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Abstract

The substantial amount of tabular data can be attributed to its storage convenience. There
is a high demand for learning useful information from the data. To achieve that, machine
learning models, called transformers, have been created. They can find patterns in the data,
learn from them, and improve their predictive abilities based on that learning experience.
There are also tabular transformers for tabular data. In order to attempt to increase the
predictive performance of the transformers, we have combined them with graph neural
networks (GNNs), which are again machine learning models, which work on graph data by
learning information from the nodes and the edges. A graph representation of the dataset
is created and input into the graph neural network. The architecture that fuses these two
machine learning models is a more complex machine learning model that combines the
transformer and the GNN. The aim is to increase the predictive ability of the model for
values from the table or to predict whether an edge in the graph exists, which represents
whether a transaction between two users exists. We have built the architecture using certain
types of a tabular transformer and a graph neural network, FT-Transformer and GINe
respectively, and the next step is to try modifying this architecture by using different models,
and different ways of using these layers, for example how many copies we are creating of
it. This has the potential to be a versatile model than can be used for different kinds of
datasets. We have seen notable improvement in performance when using a different GNN,
PNA. The transformer ResNet also shows to be on a similar or slightly better performing
level than FT-Transformer when not combined with a GNN. GraphSage in the fused model
underperforms significantly due to its weakness to capture simple graph structures.

1 Introduction
Tabular data is prominent, since it is a convenient way of storing information [3]. Graph-
structured data is widespread as well, naturally occurring in many forms, such as social
networks and molecular structures. Even problems that do not inherently involve graphs
can often be transformed into graph problems, for instance bank transactions between users,
which happens to be what is used in this research. Including this graph representation of
the data, called a knowledge graph, has the potential of improving the accuracy of the
predictions of the machine learning model.

To train a machine learning model to learn patterns in the data and then to be able
to make predictions from unseen data, several methods have been developed - the most
notable of which is XGBoost [4], since it is state of the art. Given that, the fact that deep
learning models are not as powerful as tree-based models yet for tabular data [3, 19], and
that deep learning favors multimodal data, we are trying to outperform it by using tabular
transformers combined with graph neural networks.

Transformers [21] have been created in order to avoid using recurrence and convolutions.
They rely solely on attention mechanisms, and have proven effective for making predictions
on text. Tabular transformers build on transformers by being able to make predictions on
tabular data. FT-Transformer [9] is an adaptation of the transformer architecture [21] for
tabular data.

Graph neural networks (GNNs) [6, 13, 22] are able to produce informative results on
graph data by using message passing between nodes [26]. The GIN (Graph Isomorphism
Network) [22] is a neural architecture, a graph neural network, known for its effectiveness,
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and GINe [13] is a GNN that builds on GIN. Both the transformer and the GNN can be
used for representation learning on their own. In self-supervised learning [15], the model
trains itself to learn one part of the input from another part of the input 1. This is a kind of
representation learning. The self-supervised learning objectives are masked cell modelling
and link prediction for the transformer and and the GNN respectively. In order to test
whether learning from the graph-like properties of the data can enhance the predictive
abilities of the machine learning model, we have developed an architecture that combines
these two architectures together. What follows is to explain what architecture decisions we
have tried out and compare the performance of different architectures - different transformer
and GNN models, different number and size of hidden layers. The experiments along with
the corresponding results are presented.

2 Background

2.1 Graph neural networks
The goal of graph neural networks (GNNs) is to learn from the graph structure as much
as possible. This happens through a neighborhood aggregation scheme, "where the repre-
sentation vector of a node is computed by recursively aggregating and transforming rep-
resentation vectors of its neighboring nodes" [22]. The aggregation step could be a sum,
minimum, maximum, average value, or any other function on the node vectors. While mod-
els like GraphSage [11] and GCN (Graph Convolutional Networks) [16] are popular, they
have limited ability to capture simple graph structures [22]. This limitation highlights the
need for more expressive architectures. Expressive power could be measure by, for example,
graph isomorphism recognition ability or subgraph counting and connectivity learning [24].
Isomorphic graphs are those in which every node has the same neighbors in both graphs.
The Weisfeiler-Lehman (WL) graph isomorphism test is used to determine if two graphs
are isomorphic. The Graph Isomorphism Network (GIN) [22] is proposed as a GNN that
matches the power of the WL test and is considered the most expressive GNN architecture.

GINe [13] builds on GIN by pretraining on both local and global neighborhoods to
capture a broader range of structures. The graph-level representation is achieved by pooling
nodes. The pretrain strategy of GINe on GIN gives state of the art results, while avoiding
negative transfer [25], which refers to the undesirable inclusion of negative samples.

Principal Neighborhood Aggregation (PNA) [5] extends the graph neural networks fo-
cusing on graph isomorphism tasks and countable feature spaces by allowing the use of
continuous features. PNA uses a combination of aggregators, since using only one aggrega-
tor cannot capture the distribution of the values of the nodes, and also uses a combination
of scalers.

2.2 Transformers
Sequence transduction models, such as those used in natural language processing, typi-
cally rely on complex recurrent or convolutional networks that include an encoder and a
decoder [21]. The most effective models also incorporate an attention mechanism, which
helps to focus on relevant parts of the input sequence when generating outputs. However,
the Transformer model introduces a novel approach by eliminating the need for recurrence

1Neptune.ai - Self-Supervised Learning and Its Applications
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or convolutions. Instead, transformers utilize self-attention mechanisms, which assign a rel-
evance score to each word based on its similarity to other words in the sequence. This
approach not only improves quality but also reduces training time.

Building on the success of transformers, FT-Transformer (Feature Tokenizer + Trans-
former) [9] adapts this architecture, performing well on a wide range of tasks. In this model,
the feature tokenizer converts input features into embeddings, which the Transformer then
processes. This adaptation demonstrates the versatility of the Transformer architecture be-
yond its original application in language processing. Another innovative approach inspired
by transformers is Trompt (tabular prompt) [3]. Trompt leverages the concept of prompt
learning, which involves adjusting a large pre-trained model through a set of prompts out-
side the model without directly modifying the model. In addition to these transformer-based
innovations, ResNet [9] is considered a strong baseline, known for its superior performance
over traditional Multilayer Perceptrons (MLPs). The implementation details of ResNet are
illustrated in equations 1, 2, and 3.

ResNet(x) = Prediction (ResNetBlock (. . . (ResNetBlock (Linear(x))))) (1)

ResNetBlock(x) = x+Dropout (Linear (Dropout (ReLU (Linear (BatchNorm(x))))))
(2)

Prediction(x) = Linear (ReLU (BatchNorm(x))) (3)

2.3 Software libraries
PyTorch [18] is a deep learning library having many implementations of popular models.
PyTorch Frame [14] and PyTorch Geometric [8] build on PyTorch and are used for feature
learning on tables and graph respectively. PyTorch Frame contains implementations of
popular tabular transformers and PyTorch Geometric contains implementations of popular
graph neural networks.

2.4 Role of this project within the overall research
Acquiring labeled data for natural language processing and computer vision is challenging
and resource-intensive 2. Consequently, self-supervised learning is increasingly employed in
these and other relevant fields [15]. The complete development pipeline for the model in
this research involves several stages: designing the model, pretraining it [12], fine-tuning
[20], training, and testing its performance. This paper focuses on analyzing architectural
decisions, specifically the combinations of transformers and GNNs, and compares their per-
formance outcomes.

2.5 Limitations
In related work, transformers have been used together with GNNs, but that model is impos-
sible to be used for tabular data [23]. Despite the existence of numerous transformer models,
there is a need to standardize performance measurement, to facilitate accurate and objective
comparisons [9]. This could be addressed by using the standard benchmark for evaluating

2ENCORD BLOG Self-supervised Learning Explained
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models [10]. Moreover, the theoretical properties and limitations of GNNs require better
understanding [22]. In order to tackle this, a theoretical framework for analyzing the ex-
pressive power of GNNs has been proposed [22]. However, further improvement in analyzing
the representational capacity of GNNs’ is needed [22]. Additionally, a significant limitation
is the necessity to use tables that can be represented with a knowledge graph.

3 Contributions
At the start of our project, it was possible to use FT-Transformer for self-supervised learning
on the tabular dataset representation and GINe for link prediction on the graph dataset
representation. Both models could be used individually or together in an architecture that
uses them simultaneously. We added to the transformers the possibility to use ResNet and
Trompt, where ResNet can function both independently and in the combined architecture,
while Trompt can be used only on its own. For the GNNs, we added PNA and GraphSage,
with PNA capable of both standalone and combined use, whereas GraphSage is restricted
to the combined architecture.

Our findings revealed that the fused model with FT-Transformer and PNA outperforms
others in two out of three metrics: it excelled in accuracy and root mean squared error
(RMSE), though PNA alone is superior in mean reciprocal rank (MRR). Additionally, the
performance of fused FT-Transformer and PNA model improves with the increase in the
number of hidden channels, although at the cost of training speed. Notably, FT-Transformer
and ResNet exhibit similar performance individually, but integrating FT-Transformer into
the combined architecture significantly outperforms the integration of ResNet.

4 Architecture
Our architecture is heavily inspired by DRAGON(Deep Bidirectional Language-Knowledge
Graph Pretraining) [23], but unlike DRAGON, it can handle tabular data. In that work,
they use masked language modeling and link prediction, combined in a fusing layer. The
difference for our architecture is that we use masked cell modeling, where cells in the table
are masked and predicted, differing from the text-based input of masked language modeling.
Figure 1 illustrates the workflow of our architecture with 3 layers: the first two are fused
and in the last one the transformer and GNN are working in parallel, without combining
their outputs. The dataset, in tabular format, is preprocessed and then input into the tab-
ular transformer. A graph representation of the data, with users as nodes, is created for
the GNN. The initial combination of a transformer and GNN, which is to be improved, is
FT-Transformer and GINe. There is a Fused and a Parallel layer. In the parallel layer, the
transformer and the GNN are working individually, while in the fused layer, their results are
concatenated. Before data is input into the transformer, a transformer encoder, an Stype-
WiseFeatureEncoder, converts feature values into embeddings, mapping numerical values to
a continuous space and categorical values to a discrete space. The Tab Conv in the figure
is some functionality that defines how the transformer behaves, and could be, for instance,
TransformerEncoderLayer, which applies the Transformer architecture [21] for every feature
as described here [9], or TromptConv, which applies the Trompt cell [3]. The GNN Conv
could be some convolutional operator or another object that defines how the GNN operates,
such as GINEConv, which applies the modified graph isomorphism operator [13], or PNA-
Conv, which applies the Principal Neighbourhood Aggregation graph convolution operator
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[5]. For PNA the in-degrees of the nodes need to be calculated before it can be used. In
the fusing layer the output from the transformer and the GNN undergo several operations,
the crucial one of which is the concatenation of a part of the result of the Tab Conv with
the result of the GNN Conv. The fusing layer returns the result of the transformer, the
concatenated tensor, and the edge attributes. In the last layer, the output of the GNN goes
into a link prediction head, which applies link prediction by performing operations on node
and edge features and return positive and negative edge predictions. The result from the
transformer goes into the masked cell modeling head - it contains numerical and categorical
decoders for the respective type of feature. The results of the link prediction head and the
masked cell modeling head are the result of one forward pass of the fused model.

Figure 1: The fused architecture with 3 layers - first 2 are fused, last - not fused, but parallel.
GNN Conv - some GNN convolutional operator. Tab Conv - some tabular transformer
convolutional operator. LP Head - link prediction head. MCM Head - masked cell modeling
head.

5 Experiments
In this section, we lay out the conduction of the experiments, including the preparation of
the working environment and dataset, choice of the model building blocks, what we do in
what order, how we evaluate the performance, and what hardware is used.

5.1 Setup
In order to be able to run the experiments, we cloned the project, and then installed the
Conda environment, which installs most of the necessary packages, such as PyTorch (for deep
learning) and Wandb (for plotting the results and sharing it with with others). Additionally,
we pulled as a subproject a modified version of PyTorch Frame that includes masks. It is
necessary to use Linux or the Windows Subsystem for Linux, as using other systems may
make the installation extremely hard or impossible. Even though the supercomputer runs

5



on Linux, there are difficulties with installing PyTorch Geometric, so we use CMAKE to
build PyG as a standalone C++/CUDA library following this tutorial 3. Runs on the
supercomputer have a significantly higher speed, but very big queue waiting times. Also, on
the supercomputer we are able to use the whole 5M dataset, whereas locally, only a fraction
of the dataset can be run in a reasonable amount of time.

5.2 Dataset
The dataset that is used is the IBM Transactions for Anti Money Laundering (AML) dataset
[1]. Before using the data, preprocessing needs to be applied, including standardizing IDs
and timestamps, prefixing bank names, dropping rows with missing data, normalizing nu-
merical columns, and creating the graph. Afterwards, the dataset is split into train, test and
validation sets. It contains a list of transactions, slightly over 5 million, and what the model
is doing is it is predicting the masked cells and predicting whether a transaction between
two users exists, where the transaction is represented by an edge in the graph. The table
representation is input into the tabular transformer, while the graph representation is input
into the GNN.

5.3 Architecture decisions
There are numerous combinations that can be tried in order to test their representation
learning performance. Possible popular choices from the transformers are: FT-Transformer
[9], ResNet [9], Trompt [3] , TabNet [2]. Popular choices among the graph neural networks
are GIN [22], GINe [13], PNA [5], GraphSAGE [11], GCN [16]. Among those models,
ResNet, Trompt, PNA, and GraphSage were integrated, while FT-Transformer and GINe
were the starting point, they were available at the start at the project.

Multi-objective gradient correction (MoCo) [7], which enhances performance by selecting
an optimal solution from the Pareto frontier, has also been implemented. This technique
optimizes both transformer and GNN weights, leading to a better fused model performance.
Additionally, we use the AdamW optimizer [17].

For the Trompt model, multiple runs with different numbers of prompts were conducted,
yielding similar results across runs. This aligns with the findings in the Trompt paper
[3], which indicate minimal performance differences between models with varying prompt
numbers, and identify a single prompt as having the worst performance. Considering this,
and the increase in runtime proportional to the number of prompts, eight prompts were
found to offer the best trade-off between speed and performance.

5.4 Process
Initially, PNA was integrated into the fused model. It proved to be a better choice than
GINe. This holds both for link prediction using PNA alone and the fused model, and also for
the masked cell modeling combined with link prediction using the fused model (this could
be observed in tables 1 and 2). Afterward, Trompt was used in place of FT-Transformer
for self supervised learning. Unfortunately, its performance was slightly lower than FT-
transformer for lower number of prompts. 128 prompts are promising, but the runtime is so
significantly lower, that in the limit of 24 hours imposed by running on the supercomputer,
not enough epochs are possible to be run. Afterward, GraphSage was integrated into the

3https://github.com/pyg-team/pyg-lib/blob/master/.github/CONTRIBUTING.md
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fused architecture and ResNet was integrated into the self-supervised model. Around this
time, the supercomputer stopped running our jobs. Therefore, we had to resort to alternative
methods, such as training with a part of the dataset. That gave bad results, and luckily, the
supercomputer got freed up slightly, and we could continue running with the full dataset.

5.5 Evaluation
The performance metrics used are hits@k, accuracy, root mean square error (RMSE), mean
reciprocal rank (MRR). Hits@k and MRR are used to evaluate the performance of the GNN
on the link prediction objective, while RMSE and accuracy are used for measuring the
performance of the transformer and the fused model on the masked cell modeling objective.
What follows is an explanation of each metric.

5.5.1 Hits@k

In link prediction, the goal is to determine whether an edge exists between two nodes in
the graph. To achieve that, a neighborhood of nodes are sampled from the whole graph.
From this neighborhood the positive edges are samples from the dataset. Negative edges
are also created. These are edges that do not exist in the graph. The algorithm explores
neighboring nodes by sampling positive edges and negative edges. The goal is that after
learning during this process, when an edge is about to be predicted whether it exists or not,
the positive should be predicted that they exist and the negative - that they do not exist.
When evaluating, the hits@k metric is used. This means what fraction of the positive edges
are ranked in the first k positions in the sample under consideration.

5.5.2 Mean reciprocal rank (MRR)

Mean reciprocal rank (MRR) (see equation 4) is related to hits@k, in that it averages all
the reciprocal ranks that the model has assigned.

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(4)

5.5.3 Accuracy

Accuracy measures the proportion of correctly predicted masked cells within the categorical
features.

5.5.4 Root mean squared error (RMSE)

RMSE measures the extent to which the model’s predictions for the masked cells of the
numerical features deviate from the true values.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5)

n: The number of observations.

yi: The actual observed value.
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ŷi: The predicted value.

5.6 Hardware
Empirically we have seen that the runtime grows more than linearly proportional to the size
of the dataset. This is due to the linear increase if the model stayed the same, plus the
increase in the model size due to the increase in the size of the encoders, plus the increase
due to the runtime complexity of the algorithm. Nevertheless, the code is parallelizable,
since there are vector and matrix operations, thus its runtime can be reduced by utilizing a
GPU. This is possible by using the supercomputer Delft Blue 4. On the supercomputer we
can use 8 CPUs with 16GB of memory allocated per CPU, NVIDIA A100 / V100 Tensor
Core GPUs, which allow parallel computations, since PyTorch tensors are used, which are
multidimensional vectors or matrices. On the local machine we can use 2.6 GHz 6-core
processor, 16GB RAM and NVIDIA Quadro T1000 GPU. This means the local machine is
much less powerful, limiting the computational power we can get.

6 Results
In this section, we present comparisons of models grouped into different categories. All
experiments are done on the full dataset, as the partial dataset does not yield representative
results.

6.1 Best model
The fused model with FT-Transformer and PNA performs best on two out of three metrics:
accuracy and RMSE. For MRR, the best performance is achieved by using PNA alone.

6.2 Best transformer and GNN
When FT-Transformer and PNA are used on their own for self-supervised learning and link
prediction respectively, they outperform or do not perform worse than their counterpart
models. This goes hand in hand with the best performing fused model combines the top
transformer (FT-Transformer) and GNN (PNA).

6.3 Comparison of transformers
Trompt performs noticeably worse than both FT-Transformer and ResNet, see table 3. The
most promising Trompt configuration uses 8 prompts. Increasing the number of layers does
not seem to help, whereas increasing the number of prompts does slightly. FT-Transformer
and ResNet have similar performance, alternating as the leader in accuracy and RMSE over
epochs. However, integrating ResNet into the fused model results in significantly poorer
accuracy and RMSE.

4https://doc.dhpc.tudelft.nl/delftblue/
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6.4 Comparison of GNNs
PNA is the best-performing GNN, followed by GINe, with GraphSage performing signif-
icantly worse, as shown in table 4. This is expected, given the theoretical limitations of
GraphSage in capturing simple graph structures.

6.5 Comparison of transformers in the fused model
Since RMSE for all runs during all epochs ranges from 0.088 to 0.098, the RMSE difference
is significant. Since accuracy ranges from 0.83 to 0.86 for all runs except for the fused with
ResNet, then fused with ResNet performs quite bad. See exact values in table 5.

6.6 Comparison of GNNs in the fused model
From tables 1 and 2, it could be inferred that the fused architecture performs significantly
better when using PNA compared to GINe. This is true both for the link prediction and
masked cell modelling self-supervised learning objectives. Since PNA uses multiple aggre-
gators, compared to a single one in GINe, that allows PNA to capture the distribution of
the values of the nodes better, leading to the better performance.

6.7 Comparison of hidden layer sizes
The fused model with PNA with 256 channels in the hidden layers has a higher MRR than
PNA with 128 channels - see table 6. However, PNA with 128 channels outperforms PNA
with 256 channels on accuracy and RMSE.

Accuracy ↑ Hits@1 ↑ Hits@10 ↑ Hits@2 ↑ Hits@5 ↑ MRR ↑ RMSE ↓
FT+GINe 0.80589 0.54164 0.84305 0.69683 0.81309 0.66502 0.04272
FT+PNA 0.80670 0.65163 0.88345 0.7784 0.86145 0.74876 0.07411

Table 1: Fused architecture with masked cell modelling and link prediction results after 3
epochs. Notation: FT = FT-Transformer; MRR = mean reciprocal rank; RMSE = root
mean squared error

Hits@1 ↑ Hits@10 ↑ Hits@2 ↑ Hits@5 ↑ MRR ↑
GINe 0.65376 0.87777 0.78442 0.86219 0.75107
PNA 0.71286 0.89797 0.81986 0.88254 0.79265
FT+GINe 0.65248 0.87399 0.78131 0.85645 0.74901
FT+PNA 0.71227 0.88688 0.81499 0.87090 0.78895

Table 2: Link prediction results after 3 epochs. Notation: FT = FT-Transformer; MRR =
mean reciprocal rank
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FT-Transformer ResNet Trompt
Accuracy ↑ 0.8553 0.8545 0.8497
RMSE ↓ 0.09194 0.09145 0.09253

Table 3: Comparison of different transformers.

GINe PNA fused-FT+GraphSage
MRR ↑ 0.8106 0.8434 0.4721

Table 4: Comparison of different GNNs. The MRR of GraphSage is measured in the fused
model, because we did not manage to integrate it in the link prediction algorithm. FT
stands for FT-transformer.

FT+PNA ResNet+PNA
Accuracy ↑ 0.8544 0.7920
RMSE ↓ 0.0905 0.0929

Table 5: Comparison of different transformers in the fused model. FT stands for FT-
transformer.

fused-FT+PNA-128 fused-FT+PNA-256
MRR ↑ 0.7757 0.8056
Accuracy ↑ 0.8568 0.8561
RMSE ↓ 0.08915 0.08941

Table 6: Comparison of different hidden layer sizes for PNA. FT stands for FT-transformer.

Figure 2: Mean reciprocal rank of the best performing models, and some worse performing
for comparison. Names of the models start either with lp, standing for link prediction,
and afterward the GNN model is specified, or fused - for the fused model, followed by a
specification of the transformer and GNN. "ft" stands for FT-Transformer.
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Figure 3: Accuracy of the best performing models, and some worse performing for com-
parison. Names of the models start either with fused - for the fused model, followed by a
specification of the transformer and GNN, or consist of the transformer name, which itself
can contain details about its implementation. "ft" stands for FT-Transformer.

Figure 4: Root mean squared error of the best performing models, and some worse per-
forming for comparison. Names of the models start either with fused - for the fused model,
followed by a specification of the transformer and GNN, or consist of the transformer name,
which itself can contain details about its implementation. "ft" stands for FT-Transformer.
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7 Responsible Research
The dataset used in this paper is the IBM Transactions for Anti-Money Laundering (AML)
dataset, available on Kaggle. This dataset is popular, as indicated by its statistics on the
website, enhancing our confidence in its credibility and suitability for our research. It can
also be used by other researchers for further building on this research question. Even more,
it is being used for supervised learning using GNNs [6], which is closely related to our
work. We have explained the architecture and the workings of the model so that it could
be understood and built on by researchers. Moreover, if needed and if it is possible, we
can provide the repository allowing for further development using other transformers and
GNNs.

Since we are attempting to improve the predictive abilities of a machine learning model
on detecting money laundering, this has the potential to create positive impact on society.
If researchers use the model for other purposes with a huge societal impact, that would
be even more beneficial for people. Since graph structured data is common and naturally
occurring, many fields, such as medicine could benefit from this work.

While the power consumption associated with training is not excessive, it is still sig-
nificantly more than what an average computer uses, therefore we have taken measures to
avoid unnecessary computations by ensuring that every experiment is purposeful. Lastly,
improving the algorithm’s efficiency is necessary to reduce electricity consumption and save
users’ time. Enhancements in efficiency will also enable the model to run on less powerful
machines, increasing its accessibility.

8 Future work
To enhance the reliability of the architectural analysis, it is essential to run additional epochs
using the the full dataset. The model demonstrates learning capabilities up to at least the
15th epoch. Therefore, extending the training period for all architectures to this duration
will ensure that the models are well-trained and approaching their maximum potential. In
addition, for statistical significance, it is crucial to run multiple iterations of each experiment
and average the results.

Furthermore, Trompt outperforms FT-Transformer in specific scenarios [3], thus the
Trompt model requires parameter tuning to identify its optimal performance configuration,
because there is variation for different number of prompts and number of layers, or it might
be that our dataset is less favorable for Trompt compared to FT-Transformer.

Currently, we have only tested on a transactions dataset. While this dataset type is
common, it is important to test on various other types to ensure the architecture’s versatility.
Ideally, the architecture should perform well across different datasets.

The algorithm’s current efficiency prevents timely completion when using larger datasets,
restricting us to the HI-Small_Trans.csv dataset, which contains around 5 million rows.
Larger datasets have significantly more rows, necessitating substantial algorithm optimiza-
tions. This limitation may hinder the model’s learning capacity, as larger datasets generally
provide more learning opportunities. Optimizations should include eliminating inefficient
actions in the code, such as unnecessary data transfers between the CPU and GPU. Other
aspects of data handling also require attention 5.

5https://towardsdatascience.com/7-tips-for-squeezing-maximum-performance-from-pytorch-ca4a40951259
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What is more, integrating XGBoost [4] into the model could be beneficial. XGBoost has
proven to outperform deep models. It is worth trying integrating it into the model, since an
ensemble of XGBoost with deep models gives superior results among a set of models [19].
XGBoost could either replace components like the transformer or GNN or be used alongside
them.

Lastly, to ensure robust performance measurement, a standard benchmark is proposed
[10] for example for the evaluation of Trompt [3], one of the tabular transformers which
we discussed. Integrating this into our workflow would facilitate objective performance
comparisons with other models, allowing researchers and developers to benchmark their
models against ours.

9 Conclusion
There are machine learning models, called tabular transformers, which can make predic-
tions on an unseen and unknown part of the data, after having learned on other parts of
the data. There are also graph neural networks, which can perform link prediction, node
classification or any other task they are trained on. Combining tabular transformers with
graph neural networks (GNNs) can enhance the predictive abilities on tabular data. The
dataset that we use consists of bank transactions, and we are training the model to predict
the values in the table, a process called self-supervised learning. We have discovered better-
performing models than the starting point, consisting of a tabular transformer and a GNN
- the FT-Transformer and GINe fused architecture. Among the GNNs, PNA outperforms
GINe, while GraphSage significantly underperforms compared to the other GNNs. While
ResNet serves as a viable alternative to FT-Transformer for standalone use, the optimal
performance is achieved by the fused model incorporating both FT-Transformer and PNA.
This performance is significantly better than the starting point. The are more improvements
that can be made, such as running more epochs, running the experiments more times for
statistical significance, improving the efficiency of the algorithm, generalizing the model to
perform well on more kinds of datasets.
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Appendix A - full sets of runs

Figure 5: Root mean squared error or models

Figure 6: Accuracy of models
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Figure 7: Mean reciprocal rank

Figure 8: Root mean squared error of transformers

Figure 9: Accuracy of transformers
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