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1
INTRODUCTION

1.1. MOTIVATION
Dysarthria is a speech disorder due to neural damage of the motor component of the
motor–speech system. In most cases, dysarthria is caused by brain damage [39], which
can result from congenital conditions like cerebral palsy or muscular dystrophy [29]. It
can also be triggered by certain acquired factors such as stroke, brain injury, or Parkin-
son’s disease [30]. Individuals with dysarthria often struggle with producing spoken
sounds, including difficulties with articulation, slurred speech, or irregularities in the
clarity, pitch, and speed of their speech [29].

The advancement of deep learning technologies has significantly improved auto-
matic speech recognition (ASR) systems. However, most existing ASR systems are trained
on typical speech datasets [13]. But for people with dysarthria who have difficulty com-
municating with others due to slow, unclear, or fluctuating speech speed, the perfor-
mance of existing ASR systems is poorer than ideal [33]. The poor performance of ASR
in recognizing dysarthric speech can severely impact daily communication, making it
difficult for people with dysarthria to interact effectively [1].

The speech characteristics of speakers with dysarthria differ significantly from typ-
ical speech, including fluency, and articulatory accuracy which pose additional chal-
lenges for recognition by ASR systems. To further optimize the ASR system so that it can
better recognize people with dysarthria, it’s necessary to propose a more adapted ASR
system that can recognize dysarthric speech.

The primary challenge lies in the variability of dysarthric speech among individuals.
This variability makes it more difficult to learn the model accurately, as the speech pat-
terns vary a lot in severity and type [49]. To address this challenge, researchers have pro-
posed several strategies. One approach is data enhancement, such as generating training
data for dysarthric speech from typical speech by using adversarial training [23] or using
temporal and speed modifications of typical speech [42]. Another state-of-art approach
is using multiple modalities, which combines data from other modalities like facial im-
ages or articulator movements, with speech data to improve the performance of the ASR
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system [53]. This method can complement the acoustic information and improve ASR
performance. In the case of dysarthria, changes in muscle activity of articulators result in
unique speech patterns that are critical for the ASR system to recognize [24]. Articulatory
features can help to recognize these differences and provide information about the phys-
ical process of speech production [41], which can be combined with acoustic features to
provide richer and more multidimensional data for speech recognition systems, thus im-
proving the performance of the ASR [55]. Some previous works [55, 19] have proposed
to combine acoustic features with articulatory features. These works have shown that
automatic dysarthric speech recognition(ADSR) systems can better recognize dysarthric
speech by training with articulatory features. This thesis will focus on exploring the im-
pact of combining articulatory information with acoustic features to improve dysarthric
speech recognition.

Additionally, with the development of large pre-trained acoustic models such as Whis-
per [34], WavLM [6], and Hubert [20], some researchers have proposed using features ex-
tracted by these models for various tasks such as speech classification or typical speech
recognition. However, to my best knowledge, few works have explored the combination
of features extracted from large pre-trained models with articulatory features. Instead,
most previous studies rely on traditional acoustic features like mel filter bank (FBank)
[9]. To bridge this gap, this work will combine features extracted from large pre-trained
models with articulatory features.

1.2. RESEARCH QUESTIONS
This thesis will approach the dysarthric speech recognition problem by exploring the
integration of articulatory features with features extracted from large pre-trained models
such as Whisper and WavLM. The aim is to enhance the accuracy of dysarthric speech
recognition by leveraging the complementary strengths of both articulatory and acoustic
features. Various fusion methods will be investigated to determine how best to combine
these feature types to improve ASR performance. The main research question will thus
be:

• RQ1: How effective are articulatory features in enhancing dysarthric speech recog-
nition when combined with features extracted from large pre-trained models?

• RQ2: How does the effectiveness of combining articulatory features with acoustic
features vary across different severity levels of dysarthria?

• RQ3: What fusion methods can better utilize the feature information from both
acoustic and articulatory features?

1.3. OUTLINE
This thesis is organized into several chapters. Chapter 1 introduces the research, in-
cluding the motivation and research questions. Chapter 2 reviews related work, while
Chapter 3 details the methodology. In Chapter 4, I will describe the experiment setups.
Chapter 5 discusses the results of different models. Finally, Chapter 6 concludes with key
findings and future research directions.



2
LITERATURE REVIEW

This chapter explores related research on incorporating articulatory features in speech
recognition, utilizing features extracted from large pre-trained models, and implement-
ing multimodal fusion techniques.
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2.1. RELATED WORK

2.1.1. ARTICULATORY FEATURES IN ASR MODELS

Articulatory features, derived from the physical movements of speech articulators, can
provide complementary information to acoustic features in automatic speech recogni-
tion (ASR) tasks, as demonstrated in several previous studies. Early research in ASR ex-
plored articulatory features and highlighted their potential to enhance recognition per-
formance. For instance, Wrench and Richmond [47] proposed a dynamic Bayesian net-
work (DBN) model that integrated articulatory information with acoustic signals (MFCCs),
resulting in a reduction in word error rate (WER) by approximately 10%. Later, Markov
et al. [28] introduced a hybrid model combining HMMs and Bayesian Networks (BN),
which integrated both articulatory and acoustic (MFCCs) features by modeling the prob-
abilistic dependencies between them. In addition to the position of the articulators,
Markov’s model also incorporated velocity and acceleration data of articulators.

While early research successfully proved the effectiveness of combining articulatory
features with acoustic data, these approaches often relied on traditional models like
HMMs and DBNs, which have limitations in capturing complex dependencies and non-
linear relationships between features. With the development of deep learning, advanced
neural network architectures, such as RNN [46], Transformer [43], and Conformer [14]
have a better performance in the field of ASR. Recent studies have leveraged these ar-
chitectures to more effectively integrate articulatory and acoustic features. Since it is
difficult to collect articulatory data, many studies have explored acoustic-to-articulatory
mapping (AAM) to estimate articulatory data from acoustic features. For example, Leonardo
Badino et al. [3] used AAM to transform acoustic features into articulatory features and
leverage these features to enhance the performance of hybrid DNN-HMM models. Mitra
et al. [32] managed to use deep Neural Networks (DNNs) and Convolutional Neural Net-
works (CNNs) to map speech data to the corresponding articulatory space and jointly
learn acoustic and articulatory spaces to improve the performance of ASR.

2.1.2. ARTICULATORY FEATURES IN ADSR MODELS

In addition to their application in ASR for typical speech, many works have explored
the use of articulatory features in dysarthric speech recognition. Emre Yılmaz et al.
[52] employed vocal tract constriction variables (TVs) as articulatory features, which
describe the degree of contraction of the vocal tract and the location of the contrac-
tion. This study concatenated TVs with Fbank features as input to their acoustic model.
The fusion of articulatory features led to a lower WER on the CHASING01 and COPAS
test datasets. Zhengjun Yue et al. [55] explored multi-modal speech recognition for
dysarthric speakers by fusing acoustic and articulatory features. It used a multi-stream
architecture with CNN, RNN, and fully connected layers, allowing for processing each
feature type separately before combining them. This work also explored three multi-
modal feature fusion methods, categorized by the layer at which acoustic and artic-
ulatory features(MFCCs) are integrated. More recently, Hsieh et al. [19] proposed a
method that used curriculum learning to improve ADSR performance, where the model
first learns easier (closer to typical speech) samples, then progressively adapts to more
challenging (severely dysarthric) speech. This study integrated 80-dimensional Fbank
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features with articulatory features, along with speaker identity and speech intelligibility
embeddings, as input to the model. This combination resulted in a lower WER, demon-
strating the effectiveness of articulatory features for ADSR.

2.1.3. LARGE PRE-TRAINED MODEL EXTRACTED FEATURES FOR DYSARTHRIA

SPEECH RECOGNITION
In addition to studies incorporating articulatory features, recent research has also ex-
plored the use of large pre-trained models for pathological speech recognition. These
large pre-trained acoustic models have shown powerful capabilities in capturing details
from speech signals, even in atypical speech. Yaroslav Getman et al. [11]proposed a
method using features extracted by Wav2vec2 [4] to enhance ASR performance for chil-
dren with speech sound disorders (SSD). Their findings showed that features extracted
by Wav2vec2 achieved a lower WER compared to traditional acoustic feature MFCCs.
Another more recent work [37]employed a pre-trained Whisper [34] model to extract au-
dio features and fed these features into acoustic models, such as LSTM [17], Bi-LSTM
[40], and Bi-GRU [7] for speech recognition. Experimental results show that Whisper
features can maintain high recognition accuracy in noisy environments, outperforming
other commonly used large pre-trained models including Hubert [20] and Wav2vec2.
Shujie Hu et al. [22] explored the combination of self-supervised learning (SSL) models
(e.g., Wav2vec2.0, HuBERT , etc.) with the TDNN and Conformer ASR systems to im-
prove the recognition performance of aphasic and elderly speech. Experimental results
on datasets such as UASpeech and TORGO showed that the method can reduce the word
error rate (WER) and the character error rate (CER), and achieve an improvement in the
challenging dysarthric speech data

2.1.4. MULTIMODAL FUSION IN ASR TASKS
Besides the concatenation method discussed in the previous sections, which has been
utilized in many works [52, 19, 55], other fusion methods are employed to integrate
acoustic features with different modalities. Pingchuan Ma et al. [<empty citation>] pro-
posed to fuse audio and visual features by first extracting them separately using ResNet-
18-based front-ends (3D CNN for visual and 1D CNN for audio). Then the extracted
embeddings are concatenated and fused via an MLP module, projecting them into a
shared latent space. Gaopeng Xu et al. [50] proposed a cross-attention mechanism for
audio-visual fusion. In this study, acoustic and visual features are first independently
encoded before audio-visual fusion. Then, cross-attention is applied, where audio fea-
tures serve as the query and visual features (e.g., lip movements) act as key/value, allow-
ing the model to focus on the most relevant visual information for speech recognition.
[15] also employed a cross-attention-based multi-modal fusion method to combine vi-
sual and acoustic features, which can capture contextual relationships between them.
Compared with the previous method which only employs acoustic features as a query,
in this method, each modality alternates as the query, while the other serves as the key
and value in this approach. Inspired by this, a similar cross-attention-based method is
adopted in this study to fuse articulatory and acoustic features.

In conclusion, previous research on dysarthric speech recognition has explored the
effectiveness of using articulatory features and large pre-trained models separately. While
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articulatory features improve recognition by adding speech production information, large
pre-trained models capture complex acoustic patterns. However, the combination of
these approaches remains under-explored. This study addresses this gap by integrating
articulatory and large pre-trained model extracted features to enhance ASR performance
for dysarthric speech.



3
METHODOLOGY

This chapter briefly overviews several mainstream large pre-trained models and explains
the process of extracting acoustic features, including Fbank features and features ex-
tracted by large pre-trained models. It also describes the articulatory data from the
Torgo dataset. Additionally, this chapter discusses multimodal fusion strategies, such
as concatenation and cross-attention-based methods. Furthermore, this chapter in-
troduces sequence-to-sequence ASR models and explains the Conformer encoder and
Transformer decoder architecture. Additionally, it includes a description of t-SNE anal-
ysis.
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3.1. ACOUSTIC FEATURES
In ASR systems, the initial step is feature extraction, where the aim is to capture the
essential components of the audio signal. These features are used to characterize the
acoustic structure of speech by analyzing both the frequency and time domain proper-
ties of the speech signal.

3.1.1. FBANK
The Fbank feature is one of the traditional acoustic features that play an important role
in the field of speech recognition due to its direct representation of the power spectrum
[48]. The Fbank generates feature vectors representing frequency distributions by apply-
ing triangular filters on the Mel frequency scale. FBank features have been commonly
used as baseline representations in some studies related to dysarthric speech recogni-
tion tasks, such as [16, 54, 56]. Therefore, in this study, Fbank was also used as a baseline
acoustic feature to compare it with features extracted from large pre-trained models.

3.1.2. LARGE PRE-TRAINED MODELS EXTRACTED FEATURES
In this research, the following large pre-trained models were employed: HuBERT [20],
Wav2vec [4], Whisper [34], and WavLM [6]. These models are all based on Transformer
architectures which are highly effective at capturing both spectral and temporal depen-
dencies in the audio signal and employ self-supervised learning to extract high-level
speech features from unlabeled audio data that are suitable for speech recognition (ex-
cept Whisper, which is trained on large-scale labeled data). These large pre-trained
models have shown strong performance on dysarthric speech and are widely adopted
in ADSR studies [21, 11, 36]. Therefore, this research also employs them to compare with
Fbank features. Below is a brief introduction to these large pre-trained models.

• Wav2Vec 2.0 [4]: Wav2Vec 2.0 is a self-supervised speech representation model
developed by Meta. It learns speech features directly from raw audio waveforms
without relying on extensive labeled datasets. The model is trained by masking
parts of the audio input and learning to predict the missing segments, enabling it
to capture rich acoustic features. By learning to predict masked audio segments,
Wav2Vec 2.0 can capture contextual information, leading to richer, more robust
speech representations.

• HuBERT [20]: Hubert is also a self-supervised speech representation model devel-
oped by Meta. It builds on the strengths of previous models like Wav2Vec 2.0 but
introduces a novel approach to learning speech representations. HuBERT uses
a method that clusters audio into discrete hidden units and then predicts these
units. This approach helps the model learn more structured and robust represen-
tations of speech. Also by predicting masked parts of speech based on surrounding
audio, HuBERT can capture longer-range dependencies more effectively.

• Whisper [34]: Whisper is a large pre-trained acoustic model released by OpenAI
in 2022. OpenAI trained Whisper with 680,000 hours of supervised multilingual
(98 languages) and multitask data collected from the web. Unlike models like
wav2vec, whisper utilizes weakly supervised training, which enables it to perform
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direct multitask learning without requiring task-specific fine-tuning. This training
approach also allows Whisper to leverage a smaller amount of labeled data while
learning richer and more generalized feature representations from the data.

• WavLM [6]: WavLM is a self-supervised pre-trained model for speech processing
developed by Microsoft. One of the key innovations in WavLM is the use of masked
speech prediction and denoising during pre-training. This approach trains the
model to predict masked segments of speech while also handling various noise
conditions, which helps the model learn more robust and generalized speech rep-
resentations.

In this work, I leverage Hugging Face’s interfaces to extract acoustic features using the
mentioned large pre-trained models. For each large pre-trained model, Hugging Face
offers multiple versions based on model size. To capture richer information from the
speech signal, this study chose the large versions, specifically HuBERT-large, WavLM-
large, Whisper-large-v3, and Wav2vec2-xlsr-53. These large pre-trained models are all
based on Transformer architectures and composed of both an encoder and a decoder.
The features are all extracted from the final layer of each model’s encoder, as this layer
can capture high-level representations [8]. The extracted features vary in dimensional-
ity depending on the model. Specifically, as shown in the table below, HuBERT-large,
Wav2vec2-xlsr-53, and WavLM-large generate features with 1024 dimensions, whereas
Whisper-large-v3 produces features with 1280 dimensions. Here, Nframe denotes the
number of frames in a speech signal. Due to the downsampling mechanism in these
large pre-trained models, the number of extracted feature frames is reduced to half of
the original audio.

Large Pre-trained Models Parameters Extracted Feature Dimension
Whisper-large-v3 1550 M 1×Nframe/2×1280
WavLM-large 317 M 1×Nframe/2×1024
HuBERT-large 316 M 1×Nframe/2×1024
Wav2vec2-xlsr-53 316 M 1×Nframe/2×1024

Table 3.1: Comparison of Large Pre-trained Models, Parameters, and Extracted Feature Dimensions

Take Whisper as an example, the feature extraction pipeline is illustrated in Figure3.1.
With all the parameters frozen, the speech signal was fed into Whisper and only the out-
puts of the last hidden layer of encoders were used as input for our acoustic model.
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Figure 3.1: Feature Extraction Pipeline of Whisper Encoder

3.2. ARTICULATORY FEATURES

Articulatory Features describe the primary actions of speech organs during speech pro-
duction. Through articulatory features, a correspondence can be established between
the speech signal and key articulatory units [31].

In this study, articulatory features are used to capture the kinetic information of ar-
ticulators such as the lips and tongue, providing complementary information to acoustic
features. The articulatory data used in the experiments is from the TORGO dataset [38],
which uses a 3D AG500 electro-magnetic articulograph (EMA) system to record the artic-
ulatory movement data simultaneously with the acoustic data. The system is automati-
cally calibrated and can record 3D movements of both internal and external articulators.
As shown below, the collection system uses 12 sensor emitters to generate alternating
electromagnetic fields and measures the movements of the tongue, chin, and lips. Sen-
sor coils are attached to the tongue tip, middle, and back, as well as the upper and lower
lips, lower incisor, and mouth corners to track their movements, as shown in Table 3.2.

Figure 3.2: Electromagnetic Coil Placement for Articulatory Data Collection from the TORGO Dataset [38]
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Index Position in the Vocal Tract

1 Tongue back (TB)
2 Tongue middle (TM)
3 Tongue tip (TT)
4 Forehead
5 Bridge of the nose (BN)
6 Upper lip (UL)
7 Lower lip (LL)
8 Lower incisor (LI)
9 Left lip
10 Right lip
11 Left ear
12 Right ear

Table 3.2: Sensor coil positions in the vocal tract. [38]

During the collection of EMA data, the subject’s head is free to move, and the system
connects the sensors via a lightweight cable that does not interfere with the subject’s
freedom of movement in the EMA device. The articulatory data is stored as a time se-
ries, and the positional coordinates of the transducers (typically the X, Y, and Z axes) are
recorded at each time point, capturing the three-dimensional trajectory of the motion of
these articulatory organs.

As shown in the previous work [55] where lip and tongue EMA data have proven help-
ful for ADSR, this study also employed EMA data collected from lip and tongue sensors
as articulatory features.

3.3. MULTIMODAL FUSION STRATEGY
Since acoustic features alone may not fully capture the characteristics of dysarthric speech
during training, I explored several multimodal fusion strategies to incorporate artic-
ulatory features with acoustic features. In this work, both concatenation and cross-
attention-based methods were employed. Since the EMA data (200 Hz) and acoustic data
(100 Hz) have different frame rates, the EMA data was downsampled for better alignment
before fusion.

Concatenation is one of the early fusion strategies, where multiple features are com-
bined or directly concatenated at the input stage of the model, which allows the model
to process multimodal information from the very beginning [35]. In this work, early fu-
sion was utilized by directly concatenating acoustic and articulatory features at the input
stage. Mathematically, given the acoustic feature at ∈ RdA and the articulatory feature
mt ∈RdM at each time step t , the concatenated feature vector is computed as:

xt = [at ;mt ] ∈RdA+dM (3.1)

where at and mt are the frame-level acoustic and articulatory feature vectors, respec-
tively, and [at ;mt ] denotes concatenation along the feature dimension.
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In this research, cross-attention [43] was used as an alternative fusion strategy, try-
ing to further enhance the integration of multimodal information. The cross-attention
mechanism consists of a series of attention layers, where each layer takes one modality
(e.g., acoustic features) as the query and the other modality (e.g., articulatory features) as
the key and value. The attention scores are then calculated by measuring the relevance
between the queries and keys, typically using a dot product followed by normalization,
such as softmax. These scores are then used to weight the value vectors, allowing the
model to focus on the most relevant articulatory information. Finally, the weighted val-
ues are combined to form a fused feature that integrates both acoustic and articulatory
information. This mechanism enables the model to dynamically weigh and focus on
specific parts of the input sequence from each modality.

Figure 3.3: Achitecture of Cross Attention Mechanism

Mathematically, given the acoustic features A ∈ RT×dA and the articulatory features
M ∈ RT×dM , the cross-attention mechanism computes the fused representation as fol-
lows:

QA = WA
Q A, KM = WM

K M, VM = WM
V M (3.2)

S = QAK⊤
M√

dk

(3.3)

Aweights = softmax(S) (3.4)

X = AweightsVM (3.5)

where WA
Q ∈ Rdk×dA , WM

K ,WM
V ∈ Rdk×dM are learnable projection matrices, and dk is

the dimension of the key vectors used for scaling.
Additionally, inspired by the work of [15], which employs two cross-attention layers

for visual-audio fusion, this research adopted a similar approach to fuse articulatory fea-
tures. The architecture of the improved cross-attention is shown below:
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Figure 3.4: Architecture of Improved Cross Attention Mechanism. In this mechanism, each modality attends
to the other by using its own features as the query (Q), while obtaining the key (K) and value (V) from the

other modality.

In this method, the acoustic features go through an acoustic cross-attention layer, us-
ing articulatory features as keys and values. Simultaneously, the articulatory features are
processed through an articulatory cross-attention layer, with acoustic features as keys
and values. The outputs from both layers are then concatenated to form a fused feature
before passing to the acoustic model. This bidirectional cross-attention mechanism fa-
cilitates effective information exchange and enhances feature complementarity. Here’s
the math expression for this improved method, the equation is the same as the previous
method when acoustic features serve as query and articulatory features serve as keys and
values. Given the acoustic features A ∈ RT×dA and the articulatory features M ∈ RT×dM ,
the bidirectional cross-attention mechanism is computed as follows:

(1) Acoustic-to-Articulatory Cross-Attention:

QA = WA
Q A, KM = WM

K M, VM = WM
V M (3.6)

SA = QAK⊤
M√

dk

(3.7)

Aweights = softmax(SA) (3.8)

XA = AweightsVM (3.9)

(2) Articulatory-to-Acoustic Cross-Attention:

QM = WM
Q M, KA = WA

K A, VA = WA
V A (3.10)

SM = QM K⊤
A√

dk

(3.11)
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Mweights = softmax(SM ) (3.12)

XM = MweightsVA (3.13)

(3) Feature Concatenation:

Xfused = [XA ;XM ] ∈RT×(dA+dM ) (3.14)

where WA
Q ,WA

K ,WA
V ∈ Rdk×dA and WM

Q ,WM
K ,WM

V ∈ Rdk×dM are learnable projection
matrices, and dk is the dimension of the key vectors used for scaling. This bidirectional
cross-attention mechanism facilitates effective information exchange and enhances fea-
ture complementarity.

3.4. ASR MODEL

This study employed a Seq2seq acoustic model for speech recognition tasks. One of the
major advantages of the Seq2seq model is its ability to directly convert input audio se-
quences into target text transcriptions. The Seq2Seq model usually consists of an en-
coder and a decoder. The encoder’s role is to transform the input sequence of audio fea-
tures into high-dimensional hidden representations. Commonly used encoders include
Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), as well as
Transformer and Conformer models that use self-attention mechanisms.

The role of the decoder is to generate the target output sequence from the high-
dimensional representations produced by the encoder. By using attention mechanisms,
the decoder can focus on the most relevant parts of the input sequence while producing
the output. Then a beam search [26] algorithm is used to improve the quality of the gen-
erated text. This algorithm keeps several possible output paths and ranks them based on
a scorer, which usually considers the generation probability, language model score, and
a length penalty. At last, the path with the highest score is chosen as the final output.

3.5. CONFORMER ENCODER

In this work, the Conformer [14]was employed as the Seq2seq model encoder, to com-
pare performance between acoustic-only and multimodal models. In the field of ADSR,
Conformer has been adopted in many works [2, 44]. Additionally, Conformer has shown
robustness in noisy speech environments [51]. Therefore, this research also employed
the Conformer architecture. The architecture of the Conformer encoder is illustrated
below. The left part of the figure represents the preprocessing pipeline for the speech
signal, while the right part shows the structure of the Conformer block.
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Figure 3.5: Conformer encoder model architecture [14]

As shown in the figure, after data augmentation, a convolutional downsampling mod-
ule is then applied to reduce the sequence length by downsampling the time dimension.
Next, the downsampled features will go through a dropout layer to mitigate the overfit-
ting problem. After the preprocessing steps, the acoustic features will be fed into several
conformed blocks(right part). It consists of a feed-forward module that transforms fea-
tures through a residual connection, followed by a multi-head self-attention module to
capture global dependencies, and then another residual connection. Next, a convolution
module models local temporal features, again fused with a residual connection. Another
feed-forward module applies feature transformations, and at last, the data is fed into a
layer normalization layer that balances the scales of different features.

Compared to traditional Transformer [43] architecture which lacks specialized mod-
eling of local temporal features, Conformer introduces a convolution module to solve the
problem. The convolution module can capture local temporal dependencies in speech
signals, complementing the global modeling capabilities of the self-attention mecha-
nism. This structure effectively captures both local and global information, making it
suitable for ASR tasks.
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3.6. TRANSFORMER DECODER
This study utilized the Conformer model from the SpeechBrain toolkit, which employs
Transformer as its decoder. The Transformer decoder generates tokens in an autore-
gressive way, meaning that each decoding step depends on the previously generated
tokens. The architecture of the Transformer decoder is shown in Figure 3.6. First, the
decoder takes the Conformer encoder outputs as input, followed by a layer normaliza-
tion. Then a masked multi-head attention mechanism is employed to ensure each token
can only attend to previous tokens to keep causality. Next, a multi-head mechanism al-
lows the decoder to focus on relevant information from the encoder output, followed
by another layer normalization. The transformed representations pass through a feed-
forward module and a layer normalization. Finally, the processed output will be fed into
a softmax layer, calculating the probability distribution over the target vocabulary.

Figure 3.6: Transformer decoder architecture

3.7. T-SNE ANALYSIS
T-SNE [27] (t-distributed Stochastic Neighbor Embedding) is a nonlinear method for di-
mensionality reduction of high-dimensional data, which is suitable for visualizing high-
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dimensional data into 2D or 3D space. t-SNE’s main advantage is that it preserves the
structure of the data points in local neighborhoods well [5], and thus is suitable for
demonstrating the distribution of data.

In this study, before t-SNE projection, principal component analysis (PCA) [18] was
first employed to reduce the embedding dimension to 50 in order to speed up the com-
putation. Then t-SNE was used to project these embeddings into a lower-dimensional
space. By comparing the centroid distances of dysarthric and typical speech embed-
dings across different severity levels, t-SNE helps analyze the local structure of the data.
It reveals variations in speech-embedded features under different feature combinations
(e.g., acoustic only vs. acoustic combined with articulatory features) and provides evi-
dence for understanding the impact of articulatory features on the ADSR task.





4
EXPERIMENTS

This chapter presents the experimental design and implementation, including the dataset
used, data preprocessing methods, feature extraction processes, and experimental setup.
Furthermore, it outlines the evaluation metrics and introduces the p-value as an analysis
metric to validate the effectiveness of the proposed approach.
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4.1. DATASET
To address the research questions, the dataset must include both dysarthric speech data
and synchronized articulatory data, which the TORGO dataset provides. The TORGO
dataset contains 23 hours of English speech data and transcripts from 8 speakers with
dysarthria (5 males and 3 females) due to cerebral palsy (CP) or amyotrophic lateral scle-
rosis (ALS), as well as 7 control speakers (4 males and 3 females) without speech impair-
ments. The dataset includes both typical and dysarthric speech samples, covering a wide
range of dysarthria severity levels (severe, m/s, moderate, and mild), where m/s means
the transitional level between moderate impairments and severe limitations in speech
abilities. All the audios are recorded by two types of microphones, one is the Acoustic
Magic Voice Tracker array microphone, and the other is a head-mounted electret micro-
phone.

However, not all utterances in TORGO have a corresponding .pos file that records
the temporal positions of the sensors. To address the RQs, it’s necessary to filter the
dataset to retain only utterances containing both speech signal and articulatory data.
After filtering, a total of 12,125 utterances that meet the criteria are retained. Notably,
there are 6,416 .pos files, because each .pos file corresponds to one or two audio files
recorded by different microphones.

The filtered subset comprises utterances from both dysarthric and normal speakers.
Specifically, there are 3,487 utterances from dysarthric speakers and 8,638 from normal
speakers. Detailed information including the number of utterances for each dysarthric
and normal speaker is provided below.

Speaker Severity Level Gender Number

M01 Severe Male 182
M02 Severe Male 318
M04 Severe Male 540
M05 M/S Male 461
F03 Moderate Female 701
F04 Mild Female 487
M03 Mild Male 798

Table 4.1: Dysarthric Speaker information including severity level, gender, and number of utterances

4.2. DATA PREPROCESSING AND FEATURE EXTRACTION

4.2.1. SPEED PERTURBATION
Before the training process, speed perturbation was applied as a data augmentation
technique to both the Fbank features and the features extracted from large pre-trained
models. Speed perturbation is a widely used technique in the field of speech recognition,
enhancing the robustness and generalization ability of the model, and thereby improv-
ing the model performance [25]. By modifying the playback speed of the audio (e.g.,
to 90%, 100%, and 110% of the original speed), this method triples the amount of data
available for training.
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Speaker Gender Number

FC01 Female 294
FC02 Female 1925
FC03 Female 1501
MC01 Male 1438
MC03 Male 1136
MC04 Male 1239
MC02 Male 1105

Table 4.2: Typical speaker information including gender and number of utterances

The expanded dataset helps make the model more robust by making small changes
in speech speed, which can improve its ability to handle different speech patterns [10].
After speed perturbation, the playback speed and duration of the audio changes, e.g.,
when the audio speeds up, the duration shortens, while basic speech characteristics
such as pitch and speaker timbre remain unchanged.

4.2.2. ACOUSTIC FEATURE

In this study, two types of acoustic features were applied: traditional Fbank features and
features extracted from large pre-trained models. The details of these features and the
extraction processes are described as follows:

• Fbank: For the baseline model, 80-dimensional Fbank features were extracted us-
ing SpeechBrain’s Fbank feature extraction function. The feature extraction pro-
cess involved setting a window length of 25 ms and a hop length of 10 ms, with a
sampling rate of 16 kHz.

• Large pre-trained model extracted features: To obtain these features, Hugging
Face’s last_hidden_state() function was utilized, which extracts the output from
the final hidden layer of the encoder in each model. Each feature set is then fed
into the ASR model.

4.2.3. ARTICULATORY FEATURE

For articulatory features, TORGO has a .pos file that records the movements of the ar-
ticulators. The shape of data in .pos file is Ntime × 7 × 12, where Ntime indicates the
number of temporal sample points, 7 represents variables (x, y, z, phi, theta, exit-flag,
rms-value), and 12 corresponds to the 12 sensor channels. In this work, only the (x, y, z)
coordinates were utilized.

To process the raw EMA data, which includes the (x, y, z) coordinates of tongue and
lip sensors, this research followed the methodology and used the code provided by the
paper[55]. The processing involved several steps to preprocess articulatory features:
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Figure 4.1: Pipeline of Processing Articulatory Features

Lowpass Filtering: First, a lowpass filter is applied to the raw EMA data to remove
high-frequency noise, preserving essential movement patterns in the articulators.

Distance Calculation: Then I calculated the Euclidean distances between lip sensors
to capture meaningful articulatory features, containing the relative movements and po-
sitions of the articulators.

Resample: By using SciPy’s signal resample function, the EMA data is resampled
to match both the original frame rate and adjusted frame rates for speed perturbation
(90% and 110%). This step enables the concatenation and alignment of articulatory and
acoustic features.

Acceleration Calculation: At last, the compute_delta() function from SpeechBrain
is applied to compute both delta and delta-delta features on the calculated distances.
The delta-delta computation captures not only the first-order dynamic changes but also
the acceleration of articulatory movements, providing richer temporal information for
analysis.

4.3. MODEL ACHITECTURE

For all the experiments, the Conformer model from the SpeechBrain recipe served as the
model architecture. The input features are first passed through a normalizer and then
through a CNN front-end with 2 convolutional blocks before entering the Conformer
encoder. Each convolutional block has a 3x3 kernel size with strides of 2, providing ini-
tial feature extraction and downsampling to manage temporal dimensions. The encoder
consists of 12 layers, with each layer employing a hidden dimensionality of 144, 4 atten-
tion heads, and feed-forward layers with a size of 1024. The decoder is based on a 4-layer
Transformer architecture using a CTC/Attention decoding strategy. Additionally, decod-
ing involves using beam search with a beam size of 10 for validation and 66 for testing,
relying only on CTC scoring. The model also employs a unigram token vocabulary with
500 output neurons for token prediction.

4.3.1. BASELINE MODEL

In the acoustic-only monomodal model, the ASR system focuses only on acoustic fea-
tures. These features are derived either from traditional acoustic representations, such
as Fbank, or from large pre-trained acoustic models like WavLM, Whisper, HuBERT, and
Wav2Vec. The workflow for the monomodal system training on Fbank features is shown
below, which is the baseline model in this study.
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Figure 4.2: Pipeline of the Monomodal Model Trained on Fbank Features

4.3.2. MODEL TRAINING ON LARGE PRE-TRAINED MODEL EXTRACTED FEA-
TURES

For the features extracted by large pre-trained models, the feature dimensionality is quite
high, such as 1280 or 1024. To prevent the number of trainable parameters from becom-
ing too large, an MLP projection layer is added to reduce the dimensionality to 80, which
is the same dimension as the Fbank features. The pipeline is illustrated below.

Figure 4.3: Pipeline of the Monomodal Model Trained on Features Extracted by Pre-trained Model

4.3.3. MODEL FUSING WITH ARTICULATORY FEATURES
The multimodal approach fuses articulatory features derived from Electromagnetic Ar-
ticulography (EMA) data with acoustic features. The workflow for the multimodal system
is shown in the following figure. Three fusion methods are explored: the first method
concatenates the acoustic and articulatory features before feeding them into the Con-
former encoder, the second method uses a cross-attention mechanism to allow the model
to attend to relevant information from both modalities dynamically, and the third method
is using bidirectional cross-attention fusion strategy, as introduced in the previous chap-
ter.
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Figure 4.4: Pipeline of the Multimodal Model

4.3.4. DOWNSTREAM CLASSIFICATION TASK USING CNN
In this work, a downstream binary classification task was also designed to evaluate the
separability of speech embeddings generated by the Conformer encoder. In this task, all
parameters were frozen after the models were fully trained. Then the final layer output
of the Conformer encoder served as input features, and the datasets used for this task
corresponded directly to those of the primary experiment. Finally, these embeddings
were used to train and test a simple CNN classifier to obtain the classification results.
The pipeline of the downstream tasks is shown below.

Figure 4.5: Downstream Classification Task Pipeline

4.4. EXPERIMENTS SETUP

4.4.1. DATASET SPLIT
In the TORGO dataset, the utterances were filtered to include only those with both EMA
and audio data, resulting in a subset of 12,125 utterances. Additionally, for certain ut-
terances, two types of microphones were used simultaneously: a head-mounted micro-
phone and an array microphone. It means the audio transcription recorded with the two
microphones is the same, only captured by different devices. If they appear separately in
the training and test datasets, it can lead to a data leakage issue where the model is ex-
posed to similar training data during testing, which will affect the fairness of the model
evaluation. Therefore, these repeated audio recordings should be placed in the same
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dataset (e.g., only in the training or test set) to ensure data independence and evaluation
reliability.

To ensure a balanced distribution of data across training, validation, and testing sets,
the utterances in the TORGO dataset were split by speaker, with each severity level rep-
resented according to a 4:1:1 ratio. Specifically, each speaker’s utterances were assigned
to the training, validation, and testing sets in this proportion, maintaining an equal rep-
resentation of severity levels. Also, for utterances recorded simultaneously by two types
of microphones, the same utterance (from both microphones) was not split between the
training and testing sets, thereby preventing data leakage and preserving the integrity of
model evaluation. The following tables show the distribution of speakers of the training,
validation, and testing sets.

Speaker Severity Level Gender Training Set Validation Set Test Set
M01 Severe Male 120 30 32
M02 Severe Male 210 53 55
M04 Severe Male 360 90 90
M05 M/S Male 379 91 91
F03 Moderate Female 468 116 117
F04 Mild Female 325 80 82
M03 Mild Male 530 132 136
FC01 Typical Female 196 48 48
FC02 Typical Female 1282 321 321
FC03 Typical Female 997 251 251
MC01 Typical Male 958 240 240
MC02 Typical Male 740 189 189
MC03 Typical Male 756 190 190
MC04 Typical Male 825 206 206

Table 4.3: Distribution of utterances across training, validation, and test sets

4.4.2. TRAINING STRATEGY

An early stopping strategy was employed for training each model. At the end of each
epoch, the model computes the WER on the validation dataset. If the WER does not im-
prove for 5 consecutive epochs, the training will stop. Additionally, the training process
will also be terminated if it reaches the maximum limit of 100 epochs. Each model is
trained with a batch size of 8, using a learning rate of 1e-4 adjusted by a Noam scheduler
that includes a warm-up phase of 25,000 steps. The loss function combines CTC loss
with a weight of 0.3 and KL-divergence loss for label smoothing. The model uses Adam
as an optimizer with betas set to (0.9, 0.98), and a weight decay of 1e-5 is employed to
maintain stable updates throughout training.

4.4.3. EVALUATION METRICS

To evaluate model performance, the following evaluation metrics were employed:

• Word Error Rate (WER): WER is the primary metric used to assess the accuracy of
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ASR systems. WER is calculated as follows:

WER = S +D + I

N

– S is the number of substitution errors,

– D is the number of deletion errors,

– I is the number of insertion errors,

– N is the total number of words in the reference transcription.

WER is the most widely used measure of recognition errors. In this study, it was
used to compare the accuracy of ASR models.

• Statistical significance: In this work, significance testing was applied to determine
whether differences in WER between different configurations (e.g., monomodal
vs. multimodal models) are statistically significant. Statistical significance refers
to whether the observed differences are likely due to chance or represent a real
difference in performance.

To compute p-values, the open-source tool WER-SigTest[45] was utilized, which
provides a statistical testing script specifically for WER comparisons. The toolkit
can calculate the p-value by computing the MAPSSWE[12](Matched-Pair Sentence
Segment Word Error) between the results of the two ASR systems. The p-value
calculation involves the following steps:

1. Calculate the WER difference for each sentence segment:

∆i = WER1i −WER2i

where i denotes each sentence segment.

2. Compute the mean of these differences:

∆̄= 1

N

N∑
i=1
∆i

where N denotes the total number of segments.

3. Determine the standard deviation of the differences:

σ∆ =
√√√√ 1

N −1

N∑
i=1

(∆i − ∆̄)2

4. Calculate the t-statistic:

t = ∆̄
σ∆p

N

The p-value is then obtained using this t-statistic to evaluate the significance of the
performance difference. According to the criteria, significance levels are defined
as follows: a p-value of 0.05 indicates significance at the 5% level, 0.01 indicates
greater significance at the 1% level, and 0.001 denotes high significance at the 0.1%
level.



5
RESULTS AND DISCUSSION

This chapter analyzes the performance of Fbank features and features extracted from
pre-trained models. It further examines their performance after incorporating articula-
tory features, with a detailed analysis of the impact of articulatory features on WavLM-
extracted features. Finally, the chapter provides a comparison of three fusion methods,
along with an in-depth analysis of their effectiveness.
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5.1. ACOUSTIC-ONLY MODELS
The following table provides the WER results for all the acoustic-only models, includ-
ing the baseline model trained on Fbank features and the models trained on features
extracted by pre-trained models.

Input features Severe (%) M/S (%) Moderate (%) Mild (%) Dys (%) Typ (%)
Fbank-only 67.74 67.13 32.11 32.11 45.27 25.24
Whisper-only 56.51 26.99 15.14 7.52 27.36 16.55
WavLM-only 52.10 33.91 12.79 6.91 26.51 15.50
Wav2vec53 55.11 52.25 27.15 12.80 35.65 19.61
Hubert-only 42.69 29.41 10.70 6.50 22.30 13.89

Table 5.1: WER results of all acoustic-only models

A bar chart figure is also provided below to illustrate the result better. As shown
in the figure, large pre-trained model extracted features outperform Fbank features for
all the severity levels. This suggests that features extracted by large pre-trained models
have advantages in capturing the complexity of the speech signal and lowering WER for
dysarthric speech.

In the comparisons between features extracted by different pre-trained models, Hu-
bert extracted features perform well in most dysarthric levels, especially the Severe level,
but do not dominate all severity groups. For example, in the M/S, Moderate, and Mild
groups, WavLM and Whisper have similar performances with Hubert, and Whisper even
outperforms Hubert-only in the M/S group, suggesting that while Hubert-only is stronger
overall, the other pre-trained models are still competitive in some specific severity groups.
It’s worth noting that the overall performance of Wav2vec2.0 features is relatively poor
among all the pre-trained models, especially in the M/S and Moderate, and Mild groups,
where its WER is higher than other large pre-trained models. This indicates that features
extracted by Wav2vec2.0 are ineffective in dealing with dysarthric speech data.

Figure 5.1: WER Comparison Across Different Models

For these acoustic-only models, corresponding downstream classification tasks were
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conducted. For each acoustic feature, embeddings encoded by Conformer encoders
were used to train and test a CNN classifier, utilizing the same training, validation, and
test utterances as the primary experiments. The confusion matrix is shown below. A
notable observation is in the bottom-left corner of the confusion matrix, which denotes
the number of dysarthric embeddings that are misclassified as typical ones. As shown in
the figure, the Fbank feature has the lowest number of misclassifications, with only 202
cases, much fewer than those of the pre-trained model-extracted features. This indicates
that, for Fbank features, the embeddings of typical speech are more distinct from those
of dysarthric speech, making it easier for the classifier to distinguish between them. In
contrast, embeddings derived from pre-trained model features show more similarity be-
tween typical and dysarthric speech, making it difficult for the classifier to categorize.
This suggests that Fbank features are simple and retain big feature differences between
typical and dysarthric after training; whereas features extracted by pre-trained models
have higher generalization power, allowing them to capture more common features be-
tween typical and dysarthric speech, blurring the boundaries between them.
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(a) Fbank (b) Wav2vec

(c) Whisper (d) Hubert

(e) WavLM

Figure 5.2: : Comparing Dysarthric Speech Classification Among Different Acoustic Feature Embeddings

5.2. EXPLORATION ON ARTICULATORY FEATURES
Before experiments on multimodal features, this work explored various combinations of
articulatory features using data from five recording sensors on the upper lip, lower lip,
tongue tip, tongue middle, and tongue back, which are directly involved in speech pro-
duction. Specifically, this work selected the (x, y, z) coordinates and pairwise Euclidean
distances for both the lip and tongue regions, resulting in a total of four feature combina-
tions. The following table provides the results for these articulatory features combined
with Fbank features. As shown in the table, when Fbank features are combined with
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articulatory features based on pairwise distances of sensors in lip regions, the model
has the best performance. This result suggests that the distances between lip sensors
capture more effective movement information, which is particularly helpful for speech
recognition tasks. Based on this observation, this study will choose pairwise distances of
sensors in lip regions as the articulatory features in the following experiments.

Input Features Fusion Strategy Severe (%) M/S (%) Moderate (%) Mild (%) Dys (%) Typ (%)

Fbank+lip_dis concat 71.74 82.01 26.63 20.93 48.10 26.54
Fbank+tongue_dis concat 76.15 66.78 37.08 20.12 48.95 29.32
Fbank+lip_xyz concat 75.55 82.70 38.64 27.24 54.00 29.94
Fbank+tongue_xyz concat 77.96 76.82 66.84 22.15 58.68 29.35

Table 5.2: WER results of different combinations of articulatory features

5.3. ACOUSTIC-ARTICULATORY MODELS
This section will show and analyze the results of the multimodal model to explore the
effect of articulatory information on speech recognition performance to answer the first
research question. The features in these multimodal models are all directly concate-
nated. The WER results together with acoustic-only models are shown in the following
table. Table 5.2 shows that fusing articulatory features with acoustic features affects the
WER results, but the effect varies for different models. For pre-trained models such as
Wav2vec and Whisper, incorporating lip features had an inconsistent impact across dif-
ferent severity groups, sometimes leading to improvements, while at other times result-
ing in minimal change or even a slight decline. Also, it is worth noting that the Hubert-
only monomodal model performs very well in several groups, especially in the Severe,
Moderate, and Dysarthric groups, reaching 42.69%, 10.70%, and 22.30%, respectively.
However, adding lip features (Hubert+lip_dis) did not noticeably improve performance
and even slightly decreased it in some cases. This suggests that the Hubert model itself
may be powerful enough for feature extraction of dysarthric speech, with less need for
additional articulatory information.

Input features Fusion strategy Severe (%) M/S (%) Moderate (%) Mild (%) Dys (%) Typ (%)
Fbank-only - 67.74 67.13 32.11 32.11 45.27 25.24
Fbank+lip_dis concat 71.74 82.01 26.63 20.93 48.10 26.54
Whisper-only - 56.51 26.99 15.14 7.52 27.36 16.55
Whisper+lip_dis concat 43.29 17.99 19.06 5.89 22.24 16.39
Wav2vec-only - 55.11 52.25 27.15 12.80 35.65 19.61
Wav2vec+lip_dis concat 49.10 61.59 21.41 10.98 33.61 22.67
WavLM-only - 52.10 33.91 12.79 6.91 26.51 15.50
WavLM+lip_dis concat 51.70 19.72 10.70 5.69 23.09 16.79
Hubert-only - 42.69 29.41 10.70 6.50 22.30 13.89
Hubert+lip_dis concat 50.70 28.03 11.49 5.49 24.35 14.11

Table 5.3: WER results for both acoustic-only and multimodal models using different fusion strategies.

Since WER results after adding lip features were quite mixed, it’s necessary to cal-
culate the p-value to see whether the observed differences were due to randomness or
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statistically significant. As shown in the table, only the articulatory features combined
with WavLM extracted features have a p-value of 0.047, indicating a statistically signif-
icant improvement when lip distance features are added, leading to a lower WER. For
features extracted by other models, the p-values exceed the 0.05 significance threshold,
indicating that the performance variations are statistically insignificant. This implies
that the observed changes are likely due to randomness rather than the influence of the
added articulatory features. It’s worth noting that, although adding articulatory features
improves dysarthric speech most for Whisper extracted features, the p-value did not pass
the significance threshold. This is because of the inconsistent changes in different sever-
ity groups which may affect the model’s overall performance. Some extreme changes
in certain samples influenced the p-value, making the overall performance appear im-
proved, but not noticeably across all datasets. Due to the p-value results, this study will
then focus on a detailed analysis of the WavLM model’s feature performance with ar-
ticulatory features. Since the p-value for the WavLM features is below the significance
threshold, it is meaningful to specifically analyze in the next section how the articula-
tory features impact the acoustic features extracted by this model.

Features p-value
Fbank+lip_dis 0.208
Whisper+lip_dis 0.066
Wav2vec+lip_dis 0.103
WavLM+lip_dis 0.047*
hubert+lip_dis 0.697

Table 5.4: P-values for the comparison between acoustic-only and multimodal models on dysarthric speech,
where * indicates p-values below the significance threshold, suggesting improved performance after fusing

articulatory features.

5.4. IMPACT OF ARTICULATORY FEATURES ON WAVLM-EXTRACTED

ACOUSTIC FEATURES

This section will analyze how articulatory features affect the WavLM extracted features.
First, the test dataset embeddings were extracted, which had been encoded by the Con-
former encoders’ final layer. Then t-SNE was employed to visualize the embeddings of
both acoustic-only and multimodal features. Different legends were used for speakers
from different severity levels and genders, as shown in the following figures.
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Figure 5.3: t-SNE Visualization of WavLM Acoustic-Only Embeddings

Figure 5.4: t-SNE Visualization of WavLM Embeddings Enhanced with
Articulatory Features

As shown in the above figures, all the severity groups are represented in different
colors. For each severity group, the centroid was computed, along with the distance
between that centroid and the centroid of the typical group. The relative distance and
WER reduction achieved by adding articulatory features are below. As shown in the fig-
ures below, the distances between typical speech and dysarthric speech decreased for all
severity groups. This indicates that the articulatory information helped reduce the gap
between the dysarthric and typical speech representations. Specifically, the Moderate
group shows the highest relative reduction in feature distances (15.11%), followed by the
Mild group (11.78%) and the M/S group (11.62%). It is worth noting that for speakers
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in the severe group, the distance has the smallest reduction(0.94%), which corresponds
to the limited improvements observed in the WER results for severe-level speakers. The
small reduction for the severe group suggests that the articulatory features alone may
not be sufficient to bridge the large gap between severe dysarthric and typical speech.

Figure 5.5: Relative Reduction in Centroid Distances Between Typical and Severity Groups for WavLM with
Lip Features

Figure 5.6: Relative WER Reduction for WavLM with Lip Features Across Severity Groups

This study also examined changes in centroid distances across gender groups to ana-
lyze the results from a gender perspective. However, the relative distance changes across
gender groups are very minimal and do not show a clear pattern, suggesting that the
severity level plays a more important role in the impact of articulatory features. Ad-
ditionally, the unequal number of male and female utterances across severity groups
makes it challenging to analyze the result solely from the perspective of gender groups.

In addition to t-SNE analysis, a downstream classification task was conducted. A
simple CNN classifier was trained and tested using both multimodal and acoustic-only
embeddings to classify speech embeddings as dysarthric or typical. As shown in the
following figures, the CNN classifier training by multimodal embeddings can recognize
more dysarthric utterances as typical ones, indicating that adding articulatory features
improves the model’s ability to deal with dysarthric speech, bringing these dysarthric
samples closer to the distribution of typical speech, which is beneficial for the speech
recognition tasks.
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(a) Confusion Matrix of Acoustic-only Embeddings (b) Confusion Matrix of Multimodal Embeddings

Figure 5.7: Comparing Dysarthric Speech Classification Using Multimodal vs. Acoustic-only Embeddings

5.5. EXPLORATION ON FUSION METHODS
To answer the second research question, this work compared three fusion methods.
The WER results are in the following table. As shown in the table, concatenation has
the best performance on dysarthric speech at 23.09%, followed by bidirectional cross-
attention(52.74%), and cross-attention(58.80%), indicating that simple concatenating
can preserve the original information of multimodal features during the training pro-
cess. It’s worth noting that two cross-attention fusion strategies didn’t perform well,
suggesting that the correlation between WavLM extracted features and articulatory fea-
tures is so weak that cross-attention may have difficulty learning meaningful interac-
tions when computing attention weights. It could also be because cross-attention re-
quires a large amount of data to learn complex relationships between features, and in-
sufficient data may result in the distribution of attention weights being spread too thinly.
Another possible reason is that the original articulatory feature has only 3 dimensions for
each frame, while the acoustic feature has 80 dimensions. When the articulatory feature
is projected to 80 dimensions using an MLP layer during cross-attention fusion, it may
introduce some irrelevant information or noise, preventing the model from learning a
valid alignment. These factors could contribute to the observed performance degrada-
tion. Among the two cross-attention methods, bidirectional cross-attention (DCA) out-
performs traditional cross-attention (CA). This improvement is likely because DCA uses
both articulatory features and acoustic features as query matrix, compensating for the
lack of traditional CA which focuses only on the primary modality, ensuring that infor-
mation from both modalities is fully utilized.

Input Features Fusion Strategy Severe (%) M/S (%) Moderate (%) Mild (%) Dys (%) Typ (%)

WavLM+lip_dis concat 51.70 19.72 10.70 5.69 23.09 16.79
WavLM+lip_dis cross-attention 92.99 105.88 39.43 11.59 58.80 25.75
WavLM+lip_dis bidirectional cross-attention 87.37 73.01 43.86 12.60 52.74 31.10

Table 5.5: Fusion strategy comparison for WavLM extracted features
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CONCLUSION

In this research, a series of experiments are conducted to investigate the effectiveness
of articulatory features when combined with pre-trained model-extracted acoustic fea-
tures for dysarthric speech recognition tasks. First, I compared the performance of acoustic-
only features, specifically Fbank features versus pre-trained model-extracted features.
Then, I investigated the impact of different combinations of articulatory features and
found that the distance between lip sensors had the best performance. Therefore, this
feature was selected for use in subsequent experiments. Next, I evaluated the impact of
combining articulatory features with each pre-trained model-extracted feature. Finally, I
explored the effectiveness of different fusion strategies to integrate these features. These
experiments are designed to answer the following research questions:

• RQ1: How effective are articulatory features in enhancing dysarthric speech recog-
nition when combined with features extracted from pre-trained models?

• RQ2: How does the effectiveness of combining articulatory features with acoustic
features vary across different severity levels of dysarthria?

• RQ3: What fusion methods can better utilize the feature information from both
acoustic and articulatory features?

For RQ1, it’s safe to conclude that articulatory features have the best performance on
WavLM-extracted features, while for other pre-trained extracted features, articulatory
features didn’t take effect. The t-SNE analysis further supports this finding, demonstrat-
ing that articulatory features help reduce the gap between dysarthric and typical speech
for WavLM-extracted features. For RQ2, when fused with WavLM extracted features, the
results show that the articulatory features have better performance for M/S, Moderate,
and Mild severity level, while the improvement for the severe level remains minimal. For
RQ3, the results suggest that direct concatenating performs better than cross-attention-
based fusion strategies across different gender groups across severe levels, indicating
that simple concatenating may be a more robust option and complex mechanisms may
not be effective in all cases.
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38 6. CONCLUSION

For future work, I recommend exploring a broader range of combinations of articu-
latory features because I focused solely on evaluating the distances between sensors in
the lip region in this study. The results indicate that the choice and combination of artic-
ulatory features significantly impact speech recognition performance. Therefore, inves-
tigating additional combinations of articulatory features would be a valuable direction
for further research. Additionally, I recommend exploring a wider variety of models. In
this study, I used the Conformer as the primary model. The choice of model can signifi-
cantly influence the effectiveness of articulatory features. For instance, when traditional
acoustic features were combined with articulatory features in prior work [55] which em-
ployed a different model, the articulatory features showed a positive impact. However,
this effect was not observed in the case of the Conformer, suggesting that the model ar-
chitecture plays a crucial role in the effectiveness of articulatory features. I also suggest
collecting more data to address current limitations. A larger and more diverse dataset,
including variations in gender, age, and severity levels, could also help analyze the effec-
tiveness of articulatory features from different aspects.
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