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We study the rate of quantum phase slips in an ultranarrow superconducting
nanowire exposed to weak electromagnetic radiations. The superconductor is in
the dirty limit close to the superconducting-insulating transition, where flux-
oids move in strong dissipation. We use a semiclassical approach and show
that external radiation stimulates a significant enhancement in the probability of
quantum phase slips. C 2016 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4944482]

I. INTRODUCTION

Quantum phase slip junctions are exact dual counterpart of the Josephson junctions. Recently
these junctions have been successfully realized in ultranarrow superconducting nanowires, where
quantum phase slip replaces tunneling Cooper pairs.1,2 These nanowires are nonlinear elements
performing similar physics as Josephson junctions with the roles of superconducting phase ϕ and
charge q being interchanged.3,4 This duality has been the motivation behind many of the recent
applications of quantum phase slip (QPS) elements.5–8 These elements have found interesting
implications for fundamental metrology and information technology, for instance as photon pulse
detectors, quantum current standard, and quantum bits.7–10

In a superconducting nanowire with small cross section, the supercurrent is determined by the
phase difference ϕ between two ends of the nanowire from the sawtooth relation Is = Φ0ϕ/2πL
with L being nanowire kinetic inductance and Φ0 = h/2e. In temperatures much lower than the
superconducting critical temperature (i.e. T ≪ Tc) quantum fluctuations may suppress the modulus
of the order parameter in a region and turn it from superconductor to normal metal. This enables
the superconducting phase to slip by 2nπ, with integer n, without any energy compensation. An
individual phase slip takes place in a normal core, similar to the normal core of a magnetic flux
vortex, therefore we can assume the core size is roughly the coherence length ξ.11,12 QPS event
takes place for a short period of time that is maximally of the order of inverse of superconducting
gap h/2∆. Similar effect happens close to Tc due to thermal fluctuations of the order parameter.13

In superconducting nanowire made of clean materials with low normal resistance R, quan-
tum phase slips rarely take place. To enhance the slip rate a nanowire should be made of highly
disordered amorphous superconductor, which is in the dirty limit, with large R.5,7 There is not a
well-understood theory to describe the superconductivity in near superconductor-insulator transi-
tion (SIT). A candidate theory 14,15 proposes superconductivity at high disorder is maintained by a
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fragile coherence between electron pairs, which is characterized by an anomalous binding energy. If
pairs are localized, they enter an insulating state, and if condense, a coherent zero-resistance state
emerges. Based on this theory superconductor in SIT have regions of localized BCS-condensates
nearly separated in different lakes.16 The cores of QPS can coherently tunnel across superconduct-
ing regions and avoid dissipation. This is similar to the Cooper pairs that tunnel across a Josephson
junction without much dissipation.17,18

The voltage across the nanowire is known to be periodic in charge of the crossing fluxoid; i.e.
V = V0 sin(2πq/2e). Individual phase slips in nanowires can be observed when a large bias voltage
is applied on the wire. Under such bias voltage, effective potential becomes a tilted washboard with
more slanted slop in larger bias. Depending on temperature, there are two general scenarios for the
dynamics of a fluxoid. Close to the critical temperature Tc, fluxoid particle gains energy from thermal
activation and overcomes potential barrier to slip across the wire.13 Quite differently, in low tempera-
ture T ≪ Tc fluxoid particle becomes frozen in a minima of the washboard potential. The minima are
called ‘zero-current states’ where Coulomb blockade occurs.19–21 Vacuum fluctuations help the parti-
cle to tunnel into the barrier and slips away. Coherent tunneling is possible between two zero-current
states where a quantum variable (phase or charge) has minimum fluctuations. Such coherent tunnel-
ings have been previously observed in the superconducting-insulating transition limit.19–21

Exposing nanowire to strong electromagnetic radiation produces Shapiro steps22,23 in the
current-voltage dependence, which has been observed in Ref. 24. However, in many applications of
superconducting nanowires, such as in qubits and photon detectors, weak radiation is applied where
phase locking cannot occur.

In this paper, we qualitatively study the effect of a weak alternating electromagnetic field on the
quantum phase slip rate in ultranarrow superconducting nanowire, where the width of the nanowire
is smaller than the superconducting coherence length, i.e. r < ξ. We consider the nanowire is in the
insulating phase. Our method is to map this problem into its well-studied analogue in Josephson junc-
tion in proper regime. We use the semiclassical quantum mechanical approach developed by Ivlev and
Mel’nikov25–27 in studying quantum tunneling in a high-frequency field to our problem. Similar to
a Josephson junction under weak time-harmonic radiation,27,28 we expect a significant enhancement
in the stimulated phase slips at zero temperature. We show that a fluxoid gains energy from radiation
and tunnel into the barrier more often than usual and slips away. This leads to the super-exponential
enhancement in the rate of such ‘stimulated quantum phase slips’ (SQPs). In certain nanowires, this
can result in larger DC resistivity with minimal fluctuations in a dynamical variable.

II. STIMULATED QUANTUM PHASE SLIPS

A superconducting nanowire with QPS is the dual to a Josephson junction with charge and
phase (as well as current and voltage) interchanged. In Josephson junction, a Cooper pair tunneling
across the junction picks up a phase exp(±iϕ(t)) corresponding to the superconducting phase ϕ(t).
This induces a coupling energy E = EJ(1 − cos ϕ). The current is defined I = (2e/~)∂E/∂ϕ.

Analogously for a nanowire similar relations can be derived. A QPS fluxoid picks up a charge
phase when tunneling exp(±iQ) with Q ≡ 2πq/2e being a dimensionless charge parameter. There-
fore the QPS energy becomes E = ES(1 − cos Q(t)). The voltage is defined V = ∂E/∂q. Phase slips
may take place everywhere in the wire whose induced current depends on the wire inductance.
Therefore a narrow superconducting nanowire can be modelled as a voltage in series with an induc-
tance as shown in the left part of Fig. 1. In the figure, the dissipation is modelled by a resistor and
the AC and DC bias voltages are sources in series with the wire. This circuit is built based on.3,4 The
inductor L is the total of the kinetic inductance (Lk) and the geometric inductance (Lg) of the cir-
cuit. Since, in superconducting nanowire, the kinetic inductance is much larger than the geometric
inductance, we have L ≈ Lk. In the circuit of Fig. 1 voltage is V = V0 sin (2πq/2e) + Lq̈ + Rq̇ with
the QPS and inductance energies

ES = 2eV0/2π, EL = Φ
2
0/2Lk . (1)

where V0 is the voltage scale of QPS energy ES.
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FIG. 1. The schematic circuit of a QPS junction including an ideal QPS element (a superconducting nanowire), the dissipative
element R, the bias voltage VDC and the driving source VAC. L denotes the dominant kinetic inductance.

In the nanowire, a crossover from insulator to a superconducting inductor takes place when the
inductance energy EL is increased beyond QPS energy ES. In the superconducting phase EL ≫ ES,
the fluxoid energy E = ES(1 − cos Q) + EL(φ f ) is dominated by the parabolic inductance energy
EL(φ f ) associated with induced phase φ f . The parabola associated with different winding integer
n cross at certain energies where the small energy of QPS provide an avoided crossing gap. This
makes nanowire energy to be multivalued in separated energy bands, similar to a capacitive Joseph-
son junction.

In the opposite regime where ES ≫ EL the wire energy is dominated by QPS energy ES

(1 − cos Q) which oscillates in charge. Consider that the charge undergoes a fluctuation around its
macroscopic value q so that the stochastic charge is q = q + δq. Following the analogue discussion
for a Josephson junction phase, (see Refs. 29–31 and references therein) the charge fluctuation
corresponds to the effective current fluctuations across the wire

δq(t) =
 t

0
δI(t ′)dt ′. (2)

A difference between QPS and thermally activated phase slips (TAPS) is that the dissipation
in TAPS is due to stochastic energy activation in high temperature while QPS allows tunneling
between distinct zero-current states. The latter is similar to zero-voltage states in Josephson junc-
tion.19–21 For a nanowire in the insulating phase the quantum tunneling between zero-current states
takes place without current fluctuations δI(t). Therefore Eq. (2) shows that the charge in fluxoid
behaves semiclassically, whereas superconducting phase can be subject to large fluctuations.4

The semiclassical charge associated with QPS fluxoid in the nanowire depicted in Fig. 1
evolves in the following way:

d2Q
dt2 + η

dQ
dt
+ ω2

p (cos Q − k0 − k1 cosΩt) = 0, (3)

withΩ is the frequency of the driving voltage and

η = R/L, ωp =


2πV0/2eL, ki = Vi/V0. (4)

with the index i = 0 (1) corresponds to DC (AC) voltage. The definition of the plasma frequency
ωp is compatible with the definition based on the duality: ~ωp =

√
2ESEL, which is similar to the

equation of RCSJ model of Josephson junction32,33 with high-frequency driving field. For simplicity
in writing Eq. (3) we had shifted Q → Q + π/2 in order to have applied and QPS voltages in phase.

Our aim is to study the possibility of utilizing nanowire as a detector for time-harmonic radia-
tions, therefore we restrict ourselves to weak alternating fields, i.e. k1 ≪ 1. This makes our problem
to be different from the physics of the Shapiro steps22 where the phase of nanowires (or its dual
Josephson junction) is locked to the frequency of the driving field frequency and constant voltage
steps are observed. For weak time-harmonic fields the driving force is very small and the wire
is in zero-current state with k0 < 1. The most important result is that the smallness of k1 does
not necessary mean that the its effect on the charge dynamics is small. In fact as we will show a
weak time-harmonic field can significantly affect the wire by increasing the rate of QPS (see also
Appendix A).

In the limit of weak dissipation, the tunneling rate of fluxoid can be studied using 1D quantum
mechanics of the Lagrangian associated to Eq. (3) subject to R = 0. However we are interested
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to study the decay of the zero-current state in the limit of strong dissipation because resistance
is large in wires with QPS effects. A dual effective theory has been developed for dissipative
coherent tunneling in Josephson junction by Caldeira and Leggett,17,18 and Larkin and Ovchin-
nikov.34 In those theories, dissipation is modelled as the coupling to bosonic degrees of freedom.
The low-energy effective action of the system is derived to properly take account of the dissipation.

The semiclassical theory of Josephson junction exposed to weak alternating current in Refs. 27
and 34 guides us to study the charge dynamics of radiation-stimulated quantum phase slips (SQPS)
in nanowires with strong dissipation. Effectively the evolution of semi-classical charge that tunnel
across the wire is:

d2Q
dt2 + ω

2
p (cos Q − k0 − k1 cosΩt) − 2iπη

(
kBT
~

)2 
C

dt1
sin[(Q(t) −Q(t1))/2]
sinh2 (πkBT(t1 − t)/~) = 0, (5)

where the contour C is shown in Fig. 3 and the principle value of the integral is implied (for general
discussion of the method, see Appendix A).

In the limit of our interest, the nanowire is strongly dissipative η ≫ ωp. For semi-classical
description to be valid, it is required that ES ≫ ~Ω.27,34 Also the applied DC voltage is close to V0,
i.e. V0 − VDC ≪ V0, therefore the term with second derivative in Eq. (5) can be omitted. Also, we can
assume that the exchange of energy between the wire and its environment takes place in the shortest
time, thus the argument of sinh in the denominator of Eq. (5) can be replaced by its lowest order
sinh x ≈ x. Technical analysis of this integration over the contour C shows that the integral tends
to zero except that at the singularity t = t1 where its proper residue must be counted (see Eq. 18 in
Ref. 27). Therefore, in the lack of alternating radiation Eq.(5) in the regime of interest effectively
reads: −ηdQ/dt + ω2

p (cos Q − 1) = 0, which has the following solution

Q(t) = i ln
t − iτs
t + iτs

, τs =
η

ω2
p

, (6)

with τs being the time of under-barrier motion.
In a system described by the classical action S = −i


C Ldt with L being Lagrangian, the

probability of quasiclassical tunneling is Γ = exp(−S). Regarding the alternating voltage being a
small perturbation k1 ≪ 1, we can rewrite the action in the form of S = S0 + S1 with S0 being the
action in the lack of alternating field and S1 is linear in VAC.35

Let us assume the QPS probability in a nanowire with strong dissipation and DC voltage VDC

about V0 is denoted as Γ0. Above results easily show that in the presence of a weak high frequency
radiation hitting the nanowire, the probability of QPS in the wire will change from Γ0 to Γ in the
following form:

Γ(VAC,Ω) = Γ0 exp


4eVAC

~Ω
sinh(Ωτs)


, (7)

Eq.(7) is the main result in this paper. It indicates that an alternating driving field with certain
frequency and voltage can trigger occurance of a large number of QPS’s in a proper nanowire
at low temperature. For instance if a wire with dissipation factor η/ωp = 10 is driven by a weak
time-harmonic radiation of the realtive amplitude 4eVAC/~ωp = 5 × 10−4 and frequency Ω = ωp,
the QPS rate increases by a factor of about 250 times. A more careful analysis shows that this result
is valid for nanowire temperature T < T0 with T0 being the crossover temperature between quantum
and thermal activation regimes T0 =

(1 − k0)/2 (~ωp)2/πkBη.35

From Eq.(7) one can see that the bigger the normal resistance R is, the larger the rate of SQPS
becomes. Intuitively this can be understood from the definition of underbarrier time τs in Eq. (6).
Upon increasing dissipation the under-barrier time grows larger. According to the semiclassical
description of quantum tunneling, see Appendix A, during quantum tunneling time parameter be-
comes imaginary. This changes the bounded function of alternating potential in eq. (3) into the
unbounded function coshΩτ. The longer a fluxoid stays under the barrier, the more energy it
absorbs from the alternating potential and this causes stimulation of quantum phase slips.

The QPS rate in the lack of an time-harmonic drive has been estimated by Mooij and Har-
mans in Ref. 6 to be nearly Γ0 ≈ ES/~. This in addition to substituting Eqs. (4) and (1) simplifies
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Eq. (7) into:

Γ(VAC,Ω) = (V0/Φ0) exp


4eVAC

~Ω
sinh

� eRΩ
πV0

�
, (8)

Given that the QPS rate in the absence of time-harmonic radiation is proportional to V0, one of
the features of Eq. (8) is that the super-exponential enhancement of QPS rate is inversely propor-
tional to the rate Γ0, thus for small rate Γ0 the exponential enhancement of QPS in the presence of
high-frequency field is more significant. This enhancement is only due to the stimulated excitation
in the zero-current states in the presence of external drive.

In the absence of the VDC, there is no tilt in potential and the rate of fluxoid crossing to right or
left are equal. As a result the average current becomes zero (Ī = 0). However, in the presence of a
positive value for DC voltage bias, the average current is given by:

Ī = 2e (Γ→ − Γ← ) (9)

with Γ→ (Γ← ) the rate of crossing to the right (left) where the potential barrier decreases (increases).
In the case the bias voltage is close to the critical voltage (V0), Γ← the crossing Γ→ dominantly
exceeds that of the opposite direction. Hence Γ = Γ→ and

I = 2eΓ(VAC,Ω), (10)

where Γ(VAC,Ω) is given by Eq. (7). According to Eq. (10), the influence of high-frequency weak
irradiation on superconducting nanowire biasd by the DC voltage V0 − VDC ≪ V0 is observable by
measuring the crossing current.

The quality factor in nanowire QS is defined as:

QS =
ωp

η
. (11)

In low quality factor QPS nanowire the dissipation is strong. The larger η leads to longer under-
barrier time and consequently the enhancement of SQPS rate exponentially increases. The increase
in the under-barrier motion due to higher dissipation can be seen in Fig. 4. Therefore, we expect that
a low-QS nanowire to be a better candidate for observing tunneling enhancement.

A comment on the range of validity of the method we used in this section is in order. As
it is seen from Eq. (7), the enhancement in the tunneling probability for Ωη ≫ ω2

p is itself an
exponentially large factor (∼ eVAC(~Ω)−1 exp(Ωη/ω2

p)). This indicates that the range of the validity
of the semi-classical approach in this case is limited to eVAC ∼ (~Ω) exp(−Ωη/ω2

p). Beyond this,
higher order correction in terms of VAC to the calculations is required.36

An alternative approach in studying the QPS rate in superconducting nanowires under high-
frequency radiation would be to use the the effective action method developed by Golubev and
Zaikin1,37–39 in a non-equilibrium setting. There are some challenges associated with this approach
that are studied in Ref. 40.

III. CONCLUDING REMARKS

We studied the stimulation effect of a weak high-frequency field on the zero-current state
tunneling of fluxoid particle. The approach chosen was to use the duality transformation between
Josephson junction and a QPS junction to map the dynamics of QPS charge in a circuit model. Then
we studied the effect of high-frequency alternating field on the coherent tunneling rate. The similar
problem has been studied for the case of Josephson junction using semiclassical physics25–27 which
we adopted for the case of QPS junction. We observed that in a strongly dissipative superconducting
ultranarrow nanowire, a high frequency field can enhance the probability of quantum tunneling
super-exponentially. Interestingly we find that the enhancement of SQPS rate is more pronounced in
wires with small non-stimulated QPS. This result will help to predict that quantum phase slip qubits
should be better-working in the presence of weak driving field for specific regimes.



035209-6 Jafari-Salim et al. AIP Advances 6, 035209 (2016)

A potential application for the rate enhancement of the superconducting nanowire in high-
frequency field is in designing a new class of high frequency detectors. Some of the advantages
of a detectors made of superconducting nanowire would be small footprint, ease of fabrication and
integration with other superconducting devices.

ACKNOWLEDGMENTS

This work is supported by the NSERC Discovery Grant. This research is also sponsored by
CryptoWorks21, an NSERC funded collaborative research and training experience program. AJS
and MHA thank Frank K. Wilhelm-Mauch for fruitful discussions.

APPENDIX: BRIEF REVIEW OF THE QUANTUM TUNNELING
IN TIME-DEPENDENT POTENTIALS

In this appendix, we review the effect of a high-frequency field on quantum tunneling in the
semi-classical description.36 The approach will be based on the method developed in Refs. 25–27.
First, a brief introduction is given to the semi-classical approach to quantum mechanics and quan-
tum tunneling.

The semi-classical description is obtained from the stationary path approximation of the Feyn-
man path integral approach to quantum mechanics. The stationary path of a Feynman path integral
which is obtained from the variation of the action yields the Newtonian equation of motion (EOM):

δS = 0 −→ EOM (A1)

This relation is familiar in classical mechanics for energetically allowed region; however, the nat-
ural question that arises is that: is this method applicable to energetically forbidden regions like
in quantum tunneling? The answer is “yes”; however, it requires allowing the time to acquire an
imaginary part.41 To see this, let’s consider the action of a point particle with mass m in a potential
V (x). The action can be written as:

S =


dt



m
2

(
dx
dt

)2

− V (x) + E


. (A2)

The equation of motion is found to be

m
d2x
dt2 +

dV (x)
dx

= 0, (A3)

and the total energy is given by

E =
p2

2m
+ V (x), (A4)

where the momentum is defined as p(t) = mdx/dt. By integrating Eq. (A4), the required time t for
the particle to reach infinity from point x is given by

t(x) =
 ∞

x

dx ′
√

m
2 (E − V (x ′)) . (A5)

From Eq. (A5), it is seen that as long as E > V (x) the time remains real, but for E < V (x) it
acquires an imaginary part and becomes complex. Therefore, by allowing complex time, classically
forbidden regions can be studied in the semi-classical approach. The tunneling of a point particle
with energy E coming from left from the potential V (x) is shown in Fig. 2. For x > x2 time is real,
because E > V (x); however, for x1 < x < x2, the time goes in the imaginary direction. For x < x1
time becomes complex, t + iτ0, where the constant imaginary part is

τ0 =

 x2

x1

dx
√

m
2 (V (x) − E) . (A6)
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FIG. 2. Potential barrier for a particle moving from left to right with energy E . Classical turning points are indicated by x1
and x2. According to Eq. (A5), for x1 < x < x2, the time becomes complex.

Therefore, for a tunneling path of a particle moving from left to right, the time evolution is
depicted in Fig. 3 by contour C+.

According to the semi-classical description, the tunneling amplitude is found by calculating the
action Eq. (A2) along contour C+. In order to find the tunneling probability amplitude the contour
C− needs to be added, where the property x(t∗) = x∗(t) has been used. Therefore, the tunneling
probability with exponential accuracy is given by

Γ ≈ exp (−S0) ,S0 = −i

C−+C+

dt


m
2

(
dx
dt

)2

− V (x) + E

, (A7)

where x(t) is the solution to the classical equation of motion, i.e. Eq. (A3), along the contour.
The horizontal segments of C+ and C− cancel each other and only vertical segments corre-

sponding to the under barrier motion survive. Using Eq. (A3) in the exponent of Eq. (A7) we
get

Γ ≈ exp
(
i
 −iτ0

iτ0

dt mẋ2
)
= exp

(
2im

 x2

x1

dxẋ
)
= exp

(
−2

 x2

x1

dx


2m(V (x) − E)
)
, (A8)

which is the well-known WKB result in quantum mechanics.41

If the system is in thermodynamic equilibrium before the tunneling starts, then the tunneling
probability needs to be statistically averaged over E

⟨Γ⟩ =


dE exp

− E

kBT
− S(E)


, (A9)

where E is given by Eq. (A7). The largest probability of tunneling occurs for energies that mini-
mizes the exponent in Eq. (A9) and is given by

∂S(E)
∂E

= − 1
kBT

. (A10)

The action for the underbarrier motion is given by

S(E) = 2
 x2

x1

dx


2m(V (x) − E), (A11)

and the energy derivative of the action yields

∂S(E)
∂E

= −2
 x2

x1

dx
√

m
2(V (x) − E) = −2τ0 (A12)

where τ0 is the time of the under barrier motion given by Eq. (A6). Comparing Eqs. (A10) and
(A12) reveals that

τ0 =
1

2kBT
. (A13)

Eq. (A12) determines the energy of the tunneling particle. Therefore, in equilibrium, the probability
of tunneling through the barrier is given by Eq. (A7) for real trajectories that satisfy Eq. (A13). The
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FIG. 3. The integration contour for the quantum tunneling probability. The vertical sections correspond to the underbarrier
motion.

real trajectories condition comes from the analysis that shows that the time-averaged probability for
semiclassical processes is entirely determined by real trajectories.25

The semi-classical method in which time can take on complex values is suitable for general-
ization to include tunneling from time dependent potentials. tunneling from periodically modulated
potential barriers is the most common application of this method and since in this paper we are
interested in sinusoidal alternating field we restrict this section of this review to potentials of the
form18,25–27

U(x, t) = V (x) + Ex cosΩt . (A14)

According to the semiclassical description, the linear in the field-strength correction to the tunneling
probability is then given by

S1 = −iE

C−+C+

dt x(t) cosΩt, (A15)

where x(t) is the solution of the unperturbed equation of motion Eq.(A3) along the contour. During
the under-barrier motion in the vertical segment of Fig. 3, time is imaginary t = iτ and therefore the
equation of motion becomes

m
d2x
dτ2 −

dV (x)
dx

= 0, (A16)

which in comparison to Eq. (A3) can be interpreted as the classical equation of motion in the
inverted potential.

The contour in Eq. (A15) may be shifted to entails the singularities of the integrand. This
enables calculating the integral based on the singularities of the x(τ). Therefore, the general trend
of the A1 in Eq. (A15) depends on the specific form of the potential. In some cases S1 can be
exponentially large, which is the case we encountered in this study. In order to have exponential
enhancement, it is necessary for the function defined as

h(x) = 
E − V (x), (A17)

to have singularities off the real axis in the x plane.35 Assuming V (x) has singularities of the form

V (x) ≈



κ(x − xs)α, α < 0, x → xs,

κxα, α > 0, x → ∞,
(A18)

then, the solution to Eq. (A3) near xs is of the form

x(t) = xs +


− κ

2m
(2 − α)2(t − ts)2

 1
2−α

, (A19)



035209-9 Jafari-Salim et al. AIP Advances 6, 035209 (2016)

FIG. 4. Dissipative quantum tunneling of a particle from the metastable potential barrier under the influence of a high
frequency field is shown. The incident radiation can excite the tunneling field to higher energy states with higher rate of
tunneling; however, the probability for being excited to higher energy states would decreases. The dotted arrow indicates
tunneling with dissipation where the field loses some energy to the environment. The emerging particle has less energy
compared to the energy before tunneling and has to travel longer distance under the barrier.

where ts is the complex time that takes going from x2 in Fig. 2 to xs given by

ts =
 xs

x2

dx ′
√

m
2 (E − V (x ′)) . (A20)

By comparing to Eq. (A6), the time of the underbarrier motion τ0 has the same order of the
magnitude as

τs = Im ts. (A21)

but for analytical potentials always τS < τ0. For Ωτs ≫ 1, the main contribution to the integral in
Eq. (A15) comes from branch-cut section in the vicinity of the singular points τs and τ∗s . Therefore,
the transition probability is given by

Γ(E, t) = Γ0 exp (a1 cos(Ωt)) , (A22)

where

a1 =
2πE
Ω

�����
ΓE

(
2

α − 2

) �����
−1  |κ |(2 − α)2

2mΩ2

 1
2−α

exp(Ωτs), (A23)

where ΓE is the Euler Gamma function and Γ0 is the tunneling rate in the absence of the alternating
field. The time averaging of Eq. (A22) gives

Γ(E) = Γ0
1

√
2πa1

exp(a1). (A24)

Eq. (A24) shows that the semiclassical description is relevant only when

S0 ≫ a1 ≫ 1. (A25)

If the condition S0 ≫ a1 is not satisfied, in addition to linear expansion in E, higher order correc-
tions need to be considered.

In this semi-calssical method the probability of multi-photon processes in the enhancement of
the quantum tunneling has been automatically included.27,34 In a multi-photon process, the charge
trapped in a local minima can absorb either one or more than one photon and tunnels away.
Although, absorbing more than one photons is less probable; however, upon absorption of more
photons the particle becomes exited to a higher level from which tunneling is facilitated, thus the
probability of quantum tunneling increases (see Fig. 4).
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