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Abstract
Principled syntactic code completion enables developers
to change source code by inserting code templates, thus
increasing developer efficiency and supporting language
exploration. However, existing code completion systems
are ad-hoc and neither complete nor sound. They are not
complete and only provide few code templates for selected
programming languages. They also are not sound and propose
code templates that yield invalid programs when inserted.
This paper presents a generic framework that automatically
derives complete and sound syntactic code completion from
the syntax definition of arbitrary languages. A key insight
of our work is to provide an explicit syntactic representation
for incomplete programs using placeholders. This enables
us to address the following challenges for code completion
separately: (i) completing incomplete programs by replacing
placeholders with code templates, (ii) injecting placeholders
into complete programs to make them incomplete, and (iii)
introducing lexemes and placeholders into incorrect programs
through error-recovery parsing to make them correct so we
can apply one of the previous strategies. We formalize our
framework and provide an implementation in Spoofax.

Categories and Subject Descriptors D.2.6 [Software Engi-
neering]: Programming Environments

Keywords Code Completion, Language Workbenches,
IDEs

1. Introduction
Code completion, also known as content completion or con-
tent assist, is an editor service that proposes and performs
expansion of the program text. Code completion helps the pro-
grammer to avoid misspellings and acts as a guide to discover
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Figure 1. (1) Incomplete program with explicit placeholders.
(2) Triggering completion for a placeholder. (3) After select-
ing a proposal, showing completions for nested placeholders.
(4) Completing a nested placeholder by typing.

language features and APIs. Most mainstream integrated de-
velopment environments (IDEs) provide some form of code
completion and industrial studies indicate that code comple-
tion is one of the most frequently used IDE services [1].

There are two classes of code completion: syntactic and
semantic. Syntactic code completion considers the syntactic
context at the cursor position and proposes code templates
for syntactic structures of the language. For example, most
IDEs for Java support syntactic code completion with class
and method templates. Semantic code completion also uses
the cursor position to propose templates, but by applying
semantic analysis to the program, the IDE can propose code
templates or identifiers that do not violate the language’s
name binding or typing rules. For example, in this case IDEs
for Java may suggest variables or methods that are visible in
the current scope and have the expected type at the cursor
position.

In this paper, we focus on syntactic code completion. Even
for mainstream languages in mainstream IDEs, syntactic
code completion is often ad-hoc and unreliable. Specifically,
most existing services for syntactic code completion are
incomplete and only propose code templates for selected
language constructs of a few supported languages, thus
inhibiting exploring the language’s syntax. Moreover, most
existing services are unsound and propose code templates
that yield syntax errors when inserted at the cursor position.
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To address these shortcomings, we present a generic code-
completion framework that derives sound and complete syn-
tactic code completion from syntax definitions. From the
syntax definition, we derive code templates and applicability
conditions for them to ensure soundness. To support com-
pleteness and propose all language structures, we represent
incomplete program text explicitly using placeholders that
we automatically introduce into the syntax definition. This
allows our code templates to yield incomplete programs that
can be subsequently completed.

Figure 1 illustrates our use of placeholders in a Java-
like program. The first box shows an incomplete program
with an expression placeholder. The program is syntactically
correct since we introduce the placeholder as part of the
language. The second box shows that placeholders give rise to
completion proposals, which may themselves be incomplete
(contain placeholders). After selection of a proposal, the
developer can expand or textually replace the placeholders
inserted by the template.

In addition to enabling step-wise code completion, explicit
placeholders allow us to address two important practical chal-
lenges of code completion: inferring completion opportuni-
ties in complete program texts and generating completion
proposals while recovering from syntax errors. Complete pro-
grams do not contain placeholders, yet code completion can
be useful for adding list elements or optional constructs. For
example, we may want to use syntactic code completion to
add modifiers like public to a method or to add statements
to a method’s body. Instead of developing such support for
complete programs directly, we provide our solution using
placeholder inference (to make the program incomplete) fol-
lowed by regular syntactic code completion of the inferred
placeholder.

Incorrect programs contain syntax errors but are impor-
tant to support because incorrect programs occur frequently
during development. Again, instead of developing syntactic
code completion for incorrect programs directly, we decom-
pose this activity. We use error-recovery parsing [3, 4] to in-
sert lexemes into the program text. However, since we made
placeholders part of the language, an error-recovering parser
will also consider placeholders for insertion, thus yielding
incomplete programs. A developer can select one of multiple
alternative recoveries and can use regular syntactic code com-
pletion for placeholders in the selected recovered program.
Fig. 2 shows all transitions between complete, incomplete,
and incorrect programs.

We present a formalization of our completion framework
and the involved algorithms. We describe completeness,
formally define soundness, and prove soundness for our
algorithms. We also implemented our framework as part of
the Spoofax language workbench [7], which we used to derive
syntactic code completion for a subset of Java containing
classes, methods, statements and expressions, Pascal, and
IceDust [6], a domain-specific language for data modeling.

In summary, we make the following contributions:

• An analysis of syntactic code completion in IDEs and lan-
guage workbenches, revealing completeness and sound-
ness issues (Section 2).

• A sound and complete approach for completing incom-
plete programs by rewriting placeholders (Section 3).

• An algorithm for inferring placeholders, yielding support
for expanding complete programs (Section 4).

• An extension of error-recovery parsing for inserting place-
holders, yielding syntactic code completion for incorrect
programs (Section 5).

• Throughout, we develop a formal framework for reasoning
about syntactic code completion and we describe how we
realized the algorithms in Spoofax.

2. State of the Art of Syntactic Completion
In this section, we motivate our work on syntactic code
completion by presenting examples collected from state-of-
the-art IDEs and language workbenches. We observe that
state-of-the-art solutions are unsound, incomplete, language-
dependent, and do not support incorrect programs well.

Soundness. Existing IDEs and language workbenches of-
ten propose unsound completions that yield syntax errors
when inserted. For example, as shown in Figure 3, Eclipse
largely ignores the syntactic context at the cursor position
and proposes the insertion of an else-block without a corre-
sponding if -statement, yielding a syntax error after insertion.
IntelliJ provides code templates that are sensitive to the
syntactic and typing context, but may yield syntax errors
nonetheless. For example, the live template lst inserts an

Incomplete
programs

Incorrect
programs

Complete
programs

Expand 
placeholder

Infer 
placeholder

Recover 
incomplete

program

Recover 
complete
program

Expand 
placeholders

Correct
programs

Infer 
placeholder

Figure 2. Separation of concerns in code completion.
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Figure 3. Eclipse: Unsound completion yields syntax error.

expression for fetching the last element of an array, but
yields the invalid fragment [.length − 1] when no array
is available in the current scope. Language workbenches
have similar issues and also propose invalid completions. For
example, as shown in Figure 4, Xtext [5] only proposes the
next keyword, but not a complete def -template.

Figure 4. Xtext: Unsound completion yields syntax error.

Completeness. IDE developers define code templates man-
ually. As a consequence, the set of available templates is
limited. Many language constructs are not available through
syntactic code completion, and changes to a language are
often not reflected in the code templates. For example, the
proposal list of Eclipse 4.5.2 shown in Figure 3 does not
provide a code template for try-with-resource statements.

Besides missing templates, existing IDEs and language
workbenches also have no way to represent partial comple-
tions that users can subsequently complete to form com-
plex constructs. Instead, existing systems always generate
complete programs with concrete “dummy” constructs as
subexpressions. For example, as shown in Figure 5, Eclipse’s
proposal for constructing and storing a new object yields a
complete program using type as a “dummy” class name and
name as a “dummy” variable name.

If the developer leaves the IDE’s completion mode, the
“dummy” constructs become part of the program. This inhibits
partial completions such as for assignment statements type
name = exp, where exp will be interpreted as a variable
reference rather than as a placeholder for arbitrary expres-
sions.

Incorrect Programs. In current IDEs and language work-
benches, error-recovery parsing and code completion are
largely orthogonal. For example, Eclipse uses error-recovery
parsing to identify the syntactic context at the cursor posi-
tion and compute corresponding proposals. However, Eclipse
does not actually offer support for recovering from the syntax

Figure 5. Eclipse: Completion with “dummy” constructs.

error itself. Similarly, code completion and error recovery are
orthogonal in IntelliJ and the previous version of the Spoofax
language workbench [3, 7]. Instead, error recovery should
yield a list of alternative recovery proposals for the user to
select from. If the user selects an incomplete program as
recovery, the user can continue to expand the program in
subsequent code completion steps.

Summary. Based on this discussion, we derive the follow-
ing requirements for principled syntactic code completion:

• Proposals need to be sound such that code completion
does not introduce syntax errors.

• Proposals need to be complete, meaning that code tem-
plates exist for all language constructs and that developers
can use iterative code completion.

• Code completion should propose recoveries for incorrect
programs and allow the iterative completion of recovered
programs.

In the remainder of this paper, we present a generic frame-
work for syntactic code completion that satisfies these re-
quirements. Our framework is language-independent and au-
tomatically derives principled code-completion support from
a language’s syntax definition.

3. Completion by Rewriting Placeholders
In most editors, programs in an incomplete state are incorrect,
as they contain syntax errors indicating missing elements in
the source code. In this section, we present a formal model
for syntactic code completion for a subset of incomplete pro-
grams where missing elements correspond to entire structures
from the language. We introduce a valid representation for
this subset, representing these structures by explicit placehold-
ers. As the programs in the subset are syntactically correct
considering our representation, our framework models sound
and complete syntactic code completion deriving completion
proposals as placeholder expansions. Finally, we present an
instantiation of our formal model, describing our implemen-
tation of syntactic code completion in Spoofax.

3.1 Representing Complete and Incomplete Programs
We consider abstract syntax trees as our primary program
representation. We define representations for complete and
incomplete programs as terms over a signature Σ:

Definition 1 (Signature). A signature Σ = 〈S,C〉 is a pair
consisting of a set of sorts s ∈ S and a set of constructor
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declarations (c : s1× . . .× sn → s0) ∈ C with zero or more
arguments and all si ∈ S. The set of sorts must contain the
predefined sort LEX ∈ S for representing lexemes.

Given a signature Σ = 〈S,C〉, we define the well-formed
terms TΣ over Σ as follows:

Definition 2 (Well-formed terms). For each sort s ∈ S, the
set of well-formed terms T s

Σ of sort s is the least set such that

s is a string literal
s ∈ T LEX

Σ

(1)

(c : s1 × . . .× sn → s) ∈ C
ti ∈ T si

Σ ∀1 ≤ i ≤ n
c(t1, . . . , tn) ∈ T s

Σ

(2)

The family TΣ of well-formed terms is then defined as

TΣ = (T s
Σ)s∈S .

Well-formed terms represent complete programs over Σ. For
example, given a signature for a statement in an imperative
programming language, the term
Assign("x", Add(Int("21"), Int("21")))

represents a complete program.
We represent incomplete structures in programs by means

of explicit placeholders. We introduce an explicit placeholder
$s for each sort s as a nullary constructor:

Definition 3 (Placeholders). Given a signature Σ = 〈S,C〉,
we define placeholders as the set of nullary constructor
declarations

S$ = {$s : s | s ∈ S}
and the placeholder-extended signature

Σ$ = 〈S,C ∪ S$〉.

Well-formed terms over an extended signature Σ$ represent
incomplete programs. For example, the term
Assign("x", $Exp)

represents an incomplete program, where we use the place-
holder $Exp of sort Exp instead of a concrete argument term
for Assign. According to our definition, every complete pro-
gram is also an incomplete program. However, a program is
properly incomplete if t ∈ TΣ$ and t 6∈ TΣ, that is, t contains
at least one placeholder.

3.2 Terms with Source Regions
The goal of our formalization is to provide a formal frame-
work for syntactic code completion. Since code completion
is sensitive to the cursor position in the source code, we need
to extend our representation of terms with source regions.
This will later enable us to map the cursor position to the
corresponding subterm.

A term’s source region identifies the region of the original
source file to which the term corresponds. Later, when we use
code completion to synthesize terms, we will also need empty
source regions that have no correspondence in the source file.

Definition 4 (Source region). A source region r is an interval
[m,n] = {x ∈ N | m ≤ x ≤ n} starting at character offset
m and ending at character offset n. We define r1 < r2 to
mean ∀x1 ∈ r1. ∀x2 ∈ r2. x1 < x2.

Note that ∅ denotes an empty source region of the source file.
We use ∅ to denote the source region of synthesized terms.
Note furthermore that r1 < r2 expresses that r1 precedes r2

and the two regions may not touch and not overlap. Finally,
the empty region is not affected by the ordering, ∅ < r and
r < ∅ for all r.

We define an augmented set of well-formed terms that
associates a source region with each subterm:

Definition 5 (Well-formed terms with source regions). For
each sort s ∈ S, the set of well-formed terms with source
regions TR,s

Σ of sort s is the least set such that

s is a string literal

sr ∈ TR,LEX
Σ

(3)

(c : s1 × . . .× sn → s) ∈ C
∀ 1 ≤ i ≤ n : trii ∈ T

R,si
Σ

∀ 1 ≤ i < j ≤ n : ri < rj
r1 ∪ · · · ∪ rn ⊆ r

c(tr11 , . . . , t
rn
n )r ∈ TR,s

Σ

(4)

The family TR
Σ of well-formed terms with source regions is

then defined as
TR

Σ = (TR,s
Σ )s∈S .

The first two preconditions of Equation 4 ensure that the terms
in TR

Σ are well-formed as before. The latter two preconditions
ensure that the annotated source regions are well-formed.
That is, the region of each left-sibling precedes the region of
each right-sibling and the region of a parent term includes
the regions of all its subterms. The well-formedness of
source regions allows us to efficiently navigate within terms
to identify the subterm corresponding to a cursor position.
Finally, note that TR

Σ$ denotes the set of terms of incomplete
programs with source regions.

3.3 Completing Incomplete Programs
We are now ready to define code completion for incomplete
programs where we replace explicit placeholders by proposed
terms. We divide the definition of code completion into three
functions replace, propose, and complete. Function replace
takes a term tr and replaces its subterm up by term v. We
use source regions r and p to navigate in t and to uniquely
identify subterm u.

Definition 6 (Function replace).

replace(tr, up, v) =
v∅, if tr = up

replace(trii , u
p, v), if tr 6= up, t = c(tr11 , . . . , t

rn
n ),

p ⊆ ri
tr, otherwise
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If the current term tr equals up including the source region,
we yield the replacement v. We recursively impose the empty
source region on term v to mark it as being synthesized. We
use the source region p of u to navigate to and recurse on
subterm trii of tr such that p is included in ri. If we cannot
find an appropriate subterm, we yield the current term tr

unchanged.
We are not only interested in defining functions like

replace but also in the metatheoretical properties of these
functions. In particular, we want to reason about the sound-
ness of code completion, which means that code completion
yields well-formed terms. Thus, before moving on to the
other functions, we define precisely when an application of
replace is sound.

Theorem 3.1 (Soundness of replace). Given tr ∈ TR,s
Σ for

some sort s, a replacement replace(tr, up, v) = wq is sound
iff wq ∈ TR,s

Σ . If up ∈ TR,s′

Σ for some sort s′ and v ∈ T s′

Σ ,
then replace(tr, up, v) is sound.

That is, a replacement is sound if it yields well-formed terms
of the same sort as input tr. Specifically, a replacement of
u by v in t is sound if u and v have the same sort. For the
proof of this theorem it is important that we impose the empty
region on v, such that the result of the replacement has well-
formed regions.

We will use replace to inject proposed code fragments in
place of placeholders $s. Function proposals computes a list
of proposed code fragments for a given sort s. Here, we only
specify proposals abstractly, reasoning about its soundness.

Definition 7 (Proposals function). Given a signature Σ =
〈S,C〉, a proposal function proposals : S → (TΣ$)∗ maps
each sort s ∈ S to a sequence of proposed terms. A proposal
function proposals is sound iff for all s ∈ S, the terms
proposed for s have sort s: proposals(s) ∈ (T s

Σ$)∗.

Our proposal function permits context-free syntactic code-
completion proposals based on the expected sort. Based
on proposals and replace, we can model code completion
by (i) navigating to the placeholder at the current cursor
position c ∈ N, (ii) getting proposals for that placeholder,
(iii) replacing the placeholder by one of the proposed terms.
Function propose performs steps (i) and (ii). That is, propose
takes a term tr ∈ TR

Σ$ with placeholders as well as source
regions and it takes a cursor position c ∈ N. It finds and
yields the term at the cursor position together with a possibly
empty list of proposals for it.

Definition 8 (Function propose).

propose(tr, cur) = 〈$sr, proposals(s)〉, if t = $s, cur ∈ r
propose(trii , cur), if t = c(tr11 , . . . , t

rn
n ), cur ∈ ri

〈tr, ε〉, otherwise

Finally, function complete uses propose and replace to imple-
ment full code completion. To model the user’s behavior, we

use an oracle φ : (TΣ)+ → TΣ to select one of the proposed
terms.

Definition 9 (Function complete).
complete(tr, cur , φ) =

let 〈up, ts〉 = propose(tr, cur) in
if ts = ε
then tr

else replace(tr, up, φ(ts))

Theorem 3.2 (Soundness of complete). Given tr ∈ TR,s
Σ

for some sort s and arbitrary cur and φ, a completion
complete(tr, cur , φ) = wq is sound iff wq ∈ TR,s

Σ . If
function proposals is sound, then function complete is sound
for all tr ∈ TR,s

Σ .

That is, a completion is sound if the resulting term is well-
formed and has the same sort as the input. Specifically, for
any sound proposal function that only proposes terms of the
required sort, code completion is indeed sound. This holds
because replace is sound and for all proposal 〈$sr, ts〉, the
sort of terms t ∈ ts is s.

Code completion should also be complete. That is, starting
from some placeholder $s, all terms of sort s should be con-
structible through code completion (and by typing lexemes
of sort LEX). Complete completion enables a purely projec-
tional user interaction where no typing is necessary except
for names of variables etc.

3.4 Implementation in Spoofax
As an instantiation of our formal model for syntactic code
completion, we implemented a generic completion frame-
work in the Spoofax Language Workbench. Spoofax provides
the syntax definition formalism SDF3 for specification of syn-
tax. The distinguishing feature of SDF3 is the introduction of
explicit layout specified in a template as the body of a context-
free production [23]. A template production defines the usual
sequence of symbols of a production and an abstract syn-
tax tree constructor. In addition, the whitespace between the
symbols is interpreted as a specification-by-example for the
purpose of producing a pretty-printer. Thus, a single syntax
definition serves to define a grammar, a scannerless general-
ized parser for that grammar, an abstract syntax tree schema
(in the form of an algebraic signature), and a pretty-printer
mapping ASTs to text.

We support explicit placeholders as part of a language by
automatically extending the language’s syntax definition with
extra template productions. As specified in the formalization,
the goal is to allow a placeholder to appear whenever it is
possible to parse a non-terminal at a certain position in the
program. The second box of Fig. 6 illustrates the generated
template productions from the regular productions defined in
the first box.

In our implementation, we instantiate the abstract func-
tion proposals as the function templates returning a list of
proposals for a sort s ∈ Σ.
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Definition 10 (Templates function). Given a signature Σ =
〈S,C〉, we define the set of concrete proposals returned by
function templates : S → (TΣ$)∗ such that:

c : s1 × . . .× sn → s ∈ Σ

c($s1, . . . , $sn) ∈ templates(s)

We can reason about the soundness of our function
templates based on the definition of the abstract function
proposals.

Theorem 3.3. Our implementation of the function proposals
provided by the function templates is sound.

Proof. By the definition of templates, all the terms that we
generate as an expansion for a placeholder of sort s have sort
s. Thus, according to the soundness criterion of the abstract
function proposals, templates is sound.

 context-free syntax  // regular syntax rules 
    
  Statement.Assign  = [[VarRef] = [Exp];] 
  Statement.If      = [if([Exp]) [Statement]
                       else [Statement]] 
  Statement.While   = [while([Exp]) [Statement]]
  Statement.Block   = [{
                         [{Statement "\n"}*]
                       }] 
  Statement.VarDecl = [[Type] [ID];]  

 context-free syntax  // derived syntax rules

  VarRef.VarRef-Plhdr       = [$VarRef]
  Exp.Exp-Plhdr             = [$Exp] 
  Statement.Statement-Plhdr = [$Statement] 
  Type.Type-Plhdr           = [$Type] 
  ID.ID-Plhdr               = [$ID]

 rules // derived rewrite rules
  
  rewrite-placeholder:
    Statement-Plhdr() -> Assign(VarRef-Plhdr(),
                                Exp-Plhdr())
    
  rewrite-placeholder:
    Statement-Plhdr() -> If(Exp-Plhdr(),
                            Statement-Plhdr(),
                            Statement-Plhdr())
       
  rewrite-placeholder:
    Statement-Plhdr() -> While(Exp-Plhdr(),
                               Statement-Plhdr())
       
  rewrite-placeholder:
    Statement-Plhdr() -> Block([])  

  rewrite-placeholder:
    Statement-Plhdr() -> VarDecl(Type-Plhdr()
                                  , ID-Plhdr())

Figure 6. Extending the grammar with placeholder produc-
tions and automatically generating rewrite rules for place-
holder expansion from the syntax definition.

1 2

Figure 7. Inferring a placeholder inside an optional node.

Moreover, since the templates function generates all alter-
natives for a sort s, it is straightforward to establish that our
automatically derived completions are complete.

As specified in the function templates, in Spoofax we
not only automatically derive placeholders from the SDF3
but also derive their respective proposals. Each template pro-
duction with a constructor in the syntax definition defines a
possible placeholder expansion. The last box in Fig. 6 shows
an example of generated rewrite rules in the Stratego trans-
formation language [22] that transform a placeholder of sort
s into all its abstract expansions. As a design decision, place-
holder expansions do not include placeholders for nullable
symbols such as lists with zero or many elements or optional
nodes, generating empty lists or optionals by default and ex-
panding them by placeholder inference as we will present in
Section 4.

Spoofax constructs source regions as attachments of terms
when parsing a program and imploding the parse tree. We use
this information to navigate to a placeholder in the program,
as specified by the function replace. We produce concrete
proposals by pretty-printing the abstract expansions collected
from the rewrite rules using the generated pretty-printer from
SDF3. Completing the program replaces the placeholder text
by the pretty-printed text of its selected expansion. Thus,
completing a program preserves its structure except for the
placeholder being expanded.

4. Code Expansion by Placeholder Inference
In this section, we investigate how to use placeholders to pro-
pose expansions of complete programs. A complete program
contains no placeholders thus, the method described in the
previous section fails to generate any proposals. However, we
want to use code completion to propose expansions of com-
plete programs. In this paper, we focus on adding elements
to lists and adding previously missing optional elements. For
example, class Main in Fig. 7 does not define the optional
extends clause. An invocation of code completion should pro-
pose defining the optional element. To this end, we introduce
a method for expanding complete programs by inferring and
inserting placeholders.

4.1 Placeholder Inference for Optionals
We first investigate placeholder inference for optionals, which
we represent according to the following definition.

Definition 11 (Optional terms). Given a sort s, Opt(s) is the
sort of optional terms. For each s, constructor Somes : s→
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Opt(s) indicates the presence of a term of sort s whereas
constructor Nones : Opt(s) indicates its absence.

Placeholder inference for optionals is similar to comple-
tion for explicit placeholders, where term Nones() plays
the role of placeholder $s. Thus, in a first approximation
we could extend function propose to generate proposals
for Nones() terms as well as placeholders. However, it is
not as straightforward as that. Since a Nones() term cor-
responds to the empty string, it does not have a source
region. Hence, in contrast to a placeholder, we cannot select
a Nones() term using the cursor. Furthermore, there may be
multiple Nones() terms that are candidates for expansion
in the area around the cursor. For example, consider the
term VarDecl(Ident("x", Nonetype()), Noneexp())

that represents a variable declaration for an identifier with
optional type and optional initializer. When the cursor is
placed after the identifier and code completion is triggered,
we would like to see proposals for expanding the type as well
as the initializer.

To formalize this we need the notion of adjacency of terms
to the cursor. A subterm ti of a term t is adjacent to the
cursor if none of the other subterms of t capture the cursor
in their source region. Since terms like Nones() have empty
source regions, multiple subterms can be adjacent to the
cursor simultaneously.

Definition 12 (Function adjacent).

adjacent(t, cur) ={t
ri
i | r1 ∪ . . . ∪ ri−1 < {cur} < ri+1 ∪ . . . ∪ rn},

if t = C(tr11 , . . . , t
rn
n )

∅, otherwise

Function infero infers completion proposals for all optionals
that are adjacent to the cursor.

Definition 13 (Function infero).

infero(t
r, cur) =

{ 〈tr, proposalso(s)〉 },
if t = Nones()⋃

{infero(trii , cur) | trii ∈ adjacent(t, cur)},
if t = C(tr11 , . . . , t

rn
n )

proposalso(s) = {Somes(t) | t ∈ proposals(s)}

In the first case, if the current term is Nones(), we generate
replacement proposals for sort s. This corresponds to the case
for placeholders $s of propose except that here we generate
proposals of optional terms using proposalso. The second
case applies inference recursively to those subterms trii that
are adjacent to the cursor.

4.2 Placeholder Inference for Lists
We now consider placeholder inference for list terms, which
we represent according to the following definition.

Definition 14 (List terms). Given a sort s, List(s) is the sort
of list terms. For each s, constructor Conss : s× List(s)→
List(s) indicates a non-empty list with head and tail and
Nils : List(s) indicates an empty list.

Placeholder inference for lists generates proposals for insert-
ing elements into a list. To that end, inference selects the
sublist that directly follows the cursor (modulo layout) and
generates proposals for the syntactic sort of the elements in
the list. When the user selects a proposal, we insert the se-
lected element at the cursor position. For example, in Fig. 8,
the cursor is positioned between two statements in a list of
statements. Code completion proposes the insertion of a new
statement at the cursor position.

Function infer∗ generates completion proposals for list
elements.

Definition 15 (Function infer∗).

infer∗(t
r, cur) =

{ 〈tr, proposals∗(s, t)〉 },
if t = Nils()

{ 〈tr, proposals∗(s, t)〉 } ∪ infer∗(hd
p, cur)

if t = Conss(hd
p, tlq), {cur} < p

infer∗(hd
p, cur)

if t = Conss(hd
p, tlq), cur ∈ p

infer∗(tl
q, cur)

if t = Conss(hd
p, tlq), {cur} > p⋃

{infer∗(trii , cur) | trii ∈ adjacent(t, cur)},
if t = C(tr11 , . . . , t

rn
n ), C 6= Cons

proposals∗(s, tl) = {Conss(hd , tl) | hd ∈ proposals(s)}

In the first case, if the current term is the empty list Nils(),
we generate proposals for element sort s. This corresponds
to the Nones() case of infero and to the case for placeholders
$s of propose except that here we generate proposals for list
terms using proposals∗. Specifically, we propose to replace
the empty list with a singleton list where the head element is a
proposal for sort s. In the second case of infer∗, if the current
term is a Cons term and the cursor to the left of the head
element, we propose to prepend another element. We also
recursively infer completions in the head element to support
proposals for nested lists. In the third case, if the cursor is
within the source region of the head element, we recursively
infer proposals there. Otherwise, if the cursor is to the right of
the head element, we recursively infer proposals for the tail
of the list. Finally, for terms that are not lists we recursively
infer proposals for all subterms that are adjacent to the cursor.

We illustrate a concrete example in Fig. 8. Note that the
cursor is at position 58, that is, we want to add a statement in
between the two existing statements for variable declaration
and assignment. We start computing proposals by applying
infer∗ to node Method[16,92]. Since that node is not a list,
the function reaches the fourth case, returning the union
of a recursive application of infer∗ on all adjacent children.
However, node Cons[39,74] is the only adjacent subterm.
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Statement*
Statement

1

[…]

[…]

Method
[16,92]Int

[23,25]

“m”
[27,27]

Cons
[39,74]

VarRef
[87,87]

“x”
[87,87]

VarDecl
[39,44]

Assign
[63,74]

Int
[39,41] “x”

[43,43]

VarRef
[63,63]

“x”
[63,63]

Add
[67,73]

IntValue
[72,73]

IntValue
[67,68]

“21”
[67,68]

“21”
[72,73]cursor position = 58

Cons
[63,74]

Nil
[74, 74]

Figure 8. Placeholder inference inside a list. At the bottom,
excerpt of the AST with source regions before expansion.

Since that node is a non-empty list, we check whether
the cursor is before or after the head of the list. Since the
head element VarDecl[39,44] precedes the cursor at 58, the
third case of infer∗ applies and recurses into the tail of the list
Cons[63,74]. This time, the cursor position precedes the head
element Assign[63,74] and the second case of infer∗ applies.
Thus, we propose completions that prepend a statement to
Cons[63,74]. The recursive call in the second case of infer∗
does not yield any additional completions because the head
element does not contain a nested list adjacent to the cursor.

4.3 Code Expansion by Placeholder Inference
Similar to code completion, we can combine the two infer-
ence functions infero and infer∗ together with replace. Since
we do not rewrite incomplete program fragments but insert
code into complete program fragments, we call this code
expansion rather than code completion.

The following function expand defines code expansion
formally. To model the user’s behavior, here we use two
oracle functions φ1 and φ2. Through the first oracle φ1, the
user selects which one of the subterms adjacent to the cursor
to expand. Through the second oracle φ2, the user selects the
expansion for the selected subterm.

Definition 16 (Function expand).
expand(tr, cur , φ1, φ2) =

let props = infer∗(t
r, cur) ∪ infero(t

r, cur) in
if props = ∅
then tr

else let 〈up, ts〉 = φ1(props) in
if ts = ε
then tr

else replace(tr, up, φ2(ts))

Theorem 4.1 (Soundness of expand). Given tr ∈ TR,s
Σ for

some sort s and arbitrary cur , φ1, and φ2, an expansion
expand(tr, cur , φ1, φ2) = wq is sound iff wq ∈ TR,s

Σ . If
function proposals is sound, then function expand is sound
for all tr ∈ TR,s

Σ .

That is, an expansion is sound if the resulting term is well-
formed and has the same sort as the input. Specifically, for
any sound proposal function that only proposes terms of the
required sort, code expansion is indeed sound. This holds
because replace is sound and we have setup proposalso and
proposals∗ such that for all proposal 〈u, ts〉, the sort of terms
t ∈ ts is identical to the sort of u.

A pragmatic concern when inserting elements into a list is
the formatting of the source code. Our formal model abstracts
from this issue by considering ASTs only. As illustrated in
Fig. 9, our implementation in Spoofax preserves the layout of
all existing code and only formats the inserted element, also
inserting list separators as needed.

1 2

3 4

Figure 9. Inserting an element into a list: Spoofax preserves
the surrounding layout and inserts list separators as needed.

5. Code Completion for Incorrect Programs
In this section, we consider syntactic code completion for
syntactically incorrect programs, i.e. for which parsing fails.
Such syntactic errors occur frequently during editing. For
example, when the developer writes an assignment statement,
the program text remains incorrect until the developer termi-
nates the statement with a semicolon. We want to provide
code completion for incorrect programs to assist developers
in completing code fragments as they write them. Specifically,
we address the following scenario:

• We only consider syntax errors at the cursor position; we
ignore errors elsewhere in the program text.
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• We only consider the insertion of symbols into the pro-
gram text; we ignore other forms of manipulation such as
symbol removal.

• Soundness applies as before: The proposed recoveries
must yield correct programs at the cursor position.

• We relax the requirement on completeness: Not all pro-
grams are necessarily constructible from the proposed
recoveries.

Figure 10 illustrates the expected behaviour of the comple-
tion framework for an incorrect program using the grammar
of Figure 6. Here, x is the first symbol of a statement and
the framework should propose all statements that can start
with symbol x. As shown in the top-right and bottom-right
boxes, upon selection of a proposal, the framework inserts the
missing symbols to make the program syntactically correct.
We insert placeholders for subterms, thus allowing the user to
subsequently complete the program as described in Section 3.
In the remainder of this section, we present our solution for
computing proposals based on the insertion of missing sym-
bols. Placeholders play a crucial role for our solution as we
will discuss in Section 5.2.

5.1 Constructing Proposals by Inserting Symbols
To construct the list of proposals, we compute all possible
ways to recover a correct program by inserting symbols at
the cursor position. To perform symbol insertions, we use an
error-recovering technique based on permissive grammars
and insertion productions [3].

Permissive grammars are grammars that can parse a more
relaxed version of the input by either skipping individual
symbols or simulating the insertion of missing symbols. Here,
we only consider the insertion of missing symbols as an
alternative to fix the error. In addition to regular productions,
a permissive grammar for completion contains insertion
productions that denote which symbols may be inserted.
For example, Figure 11 shows the insertion productions
for our imperative language from Figure 6. An insertion
production recognizes the empty string — the right-hand
side of the production is empty. Thus, if a regular production

Figure 10. Fixing syntax errors by code completion.

// derived insertion rules for placeholders
 context-free syntax   

  VarRef.VarRef-Plhdr       =  {symbol-insertion}
  Exp.Exp-Plhdr             =  {symbol-insertion}
  Statement.Statement-Plhdr =  {symbol-insertion}
  Type.Type-Plhdr           =  {symbol-insertion}
  ID.ID-Plhdr               =  {symbol-insertion}

// derived insertion rules for literals
 lexical syntax   

  "="       =  {symbol-insertion}
  "if"      =  {symbol-insertion}
  "else"    =  {symbol-insertion}
  "while"   =  {symbol-insertion}
  "("       =  {symbol-insertion}
  ")"       =  {symbol-insertion}
  "{"       =  {symbol-insertion}
  "}"       =  {symbol-insertion}
  ";"       =  {symbol-insertion}

Figure 11. Extending the grammar with insertion rules.

expects some symbol, which is not present in the text, the
insertion production can parse the empty string to pretend it
is there anyway. We automatically generate such insertion
productions for each lexeme and placeholder of the grammar.

To compute the list of proposals, we use generalized
parsing [18, 20, 21] on the permissive grammar. Generalized
parsing supports ambiguous inputs and constructs a parse
forest with one AST for each possible parse result. Thus, if
alternative insertions lead to a correct parse result, we retrieve
all alternatives from the generalized parser. Generalized
parsers typically compact the parse forest, using ambiguity
nodes amb to denote alternative subtrees.

Figure 12 shows the parse forest we retrieve for parsing
the program from Figure 10 using the permissive grammar.
The parser found two alternatives for completing the program.
First, we can interpret the lexeme x as a class type, insert an
ID placeholder, and a semicolon lexeme. Or, we can interpret
x as a variable reference, insert an equality lexeme, an Exp

placeholder, and a semicolon lexeme. In Figure 12, we mark

StmDecl*

VarDecl Assign
amb

VarDecl Assign

ClassType ; VarRef = ;Exp-Plhdr

[…] […]

x x$ID $EXP

ID-Plhdr

Figure 12. Recovered AST with inserted nodes (dashed line)
and proposals (shaded fill).
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the inserted symbols using dashed shapes and we use shaded
nodes to mark nodes that become proposals. To avoid an
excessive search for possible recoveries, we limit the search
space using placeholders.

5.2 Limiting the Search Space for Recoveries
Insertion productions indicate to the parser to insert missing
symbols. However, arbitrarily applying insertion productions
would lead to non-termination. In our example, we could
keep inserting symbols to add more statements to the list
or even construct additional classes. This happens because
insertion productions produce the empty string. As a result,
the parser does not consume any input when applying inser-
tion productions, leading to an infinite number of possible
parses. Hence, we need to restrict the application of insertion
productions to guarantee termination.

First, recall that we are merely interested in code comple-
tion, rather than error-recovery parsing in general. Thus, we
can restrict insertions to the cursor position modulo layout.
Conversely, we prohibit the parser from applying insertion
productions elsewhere in the program.

Second, we assume that part of a proposal is already in
the input. Therefore, fixing the error preserves the existing
fragments of a proposal and only adds the missing symbols
necessary to finish a structure. From this restriction, we disal-
low the application of regular productions on only recovered
nodes. Note that error recovery can recover either placehold-
ers or literal strings from the program. Recovering place-
holders is essential to limit the search space as we do not
need to recursively recover complex subterms that may be
constructed by placeholder expansion later.

Third, we define our recovery approach as greedy, assum-
ing that proposals contain as many symbols as possible from
the input. A proposal can also include multiple nodes im-
plying that the AST of the program contains an erroneous
branch. Thus, we construct a single proposal as the smallest
subtree containing all proposal nodes and we construct multi-
ple proposals by flattening ambiguities containing multiple
proposal nodes. By doing that, we guarantee that completing
the program chooses only one alternative of the ambiguity
and proposals only fix a single node (or branch). Most impor-
tantly, we guarantee that our strategy is sound as selecting
a proposal does not introduce errors, but introduces a fix
instead. The list of proposals is partially complete, i.e., we
produce all fixes that include the elements that are already
part of the input.

Figure 13 shows examples of the third restriction. In the
top program, we do not create two proposals, for example,
using int as the prefix of a variable declaration, and semicolon
as a suffix for an assignment. Instead, we use both symbols as
part of only one proposal for a variable declaration. Moreover,
at the bottom, we show an example of a proposal that fixes
more than a single node of the program. In this case, we
change the inner node for the type of the variable declaration

to array of integers, and add the missing placeholder for the
identifier to complete the variable declaration itself.

Figure 13. At the top the proposal inserts the infix of an
incomplete variable declaration (in this case either a single
placeholder $ID). At the bottom, an example of a nested
proposal, where it is necessary to fix multiple nodes in the
AST to recover from the error (turn the Int type into IntArray
and insert $ID).

5.3 Implementation in Spoofax
To implement the syntactic code completion for incorrect
programs in Spoofax, we use the scannerless generalized-
LR parsing algorithm (SGLR). The complete algorithm for
SGLR is described in [20, 21] but as we are only interested
in restricting the application of grammar rules to construct
proposals, we only modified the reducer method of SGLR,
applying the restrictions on the search space of possible
recoveries we described before.

SGLR is a generalized shift-reduce parser that handles
multiple stacks in parallel. Each conflict action in the parse
table generates a new stack so that parsing can continue with
that action. Given a parse table for some grammar and a
string, the parser returns a parse forest containing all possible
alternatives to parse the string according to the grammar
described in the table. This makes SGLR a perfect match
for collecting all possible recoveries as ambiguities in the
resulting parse tree.

To produce the list of proposals, we do a traversal on
the resulting parse tree, collecting all proposals as described
before and pretty-printing them to present to the user. A
selected proposal only adds the missing fragments necessary
to fix the program. SGLR deals with other errors in the
program using its regular error recovering strategy based
on permissive grammars [3].

With the approach described in this section, the completion
framework can handle incorrect programs since the parser
is able to construct a list of proposals by inserting missing
symbols, fixing an error at the cursor position. From there, the
framework provides syntactic code completion following the
approach we described before, either by expanding explicit
placeholders or by placeholder inference as illustrated in
Figure 2.
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Our solution also preserves the generic aspect of the
completion framework, as we derive insertion productions
from the syntax definition. If the error at the cursor position
does not follow the assumptions we made previously, error
recovery does not produce any proposal. Moreover, syntax
errors that occur in other locations and do not influence code
completion are just preserved since insertion productions to
create proposals are only applied at the cursor position.

6. Evaluation
We have applied our approach to generate syntactic code com-
pletion for Pascal, a subset of Java, and IceDust, a domain-
specific language for data modelling [6]. We automatically
generate placeholder transformations and construct the pro-
posals with the pretty-printer generated from the syntax defi-
nition. Recovered proposals are constructed by our adapted
version of SGLR.

We observed that the way production rules are organized
in the syntax definition directly affects the number of place-
holders and proposals for each placeholder. Moreover, when
considering placeholder inference, inferring a placeholder
when multiple optionals and empty lists are adjacent to the
cursor makes the list of proposals even larger. Ideally, it
should not be necessary to massage the grammar to produce
better proposals. However, in the current implementation the
grammar structure can affect the generated proposals.

In general, the completion framework produced acceptable
proposals for all languages we evaluated. Deriving syntactic
code completion from the syntax definition allowed us to
implement the completion service for each of these languages
without additional effort.

7. Related Work
We have implemented a generic content completion frame-
work that is able to derive sound and complete syntactic code
completion from language definitions. We adopt placeholders
to represent incomplete structures for a program in a textual
editor, similar to structural editors. For programs that still
contain syntax errors due to incomplete structures we con-
struct the list of proposals by error recovery. We compare
our approach to projectional editors in the literature, textual
language workbenches and discuss syntactic error recovery.

Syntactic Completion in Textual Language Workbenches
Textual language workbenches such as Spoofax [7] and
Xtext [5] derive syntactic completions from the syntax defi-
nition. However, these language workbenches currently do
not have a representation of incomplete programs. In the case
of Xtext, proposals involve only the following token that can
appear in the input. Since non-terminal symbols can reference
each other in the syntax definition, proposals may also in-
volve predefined names or types. To extend the automatically
generated completions, the language engineer can customize
code templates in automatically generated Java methods.

As for the old implementation of syntactic code comple-
tion in Spoofax, a descriptor language for editor services
contains the specification of completion templates, defining
expansions given the context of a non-terminal symbol from
the grammar. Placeholders inside proposals contain default
strings, and the possibility to directly navigate to them is lost
when leaving the completion mode. Furthermore, completing
the program might lead to syntax errors, as the framework
calculates proposals based on whether it is possible to parse a
non-terminal symbol at the cursor position, possibly inserting
incomplete structures.

Projectional Editing with Placeholders Placeholders al-
low for directly manipulating the AST of a program, a charac-
teristic of projectional/structural editors. The Generic Syntax-
directed Editor (GSE) [11] is part of the ASF+SDF Meta-
environment [8] and generates an interactive editor that is
hybrid, i.e., both textual and projectional from the language
specification extended with placeholders.

In GSE, the editor uses the cursor position to determine
the smallest node in the AST being edited. Only the content
inside the focus is actually parsed, with the guarantee that
the remainder of the input is syntactically correct. Whenever
the focus is in a placeholder, the editor can expand the node
following the grammar rules for the placeholder. However,
one of the consequences for supporting hybrid editing is that
GSE stores both the textual and abstract representation of the
program in memory, creating a two-way mapping between
them. Our approach is only based on textual editors, and we
rely on source positions mapped as attachments to nodes in
the AST, constructing them whenever parsing the program.

Another issue is that GSE does not support error recovery,
so a focus is either syntactically correct or it is not. Thus,
to properly provide code completion the user needs to first
manually fix syntax errors. In addition, we only provide a
single editor operation (control + space) to invoke the com-
pletion framework, whereas GSE uses the focus to determine
the completions for a placeholder. Furthermore, our approach
supports free textual editing, without any need for substring
parsing to keep track of focuses.

Language workbenches such as CENTAUR [2], MPS
[24] and mbeddr [25] generate projectional editors from
language specifications. In such editors, the user edits the
program by manipulating the AST directly instead of editing
pure text. Proposals are automatically derived from the
projections defined by the language engineer, making the
completion service sound by definition. Code completion also
alleviates the problems when writing programs in projectional
editors, since the normal editing behaviour does not resemble
classical text editing [26].

The Synthesizer Generator [15] has a representation for
unexpanded terms as completing operators. Completing op-
erators act as placeholders and can be structurally edited
by specifying rules as commands that insert code templates.
In our implementation, code templates are defined by the
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grammar, whereas the definition of code templates is disjoint
from parsing rules. Moreover, since the language definition
is based on attribute grammars [9], template proposals can
also use semantic information by evaluating attributes de-
rived from syntactic sorts of completion operators. Proxima
[17] also uses placeholders as holes that can appear inside
textual or structural presentation elements. As our solution is
implemented in a textual editor, we only support placeholders
as part of textual elements of the program.

Error Recovery To handle incorrect programs, our ap-
proach recovers missing symbols to construct a valid AST
from which the framework creates an expansion proposal.
There are different approaches to support error recovery from
syntax errors [4]. The current approach implemented in the
Spoofax language workbench is based on island grammars
[12, 13] and recovery rules providing error recovery for a
generalized parsing algorithm [3].

In the generalized scenario of SGLR, it is necessary to
investigate multiple branches, and the detection of syntax
errors occurs at the point where the last branch failed. This
point might not even be local to the actual root cause of
the error, making error reporting more difficult. Scannerless
parsing also contributes to make the recovery strategy more
complex. Common strategies based on token insertion or
deletion to fix the error are ineffective when considering
single characters.

Our approach benefits from the assumptions that we know
the error location and that only missing elements contribute
to the error. Therefore, it is not necessary to skip parts of
the input nor backtrack to find the actual error location.
Furthermore, we benefit from the fact that SGLR constructs
a parse forest as result. Thus we return all possible fixes,
reporting them to the user as proposals.

8. Future Work
Character-based Completions Our current recovery strat-
egy does not recover from incomplete words, producing only
insertion symbols for literals and placeholders. The comple-
tion framework could handle partial keywords by manipu-
lating the input to reconstruct keywords and use them as a
starting point for recovering a proposal.

Inlining and Ordering Proposals The current approach
might generate too many proposals depending on the pro-
ductions in the grammar. For this issue, ordering suggestions
might improve the final user experience [16]. Inlining pro-
posals can also improve the framework for cases when it is
necessary many placeholder replacements to create a final
code template.

Semantic Completions The completions in this paper are
restricted to syntactic completions. Mainstream IDEs typ-
ically have spent more effort in the support for semantic
completions, i.e. proposing names (e.g. of variables or meth-
ods) that are valid to use in the cursor context. In future work,

we plan to explore providing generic support for such seman-
tic completions based on our work on name [10, 14] and type
resolution [19]. Using the results of name and type resolution,
we can propose completions for lexical placeholders to insert
declared names. Moreover, semantic information can also be
used to filter the list of syntactic proposals such that sound
content completion guarantees the absence of syntactic and
semantic errors.

9. Conclusion
Code completion avoids misspellings and enables language
exploration. However, the support for syntactic completion
is not fully implemented by most IDEs. The completion
implementation is ad-hoc, unsound and incomplete.

The separation of programs into different states allowed us
to provide code completion with a “divide and conquer” strat-
egy. For correct programs, we implement code completion by
expanding placeholders that can appear implicitly or explic-
itly in programs. For incorrect programs, we used the nature
of errors in the completion scenario to propose an adapted
error recovery strategy to construct the list of proposals.

Finally, our formalization allowed us to reason about
soundness and completeness of code completion. We im-
plemented the framework by modifying the scannerless GLR
parsing algorithm and by generating placeholders and its ex-
pansions from syntax definitions in the Spoofax Language
Workbench. Our framework addresses the requirements de-
rived from the analysis of state-of-the-art implementations of
syntactic code completion (Section 2). This work opens up a
path to rich editing services based on the (context-sensitive)
structure of a program in purely textual IDEs.
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