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Membrane tubes and tubular networks are ubiquitous in living cells. Inclusions like proteins are vital
for both the stability and the dynamics of such networks. These inclusions interact via the curvature
deformations they impose on the membrane. We analytically study the resulting membrane mediated
interactions in strongly curved tubular membranes. We model inclusions as constraints coupled to the
curvature tensor of the membrane tube. First, as special test cases, we analyze the interaction between ring-
and rod-shaped inclusions. Using Monte Carlo simulations, we further show how pointlike inclusions
interact to form linear aggregates. To minimize the curvature energy of the membrane, inclusions self-
assemble into either line- or ringlike patterns. Our results show that the global curvature of the membrane
strongly affects the interactions between proteins embedded in it, and can lead to the spontaneous formation
of biologically relevant structures.

DOI: 10.1103/PhysRevLett.117.138102

Introduction.—Membrane nanotubes can be extracted
experimentally from “giant” unilamellar vesicles (GUVs)
by different techniques like optical tweezers [1] or micro-
pipettes [2–4]. In vivo, for example in the endoplasmic
reticulum, these membrane tubes are generated either by
being pulled out by molecular motors [5] or pushed out
by polymerizing cytoskeletal filaments [6]. The formation
mechanism and the stability of tubular membranes have
been extensively studied both theoretically [7–10] and
experimentally [1–3,11].
In addition to direct interactions like electrostatic forces,

inclusions (like proteins) embedded in biological mem-
branes experience interactions mediated by the elastic
deformation of that membrane. Inclusions create these
deformations by imposing a curvature field in the lipid
bilayer when they are bound to or embedded in a
membrane. Despite the presence of a repulsive pair
potential between such inclusions in a flat membrane
[12,13], because of the nonpairwise additive nature of
many-body interactions, they collectively attract each other
and form stable spatial patterns [14]. Numerous analytical
investigations [15,16] and computer simulations [17,18]
have been done to show that this nonadditivity drives
vesiculation and budding in biological membranes. In
contrast to flat membranes, membrane-mediated inter-
actions between inclusions embedded in tubular mem-
branes are not well understood. These interactions can
be found, for example, in the last step of exocytosis and in
cell division, where some specific proteins make energy-
favorable structures to facilitate membrane scission [19].
Compared to the scale of the plasma membrane which can
be approximately considered as a flat surface, the curved
nature of such a tubular membrane can significantly affect
these interactions. Recently, it has been revealed that hard

particles and semiflexible polymers absorbed to soft elastic
shells, collectively induce aggregates and produce a rich
variety of aggregation patterns [18,20–26]. Particularly,
Pàmies and Cacciuto showed that spherical nanoparticles
adhering to the outer surface of an elastic nanotube can self-
assemble into diverse aggregates [22]. They considered
elastic nanotubes as stretchable and bendable structures; in
contrast biological membranes cannot withstand shearing
forces and are stretch-free interfaces. Therefore, an obvious
question to ask is what kinds of structure inclusions might
induce in a cylindrical fluid surface.
The aim of this Letter is to analytically study the

interactions between inclusions embedded in a membrane
tube. We treat inclusions as pointlike constraints imposing
local curvature on the membrane. Previous work done by
Dommersnes and Fournier [27,28] already suggested a
methodology to derive inclusion interactions mediated by
membrane deformations in planar geometries. Using this
framework, one can easily calculate the interaction of many
pointlike inclusions in a nonadditive way. Here, we apply
that framework to a membrane tube containing an arbitrary
number of inclusions. For simplicity, we assume that
inclusions do not undergo any conformational changes,
though these could also be accounted for using the same
formalism [29]. After giving a brief outline of the model,
first we look at some specific shapes like rings and rods,
and afterwards we will study interactions between pointlike
inclusions. Using Monte Carlo simulations, we investigate
the effects of different parameters, like the density and the
size of inclusions, on their final equilibrium configuration.
Our results reveal that in contrast to the interaction of two

rings, two infinite rods embedded in a membrane tube
behave completely different from the same inclusions in a
flat membrane. While two identical inclusions always repel
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each other in a flat membrane, in a cylindrical membrane
they can also attract. We find a similar behavior for
identical pointlike particles, which can also attract and
repel on the tube, depending on their separation and relative
orientation. Consequently, for many inclusions, and
depending on their hard-core radius, they form either ring-
or line-like structures. We conclude that rings of membrane
inclusions, such as the dynamin rings found in endocytosis,
or the FtsZ rings found in bacterial cytokinesis [30], can
thus spontaneously form on tubular membranes, due to
membrane-mediated interactions alone.
Model.—As mentioned earlier, we use the theoretical

framework introduced in Ref. [28]. We apply this method
to membranes with a cylindrical topology. The unperturbed
system is a perfect cylinder, parametrized by angular (θ)
and longitudinal (ζ ¼ Z=R, with R the radius of the
cylinder) coordinates. We describe deviations from the
perfect cylindrical shape using the Monge gauge:

rðθ; ζÞ ¼ R

0
BB@

½1þ uðθ; ζÞ� cosðθÞ
½1þ uðθ; ζÞ� sinðθÞ

ζ

1
CCA; ð1Þ

where uðθ; ζÞ ≪ 1. In order to mathematically describe the
biological membrane, we use the Canham-Helfrich [31,32]
energy functional

E ¼
Z
S
dAð2κH2 þ σÞ; ð2Þ

where dA, κ, H, and σ are the surface element, bending
rigidity, mean curvature, and surface tension, respectively.
It is well known that, under the application of a constant
force f ¼ 2π

ffiffiffiffiffiffiffiffi
2κσ

p
to the membrane, a cylindrical tube of

radius R ¼ ffiffiffiffiffiffiffiffiffiffi
κ=2σ

p
is an equilibrium shape minimizing the

energy functional given by Eq. (2) [2,8].
Following the construction by Dommersnes and

Fournier, we put N inclusions in the membrane at positions
ðr1; r2;…; rp;…; rNÞ imposing the curvature matrix
C¼ð…;Cp

θθ;C
p
ζθ;C

p
ζζ;…Þ, where Cp

ij ¼ ∂ijuðθ;ζÞδðθ−θp;
ζ−ζpÞ. To get the deformation field of the tube, uðθ; ζÞ, we
minimize the energy functional [Eq. (2)] given that we have
imposed the curvature constraints. For the details of solving
the resulting Euler-Lagrange equations, please see the
Supplemental Material [33]. In the case of self-interactions,
we need to take the actual size of the inclusions into
account, and should therefore introduce two cutoff wave
vectors (we cannot have fluctuations with a wavelength
smaller than the size of the lipids): Λζ ¼ 1=a and
Λθ ¼ 2πR=a, where the cutoff radius a is chosen such
that Λ−1

θðζÞ is in the order of the membrane thickness [34].
Using this formalism, we can get an analytical expres-

sion for the elastic energy and the shape of the deformed
membrane for any arbitrary number of inclusions. The
nondimensionalized components of the curvature tensor C,

for a tube with a thickness of ≃5 nm and radius
≃20–50 nm, are in the order of c−1 ≃ 0.1–0.25. In the
following, we measure the energy in units of 2πκc2, which,
for the standard values of κ ¼ 30kBT and c ¼ 10, equals
2πκc2 ≃ 20 × 103kBT.
Special test cases.—To show the difference between

planar and highly curved regimes, we study two special
shapes of inclusions using the described formalism. First,
we look at the interaction between two rings, separated by a
distance L, in a cylindrical membrane [Fig. 1(a)]. Second,
we analyze the energy favorable configuration of rodlike
inclusions embedded in a membrane tube [Fig. 1(b)]. By
considering ring shaped constraints, recent studies have
constructed a variational framework to model the con-
striction process during cytokinesis [35,36]. Also, using an
analytical approach, the wrapping process of a rodlike
particle by a tubular membrane has been studied via
minimization of bending and adhesion energies [37].
The energy dependence on inclusion separation between

two rings is shown in Fig. 1(a). We find that two identical
rings [C ¼ ð0; 0; c; 0; 0; cÞ] have a strong short range
repulsion and weak long range attraction; this behavior
causes two rings imposing equal curvature to not coalesce,
but equilibrate at a certain distance from each other. The
long-range attraction originates from the fact that the
membrane’s size is finite in the angular direction, resulting
in a reduction in the total energy of two overlapping tails
when distant rings move closer together. For different radii
of the tube, we get different equilibrium separations for the
rings; the larger the radius is, the further the rings are away
from each other (Fig. S1 [38]). The situation for rings
imposing opposite curvature will be reversed. The mem-
brane, to globally minimize its curvature energy, favors
two rings to coalesce despite having a local minimum for
larger separations.
In contrast to rings, two rods interact completely differ-

ently. Depending on their angular separation (Θ), two
identical rods [C ¼ ðc; 0; 0; c; 0; 0Þ] can either attract or
repel each other [Fig. 1(b)]. One clear difference with both
flat membranes and the previous test case is that the tails
of deformations in the angular direction are limited to a

FIG. 1. The calculated energy cost of having two inclusions (as
compared to none) for a membrane tube as a function of the
distance between (a) two rings and (b) two rods. Inclusions
impose either the same (dashed line) or opposite (solid line)
curvatures.
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confined space and overlap. Consequently, there are two
contributions to the total energy of the tube: one is due to
the membrane deformation between the two rods and the
other one originates from the overlapping tails. For small
distances, these two interactions add to a net attraction
between identical rods, as this minimizes the overlap
between their tails. For larger separations, the effect of
the deformed membrane between the inclusions becomes
dominant, and in order to minimize the bending energy of
the system, they sit on the opposite poles. Similar to rings,
the location and the strength of the energy barrier depends
on the radius of the tube. In the limit of very large R, the
interaction between two rods imposing the same curvature
is purely repulsive (Fig. S2 [39]), like in a flat membrane
[40]. Since membrane mediated interactions, in contrast to,
for example, electrostatic interactions, behave in a non-
additive way, it is interesting to look at a system with more
than two inclusions. Particularly, we find that adding a third
rod into the previous system makes the repulsion between
the first two attractive. The global minimum of the three-
dimensional energy landscape, as illustrated in Fig. 2,
corresponds to the situation that two rods are on top of each
other and the third one is on the opposite pole. Similarly, for
more than three inclusions, we find that for an even number
of rods the global minimum occurs when they equally
distribute between the two poles, and in the case of having
an odd number of inclusions, one of the poles will have one
more rod than the other.
Pointlike inclusions.—Before focusing on many body

interactions, let us first consider a tubular membrane
containing two identical inclusions imposing the same
curvature, so C ¼ ðc; 0; c; c; 0; cÞ (similar to rods and
rings, the behavior for inclusions inducing opposite curva-
ture will be reversed). Figure 3(a) depicts the excess
curvature energy of the membrane as a function of both
angular and longitudinal distances between two inclusions.
At small distances there are two different kinds of behavior
corresponding to two distinct directions: along the tube axis
two inclusions strongly repel each other at short distances
and attract each other at longer distances [Fig. 3(d)], while
in the transversal direction the two-body interaction is
purely attractive [Fig. 3(c)]. When two identical pointlike

inclusions have the same transversal coordinates (Θ ¼ 0),
they behave like rings, although the long-range attraction
becomes very weak [see inset in Fig. 3(d)]. However, when
these inclusions have the same longitudinal coordinates
(L ¼ 0), their behavior differs from that of the infinite rods.
While for the rods we find both short-range attraction and
long-range repulsion, identical pointlike inclusions at the
same longitudinal coordinate always attract. The global
energy minimum of the system corresponds to the two
inclusions sitting next to each other in the angular direction
[see Fig. 3(a)]. However, if the inclusions are initially
separated, there is a large energy barrier (on the order of
∼100kBT) that the inclusions have to overcome to reach
this global minimum state. Moreover, the region around the
global minimum where the energy is less than that at the
local minimum at large separations [see inset in Fig. 3(d)] is
only very small, as shown in Fig. 3(b). Consequently, small
inclusions globally attract, but may not find each other due
to the large barrier. Particles with a diameter larger than
the size of the attractive basin in Fig. 3(b) have a global
minimum at large but finite separation.
Like for rods, adding more inclusions changes the energy

landscape. For pointlike inclusions, the net effect is a
lowering of the barrier between the energy minima at small
and large separations. Consequently, the presence of other
inclusions can allow two inclusions to reach their global

FIG. 2. The energy landscape for a membrane tube containing
three rodlike inclusions I1, I2, and I3.

FIG. 3. (a) The curvature energy (ΔE=2πκc2) of a membrane
containing two inclusions, as a function of their angular (Θ) and
longitudinal (L) separation, with L in units of the tube radius R.
(b) The line around the global minimum at which the energy
equals the local minimum at large separations. For particles
whose diameter exceeds the size of this region, the overall
behavior is repulsive (settling in the local minimum at large
separations). Smaller particles globally attract, but have a high
energy barrier separating the attractive and repulsive regime.
(c) Two identical inclusions placed at the same longitudinal
coordinates (L ¼ 0) attract each other. (d) Pointlike inclusions
behave like rings when they are situated on the same transversal
coordinates (Θ ¼ 0); the inset shows the weak long-rage
attraction.
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equilibrium state, which could potentially take very long if
those other inclusions were absent.
To elucidate the collective behavior of multiple inclu-

sions packed in the system, we perform Monte Carlo (MC)
simulations on a membrane tube containing inclusions
with different hard-core radii (which are introduced to take
into account the finite size of the particles). During the
simulations, we consider periodic boundary conditions in
the longitudinal direction. The only effect of a nonzero
hard-core radius of inclusions is the transition from the
short-range attractive-dominated regime to the repulsion-
dominated area. In all cases the tube’s reduced length is
ζ ¼ 10π and correspondingly, the cutoff wave vectors are
Λζ ¼ 314 and Λθ ¼ 62 for the cutoff radius of a ¼ 0.1.
During MC simulations we use the Metropolis algorithm
[41] with parallel tempering [42]. As membrane mediated
interactions between inclusions originate from both the
average deformation of the membrane and the constraints
imposed on its shape fluctuation, one may be concerned
about the Casimir interactions. In our system, the thermal
fluctuation effects nicely decouple from the elastic ones
[43], and it is straightforward to show that their effects
are relatively small, quickly fading out with the distance
between inclusions [44] (Fig. S3 [45]). We find that for an
arbitrary number of inclusions with a hard-core radius
a0 ¼ 0.2, they will attract each other in the angular
direction and self-assemble into ringlike configurations
[Figs. 4(a) and 4(b)]. Because of having a rough energy
landscape, including many barriers like the one shown in
Fig. 3(a), inclusions could not always completely merge
and reach the global energy minimum. However, we can
certainly conclude that in order to minimize the curvature
energy of the membrane, such identical inclusions will
assemble into rings. This process is reminiscent of recruit-
ing dynamin proteins during exocytosis, during which they
self-assemble and form rings to constrict the membrane
and, finally, separate the nascent vesicle from the cell. In
contrast, for inclusions having a larger radius (a0 ¼ 1.1),

our MC simulations reveal that they collectively align in the
longitudinal direction. Therefore, as shown in Fig. 4(c), if
the number of particles is less than that fits the length of
the tube they aggregate into one line. The boundary for
which the transition from rings to lines occurs is shown in
Fig. 3(b): if the radius of inclusions is such that it cannot
fall in the attractive area, they self-assemble into lines. If we
increase the particle density [Figs. 4(d) and 4(e)], such that
they do not all fit on a single line anymore, they do not
make other configurations, but distribute around two lines
on the opposite poles. The reason for this is actually hidden
in the assumptions of the theoretical model we use. First,
inclusions are treated as pointlike constraints that impose a
uniform curvature in all directions. Second, while as in our
model, a fluid membrane cannot resist any stretch, it has
recently been shown that in an elastic membrane the
competition between bending and stretching rigidities gives
rise to different configurations like helical structures [22];
in the limit of very small stretching rigidity, linear aggre-
gations like rings and rods are the only configurations that
one can get for an elastic tube.
Conclusion.—We have investigated the curvature medi-

ated interactions between different identical inclusions.
We have shown that while rings have strong short-range
repulsion (and weak long-range attraction), identical rods
can either attract or repel each other depending on the
angular distances between them. For two pointlike inclu-
sions embedded in a tubular membrane, our analytical
solutions show that they attract and repel each other in the
transversal and longitudinal direction, respectively. Our
study of a membrane tube containing many inclusions has
highlighted the importance of many body interactions for
the inclusions in order to collectively induce aggregations.
Having done Monte Carlo simulations on such a system,
we observed that depending on the defined hard-core
radius, inclusions self-assemble into line- or ringlike
structures. The results may explain the mechanisms by
which inclusions self-assemble during membrane constric-
tion in the processes like exocytosis and cytokinesis.

We would like to thank Dr. J. L. A. Dubbeldam for
fruitful discussions. This work was supported by the
Netherlands Organisation for Scientific Research (NWO/
OCW), as part of the Frontiers of Nanoscience program.
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