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A B S T R A C T

Cross-linked polymer gel is widely used in the oil and gas industry to block high permeability conduits and 
reduce water cut. The complex nature of this fluid, especially regarding flow in porous media, makes its nu
merical simulation very time-consuming. This study presents an approach to designing an Artificial Neural 
Network (ANN) model that could predict the permeability reduction caused by injecting polymer gel into a 2D 
rock sample. Our methodology consists of two main parts: numerical simulation and ANN model building. 
Considering the advantages of the Lattice Boltzmann Method (LBM) this approach is used to model the injection 
of polymer gel in porous media. Using this model, more than 20,000 simulations were performed which resulted 
in highly unbalanced dataset, so an innovative approach for balancing regression dataset is also proposed in 
detail in this paper. The final constructed ANN model could predict the permeability reduction in a fraction of a 
second with less than 2.5% Mean Absolute Error (MAE). The result indicates the importance of balancing 
datasets to obtain a reliable prediction from ANN. Also, it should be mentioned that gelation parameters had the 
most significant impact on the value of permeability reduction, with mean absolute SHapley Additive exPla
nations (SHAP) values of 20 and 12.5 for TDfactor and Threshold, respectively.   

1. Introduction

The undeniable role of nonrenewable energy resources and the low
percentage of the recovery factor from oil and gas reservoirs makes it 
necessary to use suitable Improved Oil Recovery (IOR) and Enhanced Oil 
Recovery (EOR) methods. Excessive water production is one of the most 
critical challenges, especially in mature reservoirs (Taha and Amani, 
2019). Most studies show that the main reason for the excessive water 
production is the existence of heterogeneity in high permeability ducts 
or thief zone (Bai et al., 2015a). Therefore, by blocking 
high-permeability conduits, the flow paths are changed which subse
quently results in producing oil from smaller pores and increasing the 
sweep efficiency (Dong et al., 2016). Among the existing techniques for 
reducing water cut, polymer gel has been proven to be the most efficient 
one (Jiasheng, 2013; Lashari et al., 2014; Liao, 2014; Bai et al., 2015b; 
Veliyev et al., 2019). Polymer gel can flow through fractures and it is 
also strong enough to withstand high-pressure differences near the 
wellbore (Liao, 2014). The mixture of polymer and crosslinker is pre
pared on the surface and then it is injected through a production well or 
injection well (Sydansk and Romero-Zerón, 2011). The less viscous 

solution can penetrate the higher permeability channels and after 
reaching its gelation time, it will form a solid-like gel that helps the 
production of oil from unswept regions (Taha and Amani, 2019). 
Therefore, permeability will be reduced as a result of the injection of 
polymer gel and the reduction of permeability shows the efficiency of 
the process. 

Although many researchers investigated polymer gel injection 
experimentally, few attempts have been made to numerically investigate 
the pore-scale phenomenon associated with the injection of this fluid 
(Al-Shajalee et al., 2020; Dong et al., 2016; Jia et al., 2011; Zheng et al., 
2021; Zitha et al., 2002). Numerical simulations provide researchers 
with complete control over all parameters that influence pore-scale 
phenomena and flexibility in modifying and investigating different 
scenarios and conditions which will be very expensive to do using ex
periments(Golparvar et al., 2018). Moreover, the high-resolution data
set which is obtained from these methods can be used as a training set for 
Machine Learning and Deep Learning. Since the polymer is 
non-Newtonian and time-dependent, it is necessary to choose the best 
numerical tool for modeling this phenomenon (Parmigiani et al., 2011). 
Among the available methods, Lattice Boltzmann Method (LBM) has 
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been proven to have high accuracy and low computational time, espe
cially for complex geometries (Boek and Venturoli, 2010; Martys and 
Chen, 1996; Olson and Rothman, 1997; Sukop et al., 2008). There are 
also numerous studies available for simulating non-Newtonian fluid 
flow with LBM. Different non-Newtonian models such as 
Carreau-Yasuda (Ashrafizaadeh and Bakhshaei, 2009; Boyd and Buick, 
2007; Gokhale and Fernandes, 2017; D. Wang and Bernsdorf, 2009), 
Carreau (Malaspinas et al., 2007; Yoshino et al., 2007) and Cross 
(Kehrwald, 2005) have been widely used in the simulation of 
non-Newtonian fluids with LBM. 

Despite the high accuracy of numerical simulation methods, the 
extensive computational time of these methods has always been a 
crucial challenge for engineers. Recent developments in artificial intel
ligence (AI) and machine/deep learning have provided a fantastic tool 
for predicting the results of simulations and calculations in the shortest 
possible time. In petroleum engineering, the studies concerned with AI 
tools can be classified into two general groups: large-scale and small- 
scale. For large-scale, primary applications of Artificial Neural Net
works (ANNs) were limited to well-logging interpretation (Al-Kaabi and 
Lee, 1993), reservoir characteristics prediction (Mohaghegh and Ameri, 
1995; Mohaghegh et al., 1996; Masroor et al., 2022), drilling parameters 
estimation (Sharifinasab et al., 2023), and formation damage estimation 
(Nikravesh et al., 1996). Later, the use of AI in this field expanded. Up to 
this date, many successes have been made in cases such as predicting 
reservoir properties (i.e., permeability, matrix porosity, and fracture) in 
dual porosity reservoirs (Alajmi and Ertekin, 2007), history matching for 
a hydrocarbon field (Haghshenas et al., 2020, 2021; Kolajoobi et al., 
2021; Shahkarami et al., 2014), well placement optimization (e.g., 
Kolajoobi et al., 2023), uncertainty evaluation in reservoir performance 
prediction (Haddadpour and Emami Niri, 2021), CO2 storage (Van Si 
and Chon, 2018; Vo Thanh et al., 2020), and Hydrogen Storage (Rahimi 
et al., 2021). 

Unlike large-scale systems that have been studied for years, most of 
the advances in applying AI-based tools in small-scale studies, particu
larly in microscopic fields, are related to recent years. Thanks to recent 
advances in non-destructive imaging technologies, Micro-CT imaging 
provides a three-dimensional representation of the internal geometry of 
the porous medium, which can detect pore structures down to several 
micrometers or even sub-micrometers (Kamrava et al., 2019; Da Wang 
et al., 2019). This is fascinating data for conducting accurate numerical 
simulations and using AI techniques. Numerous studies have been 
conducted on subjects such as image segmentation, reconstruction of 
porous media, and estimating properties such as porosity, permeability, 
and resistance factor for a rock sample (Tahmasebi et al., 2020). 

Machine learning and deep learning methods have also been recently 
used to address a variety of problems in fluid mechanics. For example, 
Hennigh presented a method called Lattice-Network (Lat-Net) to reduce 
the computation time of LBM (Hennigh, 2017). Lat-Net is an efficient 
neural network that can be used to reproduce the simulation results of 
the fluid flow in a porous media. They also showed that when Lat-Net is 
trained, it can be generalized to large network sizes and complex ge
ometries while maintaining accuracy. 

Despite mentioned studies in the field of using AI for fluid flow in 
porous media and petroleum engineering, there is a significant science 
gap for the application of machine learning and deep learning for non- 
Newtonian fluids, especially polymer gel. Moreover, this science gap 
also exists in predicting the result of polymer gel injection as IOR 
approach. Since ANNs are proven to learn and recognize problem pat
terns and explore complex non-linear mathematical relationships be
tween a system’s input and output responses, this article presents a 
novel ANN-based approach to predicting the permeability changes of 
the two-dimensional porous media after injecting polymer gel. To make 
the best use of recent advances in the field of imaging porous media, the 
simulations which were required to build a rich database for training the 
neural network were done on 2D segmented porous media structure 
which the details will be discussed in the paper. Providing more than 

20,000 combinations of input parameters, numerical simulations are 
conducted using LBM and permeability reduction is calculated for each 
case as the most significant parameter to investigate after polymer gel 
injection. This dataset is then imposed into several stages of data 
cleaning and reducing the order of the model. Finally, the best ANN is 
selected by performing several steps of balancing the dataset and 
selecting the optimum value for hyperparameters. This ANN can predict 
the changes in the permeability of porous media using the simulation 
input parameters in a fraction of a second. 

In the context of the paper, first, a chapter is specified to LBM 
background which is required to understand the mathematical model 
and numerical simulations in this research. Then, in methodology 
chapter all the steps for numerical simulation and ANN building are 
discussed in detail and the materials are also provided. The results of all 
steps are provided in the next chapter and the discussion about the 
reason behind each of them is done at the same time. The paper is ended 
up with a conclusion containing some ideas for further works in this 
area. 

2. Background 

2.1. Lattice Boltzmann equation and BGK extension 

LBM is selected for modeling the polymer gel injection in porous 
media in this study. Lattice Boltzmann equation (LBE) is described as: 

fi (x+ ei, t+ 1)= fi(x, t) + Ωi(fi(x, t))(ⅈ= 1, 2…,M) (1) 

In equation (1) , fi is distribution function, ei is discrete velocity, and 
Ωi is collision operator. Since the original collision operator of the Lat
tice Boltzmann involves all pairwise interactions between molecules, it 
is necessary to replace it with a simpler one, especially when the prob
lem contains complex phenomenon Therefore, Bhatnagar, Gross, and 
Krook (BGK) proposed one of the most important and, at the same time, 
most efficient extensions for collision operators as below (Bhatnagar 
et al., 1954): 

Ωi(f )= −
1
τ (fi − f eq

i ) (2) 

Where f eq
i is equilibrium distribution function and τ is relaxation 

time. LBGK equation is obtained by replacing equation (2) for collision 
operator in LBE: 

fi(x+ ei, t+ 1)= fi(x, t) −
fi − f eq

i

τ (3) 

Equation (3) directly considers relaxation towards equilibrium dis
tribution, and transfer coefficients can be obtained easily using the value 
of τ. For example, the below formula is for kinematic viscosity (ν) (Anbar 
et al., 2019): 

ν= 2τ − 1
6

4  

2.2. Two approaches for implementing non-Newtonian effect in LBM 

There are various non-Newtonian models and, in this study, the 
Carreau model is chosen, which is described as (Ashrafizaadeh and 
Bakhshaei, 2009; Boyd and Buick, 2007; Gokhale and Fernandes, 2017; 
D. Wang and Bernsdorf, 2009).: 

ν − ν∞

ν0 − v∞
=
[
1 + (λγ)2]n− 1

2 (5) 

Where ν∞ is kinematic viscosity at an infinite shear rate, ν0 is kine
matic viscosity at zero shear rate, λ is the time constant for the fluid, γ is 
the shear rate, and n is the power-law exponent. 

Moreover; to the author’s knowledge, there are commonly two ways 
to model a shear-dependent fluid flow in LBM, which will be discussed 
below. 
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A) By coupling equations for the kinematic viscosity of the non- 
Newtonian model and equation (4) shear-dependent relaxation 
time τ at each node can be obtained. For the Carreau model, 
frequency (ω) can be calculated which is the inverse of relaxation 
time, iteratively, with the below formula (Ohta et al., 2020): 

ω=
2

1 + 2
(

ν0 − ν∞
c2

s

)
(1 + αω2

iter− 1)
n− 1

2 + 2 v∞
c2

s

(6)  

Where cs is the sound speed of the lattice, and α is 1
2

γ2

(ρc2
s )

2 which ρ is 

density.  

B) Non-Newtonian behavior could also be considered as an equivalent 
forcing effect. So; it can be say that the non-Newtonian model usually 
consists of a Newtonian portion and an additional non-Newtonian 
effect as below (C.-H. Wang and Ho, 2011): 

fi(x+ ei, t+ 1)= fi(x, t) −
fi − f eq

i

τ + Δt
(

1 −
Δt
2τ

)
ωi

[
ei − u

c2
s

+
(ei − u)

c4
s

⋅ ei

]

Fnn

(7) 

Where Δt is the time interval and Fnn is a non-Newtonian equivalent 
forcing effect which can be calculated for different non-Newtonian 
models. 

3. Methodology 

The methodology for this research is divided into two main stages: 
numerical simulation and building an ANN model. Fig. 1 summarizes the 
successive steps of the proposed methodology; details of every step are 

described hereafter. All of the implementations and codes related to this 
paper can be found in GitHub repository of the authors.1 

3.1. Numerical simulation 

As it is discussed earlier, the aim of this study is to examine the effect 
of gelation threshold on permeability reduction in a two-dimensional 
segmented rock image obtained from micro-CT. The numerical simula
tion stage is divided into smaller steps below to achieve this goal.  

1 Modeling non-Newtonian fluid in Palabos: 

An open-source software called Palabos (Latt et al., 2021) is selected 
for numerical simulation. With the help of this software, the flow of 
Carreau fluid with LBM is modeled. The mathematical model which is 
used for the simulation is briefly shown in Fig. 2.  

2 Validation of model with simulating of non-Newtonian fluid flow in 
simple geometry (Poiseuille) and comparing the result with the 
analytical solution: 

Before using any CFD code for a real phenomenon, its validity must 
be checked. Validation ensures that the code accurately solves imple
mented mathematical models with minimum error. The Poiseuille flow 
is selected for validation, and the result of the simulation re-checked 
with an analytical solution as below (Sutera and Skalak, 1993): 

u(y)=
( n

n + 1

)( Δp
ρref ν0

)[(
H
2

)n+1
n

−

(
H
2
− y

)n+1
n
]

8 

Fig. 1. Research methodology.  

1 https://github.com/kamelelahe. 

E. Kamel Targhi et al.                                                                                                                                                                                                                         

https://github.com/kamelelahe


Geoenergy Science and Engineering 227 (2023) 211925

4

where u is velocity, n is power-law index, Δp is pressure difference, 
ρref is reference density, H is the width of the channel or pipe, and y 
shows the location where the velocity is calculated for that point.  

3 Validation for fluid flow in porous media 

After successfully simulating fluid flow in a simple geometric system, 
it is necessary to determine if the simulation produces accurate results in 
more complex systems. To achieve this, the model was first tested for 
Newtonian fluid flow (n = 1) in a 2D porous media which is obtained 
from the segmented image of the Berea sandstone micro-model pro
posed by Boek (Boek and Venturoli, 2010) shown in Fig. 3. The 
boundary condition in the outlet and inlet is the pressure boundary 
condition, and the bounce-back scheme is used to model internal 
boundaries. Next, available analytical solutions and relationships are 
used to check the accuracy of the model in predicting the behavior of 
fluid flow in porous media.  

4 Simulation of polymer gel injection in a porous media: 

Since modeling the injection of polymer gel in porous media can be 
considered as a combination of two previous steps, after successfully 
validating those, the model can be confidently used for the problem of 
this research. The only modification that should be taken into consid
eration is time dependency because, in fluids such as polymer gel, the 
viscosity increases over time due to chemical reactions, known as 
gelation. To model this process, the parameters of the non-Newtonian 
fluid model must be adjusted after several simulation steps. To 
simplify this process, the study modeled the gelation process by 
increasing a parameter called TDfactor, assuming a linear increase in 
time. This parameter was multiplied by in each selected iteration. So, the 
viscosity increases with time, and the time-thickening behavior of a fluid 
with the Carreau model is accurately modeled.  

5 Post-processing and observation of gelation: 

In this step, the simulation results should be post-processed to 
determine the areas where the gel is formed. So, defining a value to 
describe the highest viscosity in which the fluid can move is required. 
Since the maximum number for viscosity is infinite, working with the 
viscosity field is challenging. Hence, relaxation frequency is used which 
has an inverse relationship with viscosity, and hence a parameter called 
‘Threshold’ is defined to investigate structural changes resulting from 
gelation. The Threshold is the maximum relaxation frequency at which 
the fluid can move, and in areas with less relaxation frequency than the 
Threshold, the formed gel will block pores. Hence, the Threshold value 
directly affects the permeability change of the porous media after 
polymer gel injection.  

6 Investigate changes in the geometry of the porous media and 
reduction of permeability: 

In the next step, gels in the pore structure will be considered rock 
matrix. So, the final output of this process will show the changes in pore 
structure after injecting polymer gel. This segmented image can be used 
to obtain rock properties, i.e., porosity and permeability, and then be 
compared with the initial values of those properties. 

Fig. 2. Mathematical methodology for simulating non-Newtonian fluid flow 
with LBM. 

Fig. 3. Bera micro model with the size of 1418 μm* 1418 μm, and the etch 
depth of the physical unit of 24.54 μm. The S pore spaces are in white (Boek and 
Venturoli, 2010). 
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3.2. Building ANN to reduce the computational cost 

In the previous section, the key steps of the numerical simulation to 
calculate the changes in rock structure after injecting polymer gel are 
described. Since the computational time for numerical methods is too 
high, numerical simulation for each rock sample may take several hours, 
and it is necessary to propose some tools/techniques to speed up the 
process. ANN selected as a powerful tool for this study for two reasons. 
First, ANN has the ability to learn and model complex nonlinear re
lationships between input and output data which is useful in fluid flow 
simulations where the relationship between input parameters and 
output results can be highly nonlinear and difficult to model using 
traditional statistical methods. Moreover, ANN can handle large 
amounts of data with high dimensionality, which is often the case in 
fluid flow simulations where numerous input parameters and output 
variables need to be considered. ANN can efficiently learn and represent 
the underlying patterns and correlations within the data(Rabault et al., 
2019; Sen and Yang, 2008). 

Therefore, this section describes the steps of constructing a feed- 
forward to predict permeability changes resulting from polymer gel 
injection. The architecture of ANN is shown in Fig. 4. 

Several steps must be taken to ensure that the built-in AI tool model 
can correctly predict the target parameter. In the following, most 
important steps of the model construction process and the necessary 
concepts in this issue are discussed.  

1 Design of Experimental (DOE) 

The overall goal of this step is to identify the optimum range for input 
parameters that can completely cover the range of variations in target 
parameter/s. For example, this study aims to estimate the permeability 
changes due to polymer gel injection. DOE helps us propose a set of 
gelation thresholds and a power-law index for the simulation set on a 

rock sample that covers all the possible ranges for permeability changes. 
The required number of samples is not obtained according to a specific 
relationship, but obviously, it depends on the model’s complexity. The 
more complex the model, the more samples are needed, which ulti
mately increases the database’s size. Careful DOE ensures the compre
hensiveness of the final developed model.  

2 Database preparation 

After performing numerical simulations with the defined model, a 
dataset should be made with all the information containing input and 
output values. The database used in this research is a two-dimensional 
matrix. Since this dataset is the source for training ANN, it must 
contain the parameters that determine fluid flow characteristics in the 
porous media and its non-Newtonian behavior. Table 1 shows an over
view of the final dataset, which will be used in data mining and cleaning.  

3 Data cleaning 

Not all simulation data are suitable for network training. The simu
lations may, in many cases, not converge or show unreasonable values 
for the output. For example, the output of a simulation may show a 
negative value for porosity, which is irrational. In the data cleaning 
stage, the main purpose is to ensure the dataset is free of unnecessary/ 
incorrect simulations.  

4 Reduce the order of model (ROM) 

The primary database has many features, not all of which may be 
effective for model training, and their presence dramatically increases 
the computational volume. Therefore, three main steps are done in ROM 
to remove any unnecessary features from the dataset.  

A. Remove irrelated parameters to the target parameter: The dataset 
contains many parameters and simulation results, some of which do 
not help predict target parameters, and removing them is better for 
computational efficiency.  

B. Analysis of distribution functions: After clearing the data, it is time to 
examine the property distribution functions. Identifying fixed pa
rameters is one of the results of this stage because these parameters, 
due to constant values, have no effect on the ANN accuracy and are 
not considered valuable parameters.  

C. Identify highly correlated parameters: Since the data is normalized 
before feeding into ANN, the highly correlated parameters become 
identical and transfer a series of repetitive patterns. So, in this step, 
the pairwise correlation between all properties is examined, and 
among highly correlated parameters, one of them will remain in the 
final dataset as representative.  

5 Sampling 

Dealing with an unbalanced dataset is one of the most common and 
challenging problems for ANN training. In this situation, the distribution 
function for the target parameter is not uniform. If the network is trained 
with this dataset, it may provide high numerical accuracy, but it does 
not give reliable results because the estimated value is more tended to 
the larger class. 

Fig. 4. Architecture of artificial neural network.  

Table 1 
Overview of the initial dataset.   

Sample number Geometric properties Flow properties Non-newtonian fluid properties Gelation parameters Results 

Simulation 1      
2      
3      
…      
Max. No. of simulation       
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There are several methods for sampling unbalanced data. Since this 
situation mainly discusses classification problems, treatments also focus 
on these kinds of problems. In the following, the top three most common 
methodologies for sampling are listed. Fig. 5 also summarizes this in
formation graphically.  

• Over-sampling: In this method, minority samples are reproduced to 
increase the number of samples.  

• Under-sampling: under-sampling aims to randomly select and 
remove samples from the majority class, thus reducing the number of 
samples in the larger class.  

• Hybrid technique: This method can overcome the disadvantages of 
the previous two methods by randomly removing some data from the 
bigger class and generating random copies of the data in the smaller 
one.  

6 Hyper Parameter Optimization (HPO) 

Hyperparameters guide the model’s behavior, and their values must 
be determined before the network training process. The process of 
selecting the appropriate set of hyperparameters for the learning algo
rithm is known as HPO. Some of the most critical hyperparameters of 
ANN are the number of neurons, number of hidden layers, learning rate, 
and type of activation function. If models in this step fail at this initial 
assessment in terms of, Mean Absolute Error (MAE), error distribution 
histogram, and scatter plots, the sampling stage should be repeated to 
obtain the most accurate results.  

7 Model assessment 

After successfully constructing ANN, it is time to report the accuracy 
and performance of the trained network. In addition to the primary 
measurements done in the previous step, The SHAP Python library is 
used to analyze the final network with more details (https://github. 
com/slundberg/shap) to interpret the selected ANN. The SHAP library 
works by iteratively adding or removing variables in the network and 
evaluating their relative importance(Lundberg and Lee, 2017). 

4. Result and discussion 

In the previous part of this paper, the methodology of this research 
was discussed in detail. In this section, the result of this study is also 
described in two parts, numerical simulation and building an ANN 
model to reduce computational cost. 

4.1. Numerical simulation 

4.1.1. Model validation of non-Newtonian fluid flow in simple geometry 
(Poiseuille) 

As discussed in the previous section, it is necessary to check the 
model’s validity in simple geometry before using it for more complex 
phenomena. An analytical solution was introduced for the velocity dis
tribution of Poiseuille flow of non-Newtonian fluid in eq. (1). Here, we 
checked our code for Poiseuille flow with the properties listed in Table 2 
and compared the result with the numerical solution. As is shown in 
Fig. 6, the model could perfectly catch the behavior of non-Newtonian 
fluid in this problem. 

4.1.2. Verify the code for the flow of Newtonian fluid in porous media 
Porous media geometry is very complex, so it is necessary to check if 

the model can capture the flow properties in this geometry. Since, in 
contrast to Poiseuille flow, there is no analytical solution for the flow of 
non-Newtonian fluid in porous media, the best possible way is to check 
whether this model agrees with Darcy’s law which is stated in eq. (7) as 
below: 

u= −
k
μ⋅

Δp
l

(9) 

Where u is velocity, k is permeability, μ is viscosity, Δp is pressure 
difference, and l is the length of the flow domain. Since Darcy’s law is 

Fig. 5. Three common methods for sampling unbalanced data((reproduced from Le et al., 2019).  

Table 2 
Input parameters for Poiseuille flow of Carreau 
fluid.  

Parameter Value 

u 0.004951 
Re 1 
Cu 10 
N 101 
lx 1.00E+00 
ly 1 
lz 0.00E+00 
dx 0.009901 
dt 4.90E-05 
n 0.5 
nu0 5.00E-01 
nuInf 0 
omega0 0.5 
omegaInf 2 
lambda 204020  
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only valid for Newtonian fluid, for this fluid, it should be a linear rela
tionship between velocity and Δp

μ∗l . So, to check this relationship for the 
proposed model, the simulation parameters set to n = 1 and TDfactor =
1 to consider the Newtonian behavior of fluid flowing in the Berea 
sample (Fig. 3). Then numerous simulations are conducted by changing 
Δp and keeping other parameters constant. The boundary conditions are 
constant pressure (Zou and He) at the inlet and outlet (right and left 
side) and the bounce-back scheme applied in the rock and fluid domain 
interface. As it is shown in Fig. 7, our model could successfully capture 
the linear relationship between u and Δp

μ∗l . Also, the slope of this plot is 
0.214, which agrees with the code’s estimated permeability. 

4.1.3. Simulation of polymer injection in porous media 
After conducting two validation parts, the model can be used 

confidently for simulating the injection of polymer-gel in porous media. 
In this section, the result for the step 4–6 in numerical simulation (which 
is discussed in section 4.1) is provided. The flow of three different types 
of fluids, i.e., Newtonian fluid, polymer (shear-thinning), and polymer 

gel (shear-thinning and time-thickening), is simulated in Berea geome
try. User input parameters for this code are Nx (number of lattices in the 
horizontal direction), Ny (number of lattices in the vertical direction), 
deltaP (pressure difference), n(power-law index), Nu0 (viscosity at zero 
shear rate), Cu (Carreau number), TDfactor (refer to step 4 section 
4.1and Threshold(refer to step 5 section 4.1). All input parameters (user- 
defined and simulator defaults) and the results of these simulations are 
presented in Table 3 and the units are provided in parentheses. 

As shown in Fig. 8, the omega field for Newtonian fluid has a con
stant value everywhere in the domain, which agrees with the nature of 
Newtonian fluids, which are shear-independent.On the other hand, 
omega shows higher values in smaller pores with higher velocity or 
shear rate for the two other types of fluid and shows the shear-thinning 
behavior of the fluid. Also, comparing the rock geometries at the end of 

Fig. 6. Comparing the simulation result and analytical solution for normalized 
velocity profile of Poiseuille flow of non-Newtonian fluid of Table 1. The 
comparison shows an excellent match. 

Fig. 7. Validation of flow of Newtonian fluid in 2D Berea sample. The slope of 
this plot indicates permeability. 

Table 3 
Simulation parameters and results of Newtonian, time-independent non-New
tonian, and time-dependent non-Newtonian fluids’ motions in a 2D Berea 
sample.   

# Parameter Newtonian polymer Polymer 
gel 

Porous media 
properties 

1 N 400 400 400 
2 lx 1 1 1 
3 ly 1 1 1 
4 lz 0 0 0 
5 Dx (LU) 0.0025 0.0025 0.0025 
6 Dt (TS) 1.54E-07 1.54E-07 1.54E-07 
7 Nx 400 400 400 
8 Ny 400 400 400 

Flow properties 9 U (
LU
TS

) 6.15E-05 6.15E-05 6.15E-05 

10 Re 0.12 0.12 0.12 
11 deltaP 

(
MU × LU

TS2 ) 

0.0005 0.0005 0.0005 

Non-Newtonian 
fluid properties 

12 Cu 5 5 5 
13 n 1 0.8 0.8 
14 

Nu0 (
LU2

TS
) 

0.2 0.2 0.2 

15 
NuInf (

LU2

TS
) 

0 0 0 

16 Omega0 0.91 0.91 0.91 
17 OmegaInf 2 2 2 
18 lambda 3.25E+07 3.25E+07 3.25E+07 

Gelation 
parameters 

19 threshold 0.75 0.75 0.75 
20 TDfactor 1 1 1.11 

Results 21 
AvgNu (

LU2

TS
) 

0.93 0.62 1.08 

22 AvgOmega 0.30 0.42 0.27 
23 AvgVel (

LU
TS

) 0.00 0.00 0.00 

24 AvgP 

(
MU × LU

TS2 ) 

1.00 1.00 1.00 

25 GradP 

(
MU × LU

TS2 ) 

0.00 0.00 0.00 

26 
qNorm (

LU3

TS
) 

0.00 0.00 0.00 

27 MaxShear 

(
1
TS

) 

0.00 0.00 0.00 

28 MinShear 

(
1
TS

) 

0 0 0 

29 MaxOmega 0.91 1.67 1.27 
30 MinOmega 0 0 0 
31 MaxVel (

LU
TS

) 0.00 0.00 0.00 

32 MinVel (
LU
TS

) 0 0 0 

33 porosity 0.33 0.33 0.20 
34 Perm (LU2) 0.21 0.21 0.02 
35 poroPerc (%) 0 0 45.12 
36 permPerc 

(%) 
0 0 93.43  
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Fig. 8. Velocity field, shear rate, omega, and geometry changes after injecting different types of fluids in a 2D Berea sample.  

Fig. 9. Schematic of different stages of the simulation. (A)initial rock geometry, (B)relaxation frequency field at the end simulation, (C)formation of gel in pores, (D) 
rock geometry after injection of polymer gel. 
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the simulation reveals that this model could successfully capture the 
formation of gel in pores, and gel is mainly formed in larger pores. Since 
the ultimate goal in injecting polymer gel is to block the high permeable 
paths and improve oil displacement from narrower conduits, it seems 
could the model is able to successfully capture the behavior of the 
phenomenon. 

To take a closer look, in Fig. 9, the simulation procedure stages for 
polymer gel injection are shown. As it could be clearly understood from 
this figure, the changes in pore geometry are carefully captured by the 
proposed numerical model. 

4.2. Building an ANN model to reduce the computational cost 

After successfully simulating the phenomenon, it is time to use it in 
building a rich database and make the database ready for building an 
efficient ANN. The results of the steps in this procedure are gathered in 
this section. 

4.2.1. Sensitivity analysis and DOE 
The first step in building an ANN is to prepare a good database that 

covers all the possibilities and optimum ranges for each parameter. 
Therefore, 2240 simulations were performed with input parameters 
from Table 4 to select their optimal values for numerical simulation. 
Then, a pairwise sensitivity analysis is carried out on generated simu
lation results to identify the input parameters with a higher risk of 
divergence. Fig. 10 shows the percentage of simulation divergence for 
each pair of input parameters in which brighter blocks have a higher risk 
of divergence. As can be seen from the images in Fig. 10, the simulations 
with low values of n and Nu0 and high values of the pressure difference 
and Cu have a higher chance of diverging. As a result of this step, the 
optimum range for simulation input parameters is obtained and reported 
in Table 4. 

Table 4 
Range of input parameters for numerical simulation.  

Parameter Initially selected range Optimum range 

deltaP {1e-5,5e-5,1e-4,5e- 
4,0.001,0.005,0.01} 

{1e-5,5e-5,1e-4,5e- 
4,0.001,0.005} 

Nu0 {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8} {0.2,0.3,0.4,0.5,0.6,0.7,0.8} 
n {0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} {0.5,0.6,0.7,0.8,0.9,1} 
Cu {1,5,10,15,20} {1,5,10,15}  

Fig. 10. Pairwise sensitivity analysis on the divergence of simulation results.  
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4.2.2. Building dataset 
After selecting the optimum range of values for the simulation pa

rameters, it is time to build the database. Up to this purpose, 20160 
simulations were run with those values of input parameters listed in 
Table 5. Table 6 depicts an overview of the initial database, and the table 
is transposed to be easier to read. 

4.2.3. Data cleaning 
As discussed, the initial dataset contains 20160 rows (number of 

simulations performed) and 38 columns (total number of parameters). 
For data cleaning, firstly, rows containing NaN for simulation results 
were removed, then irrational data such as rows with porosity values 
greater than one or negative and rows with zero value for permeability 
were eliminated. After this step, the size of the database is reduced to 38 
* 14847, which means that 5313 rows have been removed from it. 

4.2.4. ROM 
The next step is to reduce the number of parameters in the dataset. 

First, unrelated parameters (such as average viscosity and maximum 

shear rate) to the target parameter (permeability reduction (are 
removed. By doing this, 14 features (rows 22 to 36 in Table 6) are 
eliminated from the database, and its dimensions are reduced to 14847 * 
24. 

Next, the distribution plots are examined to identify parameters with 
constant values in all simulations and remove them from the database. 
As shown in Fig. 11, for example, the parameters related to the simu
lation dimensions are consistent for all simulations. So N, lx, ly, lz, dx, 
Nx, Ny, Nu0, NuInf, Omega0, and OmegaInf are removed from the 
dataset, and the dimension of the dataset is reduced to 14847 * 13. 

As a final step in ROM, the linear correlation between the remaining 
parameters in the database is examined. One parameter is selected as a 
representative one with a high linear correlation. In Fig. 12, a heatmap is 
used to represent the value for correlation graphically. As a result of this 
step, dt, u, Re, porosity, and perm are removed from the database, and 
the database dimension is reduced to 14847 * 8. 

Fig. 13 summarizes data cleaning and ROM steps which were 
described in detail in this section. It could be seen that more than 5000 
simulations (almost one-third of the dataset) were removed at this stage, 

Table 5 
Values for input parameters in building initial dataset.  

Parameter Selected values Count 

deltaP {1e-5,5e-5,1e-4,5e-4,0.001,0.005} 6 
Cu {5,7,10,12,15} 5 
n {0.5,0.6,0.7,0.8,0.9,1} 6 
TDfactor {1,1.01,1.02,1.03,1.04,1.05,1.06,1.07,1.08,1.09,1.1,1.11,1.12,1.13,1.14,1.15} 16 
Threshold {0.6,0.65,0.7,0.75,0.8,0.85,0.9} 7 
Total number of simulations: 20160 = 6*5*6*16*7  

Table 6 
Overview of the initial dataset.   

1 RunNum 1 2 3 … 20160 

Geometrical properties 2 N 400 400 400 … 400 
3 lx 1 1 1 … 1 
4 ly 1 1 1 … 1 
5 lz 0 0 0 … 0 
6 dx 0.0025 0.0025 0.0025 … 0.0025 
7 dt 1.55E-06 3.08E-07 1.54E-07 … 3.07E-09 
8 Nx 400 400 400 … 400 
9 Ny 400 400 400 … 400 

Flow properties 10 u 0.000621 0.000123 6.15E-05 … 1.23E-06 
11 Re 1.24227 0.246121 0.122916 … 0.002456 
12 deltaP 0.005 0.001 0.0005 … 0.00001 

Non-newtonian fluid properties 13 Cu 5 5 5 … 15 
14 n 1 1 1 … 0.5 
15 Nu0 0.2 0.2 0.2 … 0.2 
16 NuInf 0 0 0 … 0 
17 OmegaO 0.909091 0.909091 0.909091 … 0.909091 
18 OmegaInf 2 2 2 … 2 
19 lambda 3219900 16252200 32542500 … 4.89E+09 

Gelation parameters 20 threshold 0.9 0.9 0.9 … 1.15 
21 TDfactor 1 1 1 … 0.492378 

Results 22 AvgNu 0.934662 0.934662 0.934662 … 0.505783 
23 AvgOmega 0.302665 0.302665 0.302665 … 2.12E-06 
24 AvgVelTotal 1.36E-05 2.71E-06 1.35E-06 … 0.332927 
25 AvgDen 0.330785 0.332502 0.332717 … 0.998781 
26 AvgP 0.992356 0.997506 0.99815 … 2.51E-08 
27 GradP 1.25E-05 2.51E-06 1.25E-06 … 0.000856 
28 qNorm 0.005317 0.001051 0.000525 … 1.41E-07 
29 MaxShear 0.000105 0.000021 1.05E-05 … 0 
30 MinShear 0 0 0 … 1.99062 
31 MaxOmega 0.909091 0.909091 0.909091 … 0 
32 MinOmega 0 0 0 … 0.000159 
33 MaxVel 0.000646 0.000128 0.000064 … 0 
34 MinVel 0 0 0 … 0.9 
35 porosity 0.332931 0.332931 0.332931 … 0.259944 
36 perm 0.214527 0.214527 0.214527 … 4619.59 
37 poroPerc 0 0 0 … 21.92269 
38 permPerc 0 0 0 … − 2153284  
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Fig. 11. Distribution diagrams of different simulation parameters.  
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and also, the number of parameters decreased from 38 to 8, which 
means only less than 20% of simulation parameters were useful for 
training ANN. 

4.2.5. Sampling- 1st step 
Initial analysis of the target parameter density plot (Fig. 14(A)) 

shows that the dataset for this study is highly unbalanced. For a large 
proportion of the simulation, there were no changes in permeability, 
meaning the fluid did not reach the gelation criteria due to several 
reasons, including missing non-Newtonian characteristics, low values 

for TDfactor, and high values for Threshold. As discussed in the previous 
section, although the network trained with this data may have good 
accuracy, it is unreliable, and its predictions are biased toward zero 
values for permeability reduction. 

This study uses a combination of over-sampling and under-sampling 
methods to balance the database. Since the research problem is regres
sion, dividing the permeability reduction percentage into different 
classes before sampling is necessary. Therefore, the data is divided into 
20 different classes based on the percentage of permeability reduction, 
and then 200 samples from each category are selected for network 

Fig. 12. Heat map for pairwise linear correlation between available parameters.  

Fig. 13. Dimension of the dataset in every step of data cleaning and ROM.  

Fig. 14. Density plot for target parameter A) before balancing, B) after the first balancing step.  
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training. Fig. 14(B) shows the distribution of the percentage of perme
ability reduction after base balancing. 

4.2.6. HPO- 1st step 
Optimum values for hyperparameters in this study are selected with 

trial and error. Twelve ANNs were trained at the first step, and their 
characteristics are summarized in Table 7. For all the ANNs imple
mented in this study, train_test_split function from scikit-learn library is 
used to split the dataset, and 30% of data are randomly used for test and 
the rest are for training. As is shown in Fig. 15, MAE for model no.12, 
with 4 layers and 19 neurons in each layer, has the minimum MAE. Also, 
the scatter plot of simulation results versus the predicted value shows 
that it is the most suitable ANN for predicting permeability reduction. 

4.2.6.1. Sampling- 2nd step. Although the MAE for model number 12 is 
less than 7%, the presence of a vertical line in predicting simulations 
with zero permeability reduction motivates us to build a better ANN. As 
discussed in the methodology step, sampling should be repeated. This 
time, the number of data with zero permeability reduction in the 
balanced database has increased 2, 3, and 4 times. The distribution plot 

of the target parameter in these datasets is shown in Fig. 16. 
Then these datasets are used for training networks with the same 

characteristics as model number 12 in Table 7 (4 hidden layers, 19 
neurons per layer, and a learning rate of 0.001). As shown in Fig. 17, for 
dataset number 5, the scatter plot shows better prediction, and the error 
distribution plot is also more normal. So this dataset is selected for 
further analysis. 

4.2.7. HPO- 2nd step 
After selecting the potential dataset, the HPO step must be repeated 

to achieve better accuracy. Since the proposed ANN has six input pa
rameters, increasing the number of neurons to more than 19 does not 
help us improve the accuracy. So the number of neurons in each layer is 
kept 19 and different numbers of hidden layers (1–8) are selected to 
train ANNs. The characteristics of these ANNs are available in Table 8. 
As shown in Fig. 18, model number 7 has a better estimation and less 
MAE. 

Although the error for model number 7 in Table 8 is less than 5 
percent, the scatter plot shows us that ANN still does not have good 
accuracy in predicting simulation results with zero permeability. As the 
second hyperparameter to optimize in this step, the learning rate should 

Table 7 
Specifications of the models used in the first step selecting the number of hidden layers and neurons.  

MODEL NUMBER 1 2 3 4 5 6 7 8 9 10 11 12 

NO. OF INPUT PARAMETERS 6 6 6 6 6 6 6 6 6 6 6 6 
NO. OF HIDDEN LAYERS 1 2 3 4 1 2 3 4 1 2 3 4 
NO. OF NEURONS 11 11 11 11 15 15 15 15 19 19 19 19 
ACTIVATION FUNCTION ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU Relu Relu Relu 
TRAINING ALGORITHM Adam Adam Adam Adam Adam Adam Adam Adam Adam Adam Adam Adam 
LEARNING RATE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001  

Fig. 15. Simulation Error for Models with Different Layers and Neurons and scatter plot for the selected network (model no. 12).  

Fig. 16. Target parameter distribution in the unbalanced dataset (1), balanced dataset(2), increasing row with zero permeability reduction 2, 3, and 4 times (datasets 
no 3, 4, and 5, respectively). 
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Fig. 17. Scatter plot (simulated vs. predicted) and density plot of error for five datasets in Fig. 12.  

Table 8 
Specifications of the models used in the second step selecting the number of hidden layers and neurons.  

MODEL NUMBER 1 2 3 4 5 6 7 8 

NO. OF INPUT PARAMETERS 6 6 6 6 6 6 6 6 
NO. OF HIDDEN LAYERS 1 2 3 4 5 6 7 8 
NO. OF NEURONS 19 19 19 19 19 19 19 19 
ACTIVATION FUNCTION ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU 
TRAINING ALGORITHM Adam Adam Adam Adam Adam Adam Adam Adam 
LEARNING RATE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001  

Fig. 18. MAE for models in Table 8 and scatter plot for selected model (no. 7).  

Table 9 
Specifications of the models used in the first step selecting the number of hidden layers and neurons.  

MODEL NUMBER 1 2 3 4 5 6 7 8 9 10 11 12 

NO. OF INPUT PARAMETERS 6 6 6 6 6 6 6 6 6 6 6 6 
NO. OF HIDDEN LAYERS 7 7 7 7 7 7 7 7 7 7 7 7 
NO. OF NEURONS 19 19 19 19 19 19 19 19 19 19 19 19 
ACTIVATION FUNCTION ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU Relu Relu Relu 
TRAINING ALGORITHM Adam Adam Adam Adam Adam Adam Adam Adam Adam Adam Adam Adam 
LEARNING RATE 0.00025 0.0003 0.00035 0.0004 0.00045 0.0005 0.0007 0.001 0.003 0.005 0.007 0.01  
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be optimized and train ANNs with different learning rates, as shown in 
Table 9. It can be seen in Fig. 19, model no. 10, with a value of 0.005 for 
the learning rate, has a minimum MAE. Also, the density plot of this 
model is normal, and its scatter plot shows that it could successfully 
capture the behavior of cases with zero permeability reduction. 

4.2.8. Model assessment 
In previous steps, the main purpose was to select the best ANN for 

predicting the permeability reduction due to polymer gel injection. 
Fig. 20 shows the loss and validation loss plot during the training step in 
800 epochs. It can be seen that the model completely captured the 
behavior of the data. Validation loss behaves exactly like the loss 
function, meaning there was no over-fitting during the training step. 

While the primary goal of this research was to achieve the best ac
curacy in predicting the target parameter, further analysis of the model 
using the SHAP library could be considered as another useful step. A bar 
plot indicating the importance and contribution of parameters in 
training the model is shown in Fig. 21. In the vertical axis, features are 
ordered from the highest to the lowest effect on the prediction. As ex
pected, gelation parameters, i.e., TDfactor and Threshold, had the most 
crucial roles in training the model. The next important feature also was 
the power-law index (n) which indicates the shear-dependency of fluid. 

Fig. 22 shows the beeswarm summary plot for the selected model to 
go deeper in the analysis. The horizontal axis indicates how much the 
features contributed to predicting output via SHAP value. As stated in 
the color bar, the color of the points indicates the value of the data. The 
higher values contributed to increasing the predicted value for the top 
three most critical features, i.e., TDfactor, Threshold, and n. On the 
other hand, reverse behavior is seen for the other three parameters. 

5. Conclusion 

This paper proposes a novel approach for calculating the perme
ability reduction in a 2D Berea sample due to polymer gel injection 
which can be considered as a starting point to complete a research gap in 
this field. The methodology for this purpose consists of two main parts: 

Fig. 19. MAE for different learning rates for ANNs in Table 7 and scatter plot and density plot for model no. 10 (selected model).  

Fig. 20. Evolution of the loss and the validation loss over the epochs for the 
final model. 

Fig. 21. Bar plot of absolute value for average SHAP value for each feature in 
the selected model. 

Fig. 22. Beeswarm summary plot for the SHAP value.  
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numerical simulation and building ANN. Since validating the result is a 
crucial part of every numerical study, two validation parts (Poiseuille 
flow and Darcy flow) are done to ensure that the model can perfectly 
capture the behavior of non-Newtonian fluid flow in porous media. Then 
the complexity related to time-dependency of the fluid, the model is 
used to conduct more than 20,000 simulations by varying the input 
parameters, which provided us with a big dataset. Doing several steps of 
data cleaning, balancing dataset, and HPO, our final network could 
capture the permeability changes with less than 2% MAE. 

The results of this paper could be briefly summarized below.  

1 In the numerical simulation part, it can be seen that gels were mostly 
formed in larger pores, which is desirable for water shutoff opera
tions in oil and gas reservoirs. The proposed model could successfully 
capture the behavior of flowing polymer gel fluid in porous media 
and the changes in pore structure resulting from injecting this fluid. 

2 Since the numerical simulation is used to generate our dataset, pre
cise DOE was necessary to ensure that the final network could cap
ture the wide range of behavior for polymer gel injection in porous 
media.  

3 Because the generated dataset was highly unbalanced, balancing this 
dataset was the primary and most crucial step in constructing a 
reliable ANN. It could be seen that networks that were trained with 
an unbalanced dataset had a poor prediction for estimating perme
ability changes near zero. The process of balancing the dataset of this 
research was one of the innovative part of that. The steps which were 
discussed can be used for any regression problem.  

4 Model assessment with SHAP in the final stage of this research shows 
that gelation parameters, i.e., TDfactor and Threshold were the most 
critical parameters in the learning process, and the power-law index 
is the next important one. 
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Rabault, J., Kuchta, M., Jensen, A., Réglade, U., Cerardi, N., 2019. Artificial neural 
networks trained through deep reinforcement learning discover control strategies for 
active flow control. J. Fluid Mech. 865, 281–302. https://doi.org/10.1017/ 
JFM.2019.62. 

Rahimi, M., Abbaspour-Fard, M.H., Rohani, A., 2021. Machine learning approaches to 
rediscovery and optimization of hydrogen storage on porous bio-derived carbon. 
J. Clean. Prod. 329, 129714 https://doi.org/10.1016/J.JCLEPRO.2021.129714. 

Sen, M., Yang, K.T., 2008. A review of multiphase flow and Heat transfer with artificial 
neural networks. American Society of Mechanical Engineers, Heat Transfer Division, 
(Publication) HTD 374 (4), 79–86. https://doi.org/10.1115/IMECE2003-41761. 

Shahkarami, A., Mohaghegh, S., Gholami, V., Haghighat, A., Moreno, D., 2014. Modeling 
pressure and saturation distribution in a CO2 storage project using a Surrogate 
Reservoir Model (SRM). Greenhouse Gases: Sci. Technol. 4 (3), 289–315. 

Sharifinasab, M.H., Emami Niri, M., Masroor, M., 2023. Developing GAN-boosted 
Artificial Neural Networks to model the rate of drilling bit penetration. Appl. Soft 
Comput. 136, 110067 https://doi.org/10.1016/J.ASOC.2023.110067. 

Sukop, M.C., Huang, H., Lin, C.L., Deo, M.D., Oh, K., Miller, J.D., 2008. Distribution of 
multiphase fluids in porous media: comparison between lattice Boltzmann modeling 
and micro-x-ray tomography. Phys. Rev. 77 (2), 26710. 

Sutera, S.P., Skalak, R., 1993. The history of Poiseuille’s law. Annu. Rev. Fluid Mech. 25 
(1), 1–20. 

Sydansk, R.D., Romero-Zerón, L., 2011. Reservoir Conformance Improvement. Society of 
Petroleum Engineers Richardson, TX.  

Taha, A., Amani, M., 2019. Overview of water shutoff operations in oil and gas wells; 
chemical and mechanical solutions. ChemEngineering 3 (2), 51. 

Tahmasebi, P., Kamrava, S., Bai, T., Sahimi, M., 2020. Machine learning in geo-and 
environmental sciences: from small to large scale. Adv. Water Resour. 142, 103619. 

Van Si, L., Chon, B.H., 2018. Effective prediction and management of a CO2 flooding 
process for enhancing oil recovery using artificial neural networks. Journal of 
Energy Resources Technology, Transactions of the ASME 140 (3). https://doi.org/ 
10.1115/1.4038054/442916. 

Veliyev, E.F., Aliyev, A.A., Guliyev, V.V., Naghiyeva, N.V., 2019. Water shutoff using 
crosslinked polymer gels. In: SPE Annual Caspian Technical Conference. 

Vo Thanh, H., Sugai, Y., Sasaki, K., 2020. Application of artificial neural network for 
predicting the performance of CO2 enhanced oil recovery and storage in residual oil 
zones. Sci. Rep. 10 (1), 1–16. https://doi.org/10.1038/s41598-020-73931-2, 2020 
10:1.  

Wang, C.-H., Ho, J.-R., 2011. A lattice Boltzmann approach for the non-Newtonian effect 
in the blood flow. Comput. Math. Appl. 62 (1), 75–86. 

Wang, D., Bernsdorf, J., 2009. Lattice Boltzmann simulation of steady non-Newtonian 
blood flow in a 3D generic stenosis case. Comput. Math. Appl. 58 (5), 1030–1034. 

Yoshino, M., Hotta, Y., Hirozane, T., Endo, M., 2007. A numerical method for 
incompressible non-Newtonian fluid flows based on the lattice Boltzmann method. 
J. Non-Newtonian Fluid Mech. 147 (1–2), 69–78. 

Zheng, J., Wang, Z., Ju, Y., Tian, Y., Jin, Y., Chang, W., 2021. Visualization of water 
channeling and displacement diversion by polymer gel treatment in 3D printed 
heterogeneous porous media. J. Petrol. Sci. Eng. 198, 108238. 

Zitha, P.L.J., Botermans, C.W., Hoek, J. vd, Vermolen, F.J., 2002. Control of flow through 
porous media using polymer gels. J. Appl. Phys. 92 (2), 1143–1153. 

Zou Q, He X. On pressure and velocity flow boundary conditions for the lattice 
Boltzmann BGK model. arXiv preprint comp-gas/9508001. 1995 Aug 8. 

E. Kamel Targhi et al.                                                                                                                                                                                                                         

http://refhub.elsevier.com/S2949-8910(23)00512-2/sref31
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref31
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref32
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref32
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref32
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref33
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref33
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref33
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref34
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref34
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref35
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref35
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref36
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref36
https://doi.org/10.1017/JFM.2019.62
https://doi.org/10.1017/JFM.2019.62
https://doi.org/10.1016/J.JCLEPRO.2021.129714
https://doi.org/10.1115/IMECE2003-41761
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref40
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref40
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref40
https://doi.org/10.1016/J.ASOC.2023.110067
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref42
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref42
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref42
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref43
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref43
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref44
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref44
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref45
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref45
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref46
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref46
https://doi.org/10.1115/1.4038054/442916
https://doi.org/10.1115/1.4038054/442916
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref48
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref48
https://doi.org/10.1038/s41598-020-73931-2
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref50
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref50
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref51
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref51
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref52
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref52
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref52
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref53
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref53
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref53
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref54
http://refhub.elsevier.com/S2949-8910(23)00512-2/sref54

	Design of Artificial Neural Network for predicting the reduction in permeability of porous media as a result of polymer gel ...
	1 Introduction
	2 Background
	2.1 Lattice Boltzmann equation and BGK extension
	2.2 Two approaches for implementing non-Newtonian effect in LBM

	3 Methodology
	3.1 Numerical simulation
	3.2 Building ANN to reduce the computational cost

	4 Result and discussion
	4.1 Numerical simulation
	4.1.1 Model validation of non-Newtonian fluid flow in simple geometry (Poiseuille)
	4.1.2 Verify the code for the flow of Newtonian fluid in porous media
	4.1.3 Simulation of polymer injection in porous media

	4.2 Building an ANN model to reduce the computational cost
	4.2.1 Sensitivity analysis and DOE
	4.2.2 Building dataset
	4.2.3 Data cleaning
	4.2.4 ROM
	4.2.5 Sampling- 1st step
	4.2.6 HPO- 1st step
	4.2.6.1 Sampling- 2nd step

	4.2.7 HPO- 2nd step
	4.2.8 Model assessment


	5 Conclusion
	Credit author statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


