
Distributed Multi-Robot
Exploration Missions:
Unified approach using
Gaussian Belief Propagation
Master thesis
Sander Boers

D
el

ft
 U

ni
ve

rs
it

y
of

 T
ec

hn
ol

og
y

Distributed Multi-Robot
Exploration Missions: Unified

approach using Gaussian Belief
Propagation

by

Sander Boers
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on October 7, 2024, at 13:00.

Faculty: Faculty of Mechanical Engineering (ME)
Department Department of Cognitive Robotics

Project duration: March, 2024 — September, 2024
Thesis committee: Dr. Ir. Joris Sijs,

Dr. Ir. Laura Ferranti,
Ir. Wouter Meijer (TNO)

Copyright © S.H. Boers, 2024
All rights reserved.

Preface
This master’s thesis, titled “Distributed Multi-Robot Exploration Missions: Unified approach using Gaussian
Belief Propagation,” is authored by Sander Boers, a student at Delft University of Technology, enrolled in the
Robotics Master’s program. This research work was conducted from March to September, under the supervision
of Joris Sijs, Wouter Meijer and Jelle van Mil, in collaboration with TNO.

The focus of this thesis is on enhancing multi-robot systems using Gaussian Belief Propagation. This research
aims to address critical challenges in robot navigation, task allocation, and collision avoidance, as one unified
framework.

I would like to express my gratitude to my supervisors for their invaluable time, constructive feedback, and
expert guidance, which provided clarity on how to move forward. Our meetings always left me feeling re-
energized and motivated, and for that, I thank you. I also extend my appreciation to TNO for providing the
necessary resources. Although the Boston Dynamics Spot robot was not used in this research, I enjoyed being in
an environment surrounded by such advanced technology.

Finally, I want to thank my family for their unwavering support, not only throughout this project but also
throughout my entire educational journey. This thesis represents a significant milestone in my academic journey,
and I hope that the findings and methodologies presented will contribute to the field of autonomous systems.

Enjoy reading,

Sander
Delft, September 2024

I

Table of Contents
Preface. I

Nomenclature. III

I. Introduction. 1

II. Technical Background. 2
II-A. Gaussian Models . 2
II-B. Factor Graphs . 2
II-C. Gaussian Belief Propagation . 2

II-C.a. Variable Belief Update . 3
II-C.b. Variable to Factor Message . 3
II-C.c. Factor Likelihood Update . 3
II-C.d. Factor to Variable Message . 3

II-D. GBP Planner . 3

III. Related works. 3
III-A. Coupled literature works . 3

III-A.a. Partially Observable Markov Decision Processes . 3
III-A.b. Reinforcement Learning (RL) . 3
III-A.c. Distributed Constraint Optimization Problems (DCOP) . 4
III-A.d. GBP Stack . 4

III-B. Task allocation literature works . 5
III-B.a. Auction-Based Methods . 5
III-B.b. Game Theory-Based Methods . 5
III-B.c. Optimization-Based Methods . 5
III-B.d. Belief propagation-Based Methods . 5

IV. Problem Statement. 5

V. Methodology. 6
V-A. Navigational Graph - World layer . 6
V-B. Consensus algorithm . 7
V-C. Task allocation - Goal layer . 7
V-D. Heterogenous tasks . 7
V-E. Global planner . 7
V-F. Local planner . 8
V-G. Algorithm . 8

VI. Results. 8
VI-A. Setup . 8
VI-B. Result 1 - Complex environments . 8
VI-C. Result 2 - Heterogenous tasks . 8
VI-D. Result 3 - Improved coordination . 9
VI-E. Result 4 - Faster exploration . 9

VII. Discussion. 9

VIII. Conclusion. 9

References. 10

Appendix A - GBP Planner factors. 12

Appendix B - Hungarian Algorithm. 14

Appendix C - Simulation Environment. 15

II

Nomenclature
BP Belief Propagation

CBAA Consensus-based auction algorithm

DCOP Distributed Constraint Optimization Problem

DHBA Decentralized Hungarian-based approach

GBP Gaussian Belief Propagation

MAP Maximum A Posteriori

MRBP Multi-Robot Belief Propagation

MRF Markov random field
MRTA Multi-Robot Task allocation
POMDP Partially Observable Markov Decision

Process
RL Reinforcement Learning
SLAM Simultaneous Localization and Mapping
SPLAM Simultaneous Planning, Localization, and

Mapping

III

Distributed Multi-Robot Exploration Missions: Unified approach using Gaussian Belief Propagation 4

Distributed Multi-Robot Exploration Missions:
Unified approach using Gaussian Belief Propagation

S.H. Boers¹, J. Sijs¹, W.J. Meijer² and J.D. van Mil²

Abstract—This work builds upon the Gaussian Belief Propaga-
tion (GBP) stack, utilizing it as the core framework for distributed
multi-robot exploration missions. The GBP stack’s key strength
lies in its single-factor graph representation of competencies such
as planning, map consensus, and task allocation, making it a pow-
erful tool for intelligent and collaborative robotic behavior. How-
ever, previous applications of GBP stack were limited to open envi-
ronments without obstacles. To address this limitation, we extend
the GBP stack by representing the environment as a navigational
graph, allowing for task allocation and global path planning in
more complex, obstacle-filled environments. This enhancement in-
tegrates seamlessly with the single-factor graph approach, enabling
both navigational tasks and symbolic tasks, such as opening doors
or performing inspections, to be efficiently distributed among a
heterogeneous fleet of robots. A feature absent in earlier versions.
Simulation results demonstrate improved task coordination, explo-
ration efficiency, and adaptability to varied tasks, showcasing the
potential of this extended framework for more challenging multi-
robot exploration scenarios.

This work was supported by TNO.
¹Cognitive Robotics, Delft University of Technology.
²TNO, the Hague, the Netherlands.

Index terms—Multi-Robot, Exploration, Factor Graphs, Task
allocation, Gaussian Belief Propagation

I. Introduction

Exploring hazardous environments, such as collapsed build-
ings, nuclear sites, or drug labs [1], poses significant risks to hu-
man lives. The need for exploration in these areas, whether for
search and rescue missions, hazard assessment, or law enforce-
ment, demands innovative solutions to minimize human expo-
sure to danger. Robotics has emerged as an excellent tool in this
context, offering the capability to navigate a wide array of ter-
rains with safety and precision.

When considering the deployment of robots in such environ-
ments, multi-robot systems offer several advantages over single-
robot systems [2], [3]. Firstly, multi-robot systems can cover
larger areas more efficiently, leading to faster and more compre-
hensive data collection, as multiple robots can gather diverse
measurements that improve accuracy and completeness. Sec-
ondly, the use of multiple robots enhances redundancy and relia-
bility; if one robot fails, others can continue the mission, thereby
increasing the overall robustness of the operation.

To fully leverage the potential of multi-robot systems, it is de-
sirable to seek distributed solutions, where each robot operates
autonomously with local computation and peer-to-peer commu-
nication. This setup not only enhances the system’s overall ro-
bustness but also its ability to scale [4]. Centralized systems,

where a central computer orchestrates all movements, are prone
to communication and computation bottlenecks. Additionally,
these systems face the risk of complete failure if the central com-
puter encounters a malfunction [5].

Despite their theoretical advantages, distributed multi-robot
systems are not yet widely deployed in real-world applications.
This limited adoption primarily comes from the inherent com-
plexity of such systems. In exploration missions, robot teams
must address several critical competencies simultaneously: Lo-
calization, Mapping, Planning, and Coordination (as illustrated
in Fig. 1). Each of these competencies presents significant chal-
lenges when implemented in a distributed manner. Moreover, the
interdependence of these competencies further complicates the
system’s overall performance. For instance: Accurate localiza-
tion is crucial for effective planning and efficient planning relies
on robust coordination among robots. This intricate web of de-
pendencies has led researchers to explore coupled approaches
that can address these interrelated challenges cohesively. By cou-
pling the competencies you allow for a joint-optimization over
the whole exploration problem.

Fig. 1: An illustration of the primary components in a multi-robot exploration
mission, highlighting task allocation, path planning, and obstacle avoidance.

In this work, we demonstrate how these competencies can be
represented as a factor graph and linked to create a distributed
yet interconnected system. Factor graphs have a rich history in
robotics [6], finding applications in diverse areas such as Simul-
taneous Localization and Mapping (SLAM) [7], tracking [8],
structure from motion [9], and motion planning [10]. They are so
favourable because of their ability to leverage the locality prop-
erty in optimization problems, which is advantageous since many
robotic optimization problems are local, involving only a sub-
set of variables. Additionally, factor graphs are favourable due
to their general applicability, meaning they can model diverse
types of problems without being tailored to a specific task. This

1

2 Master Thesis

inherent generality allows various robotic functions to be mod-
eled together in one system, providing a unified framework for
optimization and decision-making. This generality makes them
an ideal solution for the problem we are addressing.

Patwardhan et al. recognized these advantages and utilized
them to create the GBP stack [11], which introduced the concept
of writing competencies as factor graphs and stacking them as
layers. GBP stands for Gaussian Belief Propagation, a powerful
factor graph inference tool for distributed systems [12]. They
demonstrated its effectiveness in multi-robot information acqui-
sition missions, yielding promising results. However, the orig-
inal GBP Stack had limitations that restricted its applicability
in complex, real-world scenarios. Most notably, it was designed
for environments free of obstacles, lacking the capability to nav-
igate spaces with walls or other obstructions. This constraint
highlighted the need for further development to bridge the gap
between theoretical models and practical applications.

This work addresses these limitations by investigating neces-
sary additions and modifications to the GBP stack. A key inno-
vation is the transitioning from a continuous model to one incor-
porating discrete frontier points (specific locations at the bound-
ary between explored and unexplored areas [13]). This shift more
accurately reflects the reality of exploration scenarios, where
robots must make decisions based on specific, identifiable loca-
tions rather than continuous spaces. Consequently, this change
necessitated the introduction of a robust task allocation system,
enabling the efficient distribution of exploration tasks among
multiple robots. This study explores methods for formulating
a task allocation algorithm as a factor graph and integrating it
within the GBP stack.

II. Technical Background

This section provides a technical overview of factor graphs,
Gaussian Belief Propagation and the GBP Planner, which serves
as the foundation of the GBP stack. For a more in-depth expla-
nation, the reader is encouraged to view the interactive work of
J. Ortiz, T. Evans, and A. J. Davison [12]³

³https://gaussianbp.github.io/

A. Gaussian Models

When representing uncertainty, gaussian models are often
chosen for several key reasons [12]:

1) Realistic modelling: Gaussian models accurately reflect
the distribution of many physical phenomena and sensor
measurements observed in the real world [14].

2) Mathematical simplicity: The mathematical structure of
Gaussian models is straightforward, making them easy to
work with.

3) Computational Efficiency: Calculations with Gaussian
models can be done quickly using efficient formulas.

4) Flexibility: Gaussian models preserve their form under
common statistical operations like marginalization, condi-

tioning, and taking products, which makes them versatile
for use in robotic systems.

A gaussian distribution can be expressed in the exponential form
𝑝(𝑥) ∝ 𝑒−𝐸(𝑥), with a quadratic energy function 𝐸(𝑥) [15]. This
energy function can be written in two distinct forms:

𝒩(𝐗; 𝝁, 𝚺)⏟⏟⏟⏟⏟
Moments form

= 𝒩−1(𝐗; 𝜼, 𝚲)⏟⏟⏟⏟⏟⏟⏟
Canonical form

(1)

With two different energy equation:

𝐸moments(𝑥) =
1
2
(𝑥 − 𝜇)⊤Σ−1(𝑥 − 𝜇) (2)

𝐸canonical(𝑥) =
1
2
𝑥⊤Λ𝑥 − 𝜂⊤𝑥 (3)

where 𝝁 is the mean vector, 𝚺 the covariance matrix, 𝚲 = 𝚺−1

the precision matrix and 𝜼 = 𝚲𝝁 is the information vector.
The Canonical form is significantly more computationally ef-

ficient for conditioning and product computation, whereas the
Moments form is superior for marginalization. Later, it is ob-
served that conditioning and product computation are performed
frequently, which is why the canonical form is preferred.
B. Factor Graphs

Factor graphs serve as a robust representation for systems
involving interdependent variables and constraints, particularly
useful in probabilistic inference and optimization. A factor graph
is an undirected bipartite graph comprising two types of nodes:
variable nodes, representing the variables of interest, and factor
nodes, representing the functions (or factors) that define the rela-
tionships among these variables. The structure of a factor graph
allows for the efficient factorization of a joint function 𝑝(𝐗) into
smaller, manageable components 𝑓𝑠, each depending on a subset
𝐗𝑠 of the variables 𝐗:

𝑝(𝐗) = ∏
𝑠

𝑓𝑠(𝐗𝑠) (4)

In Gaussian factor graphs, these factors take the form of Gauss-
ian distributions:

𝑓𝑠(𝐗𝑠) ∝ 𝑒−1
2[(𝐳𝑠−𝐡𝑠(𝐗𝑠))⊤𝚲𝑠(𝐳𝑠−𝐡𝑠(𝐗𝑠))] (5)

where 𝐡𝑠(𝐗𝑠) represents the functional form or measurement
function of the factor. 𝐳𝑠 is the observed or expected value, and
𝚲𝑠 is the precision matrix (inverse covariance) of the factor.

𝐡𝑠(𝐗𝑠) describes the expected measurement based on the in-
volved variables 𝐗𝑠. For example, for a robot measuring the dis-
tance to a landmark, the measurement function 𝐡𝑠 could repre-
sent the Euclidean distance between the robot’s position and the
landmark’s location. In this context, 𝐳𝑠 is the actual measurement
obtained from the sensor.

Note that we can also use factors of this form for priors which
are not sensor measurements but assumptions or external knowl-
edge. In this case, 𝐳𝑠 = 0, meaning that the factor energy is
purely a function of the states.
C. Gaussian Belief Propagation

Gaussian Belief Propagation (GBP) solves an optimization
problem by performing inference on Gaussian factor graphs.

2

https://gaussianbp.github.io/

Distributed Multi-Robot Exploration Missions: Unified approach using Gaussian Belief Propagation 3

This is achieved through iterative message passing, where each
node in the graph updates its beliefs based on incoming messages
from neighboring factors. The optimization process aims to min-
imize the overall energy of the system, resulting in the most prob-
able configuration of variables. The node-wise computations and
message passing makes it suitable for implementation across
multiple devices that communicate via networks. GBP, a specific
case of loopy belief propagation, has demonstrated excellent per-
formance, achieving exact solutions for the marginal means of all
variables with rapid convergence [16]. This is achieved through
the iterative execution of four distinct steps, which are:

a) Variable Belief Update: A variable 𝐱𝑘 updates its belief by
taking the product of all incoming messages from its connected
factors:

𝑏(𝐱𝑘) = ∏
𝑓∈𝑛(𝐱𝑘)

�⃗�𝑓→𝑘(𝐱𝑘) (6)

where 𝑛(𝐱𝑘) is the set of factors connected to 𝐱𝑘, and
�⃗�𝑓→𝑘(𝐱𝑘) = 𝒩−1(𝐱𝑘; 𝜼𝑓→𝑘, 𝚲𝑓→𝑘) is the message from a fac-
tor to the variable. In the canonical form, this product simplifies
to a summation:

𝜼𝑘 = ∑
𝑓∈𝑛(𝐱𝑘)

𝜼𝑓→𝑘, 𝚲𝑘 = ∑
𝑓∈𝑛(𝐱𝑘)

𝚲𝑓→𝑘 (7)

b) Variable to Factor Message: A message from a variable 𝐱𝑘 to
a factor 𝑓𝑗 is the product of all incoming factor-to-variable mes-
sages, excluding the one from 𝑓𝑗:

�⃗�𝐱𝑘→𝑗(𝑓𝑗) = ∏
𝑓∈𝑛(𝐱𝑘)∖𝑓𝑗

�⃗�𝑓→𝑘(𝐱𝑘) (8)

c) Factor Likelihood Update: The likelihood of a factor 𝑓𝑠(𝐗𝑠)
with a measurement function 𝐡𝑠(𝐗𝑠), observation 𝐳𝑠, and pre-
cision 𝚲𝑠 can ben expressed as:

𝜼𝑓 = 𝑱⊤
𝑠 𝚲𝑠(𝑱𝑠𝐗0

𝑠 + 𝐳𝑠 − 𝐡𝑠(𝐗0
𝑠)), 𝚲𝑓 = 𝑱⊤

𝑠 𝚲𝑠𝑱𝑠 (9)
where 𝑱𝑠 is the Jacobian and 𝐗0

𝑘 is the current state of the vari-
ables. This approach linearizes non-linear functions using a first-
order Taylor expansion.

d) Factor to Variable Message: Finally, the message from a
factor to a variable 𝐱𝑘 is given by:

�⃗�𝑓→𝑘(𝐱𝑘) = ∑
𝐱∈𝑋𝑠∖𝐱𝑘

𝑓𝑠(𝐗𝑠) ∏
𝐱∈𝐗𝑠∖𝐱𝑘

�⃗�𝐱→𝑓(𝐱) (10)

This involves taking the product of the factor likelihood and the
messages from all other variables, then marginalizing out all
variables except 𝐱𝑘.
D. GBP Planner

Patwardhan et al. [17] applied Gaussian Belief Propagation in
a multi-robot planning problem to enable robots to plan paths
that avoid obstacles and each other. In their approach, each ro-
bot’s position and velocity over a forward time window are rep-
resented as variables in a factor graph (see Fig. 2). The factors in
this graph include:

‣ dynamics factors, which ensure smooth trajectories by mod-
elling the robots’ motion dynamics.

‣ obstacle factors, which prevent collisions with static obsta-
cles.

‣ inter-robot factors, which ensure robots avoid each other by
penalizing trajectories that bring them within a critical dis-
tance.

For detailed information on the formulation of the factor equa-
tions, please refer to Appendix A.

Fig. 2: The factor graph employed in the GBP planner. Circles denote variables
containing position and velocity at specific timesteps. Squares represent factors

defining the relationships between these variables. [17]

By using the GBP algorithm, robots communicate and update
their plans in a peer-to-peer manner, achieving efficient and col-
lision-free paths without centralized control. This planner forms
the foundation on which the stack is built.

III. Related works

This section covers related techniques concerning the integra-
tion of multiple competences. Additionally, various task alloca-
tion algorithms will be examined.
A. Coupled literature works

a) Partially Observable Markov Decision Processes: An ex-
emplary case of integrating different competencies is the Simul-
taneous Localization and Mapping (SLAM) problem, where a
robot determines its location within a map while constructing the
map itself. SLAM improves inference by incorporating proba-
bility distributions of both localization and environmental states.
Extending SLAM to include decision-making, known as Simul-
taneous Planning, Localization, and Mapping (SPLAM) [18],
enhances autonomy through proactive planning, improved map-
ping accuracy, and reduced uncertainty. These methods are part
of belief space planning [19] and often use the framework of Par-
tially Observable Markov Decision Processes (POMDPs) [20].
However, POMDPs face challenges such as the difficulty of ac-
curately shaping reward functions and the rapid growth of com-
putational complexity with the size of the state space and number
of actions, especially in multi-robot scenarios.

b) Reinforcement Learning (RL): RL can be seen as a coupled
approach by integrating perception, decision-making, and action
into a single framework, thereby eliminating individual modules.

3

4 Master Thesis

This allows robots to learn cooperation strategies directly from
their experiences, providing more cohesive multi-robot explo-
ration [21], [22]. The challenges of designing an appropriate re-
ward function and the time-intensive nature of RL training ren-
der it impractical for this application.

c) Distributed Constraint Optimization Problems (DCOP):
A Distributed Constraint Optimization Problem (DCOP) is a
framework used to model and solve coordination problems
among multiple agents working towards a common goal while
adhering to constraints [23]. While DCOPs can be formulated
using factor graphs, which shares some structural similarity with
Gaussian Belief Propagation (GBP), the methods differ funda-
mentally. DCOP focuses on optimizing discrete variable assign-
ments and solving constraint satisfaction problems, often using
combinatorial methods. In contrast, GBP is a probabilistic infer-
ence method designed for continuous variables, excelling in en-
vironments with uncertainty and dynamic updates. This makes
GBP more suitable for tasks like sensor fusion and multi-robot
planning where real-time belief updates and uncertainty han-
dling are critical.

d) GBP Stack: Building upon the GBP planner detailed in Sec-
tion II-D, where collision-free paths are generated, the GBP stack
[11] introduces an innovative approach for coupling multiple
competencies in multi-robot systems through the use of Gaussian
Belief Propagation, formulating the problem as a stack of inter-
connected factor graphs. The GBP stack enables various aspects
of robot operation—such as information acquisition, goal selec-
tion, and path planning—to be optimized jointly.

Fig. 3: The stack of factor graphs visualized. The Information layer maintains
the robot’s copy of the global state and reaches a consensus using 𝑓𝑐. The Goal
layer directs the Planning layer for exploration, with the goal position influenced

by multiple factors. The planning layer ensures collision-free paths. [11]

In the work of [11], the mission involved multiple robots collec-
tively making measurements of a global state. This global state
could represent various matters, such as gas concentration, Wi-
Fi signal strength, or ocean depth.

The GBP stack consists of several layers, as seen in Fig. 3.
The information layer 𝐼 allows robots to update their knowledge
of the environment based on local measurements and communi-
cations from other robots. The goal layer 𝐺 helps in selecting
regions to explore, ensuring that robots do not redundantly target
the same areas. The planning layer 𝑃 operates as described in

the GBP planner in Section II-D, ensuring smooth, collision-free
navigation through dynamic path generation.

The method discretizes the world by segmenting the environ-
ment into square sampling regions 𝑚, which forms a 2D grid.
For each region 𝑚, there is one variable 𝐱𝐼

𝑚 in the information
layer representing the region’s information:

𝐱𝐼
𝑚 = [𝒑𝐼

𝑚, 𝜓𝐼
𝑚, 𝜁𝐼

𝑚], (11)
where 𝒑𝐼

𝑚 is the position of the region, 𝜓𝐼
𝑚 is the global state

value, known as the signal value, and 𝜁𝐼
𝑚 ∈ [0, 1] indicates the

coverage. Here, 𝜁𝐼
𝑚 = 1 means the region has been covered. An

unary signal factor is used to represent a measurement 𝑧𝑠 made
by the robot of the region 𝑚. This factor is represented as:

𝒇𝒔 : 𝒉𝑠(𝐱𝐼
𝑚) = 𝐱𝐼

𝑚, (12)

𝒛𝑠 ∼ 𝒩([𝒑𝑚, 𝜓𝑚, 1]⊤, 𝚲−1
𝑠). (13)

The inter-robot consensus factor, 𝑓𝑐, stimulates consensus be-
tween the beliefs of robots about the same regions and merges
information from robots that have explored areas others have not
yet reached:

𝒇𝒄 : 𝒉𝑐(𝐱𝐼1𝑚 , 𝐱𝐼2𝑚) = 𝐱𝐼1𝑚 − 𝐱𝐼2𝑚 , (14)
where 𝐱𝐼1𝑚 and 𝐱𝐼2𝑚 are the information layer variables of robots
1 and 2 for region 𝑚.

Through the use of an exploration factor, 𝑓𝑒, robots are guided
to the nearest unexplored region.

𝒇𝒆 : 𝒉𝑒(𝐱𝐺; 𝒑𝐼
𝑚∗) = 𝐱𝐺 − 𝒑𝐼

𝑚∗ , (15)

𝑚∗ = arg min
𝑚∈{arg min 𝜁𝑚′}

‖ 𝒑𝐼
𝑚∗ − 𝒑𝑃

0 ‖, (16)

where 𝐱𝐺 is the goal variable (𝑥, 𝑦-coordinates), 𝒑𝐼
𝑚∗ is the po-

sition of the nearest unexplored region 𝑚∗, and 𝑝𝑃
0 is the current

position of the robot.
Coordination between robots happens through the goal diver-

sity factor 𝑓𝑔, and collision avoidance factor 𝑓𝑟 (known from
Section II-D). The goal diversity factor 𝑓𝑔 discourages two con-
nected robots from moving towards the same region, promoting
exploratory behavior. It pushes proximate goals somewhat away
from each other. This factor is represented as:

𝒇𝒈 : 𝒉𝑔(𝐱𝐺1 , 𝐱𝐺2) =
⎩{
⎨
{⎧1 − ‖ 𝐱𝐺1−𝐱𝐺2 ‖

𝑟𝐷
‖𝐱𝐺1 − 𝐱𝐺2‖ ≤ 𝑟𝐷

0 otherwise

(17)

where 𝐱𝐺1 and 𝐱𝐺2 are the goal variables of two robots and 𝑟𝐷
is a predefined distance threshold.

As mentioned earlier, there are limitations to this approach.
For example, this method fails to handle walls, a common fea-
ture in real-world environments. Implementing this is not easy
because of how the factors are formulated. Take, for instance, the
exploration factor, which looks for the nearest unexplored cell
based on Euclidean distance, thus ignoring walls. Another ex-
ample is the goal diversity factor, which increases the distance
between robots’ goal variables so that different regions are ex-
plored. This factor relies on continuous open space. If walls are

4

Distributed Multi-Robot Exploration Missions: Unified approach using Gaussian Belief Propagation 5

present in the environment, there is a risk of moving the goal
variable into a wall or an unreachable section of the map.
B. Task allocation literature works

To approach the problem of task allocation, many different al-
gorithms have been examined. The scope has been set according
to the taxonomy for multi-robot task allocation (MRTA) by B. P.
Gerkey and M. J. Matarić [24], focusing on single task (ST), sin-
gle robot (SR), instantaneous allocation (IA), and only those us-
ing a decentralized architecture. In this context, ST-SR refers to
an individual task that is always performed by one robot, mean-
ing it doesn’t require multiple robots working together to com-
plete it. These methods can be broadly categorized into several
types [25]:

a) Auction-Based Methods: Agents bid on tasks based on local
utility calculations, with the consensus-based auction algorithm
(CBAA) [26] being a widely adopted method. Each agent com-
putes a utility for each task, broadcasts its bid, and negotiates
with others until a consensus is reached on which agent should
handle each task. This iterative process ensures that tasks are al-
located to the agents that are most capable of completing them.
However, the strength of this approach—flexible, decentralized
decision-making—comes with challenges. The required rounds
of communication between agents can lead to significant over-
head, especially in scenarios with limited bandwidth or high
agent numbers. This can slow down decision-making and reduce
overall system efficiency, particularly in dynamic environments
where quick task reallocation is necessary.

b) Game Theory-Based Methods: Game Theory-Based Meth-
ods: These methods view agents as players in a game, where each
agent aims to maximize its own payoff through strategic inter-
actions. This can involve cooperative games, where agents form
coalitions, or non-cooperative games, where agents act indepen-
dently. The goal is often to reach a Nash equilibrium, where no
agent can improve its outcome by changing its strategy unilater-
ally [27]. While these methods provide solid theoretical founda-
tions, they tend to be computationally expensive and less scal-
able for real-time, multi-robot coordination in dynamic environ-
ments. Additionally, the need for complex strategy formulation
and convergence to equilibrium can introduce delays, making
them unsuitable for systems requiring rapid decision-making and
adaptation. Therefore, this approach was not pursued further.

c) Optimization-Based Methods: These include deterministic
optimization techniques like the Hungarian algorithm and meta-
heuristic methods such as genetic algorithms and particle swarm
optimization. These methods aim to find optimal or near-opti-
mal task allocations by minimizing costs or maximizing util-
ity. Among these, the decentralized Hungarian-based approach
stands out. According to S. Ismail and L. Sun [28], the decentral-
ized Hungarian-based algorithm (DHBA) consistently outper-
forms the consensus-based auction algorithm (CBAA) in terms
of converging speed, optimality of assignments, and computa-
tional efficiency. This demonstrates that the DHBA is highly ef-

fective in achieving fast and scalable task allocation, making it
an excellent choice for decentralized systems.

d) Belief propagation-Based Methods: J. N. Schwertfeger and
O. C. Jenkins [29] proposed Multi-Robot Belief Propagation (M-
RBP), where robots use Bayesian belief propagation within a
Markov random field (MRF) representation to infer task assign-
ments based on local observations and beliefs about other robots’
intentions. MRBP-I [30] extends MRBP by incorporating iden-
tity constraints, allowing robots to consider individual capabili-
ties and preferences in the task allocation process. Unlike MRBP,
which uses an MRF representation, MRBP-I employs a factor
graph.

The factor graph structure includes observed variables which
indicate task attributes and robot capabilities and unobserved (la-
tent) variables which capture the underlying probability distrib-
utions over task assignments. Factor nodes include unary factors,
representing the probability of a robot-task assignment based
on identity and observations, and pairwise factors, capturing the
compatibility between robots’ task allocations.

However, the proposed solution does not guarantee optimal
assignments of robots to tasks and may even result in multiple
robots selecting the same task. Additionally, the formulation of
the factor graph in MRBP-I is not solvable with Gaussian belief
propagation, as the factors are not written as Gaussian distribu-
tions.

IV. Problem Statement

We consider the problem of exploring an area with obstacles
using multiple robots operating under a distributed architecture.
That is, there is no central computer for control or computation;
instead, each robot depends on local information and peer-shared
data. We extend the problem to incorporate heterogeneous tasks,
making the approach versatile and suitable for real-world appli-
cations. This includes tasks beyond the standard visit-frontier
commands for further exploration, but featuring diverse frontiers
such as open-door and perform-inspection. Not all tasks are ex-
ecutable by every robot. For instance, opening a door necessi-
tates a robot equipped with a robotic arm, while performing an
inspection requires a robot with camera capabilities. Therefore,
it is essential to consider the specific capabilities of each robot
when assigning tasks.

Fig. 4: Illustration of various types of frontier tasks, demonstrating that only spe-
cific robots with the necessary capabilities can execute these tasks effectively.
For instance, a robot with the yellow capability is designated to handle the cor-

responding yellow frontier task.

5

6 Master Thesis

Given the change in the scenario where the environment is no
longer obstacle-free, the approach transitions from continuous
world positions to a discrete set of identifiable goal locations,
corresponding to various types of frontiers. To allocate frontiers
effectively, a task allocation algorithm is required. Each task with
a specific cost-to-go is distributed to robots within the set that
are connected to each other.

(a) Original GBP stack [11] (b) Goal
Fig. 5: Illustration comparing the original method (a), which utilizes continuous
position variables, with the goal method (b), featuring a discrete set of locations.

The objective is to minimize the total cost of assigning tasks to
robots, formulated as:

min ∑
𝑁

𝑖−1
∑
𝑇

𝑗=1
𝑐𝑖𝑗𝑘𝑖𝑗 (18)

where 𝑁 is the number of robots, 𝑇 the number of tasks, 𝑐𝑖𝑗 the
cost of executing task 𝑗 to robot 𝑖, and finally 𝑘𝑖𝑗 is a binary de-
cision variable where 𝑘𝑖𝑗 = 1 if task 𝑗 is assigned to robot 𝑖, and
𝑘𝑖𝑗 = 0 otherwise. To ensure that each robot is assigned at most
one task and each task is assigned to at most one robot:

∑
𝑇

𝑗=0
𝑘𝑖𝑗 ≤ 1∀𝑖 ∈ {1, 2, …, 𝑇} (19)

∑
𝑁

𝑖=0
𝑘𝑖𝑗 ≤ 1∀𝑗 ∈ {1, 2, …, 𝑁} (20)

In summary, the new method should include several qualitative
improvements: 1) the capability to explore environments with
obstacles, and 2) the ability to comprehend and execute hetero-
geneous tasks. Additionally, specific performance metrics are
identified to evaluate improvements over the original method:
the distance traveled by the robots, as a shorter distance implies
quicker exploration, and the distances between selected goals,
measured at the same time, with the belief that a larger average
distance between simultaneously assigned goals indicates more
spread-out exploration.

(a) Original GBP stack [11] (b) Goal
Fig. 6: Comparison of the original stack and the goal method for navigation in

office-like environments. The original method (a) fails to handle walls.

V. Methodology

In this section, we elaborate on the improvements made to the
GBP stack to extend its applicability to more complex scenarios
beyond simple, obstacle-free environments.
A. Navigational Graph - World layer

The original stack utilized an information layer where the en-
vironment was represented as segmented square regions. This
implementation could not model relationships between cells, es-
sential for navigation, nor could it represent obstacles or walls.

To address these limitations, this work employs a navigational
graph instead of a 2D grid world. A navigational graph, which
is different from a factor graph, consists of nodes and edges,
where the nodes represent specific positions within the environ-
ment and the edges represent the possible paths or connections
between them. This allows for the representation of traversabil-
ity, enabling the understanding of walls and obstacles. By utiliz-
ing a graph, we can accurately calculate actual distances to tasks,
rather than relying on the Euclidean distance used in the original
stack, which is not accurate in environments with walls.

Fig. 7: This figure illustrates the navigational graph built using a triangular grid.
Each node represents a specific position, with edges indicating traversability.
Green nodes denote visited locations, while red nodes represent frontiers (po-
tential tasks). This graph enables accurate distance calculation for efficient path

planning and task allocation.

This graph is built as the robot explores, leaving a trail of nodes
with edges as it progresses. In this method, we simplify by as-
suming that the entire graph is pre-built and that the robot ‘dis-
covers’ the nodes as it explores. This ensures that all nodes
discovered by the robots are in the same positions, eliminating
discrepancies in node positioning and ensuring consistency and
reliability in task execution. This simplification allows us to fo-
cus on the core problem of task allocation rather than the com-
plexities of node sampling algorithms and the need for complex
node matching algorithms between robots. A triangular grid was
chosen because its six-connected structure offers more flexible
movement and better spatial coverage, reducing navigation con-
straints compared to the four options in a regular grid.

To model this graph within the stack, each node of the naviga-
tional graph corresponds to a variable node in the factor graph.
This variable encompasses data on the position 𝒑𝒲

𝑛 , coverage 𝜁𝒲
𝑛

6

Distributed Multi-Robot Exploration Missions: Unified approach using Gaussian Belief Propagation 7

and node type (frontier, door, suspicious object) 𝜑𝒲
𝑛 . The layer

has also been renamed to the world layer, reflecting its broader
representation of world data, as opposed to the information layer
used in the information acquisition mission in the original stack
[11].

𝐱𝒲
𝑛 = [𝒑𝒲

𝑛 , 𝜁𝒲
𝑛 , 𝜑𝒲

𝑛] (21)
The coverage 𝜁𝒲

𝑛 can represent three distinct states, each cor-
responding to a specific integer value: 0 for “unvisited”, 1 for
“task”, and 2 for “visited”. Similarly, the node type 𝜑𝒲

𝑛 is repre-
sented by integers, with each integer corresponding to a particu-
lar type of node.

Fig. 8: The improved stack of factor graphs for multi-robot exploration. The up-
dated framework includes several noticeable changes: the integration of a navi-
gational graph for enhanced path planning, the inclusion of a Hungarian factor
for efficient task allocation, the consideration of robot capabilities for handling

heterogeneous tasks, and the generation of waypoints by the global planner.

B. Consensus algorithm

Each robot maintains a copy of the navigational graph repre-
sented in the world layer. When two robots establish a connec-
tion, consensus factors are created for each corresponding node
in the respective world layer, denoted as 𝑓𝑐 in Fig. 8. Following
an iteration of Gaussian Belief Propagation, both robots share
and update their knowledge about the coverage, and available
tasks, leading to a consensus about the world. The factor’s mea-
surement function is:

𝒇𝒄 : 𝒉𝑐(𝐱𝒲1𝑛 , 𝐱𝒲2𝑛) = 𝐱𝒲1𝑛 − 𝐱𝒲2𝑛 (22)
We adopt the same communication protocol established in re-
lated GBP works, wherein each robot continuously broadcasts
its state information. When within communication range, other
robots can read this information.
C. Task allocation - Goal layer

The goal layer is responsible for determining the robots’ next
destination. It comprises of a single variable 𝐱𝐺, containing the
𝑥 and 𝑦 coordinates of the goal position. In the original stack, this
position converged through three factors (𝑓𝑒, 𝑓𝑖, 𝑓𝑔), as detailed
in Section III-A.d. Which was feasible in open spaces. However,

by using the navigational graph, we now have a discrete set of
tasks (𝑇). A task allocation algorithm selects the goal position,
as it can handle the discrete list of tasks. The decentralized ver-
sion of the Hungarian algorithm (DHBA) [28] is employed for
its instantaneous, local, and optimal characteristics.

This algorithm operates using a cost matrix 𝑪, where rows
represent tasks (𝑇) and columns represent the connected robots
(𝑅). The values 𝑐𝑖𝑗 in the matrix denote the cost of each task-
robot combination (𝑇𝑖, 𝑅𝑗). These costs are calculated using the
navigational graph, the robot’s own position 𝒑0,𝐴 and the posi-
tion variables received from connected robots, 𝒑0,𝐵, 𝒑0,𝐶 , ….

𝐶example =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 21 1 10 43 25

29 20 47 20 5
32 16 34 12 40
31 17 45 39 31
1 10 36 8 20
10 5 13 44 24 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

(23)

The Hungarian algorithm is deterministic, ensuring that when
two robots share their knowledge, the resulting task assignment
will be consistent and identical. This guarantees that no task 𝑇𝑖 is
assigned to more than one robot 𝑅𝑗, maintaining an efficient and
conflict-free task allocation process across robots. The specifics
of how the Hungarian algorithm functions can be found in Ap-
pendix B.

To integrate the Hungarian algorithm into the stack, it is en-
capsulated within a factor named hungarian factor, 𝒇𝒉. This fac-
tor computes the optimal node 𝑛∗ at each timestep 𝑡 and updates
the goal variable 𝐱𝐺 after iterations of GBP.

𝒇𝒉 : 𝒉ℎ(𝐱𝐺; 𝒑𝑛∗) = 𝐱𝐺 − 𝒑𝑛∗ (24)

𝑛∗ = hungarian(𝐱𝒲nav , 𝐱𝒲cap , 𝒑0,𝐴, 𝒑0,𝐵, 𝒑0,𝐶 , …) (25)

D. Heterogenous tasks

Integrating heterogeneous tasks was straightforward with the
use of the Hungarian method and the navigational graph. A ca-
pability list 𝐱𝒲cap is added to the world layer 𝒲 to account for
robot capabilities. Each variable in this list represents a robot’s
capabilities, and each robot maintains a copy of this list. This list
is used when tasks other than the visit-frontier task are involved.
If a robot lacks the capability to perform a specific task, the
corresponding value 𝑐𝑖𝑗 in the cost matrix 𝑪 is significantly in-
creased, ideally to a value approaching infinity. This prevents the
Hungarian algorithm from allocating that task to the incapable
robot.

The capability list is updated when robots connect with each
other, in the same manner as other world variables, using con-
sensus factors 𝑓𝑐. This allows robots to learn about each other’s
capabilities.
E. Global planner

The utilization of the navigational graph allows for the cre-
ation of a global planner, a novel feature for the GBP planner
[17] and the GBP stack [11]. The global planner takes a start and
goal location and outputs waypoints that the local planner uses

7

8 Master Thesis

to navigate to the goal via the shortest path. We utilize Dijkstra’s
algorithm due to its guarantees for finding the shortest path and
its computational efficiency.
F. Local planner

In this method, the local planner, also known as the GBP plan-
ner [17], is omitted. Re-implementing the local planner was not
the focus of this work. However, it should be easily integrated
within the stack, as it uses the same GBP framework and itera-
tions. In this work, we use discrete timesteps where a robot moves
one node further.
G. Algorithm

Robots initialize their GBP stacks with the variables and fac-
tors for each layer as previously detailed. At each timestep, every
robot executes the procedure outlined in Algorithm 1.

Algorithm 1: For each robot 𝑅𝑖

1 Let 𝑁(𝑅𝑖) = {𝑅𝑗 | ‖𝑅𝑖 − 𝑅𝑗‖ < 𝑟𝐶} be a set of robots
within the communication radius of 𝑅𝑖.

2 while Running do

3
Manage robot connections and create/delete inter-factors
𝑓𝑐, (𝑓𝑟).

4 Set unvisited neighbor nodes as tasks (𝜁𝒲
𝑛 = 1).

5 Read information states of connected robots (𝒑0,𝑗).
6 Build cost matrix 𝐂 and perform task allocation using the

Hungarian algorithm. Set 𝑛∗ ⇒ 𝒇ℎ.
7 if assigned task do
8 Plan paths with Dijkstra’s algorithm.
9 Execute GBP iteration.

10 Update positions 𝒑0,𝑖 and nodes by setting the current
node to visited (𝜁𝒲

𝑛 = 2).
11 Continuously broadcast information states.
12 end while

Algorithm 1: The complete algorithm of the the improved stack.

VI. Results

This section presents the results of the implemented method-
ology in two parts. The first part demonstrates the quantitative
improvements. The second part compares the stacks based on the
metrics of average distance between goals and distance traveled,
both of which highlight more efficient distributed exploration.
A. Setup

To evaluate the method’s competence, a simulator has been
developed. The GBP stack4 was translated from C++ to Python

4github.com/aalpatya/gbpstack

to facilitate rapid prototyping. The navigational graph was im-
plemented using NetworkX [31], and the NiceGUI [32] library

was utilized for visualization. This library allows for rendering a
3D world within the browser using three.js.

Fig. 9: Screenshot of the simulator highlighting the navigational graph. Red
nodes indicate visited areas, green nodes represent discovered frontiers. Two ro-
bots are seen exploring the environment, the blue line denotes the planned path.

To directly compare the original stack and the improved stack
in Section VI-D,E, identical maps were used for both methods.
Each method explores a 100m × 100m open world, with 10m
wide grid cells. This method’s grid structure was changed from
triangular to rectangular for this experiment. A cell is marked
as visited when a robot reaches its center, with the goal of visit-
ing every cell. The experiment was conducted with five robots.
Two scenarios were tested: in the first, all robots start in the cor-
ner; in the second, robots are spawned at random positions. This
scenario was repeated five times with different random seeds to
ensure reliability.
B. Result 1 - Complex environments

The first quantitative improvement is the method’s capacity to
handle environments with walls , enabling navigation in complex
environments with obstacles, as demonstrated in Fig. 10.

(a) Original GBP stack [11] (b) Improved GBP stack
Fig. 10: Screenshots of the GBP stacks in action. The original GBP stack (a) at-
tempts to move through walls, while the improved GBP stack (b) uses a global

planner to navigate around obstacles efficiently.

C. Result 2 - Heterogenous tasks

Robots are given specific capabilities, which the task alloca-
tion algorithm considers when assigning tasks. For instance, in
the scenario depicted in Fig. 11, robot 2 is significantly closer to
the door than robot 1. However, because robot 2 lacks the neces-
sary arm to open the door, this task is assigned to robot 1. Once
a door is opened, it remains open, but if it closes, the node is
marked unvisited again, and the task is reassigned.

8

Distributed Multi-Robot Exploration Missions: Unified approach using Gaussian Belief Propagation 9

Fig. 11: Screenshot illustrating various types of frontiers, specifically doors. The
robot on the far right is closer to the door but lacks the necessary capability, hence

it is not assigned to that task.

D. Result 3 - Improved coordination

The original stack selected the next location to explore by
choosing the nearest unexplored cell. This approach could lead
to multiple robots choosing the same location, resulting in sub-
optimal exploration. In contrast, the improved stack divides the
world into discrete task positions and uses task allocation to en-
sure no two robots select the same task. This ensures that robots
explore different parts of the world, enhancing coordination.

To evaluate, the average distance between selected goals of
all robots over time was measured. The results, however, did not
show significant differences, as noted in Table I. This is because,
while the original method occasionally chose the same goal, it
also often selected goals on the opposite side of the map, leading
to a relatively balanced average distance.

Table I: Comparison

Corner Random

Original [11] This work Original [11] This work

Distance Between
Goals [m] 28.9 ± 16.8 25.8 ± 12.7 34.3 ± 19.9 38.9 ± 18.9

Distance Traveled [m] 358.2 ± 6.9 222.0 ± 14.7 399.8 ± 10.2 220.0 ± 8.5

E. Result 4 - Faster exploration

The metric of distance traveled offers a more conclusive as-
sessment of the effectiveness of the implemented method. We use
the metric distance traveled over exploration time to ensure that
velocity and acceleration do not influence the results. As shown
in Table I, there is a significant improvement in both scenarios.
On average, the improved stack results in a 42% reduction in dis-
tance traveled compared to the original method, demonstrating
its effectiveness.

The trajectories of the robots can be seen in Fig. 12 and Fig. 13,
where one of the random trajectories has been selected. It is no-
ticeable that the original method more frequently takes the same
paths. The less direct paths in the original method are due to the
local planner.

VII. Discussion

Although the current methodology effectively addresses the
objectives outlined in the problem statement, some goals are not
entirely fulfilled with this approach. The ambition to integrate all
competences into a unified optimization problem, and as it cur-

Fig. 12: Robot trajectories in the corner scenario, comparing the original stack
(left) with the improved stack (right).

Fig. 13: Robot trajectories in the random scenario, comparing the original stack
(left) with the improved stack (right).

rently is implemented is debatable. Specifically, the discrete task
list solution via the Hungarian factor is more an encapsulation of
the Hungarian algorithm than an inherent part of an optimization
framework. Similarly, the global planner’s path planning based
on Dijkstra’s algorithm is not formulated as a factor graph opti-
mization. These types of problems may not be ideally suited for
Gaussian Belief Propagation (GBP) due to its limitations in han-
dling the discrete nature of such tasks and the inability to enforce
hard constraints.

Recent literature has explored solutions for these issues in the
form of discrete-continuous factor graph solvers [33]. However,
these methods remain centralized and do not adopt the Gaussian
form. Despite these challenges, there remains potential for the
future application of Gaussian Belief Propagation.

There are numerous problems that fit well within the Gauss-
ian factor graph framework, making them ideal candidates for
future work. For example, this work assumes perfect localiza-
tion; however, integrating Simultaneous Localization and Map-
ping (SLAM) into the framework would be advantageous. This
integration would eliminate the need for a pre-built map. It does
bring new challenges such as map merging and intelligent land-
mark sampling.

Another area for future work involves deploying the frame-
work on real robots. Although the framework has been designed
in a distributed fashion, it currently runs on a single computer.
Implementing message passing in a distributed robot network,
as has been demonstrated in previous research [34], would be a
critical next step.

VIII. Conclusion

This work presents significant advancement in the field of
multi-robot exploration by addressing key limitations of the orig-
inal GBP stack. The improved stack incorporates discrete fron-

9

10 Master Thesis

tier points in a navigational graph and a robust task allocation
system based on the decentralized hungarian algorithm.

The implementation of Gaussian Belief propagation offers
several key advantages, including parallel asynchronous process-
ing of information across multiple robots, which enables robust
and distributed decision-making. Additionally, the framework
achieves significant scalability thanks to its distributed architec-
ture.

The results demonstrate that the improved stack significantly
outperforms the original in several critical aspects. Notably, the
ability to navigate environments with walls and obstacles. The
introduction of capability-based task allocation enabling applic-
ability in real-world scenarios. Results also show the reduction of
distance traveled by an average of 42%, showcasing its efficiency
and improved coordination.

References
[1] W. Meijer, A. Kemmeren, J. van Bruggen, T. Haije, J. Fransman, and J.

van Mil, “Situational Graphs for Robotic First Responders: an application
to dismantling drug labs,” arXiv preprint arXiv:2404.17395, 2024, doi:
10.48550/arXiv.2404.17395.

[2] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordinated
multi-robot exploration,” IEEE Transactions on robotics, vol. 21, no. 3, pp.
376–386, 2005, doi: 10.1109/TRO.2004.839232.

[3] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart, “Dis-
tributed multirobot exploration and mapping,” Proceedings of the IEEE,
vol. 94, no. 7, pp. 1325–1339, 2006, doi: 10.1109/CRV.2005.36.

[4] N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decentralized
active information acquisition: Theory and application to multi-robot
SLAM,” in 2015 IEEE International Conference on Robotics and Automa-
tion (ICRA), 2015, pp. 4775–4782. doi: 10.1109/ICRA.2015.7139863.

[5] R. Zlot, A. Stentz, M. Dias, and S. Thayer, “Multi-robot exploration con-
trolled by a market economy,” vol. 3, pp. 3016–3023, 2002, doi: 10.1109/
ROBOT.2002.1013690.

[6] F. Dellaert, “Factor graphs: Exploiting structure in robotics,” Annual Re-
view of Control, Robotics, and Autonomous Systems, vol. 4, no. 1, pp. 141–
166, 2021, doi: 10.1146/annurev-control-061520-010504.

[7] F. Dellaert, M. Kaess, and others, “Factor graphs for robot perception,”
Foundations and Trends® in Robotics, vol. 6, no. 1–2, pp. 1–139, 2017,
doi: 10.1561/2300000043.

[8] J. Pöschmann, T. Pfeifer, and P. Protzel, “Factor graph based 3d multi-ob-
ject tracking in point clouds,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2020, pp. 10343–10350. doi:
10.48550/arXiv.2008.05309.

[9] A. Baid et al., “ GTSFM: Georgia Tech Structure from Motion.” [Online].
Available: https://github.com/borglab/gtsfm

[10] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
time Gaussian process motion planning via probabilistic inference,” The
International Journal of Robotics Research, vol. 37, no. 11, pp. 1319–1340,
2018, doi: 10.48550/arXiv.1707.07383.

[11] A. Patwardhan and A. J. Davison, “A distributed multi-robot framework
for exploration, information acquisition and consensus,” arXiv preprint
arXiv:2310.01930, 2023, doi: 10.48550/arXiv.2310.01930.

[12] J. Ortiz, T. Evans, and A. J. Davison, “A visual introduction to Gaussian be-
lief propagation,” arXiv preprint arXiv:2107.02308, 2021, doi: 10.48550/
arXiv.2107.02308.

[13] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in
Proceedings 1997 IEEE International Symposium on Computational Intel-
ligence in Robotics and Automation CIRA'97.'Towards New Computational
Principles for Robotics and Automation', 1997, pp. 146–151. doi: 10.1109/
CIRA.1997.613851.

[14] E. T. Jaynes, Probability theory: The logic of science. Cambridge univer-
sity press, 2003.

[15] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, F. Huang, and others, “A
tutorial on energy-based learning,” Predicting structured data, vol. 1, no.
0, 2006.

[16] J. Du, S. Ma, Y.-C. Wu, S. Kar, and J. M. Moura, “Convergence analy-
sis of belief propagation on Gaussian graphical models,” arXiv preprint
arXiv:1801.06430, 2018.

[17] A. Patwardhan, R. Murai, and A. J. Davison, “Distributing collaborative
multi-robot planning with Gaussian belief propagation,” IEEE Robotics
and Automation Letters, vol. 8, no. 2, pp. 552–559, 2022, doi: 10.48550/
arXiv.2203.11618.

[18] A. Agha et al., “Nebula: Quest for robotic autonomy in challenging envi-
ronments; team costar at the darpa subterranean challenge,” arXiv preprint
arXiv:2103.11470, 2021, doi: 10.48550/arXiv.2103.11470.

[19] T. Regev and V. Indelman, “Multi-robot decentralized belief space
planning in unknown environments via efficient re-evaluation of im-
pacted paths,” in 2016 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2016, pp. 5591–5598. doi: 10.1109/
IROS.2016.7759822.

[20] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting
in partially observable stochastic domains,” Artificial intelligence, vol. 101,
no. 1–2, pp. 99–134, 1998, doi: 10.1016/S0004-3702(98)00023-X.

[21] D. He, D. Feng, H. Jia, and H. Liu, “Decentralized exploration of a
structured environment based on multi-agent deep reinforcement learn-
ing,” in 2020 IEEE 26th International Conference on Parallel and
Distributed Systems (ICPADS), 2020, pp. 172–179. doi: 10.1109/
ICPADS51040.2020.00032.

[22] A. H. Tan, F. P. Bejarano, Y. Zhu, R. Ren, and G. Nejat, “Deep reinforce-
ment learning for decentralized multi-robot exploration with macro ac-
tions,” IEEE Robotics and Automation Letters, vol. 8, no. 1, pp. 272–279,
2022, doi: 10.1109/LRA.2022.3224667.

[23] F. Fioretto, E. Pontelli, and W. Yeoh, “Distributed constraint optimization
problems and applications: A survey,” Journal of Artificial Intelligence Re-
search, vol. 61, pp. 623–698, 2018.

[24] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy
of task allocation in multi-robot systems,” The International jour-
nal of robotics research, vol. 23, no. 9, pp. 939–954, 2004, doi:
10.1177/0278364904045564.

[25] G. M. Skaltsis, H.-S. Shin, and A. Tsourdos, “A review of task allocation
methods for UAVs,” Journal of Intelligent & Robotic Systems, vol. 109, no.
4, p. 76–77, 2023, doi: 10.1007/s10846-023-02011-0.

[26] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized auc-
tions for robust task allocation,” IEEE transactions on robotics, vol. 25, no.
4, pp. 912–926, 2009, doi: 10.1109/TRO.2009.2022423.

[27] V. Singhal and D. Dahiya, “Distributed task allocation in dynamic multi-
agent system,” in International Conference on Computing, Communication
& Automation, 2015, pp. 643–648. doi: 10.1109/CCAA.2015.7148452.

[28] S. Ismail and L. Sun, “Decentralized hungarian-based approach for fast
and scalable task allocation,” in 2017 International Conference on Un-
manned Aircraft Systems (ICUAS), 2017, pp. 23–28. doi: 10.1109/
ICUAS.2017.7991447.

[29] J. N. Schwertfeger and O. C. Jenkins, “Multi-robot belief propagation
for distributed robot allocation,” in 2007 IEEE 6th international confer-

10

https://doi.org/10.48550/arXiv.2404.17395
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/10.1109/CRV.2005.36
https://doi.org/10.1109/ICRA.2015.7139863
https://doi.org/10.1109/ROBOT.2002.1013690
https://doi.org/10.1109/ROBOT.2002.1013690
https://doi.org/10.1146/annurev-control-061520-010504
https://doi.org/10.1561/2300000043
https://doi.org/10.48550/arXiv.2008.05309
https://github.com/borglab/gtsfm
https://doi.org/10.48550/arXiv.1707.07383
https://doi.org/10.48550/arXiv.2310.01930
https://doi.org/10.48550/arXiv.2107.02308
https://doi.org/10.48550/arXiv.2107.02308
https://doi.org/10.1109/CIRA.1997.613851
https://doi.org/10.1109/CIRA.1997.613851
https://doi.org/10.48550/arXiv.2203.11618
https://doi.org/10.48550/arXiv.2203.11618
https://doi.org/10.48550/arXiv.2103.11470
https://doi.org/10.1109/IROS.2016.7759822
https://doi.org/10.1109/IROS.2016.7759822
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1109/ICPADS51040.2020.00032
https://doi.org/10.1109/ICPADS51040.2020.00032
https://doi.org/10.1109/LRA.2022.3224667
https://doi.org/10.1177/0278364904045564
https://doi.org/10.1007/s10846-023-02011-0
https://doi.org/10.1109/TRO.2009.2022423
https://doi.org/10.1109/CCAA.2015.7148452
https://doi.org/10.1109/ICUAS.2017.7991447
https://doi.org/10.1109/ICUAS.2017.7991447

Distributed Multi-Robot Exploration Missions: Unified approach using Gaussian Belief Propagation 11

ence on development and learning, 2007, pp. 193–198. doi: 10.1109/
DEVLRN.2007.4354060.

[30] J. A. Berry, E. A. Olson, A. Gilbert, and O. C. Jenkins, “A Case of Iden-
tity: Enacting Robot Identity with Belief Propagation for Decentralized
Multi-Agent Task Allocation,” in 2023 32nd IEEE International Confer-
ence on Robot and Human Interactive Communication (RO-MAN), 2023,
pp. 2373–2379. doi: 10.1109/RO-MAN57019.2023.10309580.

[31] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dy-
namics, and function using NetworkX,” 2008.

[32] F. Schindler and R. Trappe, “NiceGUI: Web-based user interfaces
with Python. The nice way..” [Online]. Available: https://github.com/
zauberzeug/nicegui

[33] K. J. Doherty, Z. Lu, K. Singh, and J. J. Leonard, “Discrete-continuous
smoothing and mapping,” IEEE Robotics and Automation Letters, vol. 7,
no. 4, pp. 12395–12402, 2022.

[34] R. Murai, J. Ortiz, S. Saeedi, P. H. Kelly, and A. J. Davison, “A robot web
for distributed many-device localisation,” IEEE Transactions on Robotics,
2023.

[35] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1–2, pp. 83–97, 1955, doi: 10.1002/
nav.3800020109.

11

https://doi.org/10.1109/DEVLRN.2007.4354060
https://doi.org/10.1109/DEVLRN.2007.4354060
https://doi.org/10.1109/RO-MAN57019.2023.10309580
https://github.com/zauberzeug/nicegui
https://github.com/zauberzeug/nicegui
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109

12 Master Thesis

Appendix A - GBP Planner factors
Pose Factor
The Pose Factor connects the robot’s current state and its horizon state, anchoring the trajectory at these specific
points. This factor ensures that the optimization process respects the robot’s initial and final states during a
planning horizon, as these cannot be changed.

𝒉𝑝(𝐱𝑘) = 𝐱𝑘, 𝚲𝑝 = 𝜎−2
𝑝 𝐈 (26)

Where:
• 𝐱𝑘 represents the state of the robot at time 𝑘, which is defined as 𝐱𝑘 = [𝑥𝑘, 𝑦𝑘, ̇𝑥𝑘, ̇𝑦𝑘], where 𝑥𝑘 and 𝑦𝑘 are

the positional coordinates, and ̇𝑥𝑘 and ̇𝑦𝑘 are the corresponding velocities.
• 𝜎−2

𝑝 𝐈 is the precision matrix, with 𝜎𝑝 being the standard deviation associated with the pose uncertainty. In
this factor, the value of 𝜎𝑝 is set to a very small number, such as 1 × 10−15, which gives the anchoring
behavior.

Fig. 14: Illustration of the variables and factors used in GBP Planner.

Dynamics Factor
The Dynamics Factor enforces smoothness by connecting consecutive states in time, thereby ensuring the
trajectory is dynamically feasible. This factor is derived from a noise-on-acceleration model of dynamics.

𝒉𝑑(𝐱𝑘, 𝐱𝑘+1) = 𝚽(𝑡𝑘+1, 𝑡𝑘)𝐱𝑘 − 𝐱𝑘+1 (27)

𝚲𝑑 =
⎝
⎜⎛

1
3Δ𝑡3𝑘𝐐𝑑
1
2Δ𝑡2𝑘𝐐𝑑

1
2Δ𝑡2𝑘𝐐𝑑

Δ𝑡𝑘𝐐𝑑 ⎠
⎟⎞

−1

(28)

with Δ𝑡𝑘 = 𝑡𝑘+1 − 𝑡𝑘, 𝐐𝑑 = 𝜎2
𝑑𝐈, and

𝚽(𝑡𝑏, 𝑡𝑎) = (𝐈
𝟎

(𝑡𝑏 − 𝑡𝑎)𝐈
𝐈

) (29)

Where:
• Δ𝑡𝑘 is the time difference between consecutive states.
• 𝐐𝑑 = 𝜎2

𝑑𝐈 represents the process noise covariance matrix.
• 𝚽(𝑡𝑏, 𝑡𝑎) is the state transition matrix from time 𝑡𝑎 to time 𝑡𝑏.

Obstacle Factor
The Obstacle Factor represents the robot’s distance from static obstacles, penalizing states that bring the robot
too close to these obstacles.

12

Distributed Multi-Robot Exploration Missions: Unified approach using Gaussian Belief Propagation 13

𝒉𝑜(𝐱𝑘) =
⎩{
⎨
{⎧1 − 𝑑𝑜(𝐱𝑘)

𝑟𝑅
if 𝑑𝑜(𝐱𝑘) ≤ 𝑟𝑅

0 otherwise
(30)

𝚲𝑜 = (𝑡𝑘𝜎𝑟)
−2𝐈 (31)

Where:
• 𝑑𝑜(𝐱𝑘) is the signed distance from the robot’s state 𝐱𝑘 to the nearest obstacle. A pre-computed 2D signed

distance field image with the positional coordinates (𝐱𝑘[𝟶:𝟸]) are used to obtain this value.
• 𝑟𝑅 is the robot’s radius.

Inter-robot Factor
The Inter-robot Factor penalizes states where robots come within a critical distance of each other, ensuring
collision avoidance between robots.

𝒉𝑟(𝐱𝐴
𝑘 , 𝐱𝐵

𝑘) =
⎩{
⎨
{⎧1 − 𝑑𝑟(𝐱𝐴

𝑘 ,𝐱𝐵
𝑘)

𝑟* if 𝑑𝑟(𝐱𝐴
𝑘 , 𝐱𝐵

𝑘) ≤ 𝑟*

0 otherwise
(32)

𝑑𝑟(𝐱𝐴
𝑘 , 𝐱𝐵

𝑘) = ‖ 𝐱𝐴
𝑘 − 𝐱𝐵

𝑘 ‖ (33)

Where:
• 𝑑𝑟(𝐱𝐴

𝑘 , 𝐱𝐵
𝑘) is the Euclidean distance between the states of robots A and B at time 𝑘.

• 𝑟* = 2𝑟𝑅 + 𝜖, with 𝜖 being a small safety distance.

These factors collectively ensure the GBP Planner’s efficiency and effectiveness in generating collision-free,
smooth trajectories for multiple robots in dynamic environments. The iterative process of Gaussian Belief
Propagation within and between robots allows for decentralized and scalable multi-robot planning.

13

14 Master Thesis

Appendix B - Hungarian Algorithm
The Hungarian algorithm is a combinatorial optimization algorithm used to solve the assignment problem. The
assignment problem involves finding the most cost-effective way to assign 𝑛 tasks to 𝑛 agents such that the total
cost is minimized (or the total profit is maximized). The algorithm efficiently finds an optimal solution for the
assignment problem with a time complexity of 𝑂(𝑛3).

Algorithm 2: Hungarian algorithm Pseudocode

Initialization step
Initialize the cost matrix C of size n x n

1 For each row i in C
2 Subtract the minimum value of the row from each element in the row
3 For each column j in C
4 Subtract the minimum value of the column from each element in the column
5 while the number of covering lines is less than n
6 Cover all zeros in the matrix using a minimum number of horizontal and vertical lines
7 if the number of covering lines is equal to n then
8 Optimal assignment is possible
9 Go to the assignment step

10 else
11 Find the smallest element not covered by any line
12 Subtract this smallest element from all uncovered elements
13 Add this smallest element to all elements covered by both a horizontal and a vertical line
14 end if
15 end while

Assignment step
Construct the optimal assignment from the zero elements in the matrix

16 For each row i
17 For each column j
18 if C[i][j] == 0 then
19 Assign task j to agent i
20 end if
21 end
22 end

Algorithm 2: The Hungarian algorithm [35]

14

Distributed Multi-Robot Exploration Missions: Unified approach using Gaussian Belief Propagation 15

Appendix C - Simulation Environment
This appendix provides a detailed overview of the simulator developed to test and visualize the coordination of
robots using Gaussian Belief Propagation. The simulator is built upon a translated version of the GBP library by
A. Patwardhan and A. J. Davison [11], originally written in C++ and adapted into Python for enhanced flexibility
during development.

The decision to translate the GBP library into Python, while reducing the algorithm’s efficiency, significantly
increased the freedom to prototype new features and experiment with the system’s behavior. To enable
visualization of the robots and their task coordination, the simulator uses a 3D environment powered by the
NiceGUI Python library. Within this virtual world, several critical elements can be observed:

• The navigational graph, represents the environment as nodes and edges, where green nodes indicate
frontiers, red nodes mark visited locations, and grey nodes are unknown (not yet discovered). The edges
represent traversable paths, accounting for obstacles, enabling the robots to plan accurate routes based on
actual distances.

• The planned paths for each robot as they move towards their assigned tasks.
• 3D models of Boston Dynamics Spot robots were chosen for visualization, allowing users to track robot

movements and evaluate task coordination in real-time (see Fig. 16).

Fig. 15: The developed simulator interface.

As shown in Fig. 15, users can select the view of any robot in the system. This feature allows them to observe the
world from the robot’s perspective, including the areas it has visited and its current task assignments. Because
the system is fully distributed, the robot only knows about the environment based on its exploration and the
information shared with it by other robots. Additionally, a checkbox enables the display of other robots’
positions, offering a broader perspective of the entire system. For debugging purposes, another checkbox can be
activated to show the node labels on the navigational graph, which are critical for the task allocation process.

15

16 Master Thesis

Fig. 16: 3D model of the Boston Dynamics Spot robot integrated into the simulator.

The interface also provides several control buttons that allow users to interact with the simulation:

• The Explore button advances the simulation by one timestep. During each step, robots communicate (if
connected to others), share map data, and perform task allocation. The robots then execute a GBP iteration,
moving one node closer to their assigned tasks.

• The Connect button enables communication between robots, allowing them to exchange map information
and update their task allocations accordingly. This ensures that the robots can collaborate effectively and
avoid redundant tasks.

• The Reset button clears the memory of all robots, forcing them to rediscover the environment from scratch.
This is useful for testing and debugging new task allocation or pathfinding strategies.

(a) Metrics panel (b) Control panel
Fig. 17: (a) Metrics Panel: This panel displays the cost matrix, showing the costs for all robots to all tasks, along with the actual task

assignments calculated by each robot. (b) Control Panel: This panel contains buttons to control the simulator)

The bottom left corner of the simulator displays various metrics about the robots and their decision-making
processes. Users can see the cost matrix for the selected robot, which shows the costs of different task
assignments based on the robot’s position and capabilities. This area also shows the final task allocation and the
connection status of the selected robot. These metrics provide detailed insights into how decisions are being
made and how coordination is achieved across the system.

16

	Preface
	Nomenclature
	Introduction
	Technical Background
	Gaussian Models
	Factor Graphs
	Gaussian Belief Propagation
	Variable Belief Update
	Variable to Factor Message
	Factor Likelihood Update
	Factor to Variable Message

	GBP Planner

	Related works
	Coupled literature works
	Partially Observable Markov Decision Processes
	Reinforcement Learning (RL)
	Distributed Constraint Optimization Problems (DCOP)
	GBP Stack

	Task allocation literature works
	Auction-Based Methods
	Game Theory-Based Methods
	Optimization-Based Methods
	Belief propagation-Based Methods

	Problem Statement
	Methodology
	Navigational Graph - World layer
	Consensus algorithm
	Task allocation - Goal layer
	Heterogenous tasks
	Global planner
	Local planner
	Algorithm

	Results
	Setup
	Result 1 - Complex environments
	Result 2 - Heterogenous tasks
	Result 3 - Improved coordination
	Result 4 - Faster exploration

	Discussion
	Conclusion
	References
	- GBP Planner factors
	- Hungarian Algorithm
	- Simulation Environment

