− 1

2 (y−A2x2)T Q−1
y y (y−A2x2) with C T x2 = 0

Ha : fy (y |x2) = 1
(2π)m/2 det(Qy y )1/2 e− 1

2 (y−A2x2)T Q−1
y y (y−A2x2)

In order to apply the GLR criterion to obtain our test statistic, we have to maximize the likeli-
hood under the two hypotheses. Under the alternative hypothesis the maximum is attained
for x̂2a = (AT

2 Q−1
y y A2)−1 AT

2 Q−1
y y y [101], the ML estimate, whereas under H0 the ML estimate

has to be searched within the null space of C T , x̂20 ∈ R(D) with C T D = 0. One form of D is:

D =
[

In+q1 0
0 0

]

and the maximum likelihood under the null hypothesis is obtained with:

x̂20 = D((A2D)T Q−1
y y (A2D))−1(A2D)T Q−1

y y y
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But since A2D corresponds to just the first n + q1 columns of A2, containing only the ‘bias
geometry’ for the first q1 extra parameters, and therefore this estimate corresponds to the
ML estimate for the model including only the q1 extra parameters, say x̂1. The GLR reads
then:

e
− 1

2 (êT
20

Q−1
y y ê20−êT

2a
Q−1

y y ê2a ) = e− 1
2 (êT

1 Q−1
y y ê1−êT

2 Q−1
y y ê2)

since ê20 = ê1 is the residual vector for the model with q1 extra parameters only and ê2a = ê2

is the standard residual vector for the second model with q2 extra parameters. Taking the
natural logarithm, the test statistic becomes just the difference between the weighted sum
of squared residuals computed for the two models, which is just the difference of the OMT
statistics for the two models:

êT
1 Q−1

y y ê1 − êT
2 Q−1

y y ê2

This difference also equals ∇̂T Q−1
∇̂∇̂

∇̂ in previous notation (Equations (E.11), (4.7)), the nor-
malized squared length of the estimate of the biases in the extra q2 −q1 parameters. ä

Therefore setting a threshold on this test statistic in Equation (E.11) can be made setting
a predetermined PF A — where a FA here would mean excluding more satellites than what is
actually needed. The PF A for a single test is easily obtained but computing the total PF A from
the comparison of one set with all the different candidates is more complex. In fact, although
each single test statistic has a known χ2 distribution, we would have to monitor only the
maximum of the test statistics, which distribution is not known, or alternatively monitor
the full multivariate distribution of the test statistics and compute its integral over a convex
volume, which is not an easy task (this is a problem of MC, considered in Section 3.6.2).
Tables or numerical approximation can possibly be used to compute this value, or more
simply Bonferroni or Šidác approximations.

E.3. MINIMIZING MALLOWS’S C
p

(OR THE MSEP) AND OTHER

METHODS

E.3.1. MALLOWS’S C
p

As mentioned in Section 3.6.3, the idea behind this method is to select the dimension of the
subset of parameters for which a balance is reached between:

1. the error we make by leaving out parameters that are actually significant in the model
description (omission bias), decreasing when more parameters are included, and

2. the random error naturally propagated in the estimation process, that instead increases
when more parameters are to be estimated.

Let us start from the model in Equation (3.28), with Qy y =σ2I known. Considering each
component y

i
of the observable y , yi the mean of each observation (unknown) and ŷ

i
its

estimator, the corresponding Mean Squared Error of Prediction (MSEP) [67] is:

E [(ŷ
i
− yi )2] (E.12)

As mentioned a subset selection criterion is minimizing the average MSEP over all y compo-
nents (or the sum of the MSEPs). Note that in the TU Delft terminology this is just the Mean
Squared Error of the Estimation of the observable, y estimated by ŷ .
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Define At (m×n) the actual geometry matrix, unknown, that relates the actual unknown
parameters x to the expected measurements y . If we partition At in two submatrix:

At = [A A AB ]

and we use only a submatrix, say A A of dimensions m ×q , for estimating the corresponding
parameter vector xA (of dimension q smaller than the true x, q < n), we have:

x̂ A = (AT
AQ−1

y y A A)−1 AT
AQ−1

y y y

and this estimator is biased by:

E(x̂ A)−xA = (AT
AQ−1

y y A A)−1 AT
AQ−1

y y AB xB (E.13)

where xB are the regression parameters left out by the use of the submatrix A A only. This
bias is usually referred to as omission bias, because is due to the omission of some regression
parameters2. We have, for each measurement i :

ŷ
i
− yi = A Ai

x̂ − [A Ai
ABi

]

[

xA

xB

]

= A Ai
(x̂ A −E(x̂ A)+E(x̂ A)−xA)− ABi

xB

where A Ai
is the i -th row of matrix A A. If we define bi = A Ai

(E(x̂ A)−xA)− ABi
xB = (A Ai

·
(AT

AQ−1
y y A A)−1 AT

AQ−1
y y AB − ABi

)xB (with Equation (E.13) the omission bias in the expected
measurement, we can rewrite the previous espression as:

ŷ
i
− yi = A Ai

(x̂ A −E(x̂ A))+bi

Following, the expected squared error of prediction (estimation) is:

E [(ŷ
i
− yi )2] = A Ai

Q x̂A x̂A AT
Ai
+b2

i (E.14)

because the cross terms that results from taking the square (ŷ
i
− yi )2 present the quantity

x̂ A −E(x̂ A), which has expectation zero, and therefore cancel out.
We furthermore have for the expectation of the Sum of Squared Errors (SSE):

E

[

m
∑

i=1
(y

i
− ŷ

i
)2

]

=
m
∑

i=1
b2

i + trace(Qê A ê A ) =
m
∑

i=1
b2

i + (m −q)σ2 (E.15)

where ê A = y − A A x̂ A, and trace(Qê A ê A ) = (m − q)σ2 because m − q is the dimension of the
projection space R(A A). Note that this is not the sum of the quantities in Equation (E.14),
since we have no longer the (unknown) true yi but the observable y

i
. From the above Equa-

tion we can obtain an estimate of the sum of the omission biases by replacing the left hand
side of this equation by the sample sum of squared errors SSE = êT

A ê A. If we sum the mean
squared error of prediction in Equation (E.14) over all the observations, we obtain the Mean
Sum of Squared Errors of Prediction:

MSSEP = E

[

m
∑

i=1
((ŷ

i
− yi )2

]

= trace(A AQ x̂A x̂A AT
A)+

m
∑

i=1
b2

i = qσ2 +
m
∑

i=1
b2

i (E.16)

2Another type of bias can possibly be present, the selection bias, when the model has been selected from the
same data used to estimate the parameters. This bias is generally difficult to compute and we refer to [67]
and [21] for further details.
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and estimating the sum of biases using Equation (E.15) and replacing the expected SSE by
the sample SSE as mentioned we obtain:

MSSEP ≈ qσ2 + êT
A ê A − (m −q)σ2 = êT

A ê A − (m −2q)σ2 (E.17)

If we divide through by σ2 we obtain Mallows’s C p statistic3 [64] :

C p =
êT

A ê A

σ2
− (m −2q) (E.18)

The subset to be chosen is the one for which the C p assumes the lowest value, therefore
for which the MSEP is lowest (the MSEP is obtained dividing the MSSEP by the number of
observations m). Other methods exist which employ modified C p values but the rationale
behind the criteria is about the same. We note that the method does not foresee further
checking on significance — just selection among a set of similar candidate models is made.

In case of generic Qy y a similar approach can be followed but instead of estimating the
MSSE as in Equation (E.16) we would estimate the Mean Weighted Sum of Squared Errors of
Prediction:

MW SSEP = E [(ŷ − y)T Q−1
y y (ŷ − y)] (E.19)

This leads to the following expression for the Generalized C p :

GC p = êT
AQ−1

y y ê A − (m −2q) (E.20)

Again the subset that minimizes the GC p should be chosen as best candidate model.

E.3.2. OTHER METHODS

Similarly to Mallows’s Cp , the R2
ad j

statistic can be used to determine the fit of a model to the

data. Let us consider the standard ANOVA model in Equation (3.28). The R2 statistic, known
as coefficient of multiple determination, is defined as:

R2 = 1−
êT

M êM

êT
0 ê0

= 1−
SSE

SST

(E.21)

where êM is the residual vector computed using the model M (subset of parameters) under
consideration (in fact is the êa) and ê0 is instead the residual under the standard null hypoth-
esis E(y) = Ax0 with A = [1,1, . . . ,1]T and x0 a single parameter (the mean ȳ) as previously
described. SST stands for Total Sum of Squares and SSE stands for Error Sum of Squares.
The larger is the value assumed by the R2, the better is the fit of the model M .

The quantities SSE and SST are represented geometrically in Figure E.1 with a compari-
son with the relative parameters from TU Delft theory presented in Chapter 5 (the residuals
under null hypothesis and alternative hypothesis, ê0 and êa , and the estimated measure-
ments under null and alternative hypothesis ŷ0 and ŷa).

The adjusted R2
ad j

statistic was developed to compensate for the issue that the R2 always

increases when extra regression parameters are added to the model. The R2
ad j

statistic is

defined as:

R2
ad j = 1−

êT
M êM /(m −q)

êT
0 ê0/(m −1)

= 1−
SSE /(m −q)

SST /(m −1)
(E.22)

3The subscript p is used because the number of parameters q is sometimes referred to with the letter p.
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Figure E.1: Geometric visualization of the ANOVA parameters SSE , SST and SSR (Sum of Squares of the
Regression) and their correspondence to the equivalent of the TU Delft theory: SSE ≡ êT

a êa , SST ≡ êT
0 ê0,

SSR ≡ ‖ŷ0 − ŷa‖2.

where q is the number of parameters employed in model M . SSE /(m − q) is the residual
mean square and since SST /(m − 1) stays constant when comparing different models, the
R2

ad j
will only increase when a parameter is added if the new parameter reduces the residual

mean square.
Both R2 and R2

ad j
do not have a standard known distribution. For our case of generic

variance matrix Qy y the R2
ad j

assumes the form:

R2
ad j = 1−

êT
MQ−1

y y êM /(m −n −q)

êT
0 Q−1

y y ê0/(m −n)
(E.23)

and also in this case the R2
ad j

increases when the residual mean square êT
MQ−1

y y êM /(m−n−q)
decreases. This quantity is the same as the OMT statistic for the model M divided by its
degrees of freedom.

The subset selection criterion of choosing the subset with maximum R2
ad j

tends to prefer

subsets with larger number of parameters than the C p method, and generally the C p method
is preferred. Recalling the C p formula:

C p =
êT

A ê A

σ2
− (m −2q)

the quantity 2q can be considered as a form of penalty for adding an extra parameter in the
regression model. It is shown in [67] that the R2

ad j
method is approximately equivalent to

the Mallows’s method in which instead of using 2q as penalty measure, a lower value, just q ,
is adopted.

Note that both R2
ad j

and C p methods are fundamentally equivalent to employing UMPI
tests (GLR criterium) to select between one or another subset, with a particular choice for
the significance of the test — a quite large significance compared to the standard 0.05 or
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0.1 commonly employed in hypothesis testing. In case of the R2
ad j

criterium, when nested
models are compared this is in fact equivalent to running UMPI test with significance α set
to 50%.

Another subset selection method is the Akaike’s Information Criterion (AIC), which is
the Mallows’s equivalent developed in information theory (for the same model of Equa-
tion (3.27)). The AIC results in a formula identical to the C p , obtained though through dif-
ferent reasoning. In fact the AIC is obtained looking for the subset that minimizes the ex-
pectation of the Kullback-Leibler mean information. Details on this method can be found
in [1].

The p-values, briefly introduced in Section 3.6.2, can also be employed as discriminants
to select among multiple candidate subsets. To employ this Subset Selection criterium, a null
hypothesis has to be chosen and a statistical test has to be run for each alternative model. A
p-value is computed for each alternative model and, in case of rejection of the null hypoth-
esis, the alternative hypothesis for which the smallest p-value was computed is chosen as a
new model. The p-value was defined for the realization T0 of a test statistic T , in case of test
with right-sided rejection region, as:

p(T0) =
∫+∞

T0

fT |H (T |H)dT cf. Equation (3.26)

In case of a symmetric two-sided rejection region (of the type K : T <−k ∪T > k, as it is the
case for the w-tests), the p-value for T0 can be defined as:

p(T0) = 2
∫+∞

T0

fT |H (T |H)dT (E.24)

The p-value method reads therefore:

1. Choose a null hypothesis H0 (reference model/subset of parameters) and define the
alternative hypotheses Hi (alternative models/subsets)

2. Run a UMPI test for each alternative hypothesis

3. If, applying an MC criterium (for instance if none of the comparison tests run is re-
jected)4, the null hypothesis is not rejected, accept the null hypothesis model

4. If the null hypothesis is rejected, compute the p-values for each of the test statistic
computed

5. Choose the alternative hypothesis/model corresponding to the test statistic realization
characterized by the smaller p-value

We refer to [33] for further discussion on the p-values.

4An MC method that foresees a specific test for detection as the OMT can also be applied.



F
Vslope AND RELIABILITY

In Section 4.1.2 the Vslope was introduced as a parameter to monitor the effect of a measure-
ment bias on the position domain. In this Appendix we explain this parameter making use
of the reliability concepts developed by the TU Delft school and we provide a geometrical
interpretation for it. More on the TU Delft testing theory can be found in Section 3.6.1, in
Chapter 5 and in [101]. We defined already in Section 3.6.1 the quantity:

λ=∇T Q−1
∇̂∇̂∇ cf. Equation (4.7)

With reference to [101], the following quantities can also be defined:

λx̂ =∇x̂T Q−1
x̂0 x̂0

∇x̂ (F.1)

λy =∇yT Q−1
y y∇y (F.2)

These quantities are visualized in Figure F.1. They allow writing in simple way the relation
between internal and external reliability. λ measures the incidence of the error on the test
statistic (internal reliability, i.e. detectability of the fault), while λx̂ measures the effect on
the positioning error (external reliability, i.e. effect of undetected fault).

As a general relation it holds:

λy =λx̂ +λ (F.3)

In particular:
√

λx̂ = ‖A∇x̂‖Q−1
y y

(F.4)

With reference to Figure F.1:
√

λx̂ = ‖P A∇y‖Q−1
y y

(F.5)

where P A = A(AT Q−1
y y A)−1 AT Q−1

y y is the orthogonal projector onto R(A) in the metric defined

by Q−1
y y . Considering the vectors ∇y and P⊥

A ∇y and naming ϕ the angle between the two, it is
possible to write:

tanϕ=
‖P A∇y‖Q−1

y y

‖P⊥
A
∇y‖Q−1

y y

=
√

λx̂p
λ

(F.6)
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where P A = I − A(AT Q−1
y y A)−1 AT Q−1

y y is the orthogonal projector onto R(A)⊥ in the metric

defined by Q−1
y y . Therefore the Vslope is directly linked to this angle, with the difference that

only the vertical component of x is taken into account:

tanϕ′ =
‖A j 3∇x̂‖Q−1

y y

‖P⊥
A
∇y‖Q−1

y y

=
√

AT
j 3Q−1

y y A j 3 ·
|(∇x̂)3|p

λ
=

1

σx̂3

Vslope (F.7)

where σ−1
x̂3

=
√

AT
j 3Q−1

y y A j 3 (used in the last equivalence) accounts for the transformation

from the solution space R4 ≡ R(A) to the measurement space Rm through the matrix A. In
the last passage we made use of:

Vslope =
|(∇x̂)3|p

λ
(F.8)

with ∇x̂ = E(x̂ − x). As a matter of fact, under the assumption of the presence of an outlier
in the measurements from a single satellite (Cy is a vector of all zeros except a 1 at the i -th
component/satellite and ∇ is just a scalar):

∇y =Cy∇=

















0
...
∇
...
0

















→ i thcomponent

and of Qy y being a diagonal matrix, it is possible to obtain the original Equation (4.4):

|(∇x̂)3|p
λ

=
|
∑

j K3 j∇y j |
√

∇yT Q−1
y y (I −P A)∇y

=
|K3i |∇

√

∇2(I −P A)i i /σ2
i

=
|K3i |σi

√

(1−P Ai i
)

In Equation (F.7) we obtained again the same expression of Equation (4.19), a well known
result of the Delft school.

As concluding remark, the Vslope represents the ratio between the expectation of the po-
sitioning error (in the vertical dimension) and the projection, on the space orthogonal to the
position space, of the expectation of the range measurement error.
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Figure F.1: Geometrical visualization of λ, λx̂ and λy , from [101].





G
OPTIMALITY OF W-TEST FOR TESTING A

SPECIFIC ERROR

In Section 4.1.2 we discussed the increase in detection power (in case of single satellite faults)
obtainable employing the w-tests instead of the OMT. In this Appendix we provide a demon-
stration of the optimality of the w-test in detecting the specific type of faults that it addresses,
with respect to any other test built around different fault models.

The optimality of the w-test in detecting an error in one single measurement, when the
w-test targets that specific measurement, can be demonstrated by assuming the measure-
ments being biased by a different generic error vector. It is shown that the highest power is
obtained when the w-test targets the specific error (has same direction, therefore affects the
same measurement).

Proof. The w-test is constructed with alternative hypothesis:

E(y) = Ax +Cy∇

with Cy an m-dimensional vector and ∇ scalar. Instead the measurement is considered to be
biased in reality as:

E(y) = Ax + C̃y ∇̃

Also C̃y is an m-dimensional vector and ∇̃ a scalar. This approach allows considering even
failures that affect multiple measurements, but with a particular “pattern”, i.e. with only one
degree of freedom.

The next step is to determine the distribution of the test statistic under the alternative
hypothesis considering this particular error. The idea is to maximize the power of the test,
and this is equivalent to maximize the non-centrality parameter of the test distribution λ,
since the power is a monotonously increasing function of λ.

The non-centrality parameter of the test distribution can be obtained computing:

E(ê0) = P⊥
A (Ax + C̃y ∇̃) = P⊥

A C̃y ∇̃ =Qê0ê0Q−1
y y C̃y ∇̃

E(∇̂) = (C T
y Q−1

y y Qê0ê0Q−1
y y Cy )−1C T

y Q−1
y y E(ê0)

= (C T
y Q−1

y y Qê0ê0Q−1
y y Cy )−1C T

y Q−1
y y Qê0ê0Q−1

y y C̃y ∇̃
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λ= E(∇̂)T Q−1
∇̂∇̂E(∇̂)

Q∇̂∇̂ = (C T
y Q−1

y y Qê0ê0Q−1
y y Cy )−1

From this an expression for λ can be obtained:

λ= ∇̃C̃y
T

Q−1
y y Qê0ê0Q−1

y y Cy (C T
y Q−1

y y Qê0ê0Q−1
y y Cy )−1C T

y Q−1
y y Qê0ê0Q−1

y y C̃y ∇̃

This is an expression of the form a2σ2
∇̂∇̂

, and can be maximized by maximizing a, that is
maximizing:

a = ∇̃C̃y
T

Q−1
y y Qê0ê0Q−1

y y Cy (G.1)

We can take out ∇̃ from the expression because it is just a weight, and quantifies the size of
the error. We are interested in maximizing over Cy . From the last expression we can write:

C̃y
T

Q−1
y y Qê0ê0Q−1

y y Cy = C̃y
T

P⊥T
A Q−1

y y P⊥
A Cy

This represents a scalar product in the metric defined by Q−1
y y . This means it can be written

as:
(P⊥

A C̃y )T Q−1
y y (P⊥

A Cy ) = ‖P⊥
A C̃y‖Q−1

y y
‖P⊥

A Cy‖Q−1
y y

cosφ

where φ is the angle between the two vectors P⊥
A Cy and P⊥

A C̃y . Therefore the expression
reaches its maximum for φ= 0 and for φ=π (considering unity/fixed length of C̃y ), when the
two projections onto the space perpendicular to R(A) are aligned (the direction of the error
is not important indeed). At the end what really counts is the component perpendicular to
the space spanned by A, R(A), since no test can detect an error lying in the space R(A), and
in R(A)⊥, Cy has to be aligned with C̃y .

In the general case, when Cy is not a vector but a matrix m ×q , i.e. we want to use a test
that can detect errors in more than one dimension, the expression that was before a2σ2

∇̂∇̂
becomes now:

aT Q∇̂∇̂a

equivalent to the squared length of vector a in the metric of Q∇̂∇̂. This time each component
of a is a scalar product as before between the projection on R(A⊥) of the corresponding
column of Cy and the projection of C̃y . Therefore to maximize the length of vector a it is
necessary to maximize all the components of a, this is the case when the projections of all the
columns of Cy on R(A⊥) are the same as the projection of C̃y . This means the best test could
use a matrix Cy made of columns equal to each other — this would yield a non centrality
parameter λq proportional to ql 2, where l is the length of each vector of Cy . But using a
Cy matrix with columns equal to each other is equivalent to use a single vector Cy , since no
extra degree of freedom is allowed for the bias.

As a conclusion the highest power is reached using a w-test, when knowing exactly the
signature of the error, rather than using a more general test with q > 1. ä



H
VPL COMPUTATION IN THE STANDARD

RAIM

In this Appendix we provide an interpretation for the Equation (4.25) given in Section 4.1.2
(based on [107]). With reference to Equation (4.29), we have:

PHMI|Ha = P (T < k ∩|x̂3 −x3| > AL|Ha) =
P (|x̂3 −x3| > AL|Ha) ·P (T < k||x̂3 −x3| > AL|Ha)

The two probabilities on the second line are uncorrelated, since T is a function of ê and ê

is uncorrelated with x̂3 (under the common assumption that the observables are normally
distributed), therefore it holds:

PHMI|Ha = P (|x̂3 −x3| > AL|Ha) ·P (T < k|Ha) (H.1)

The vertical position estimator will be distributed as x̂3|Ha ∼ N (x3 +∇x̂3,σ2
x̂3

), where ∇x̂ =
(AT Q−1

y y A)−1 AT Q−1
y y∇y is the bias in the position estimate directly proportional to the bias in

the measurement. Therefore:

PHMI|Ha =Φ

(−AL+∇x̂3

σx̂3

)

·P (T < k|Ha)

with Φ the cumulative distribution function of a standard normal distribution. If we approx-
imate PH M I ≈ PH M I |Ha ·P (Ha), and consider ∇x̂3 = max[Vslope ]k, i.e. we suppose E(T ) = k,
we have:

Φ

(−AL+max[Vslope ]k

σx̂3

)

=
PHMI

P (Ha)P (T < k|Ha)

If we now impose a required PHMI and invert the above Equation, the equivalent of the AL
would be in this case the PL and we have:

max[Vslope ]k −PL =σx̂3Φ
−1

(

PHMI
P (Ha )P (T<k|Ha )

)

⇒

PL = max[Vslope ]k −σx̂3Φ
−1

(

PHMI
P (Ha )P (T<k|Ha )

)

⇒
PL = max[Vslope ]k +σx̂3 kMD

which coincides with Equation (4.25) as long as PMD = PHMI
P (Ha )P (T<k|Ha ) . We suppose the PMD

is meant to be set at PHMI
P (Ha ) ≤ PHMI

P (Ha )P (T<k|Ha ) , when the use of a prior probability for Ha is

foreseen.

205





I
SOLUTION SEPARATION AND UMPI TESTS

Here we derive the relations existing between the UMPI test presented in the Section 3.6.1
and the SS test presented in Section 4.2.1. First we show the main relationships holding
between the test statistics and between the actual quantities in observation and position
domains. Following we analyze in more detail these relationships treating separately the
one-dimensional threat and the multi-dimensional threat cases.

I.1. TEST STATISTICS IN OBSERVATION AND SOLUTION DOMAINS
As in Equation (5.1) a general formulation of T q is:

T q = ‖P⊥
A Cy ∇̂‖2

Q−1
y y
= ‖P⊥

A ∇̂y‖2
Q−1

y y
(I.1)

On the other hand we know from for instance [97] that:

x̂0 − x̂a = ∇̂x̂ = (AT Q−1
y y A)−1 AT Q−1

y y Cy ∇̂ (I.2)

from which we can write:
A∇̂x̂ = P ACy ∇̂ = P A∇̂y (I.3)

where x̂0 is the solution under the null hypothesis while x̂a is the solution computed under
the alternative hypothesis.

Therefore we can notice that the realization of the test statistic Tq is the norm (in the met-
ric defined by matrix Q−1

y y ) of the projection of the estimator of the bias vector ∇̂y = Cy ∇̂ in

the space perpendicular to R(A), whereas the SS is directly related to the projection of the ∇̂y

in the space R(A). This means the two test statistics are just the two orthogonal components
of the same vector ∇̂y .

From the previous equation we can further derive:

‖∇̂x̂‖2
Q−1

x̂0 x̂0

= ‖P ACy ∇̂‖2
Q−1

y y
(I.4)

Therefore, the Pythagoras relation holds, and we can write the following relation between
the UMPI test statistic and the norm of the SS:

‖Cy ∇̂‖2
Q−1

y y
= ‖P⊥

A Cy ∇̂‖2
Q−1

y y
+‖P ACy ∇̂‖2

Q−1
y y
= T q +‖∇̂x̂‖2

Q−1
x̂0 x̂0

(I.5)
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Note that this represents the central relation holding between the estimators of the biases
in observation and position domains, and can be visualized as in Figure I.1, though note
that in figure only the representation (through matrix A) of the position domain in the Rm

space is shown (A∇̂x̂ and Ax̂ for instance). ∇̂y is obtained by projecting y onto R(A Cy )

to get ŷ
a

and then decomposing ŷ
a

in ∇̂y + Ax̂a , therefore the procedure to obtain the test

statistics is: project y onto R(A Cy ) to get ∇̂y + Ax̂a , then project ∇̂y onto R(A) to obtain

A∇̂x̂ (representation through matrix A of the SS statistic ∇̂x̂) and onto R(A)⊥ to obtain P⊥
A ∇̂y

whose norm is the T q test statistic.

Figure I.1: Comparison between UMPI and SS test statistics. Observation space Rm with m = 3, n = 2 and
q = 1. The error vector ∇y = Cy∇ has only one degree of freedom. Given a measurement y , this is projected
onto R(A Cy ) to get ∇̂y (and Ax̂a), then ∇̂y is projected onto R(A) to obtain the SS statistic (more precisely a
linear combination of it), A∇̂x̂, and onto R(A)⊥ to obtain P⊥

A
∇̂y which norm is the Tq test statistic realization.

The relation described by Equation (I.5) is not the only one relating the two test statistics:
in fact ∇̂y is constrained to lie on R(Cy ); if R(Cy ) spans any of the base vectors of R(A)⊥,

or in case q > n, to the same ∇̂x̂ may correspond multiple values of T q , otherwise to ∇̂x̂

corresponds only one value of T q .
This second relation can be visualized as well in Figure I.1. In this case R(A Cy ) is the full

Rm space, so y ≡ P(A Cy ) y = ŷa , but ∇̂y lies on R(Cy ) so that A∇̂x̂ and Tq are fully determined
as the two orthogonal components of it.

I.2. ACTUAL BIASES IN OBSERVATION AND SOLUTION DOMAINS
The same relation as Equation (I.5) holds between the true unknown biases in observations
and position domains, and was developed by the Delft school when defining the concepts of
internal and external reliability of the test [101]. Internal reliability relates to the power of the
test to detect a bias in the observations whereas the external reliability relates to the effect
an undetected bias has on the position solution. In particular, given a certain anomaly is
present, causing a bias Cy∇ in the measurements, the corresponding effect on the position
solution will be, as in Equation (I.2), ∇x̂ = (AT Q−1

y y A)−1 AT Q−1
y y Cy∇ (note the notation now

with a single hat).
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We already defined λ in Equation (4.7). With reference to [101], the following quantities
can be also defined:

λx̂ =∇x̂T Q−1
x̂0 x̂0

∇x̂ = ‖A∇x̂‖2
Q−1

y y
= ‖P A∇y‖2

Q−1
y y

(I.6)

λy =∇yT Q−1
y y∇y = ‖∇y‖2

Q−1
y y

(I.7)

These quantities are visualized in Figure F.1. They allow writing in simple way the relation
between internal and external reliability. λ is in fact the non-centrality parameter of the dis-
tribution of the test T q under the alternative hypothesis (Equation (4.7)) and measures the
incidence of the error on the test statistic (i.e. detectability of the fault), λy relates to the size
of the detectable bias in the observation domain (internal reliability) while λx̂ measures the
effect on the position solution (external reliability, i.e. effect of undetected fault). A simi-
lar visualization can be made for the quantities in Equation (I.5). As a general relation, the
equivalent of Equation (I.5), it holds:

λy =λ+λx̂ (I.8)

This represents the main relation holding between internal and external reliability (λy and
λx̂).

I.3. CASE q = 1 ( W-TEST )
In case q = 1 (that is the case of the w-test) ∇̂ is a scalar and combining Equations (I.1)
and (I.4):

T 1

‖x̂0 − x̂a‖
2
Q−1

x̂0 x̂0

=
‖P⊥

A Cy ∇̂‖2
Q−1

y y

‖P ACy ∇̂‖2
Q−1

y y

=
‖P⊥

A Cy‖2
Q−1

y y

‖P ACy‖2
Q−1

y y

Therefore in this case, as long as the denominator ‖P ACy‖2
Q−1

y y
6= 0, T q and the norm of the SS

are directly proportional, the proportionality constant depending from the geometry matri-
ces (the dependency from the bias size has been taken out). First let us consider the standard
case ‖P ACy‖2

Q−1
y y
6= 0.

Since the direction of x̂0 − x̂a = ∇̂x̂ is fully determined by Cy as seen in Equation (I.2),
there is a univocal correspondence between a value of the statistic T q and the SS ∇̂x̂, except

for the sign (±∇̂x̂ yield the same T 1).
This can be seen easily in Figure I.2. The space Rm of the observations is shown. The

space R(Cy ) on which the estimate of the bias vector ∇̂y has to lie is a simple straight line
and a value (for instance a threshold) for the T q defines a specific unique vector (also in the

projection on R(A)⊥), to which corresponds a unique projection on R(A).
If in the SS approach a threshold is set for each component of ∇̂x̂ (this is represented as a

parallelogram constraint in the space R(A) with dashed lines in figure), it is evident that only
one of the n thresholds (n = 2 in the Figure) actually constrains the SS, since the direction of
this vector is already known.

Let us consider the limiting case of ‖P ACy‖2
Q−1

y y
= 0. This means that Cy lies on R(A)⊥, and

∇̂x̂ would always be zero for any value of the bias ∇. In this case the anomaly considered has
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Figure I.2: Comparison between w-test and SS test statistic. Observation space Rm with m = 3, n = 2 and q = 1.
The error vector ∇y = Cy∇ has only one degree of freedom, therefore only one threshold on the statistic T q is

sufficient to fully constrain it. Vector ∇̂y is given by ∇̂y =Cy ∇̂.

no effect at all on the position domain, therefore the SS test never leads to rejection, whereas
the UMPI test can still lead either to rejection or acceptance as it operates in R(A)⊥.

In the other limiting case, when ‖P⊥
A Cy‖2

Q−1
y y

= 0, both UMPI test and SS are not able to

detect any fault: in fact Cy ⊂ R(A), and in the alternative hypothesis there is not just one
solution for the maximum likelihood estimation of position and bias, but an infinite number
of solutions.

I.4. CASE q > 1 (T q TEST )
In case q > 1 things are not that simple anymore. We can refer to Figure I.3, where the detec-
tion regions in case of adoption of T q test on one hand or SS test on the other are shown. In

particular the detection regions are shown in the observation bias domain (∇̂ in Rq ) and in
the position domain (∇̂x̂ in Rn) for the case n = q = 2.

First of all we note that, as clear also from the equivalent expressions of T q in Equa-
tion (5.1), an upperbound to the test statistic defines an (hyper-)ellipsoid in the space R(Cy ).
The bias size vector ∇̂ has dimension q , whereas in the position domain ∇̂x̂ has dimension
n. After this observation, it is clear that in the comparison between T q and the SS ∇̂x̂ the val-
ues q and n (n being the dimensions of R(A) and also of the position solution) are important
factors.

There is to consider furthermore that the q-dimensional ellipsoidal constraint lies on
R(Cy ), but we are fundamentally interested in its projection on R(A). In the same way, to
move from the SS to the T q domain we conversely first obtain the representation of the po-

sition domain in R(A), then project from R(A) to R(Cy ) and following to R(A)⊥, with ref-
erence also to Figure I.2. The projection of R(Cy ) on R(A) is given by the matrix P ACy =
A(AT Q−1

y y A)−1 AT Q−1
y y Cy (in the metric defined by Q−1

y y ). Depending on whether R(Cy ) is per-

pendicular to R(A) or not, the matrix AT Q−1
y y Cy has rank smaller or equal than both q and n,
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Figure I.3: Comparison between the detection regions of T q test and the SS test statistic, case n = q = 2, Cy not
generating a subspace perpendicular to the space R(A). At the top is shown the transformation of the detection
region for the T q test from range fault domain (∇̂) to position bias domain (∇̂x̂), whereas at the bottom is the

transformation of the detection region for the SS test from position bias domain (∇̂x̂) to range fault domain (∇̂).

r = rank(AT Q−1
y y Cy ) ≤ min[q,n]. The rank of AT Q−1

y y Cy , r , defines the number of dimensions
on which a direct correspondence links the constraint in R(A) given by the SS test and the
constraint in R(Cy ) given by the T q test.

In general, an upper-bound on T q determines a q-dimensional ellipsoid in R(Cy ). Its
projection on R(A) will be an r -dimensional ellipsoid.

Conversely, when a threshold is set in the SS approach for each component of ∇̂x̂, this
determines an hyper-rectangular constraint in the position domain, to which corresponds
an hyper-parallelogram in R(A). Its planes will intersect the r -dimensional subspace pro-
jection of R(Cy ) on R(A) generating either a closed polyhedrum or an open figure. The
planes generate constraints in r dimensions, therefore they will create a polyhedrum in the
q-dimensional R(Cy ) only if r ≥ q , otherwise the constraint does not constitute a full bound
in the range bias ∇̂ domain (and therefore no finite threshold for T q ).

In most general cases the matrix AT Q−1
y y Cy will be of full rank r = min[q,n].

I.5. NUMERICAL EXAMPLE
Based on a specific geometry (Figure I.4), the detection regions for the two tests (Equa-
tions (5.1) and (4.56)) have been determined for the case q = n = 2. The detection regions
are shown in Figures I.5 and I.6 for different couples of assumed faulty satellites, and with
the same significance level set for the two statistics. In particular, a rectangular detection
region has been chosen for the horizontal dimensions ∇̂x̂1 and ∇̂x̂2, in such a way that for
each of the 2 dimensions the significance is set to αi = 10−3. By numerical MC integration,
this has been found to be equal to a total significance α, slightly different in each case but
always α ≈ 0.002, to which the UMPI test threshold is based. The geometry matrix and all
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the geometric relationships are developed as in the case of parameters estimation for the 4
GNSS unknown (position and clock error), only the constraint is applied to the two horizon-
tal coordinates (in this example). As previously noted, the UMPI detection region results in
an ellipse in this two-dimensional case.

Figure I.4: Skyplot of a real GPS geometry employed for the simulation.

I.6. CONSIDERATIONS ON THE TWO METHODS AND ON IDEAL

TESTING
Let us try to understand here what is the impact of the use of different test statistics with
their corresponding detection regions on the performances of the tests.

The detection regions as shown in Figures I.5 and I.6 in the same domain of position bias
are different and this obviously leads to different performances of the tests. The boundary
of the UMPI detection region is characterized by equally likely realizations of ∇̂x̂ under the
null hypothesis and this results in an easier monitoring of the PF A and related performance
parameters of the UMPI test. On the other hand, it is evident how the SS test accepts re-
alizations of ∇̂x̂ fairly unlikely under the null hypothesis of no fault — allegedly, since the
eventual corresponding fault would not be dangerous by an integrity view point.

Since the SS test explicitly neglects the anomalies that have no effect in the position do-
main, we can expect that the power saved from neglecting those anomalies will be gained
to detect actually dangerous anomalies. Even though it is likely to obtain indeed some gain
(though difficult to quantify), the SS test is not optimal from an integrity point of view. This
can be easily seen in Figure I.7, that shows an example from the same satellite geometry in
Figure I.4. In this figure the case of two different failures is plotted, and the distributions of
the test statistic ∇̂x̂ and of the positioning error x̂0 − x are shown. In particular, the same
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Figure I.5: Detection regions of SS test and UMPI test in the position domain, case PRN5 and PRN7 possibly
faulty. On the axes the SS statistics defined in Equation (4.51). The blue rects define the SS thresholds, whereas
the red ellipse define the UMPI statistic threshold (T q = k propagated in the position domain by Equation (I.2)).
The scatter represents the distribution under the null hypothesis of no failures.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

∇x
1

∇
x
2

Figure I.6: Detection regions of SS test and UMPI test in the position domain, case PRN26 and PRN28 pos-
sibly faulty. On the axes the SS statistics defined in Equation (4.51). The blue rects define the SS thresholds,
whereas the red ellipse defines the UMPI statistic threshold (T q = k propagated in the position domain by
Equation (I.2)). The scatter represents the distribution under the null hypothesis of no failures.

couple of satellites failing is considered, but two different vector biases are analyzed, a first
one such that ∇x̂ = [k1 k2]T and a second one ∇x̂ = [−k1 k2]T , where k1 and k2 are the
threshold values for the SS tests. Therefore shown are the distribution in specific alternative
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hypothesis of fault. The black lines in figure are indeed the thresholds k1 and k2 of the SS
tests, whereas the red lines may represent the Alert Limits. The pink ellipse and scatter rep-
resent the distribution of the corresponding statistic ∇̂x̂, whereas the blue ellipse and scatter
represent the distribution of the positioning error x̂0 −x.
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Figure I.7: Distributions of SS test statistics and of position error x̂0−x, case PRN26 and PRN28 faulty by two dif-
ferent bias vectors, ∇x̂ = [k1 k2]T and ∇x̂ = [−k1 k2]T . On the axes the SS statistics defined in Equation (4.51).
The black straight lines define the SS thresholds, whereas the red straight lines define the ALs. The pink scatters
represent the distributions of the SS statistic ∇̂x̂ whereas the blue scatter represents the distribution of the error
x̂0 −x.

The probability PPF that the position error is bigger than the AL (occurrence named ‘Po-
sitioning Failure’) is the area of the blue ellipses that exceeds the red lines AL. The probability
PMD that a test leads to acceptance (so that no Alert is raised) is in case of SS test the area of
the pink ellipses that is inside the black lines (thresholds of the SS test).

The PHMI, under assumption of occurrence of an alternative hypothesis, is the product of
the two, PHMI = PPF ×PMD (see also Equation (3.30)), as long as the two events, positioning
failure and acceptance of the test, are uncorrelated. This is always the case when using the
UMPI or the SS test statistics, since both statistics are linear combinations of ê0, which is
uncorrelated with x̂0.

It is evident how the simple rectangular shape of the detection region of the SS test cannot
take into account the different shapes of blue and pink ellipses, and the PHMI associated to
the two faults, characterized by very similar PPF , are very different (in particular, the PMD

are very different). In fact, in the case on the left almost half of the pink ellipse and scatter
is inside the detection region, whereas on the right the fraction inside is much smaller. With
an optimal test instead, we would expect to detect an equally dangerous failure occurrence
with the same power. From this point of view, also the UMPI test is not optimal. In fact for
integrity purposes we may be interested not in detecting a whatever fault but only a fault
which is actually dangerous in terms of its effect on the position domain.
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I.7. NOTE ON TU DELFT DIA PROCEDURE
The UMPI test for GNSS applications was introduced by the TU Delft school and employed in
the DIA procedure. As mentioned before in Section I.2, the Delft theory includes the reliabil-
ity theory (Equations (I.5) and (I.8)), that allows to monitor the effects of observations biases
on the position domain. This allows to tailor the thresholds choice and de-weight anomalies
that have only little effect on the position domain, in similar way as the SS algorithms. The
DIA procedure is described in detail in Chapter 5, as well as in [5], [97] and [101].

I.8. CONCLUSIONS
The comparison between SS and UMPI tests led to the following results:

• In case of q = 1, one-dimensional threat, SS and UMPI tests are equivalent in the strong
majority of the cases. Testing on each of the SS component is in reality equivalent to
testing only one of them, the one creating the tightest bound, since the bias has only
one dimension. The only cases in which SS and UMPI tests can lead to very different
results occur when the vector Cy is perpendicular to the space R(A), in which cases the
SS would always accept the null hypothesis whereas the UMPI w-test can still reject it.
On the other hand these cases of exact perpendicularity are supposed to be very rare,
and they can be furthermore considered a limiting case for the use of the w-test, a case
for which the threshold for the w-test should be set to infinity (to achieve equivalence).
Therefore, when reserving the possibility of setting the threshold for the w-tests to in-
finity, UMPI and SS can be considered equivalent in the one-dimensional threat case.

• In case of q > 1, SS and UMPI tests lead to different results. The main difference be-
tween the two approaches lies in the fact that the SS statistics looks only at the effect
of possible outliers in the position domain, in such a way that the outliers or faults that
have no influence on the position solution will be completely neglected. This differ-
ence is especially sensible when Cy spans any of the base vectors of the space perpen-
dicular to R(A), but also when q > n. In these cases biases that have no impact on the
position solution can grow indefinitely in some ‘directions’ without being detected by
the SS, while being spotted by the UMPI. In the other cases the difference between the
two tests lies in the shape of the detection region, which is ellipsoidal (for instance in
the position bias domain) in the UMPI case while bounded by pair of parallel planes
in case of the SS.

• The numerical examples presented show that both the two simple detection regions
determined by the two tests cannot take into account the distributions of both test
statistic and positioning error, failing to monitor the product β ·PPF , the contribution
of an alternative hypothesis to the PHMI. This means they are sub-optimal in identify-
ing situations of dangerous biases in the position domain. The determination of the
optimal test statistic and detection region for the integrity problem is not a trivial task
and can be the subject of further research. UMPI and SS can be adopted as simplyfied
tests as long as the integrity risk is monitored consistently within.

• The UMPI test presents the advantage of monitoring more effectively the probability
of False Alarm and related performance parameters of the test. On the other hand it
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is less selective regarding the anomalies monitored. Being even more selective than
the UMPI test, the SS test may suffer more in case of testing for fault signatures Cy

which are not perfectly modelling the actual anomaly (for instance when testing for
a Cy ⊥ R(A) when in fact C ′

y ∼ Cy is occurring). Therefore it is recommended (both
in case of adoption of SS or UMPI), to always couple the specific faults tailored tests
with an Overall Model or Omnibus test (F-test) of general consistency. The TU Delft
theory couples the UMPI test with the Overall Model Test (OMT) and with a consistent
reliability monitoring: by making a design with acceptable external reliability (for the
application at hand), it is assured that the adoption of the UMPI test automatically
satisfies the testing for the model errors that are most hazardous.

To summarize, whereas the two tests are equivalent for the one-dimensional threat case,
for the multi-dimensional threat case the SS focuses only on the detection of faults that affect
the position solution, whereas the UMPI test is instead most powerful in detecting any kind
of fault. When adopting the SS test therefore, one needs to beware that some faults can
pass completely undetected because of small or no influence in the position domain, and
measure the consequences of this in the specific application considered.
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ARAIM PHMI COMPUTATION

In this Appendix we explain the derivation of the ARAIM formula for the PHMIver (and VPL)
given in Equation (4.40). The basic concepts for the ARAIM PHMI computation were pre-
sented in Section 4.2.1.

We start from the upperbound given in the first line of Equation (4.39):

PHMI|Hi
= P (x̂0 −x ∉ΩAL ∩ T SSi

∈ΩTi
|Hi ) ≤ P (x̂0 −x ∉ΩAL|T SSi

∈ΩTi
, Hi )

If we consider only one component, say the vertical one (3r d component of the position
vector), we can write:

PHMIver |Hi
= P (|x̂0,3 −x3| > AL ∩ T SSi

∈ΩTi
|Hi ) ≤

P (|x̂0,3 −x3| > AL | T SSi
∈ΩTi

, Hi ) ≤
P (|x̂0,3 −x3| > AL | |x̂0,3 − x̂i ,3| < ki ,3, Hi ) =
P (|x̂0,3 −x3 + x̂i ,3 − x̂i ,3| > AL | |x̂0,3 − x̂i ,3| < ki ,3, Hi ) ≤
P (|x̂i ,3 −x3| > AL−ki ,3 | |x̂0,3 − x̂i ,3| < ki ,3, Hi ) =
P (|x̂i ,3 −x3| > AL−ki ,3 |Hi )

the next to the last passage being valid because the condition sets a bound on the possible
values of |x̂0,3−x̂i ,3|; last passage instead employs the fact that the statistics x̂i ,3 and x̂0,3−x̂i ,3
are uncorrelated. This way it is now possible to compute this contribution to the PH M I just
using the distribution of x̂i ,3, which is unbiased when the alternative hypothesis Hi holds.
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EXAMPLE ARAIM VS DIA IN PHMI

COMPUTATION

A simple example is developed to compare the ARAIM upperbound to the PHMI in Equa-
tion (4.40) (described in Section 4.2.1) with the worst-case bias upperbound adopted in the
(adapted) DIA procedure, discussed in Section 6.2 and given in Equation (6.8) (both ap-
proaches are developed to tackle the issue of the unknown nature of the bias size in the
alternative hypothesis). Consider the null hypothesis:

E(y) =











1
1
1
1











x (K.1)

and four alternative hypotheses foreseeing an anomaly in one of the four measurements
(one-dimensional faults only). Furthermore y ∼ N (E(y), I4). Each alternative hypothesis has
a prior probability of occurrence pa whereas the null hypothesis has prior probability 1−4pa .

For this simple configuration we compute the PHMIar ai m
using the ARAIM upperbound

discussed in Appendix J and the PHMIwc using the worst-case bias approach as developed in
Chapter 6. We set the thresholds for T SS and w-tests in such a way to guarantee the same
PF A (x is one-dimensional so SS tests and w-tests are equivalent).

The PHMIar ai m
is computed as in Equation (4.40), simplified for this special case (and

without approximating the probability of occurrence of the null hypothesis to 1):

PHMIar ai m
≤ 2(1−4pa)Φ

(−AL

σx̂0

)

+
4

∑

i=1
paΦ

(−AL+ki

σx̂i

)

(K.2)

The PHMIwc is computed as (see Section 6.4, Equation (6.8)):

PHMIwc ≤ 2(1−4pa)(1−2Φ(−kw ))Φ(−AL
σx̂

)+
∑4

i=1 pa ·
max∇i

{

[Φ(kw −∇wi )−Φ(−kw −∇wi )] ·
[

Φ

(

SCyi
∇i−AL

σx̂

)

+Φ

(−SCyi
∇i−AL

σx̂

)]} (K.3)

with S = (AT Q−1
y y A)−1 AT Q−1

y y and Cyi
the canonical unit vectors. Note that 1−2Φ(−kw ) is an

upperbound for the probability of not rejecting the null hypothesis in case the null hypoth-
esis holds true (a positioning failure can occur also under the null hypothesis). Table K.1
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Figure K.1: ARAIM (left) and worst-case bias (right) concepts for the computation of the PH M I . In the ARAIM
case we can see the distribution of x̂0 under the null hypothesis in blue and the distributions of x̂a , in red,
shifted from the espectation of x̂0 by the most extreme value of the SS test statistic that still lead to acceptance
of the null hypothesis. When we assume a-priori that such threshold value for the test statistic will certainly
occur, then we can employ the combined distribution in green to compute the PH M I , as the integral outside
the AL (centered at 0). The graph for the worst-case bias approach simply shows instead the distribution of x̂0
under the null hypothesis in blue and some of the infinite number of distributions of x̂0 under the alternative
hypotheses in dashed red, to indicate that such distribution is in fact unknown. In this approach we compute
PMD , PPF and consequently PH M I for all the distributions in the alternative hypotheses, and choose the one
that maximizes the PH M I (which is not just the integral of the distribution outside the AL, but has to take into
account also the probability of detecting the fault).

shows the results for different input values of pa and PF A (PF A refers to each test, not to the
combination of all 4 tests), setting the AL always to±3. The results show that the upperbound
obtained through worst-case bias approach is sensibly tighter than the ARAIM upperbound
(one order of magnitude smaller). Figure K.1 shows the conceptual difference between the
two approaches. On the left is the ARAIM concept whereas on the right is the worst-case bias
concept. In the ARAIM case the sum of the distributions of x̂0 and x̂a is considered, with f x̂a

biased by an amount equal to the threshold for the SS test statistic, and the PH M I is the in-
tegral of such sum of distributions outside the AL. In the worst-case bias approach instead
only the distribution of x̂0 is analyzed: in the null hypothesis as it is fully known, and in the
alternative hypotheses considering many possible bias sizes, for each bias size computing
the integral outside the AL (PPF ) and the PMD (not represented). The bias size that yields the
larger product PMD ·PPF is finally chosen as worst-case bias, to compute the PH M I .

Table K.1: PHMI computed through ARAIM approach and worst-case bias approach, AL always set to ±3.

pa

PF A pa = 0.1 pa = 0.01 pa = 0.001
PHMIar ai m

PHMIwc PHMIar ai m
PHMIwc PHMIar ai m

PHMIwc

0.05 2.2 ·10−5 9.3 ·10−7 2.2 ·10−6 9.5 ·10−8 2.2 ·10−7 1.1 ·10−8

0.01 7.7 ·10−5 3.7 ·10−6 7.7 ·10−6 3.7 ·10−7 7.7 ·10−7 3.9 ·10−8

0.001 2.9 ·10−4 1.6 ·10−5 2.9 ·10−5 1.6 ·10−6 2.9 ·10−6 1.7 ·10−7
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CONDITIONAL DISTRIBUTION OF THE

W-TESTS

In the DIA algorithm, described in Chapter 5, the w-tests are run only after the OMT led
to rejection. The distribution of the w-tests that are run after detection, therefore, will be
a conditional distribution, different from the a-priori distribution in Equation (5.3). Here
we want to investigate this conditional distribution, to determine probabilities of a missed
identification or wrong identification (Wrong Detection) after the Detection step.

First of all we note that each ∇̂wi
of any w-test can be expressed as a linear combination

of the general bias vector estimator for the OMT, ∇̂ (obtained from a full rank m × (m −n)
matrix Cy ), or as a linear combination of the misclosures vector t :

∇̂wi
= Li ∇̂ = Ki t (L.1)

where Li and Ki are 1× (m −n) matrices. wi can be written then:

wi =
1

σ∇̂wi

Li ∇̂ =
1

σ∇̂wi

Ki t (L.2)

Let us consider first the distribution of ∇̂ in case the null hypothesis holds true (the dis-
tribution obtained can be used to determine the probability of False Alarm). We have:

H0 : ∇̂ ∼ N (0,Q∇̂∇̂) (L.3)

that is, a multivariate normal distribution. The conditional distribution f∇̂|Tm−n>kOMT
under

H0 is obtained simply by:

f∇̂|Tm−n>kOMT
=

{

f∇̂
P (Tm−n>kOMT) ∀∇̂ : Tm−n > kOMT

0 ∀∇̂ : Tm−n ≤ kOMT

(L.4)

which fundamentally is a truncated multivariate normal distribution, with zero probability
density in the region of all ∇̂ for which Tm−n < kOMT (an ellipsoid centered at the origin). The
probability P (Tm−n > kOMT) at the denominator is computed exploiting the known distribu-
tion of T m−n given in Equation (3.23). We refer to this probability as αOMT , since it is the
significance of the OMT (we are considering the null hypothesis holding true).
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Supposed we want to find the conditional distribution of a w-test statistic w i as defined
in Equation (L.2), we can first build a vector of m −n independent w-test statistics, w , ex-
tending the 1× (m −n) row matrix Li to a full square matrix L with the addition of m −n −1
linearly independent rows such that:

w = DL∇̂ =G∇̂ (L.5)

where D is a diagonal matrix with diagonal elements the σ−1
∇̂wi

, D = Diag(σ−1
∇̂wi

), and L is a full

rank square matrix. G is therefore a full rank invertible square matrix as well.
For this w-test statistics vector we have, similarly as for ∇̂:

H0 : w ∼ N (0,Qw w ) (L.6)

with Qw w =GQ∇̂∇̂GT . This multivariate normal distribution is also m −n dimensional. Fol-
lowing, the w-tests vector conditional distribution in case of rejection of the OMT is:

fw |Tm−n>kOMT =
{

fw

αOMT
∀w : Tm−n > kOMT

0 ∀w : Tm−n ≤ kOMT
(L.7)

again a truncated multivariate normal distribution, with zero probability density in the re-
gion of all w for which Tm−n < kOMT (an ellipsoid centered at the origin).

Inverting Equation (L.5) and combining with the definition of the OMT statistic in Equa-
tion (5.6), the OMT statistic can be written also as:

T m−n = w T G−T Q−1
∇̂∇̂G−1w

which means that the relation Tm−n < kOMT defines an ellipsoidal shape also for the w (a
degenerate ellipsoid).

Given the (conditional) joint distribution function of the w-test statistics in Equation (L.7),
the (conditional) marginal distribution of a single w-test statistic w i can be obtained by par-
tial integration of the joint distribution over the other w-tests variables w j 6=i . That is:

fw i |Tm−n>kOMT =
∫

Rm−n−1
fw |Tm−n>kOMT dw j 6=i (L.8)

With w j 6=i being the other w-tests different from wi .
As a result of the above integration, the posterior distribution of the w-tests when H0

holds true is:

fw i |Tm−n>kOMT
=







N(0,1)(wi )
αOMT

|wi | >
√

kOMT

N(0,1)(wi )(1−χ2cd f

(0,m−n−1)(kOMT −w2
i

))

αOMT
|wi | ≤

√

kOMT

(L.9)

The above formula can be explained as follows. Recall that the w-tests have a degenerate
multivariate normal distribution with m−n degrees of freedom as in Equation (L.6), and the
distribution conditional on the rejection of the OMT is the same distribution but with null
value in the centered ellipsoid (and opportunely normalized by αOMT ) as in Equation (L.7).
To compute the marginal distribution of w i a partial integration is made over the other w j 6=i ,
as in Equation (L.8). This means that at each value wi we want to integrate a multivariate
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normal distribution with m−n−1 degrees of freedom, scaled by
N(0,1)(wi )
αOMT

(with N(0,1)(wi ) the
value of a standard unit normal distribution in wi ), outside the centered ellipsoid acceptance
region of the OMT, that we indicate with Ω:

N(0,1)(wi )

αOMT

∫

Rm−1−Ω
Nm−n−1(0,Qw w j 6=i

) (L.10)

The acceptance area of the OMT is characterized in Rm by the equation:

wT G−T Q−1
∇̂∇̂G−1w ≤ kOMT

When a value for wi is given, the above relation traduces to, for the remaining m −1 w-tests
w j 6=i in Rm−1:

w−T
j 6=i (GT Q−1

∇̂∇̂G−1) j 6=i w j 6=i ≤ kOMT −
w2

i

(G−T Q−1
∇̂∇̂

G−1)i i

= kOMT −w2
i

where we employed the fact that (G−T Q−1
∇̂∇̂

G−1)i i = 1. This is readily obtained from LQ∇̂∇̂LT =
Q∇̂w ∇̂w

, from G = DL and D = Diag(σ−1
∇̂wi

). Now we can solve the integral in Equation (L.10).

In fact the integral of a multivariate normal distribution over an elliptic shape with the same
proportions as the variance matrix of the distribution is simply obtained as a χ2 cumulative
distribution function (with same number of degrees of freedom as the normal distribution)
computed at the threshold value of the inner product defining the ellipse, i.e. kOMT − w2

i
.

Finally the result as in Equation (L.9) is obtained.
An example of w-test-like conditional distribution obtained both with the formula in

Equation (L.9) and numerically through Monte Carlo integration is shown in Figure L.1, com-
pared with the standard normal distribution of an unconditioned w-test statistic. This condi-
tional distribution is obtained starting from an hypothetical ∇̂w with a multivariate standard
normal distribution N3(0, I3) truncated (null) in the sphere centered at the origin contain-
ing probability mass 0.6 (αOMT = 0.4). This distribution (which is a conditional distribution,
following the rejection of the OMT) could be eventually obtained for instance from a linear
system with zero unknown parameters and 3 observations.

As a result, the conditional distribution has the shape of a normal distribution that in the
central region, corresponding to the projection of the sphere excluded from the multivariate
distribution onto one of the 3 axes, keeps a constant value. This is anyway only a special
case, since the function assumes a constant value in the central area only when m −n = 3.
In the general case the distribution will not be flat in the central area but will anyway reach
lower values than the normal distribution.

An example of w-test conditional distribution obtained from an actual geometry is shown
in Figure L.2. Also in this case the truncated area of the original joint distribution of the
w-tests has a total probability mass of 0.6. The result is based on MC integration with 105

samples and on the formula in Equation (L.9).
In Figure L.3 it is shown instead an example of multivariate normal distribution (bivariate

in this case) truncated in the central ellipsoid characterized by probability mass of 0.6. This
is the type of joint distribution from which the w-test conditional distribution is obtained as
a marginal distribution.
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Figure L.1: Marginal distribution of w-test obtained from a truncated multivariate normal distribution, setting
the significance of the OMT to 0.4 (αOMT = 0.4), through MC integration (106 samples) in red and through the
formula in Equation (L.9) in green.
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Figure L.2: Marginal distribution of w-test obtained from an actual satellite geometry, setting the significance
of the OMT to 0.4 (αOMT = 0.4), through MC integration (105 samples) in red and through the formula in Equa-
tion (L.9) in green.

To determine the Probability of Missed Detection, we have now to consider the case of
alternative hypothesis holding true. In this case we have:

Ha : w ∼ N (∇w,Qw w ) (L.11)

where ∇w is the unknown bias vector affecting the w-test statistics. The conditional distri-
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bution after detection form the OMT is again a truncated multivariate normal distribution
with zero probability density in the region of all w for which Tm−n < kOMT, the ellipsoid cen-
tered at the origin. An example of this type of distribution is shown in Figure L.4. In this
case the problem will be more complex to solve because we have to compute the integral of
a multivariate normal distribution over an ellipsoid area that is not centered at the origin (at
the mean of the distribution).
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Figure L.3: Example of multivariate normal distribution centered at the origin truncated in the central ellipsoid
(detection region of the OMT).

−1
0

1
2

3
4

5

−2

0

2

0

0.05

0.1

0.15

0.2

Figure L.4: Example of multivariate normal distribution displaced from the origin (representing the case of bias
present in the measurements), truncated in the central ellipsoid (detection region of the OMT).
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DIA INTEGRITY RISK CURVES

The geometry in Figure 5.8 is here considered to show the behaviour of the integrity perfor-
mance parameters for the adapted DIA algorithm analyzed in Chapter 6. The same Qy y as in
Section 5.3.3 is assumed.

In Figures M.1 and M.2 we plot the probability of a PF, PPF , however only considering the
vertical dimension, P (|x̂3 − x3| > AL), against the probability of missed detection β (for the
w-tests). One satellite only, PRN7 and PRN21 respectively in Figure 6.1 and 6.2, is considered
in each graph. Each blue curve stands for a different choice of test threshold, that is for a
different choice of α for the w-test. The significance α, for each w-test individually, ranges
from 0.0357 to 2×10−9. The red curves are iso-curves, that is curves for which the product
β×P (|x̂ − x| > AL) is constant. If x̂ and w are independent, which is the case when y is
normally distributed, it holds:

PHMI|Hi
= P (|x̂ −x| > AL|Hi )×β (M.1)

where PHMI|Hi
is the probability of Hazardous Misleading Information (HMI) given the fault

in satellite i has occurred. Therefore the iso-curves are characterized by constant conditional
PHMI.

In Figures M.3 the conditional PHMI|Hi
as computed in Equation (6.1) is plotted against

the size of the bias in the faulty satellite, for different choices of the threshold (each blue line
represents a different threshold), for satellite PRN21 (equivalent graph as in Figure 6.2, where
PRN7 was shown instead).

In Figure M.4 each w-test’s α is fixed at the value α= 10−3 and all the 8 satellites in view
are considered. For each satellite the integrity risk PHMI|Hi

is shown as function of the bias
∇i . Each curve refers hypothesis Hi , failure in the corresponding i satellite.
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Figure M.1: Probability of a Positioning Error (PE) in the vertical dimension, P (|x̂ − x| > AL|Hi ), with respect
to the probability of MD β, for satellite PRN7 (in case of its fault). Each blue curve is for a different threshold,
that is for a different choice of α, which determines the continuity of the algorithm. The significance α, for
the w-test individually, ranges from 0.0357 to 2× 10−9. The red curves are iso-curves, for which the product
β×P (|x̂ −x| > AL|Hi ) is constant.
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Figure M.2: Probability of a PE in the vertical dimension, P (|x̂ − x| > AL|Hi ), with respect to the probability of
MD β, for satellite PRN21 (in case of its fault). Each blue curve is for a different threshold, that is for a different
choice of α, which determines the continuity of the algorithm. The significance α, for the w-test individually,
ranges from 0.0357 to 2×10−9. The red curves are iso-curves, for which the product β×P (|x̂ − x| > AL|Hi ) is
constant.
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Figure M.3: PHMI|Hi
as a function of the size of the bias in faulty satellite, for different choices of the threshold,

for satellite PRN21. AL=4m. Each blue line represents a different threshold, i.e. a different choice for α, which
determines the continuity of the algorithm. The significance α, for the w-test individually, ranges from 0.0357
to 2×10−9. Each curve clearly exhibits a maximum.
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Figure M.4: PHMI|Hi
as a function of the size of the bias in the faulty satellite, with a fixed α= 10−3 and therefore

fixed threshold for the w-tests, for the 8 satellites in view, for the Up direction. Approximation considering one
alternative hypothesis at a time, in line with Equation (5.37). AL=4m. Each curve clearly exhibits a maximum.
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