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Abstract

The Bui Dam, the second-largest hydropower dam in Ghana, plays a significant role in
the sustainable energy mix of the country. It is managed by the Bui Power Authority
(BPA) and has a capacity of hydro-clean generation of 404MW, contributing to 17%
of the country’s total electricity generation. However, decision-making at the dam
lacks the use of predictive models and meteorological measurements. This can lead,
in the case of perceived flooding risks and high dam water levels, to valuable water
being spilled and endangering the downstream areas. Balancing the tradeoff between
energy production and safety can be effectively achieved by implementing predictive
models that anticipate peak flows in advance.

Since its commissioning in 2013, the Bui Dam has experienced two instances of emer-
gency spillage, resulting in significant financial losses, property destruction, and
displacement of downstream communities. Currently, the reservoir management
decision-making process uses two discharge stations upstream, with one of them
yielding some unreliable outcomes for high flows. Therefore, it is crucial to prioritize
the analysis and updating of rating curves to ensure accurate forecasting.

This research aims to address these limitations by recalibrating the rating curve us-
ing the reservoir balance in a conservative manner, i.e. leaning on the safe side to
avoid overestimation. Additionally, a conceptual, semi-distributed model was devel-
oped simulating high flows, specifically focusing on the years 2019 and 2022 when
spillage events occurred. Five different hydrological conceptual models, with three
different structures: single, serial, and parallel structures, were tested. The serial
model yielded the best results. Then the Black Volta Basin was divided into five
sub-catchments, and each sub-catchment was lumped. In the absence of discharge
data for the upstream sub-catchments, remote sensing data from GRACE and satel-
lite altimetry (3 virtual stations with data from 2016 to 2022) were used to impose
restrictions on the feasible model parameter sets, thereby improving accuracy.

The final model output was calibrated using discharge data obtained from the recal-
ibrated rating curve, along with satellite altimetry data. In the calibrated benchmark
case, the model effectively reproduced daily river flows, demonstrating an optimum
Nash-Sutcliffe efficiency (NSE) of 0.85 for the period of 2018 to 2022.
Subsequently, the model underwent extensive testing under various conditions, in-
cluding an independent time period without recalibration, different precipitation in-
put sources, transitioning from actual evapotranspiration (AET) to potential evapo-
transpiration (PET) input, and a change in the testing discharge location. Throughout
these testing phases, the model consistently produced favorable results, with NSE
values ranging from 0.74 to 0.86.

Furthermore, the model was tested for its progressive predictive capability in sim-
ulating the unexpected peak inflows that led to the spillage event in 2019, utilizing
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only precipitation data from the TAHMO precipitation stations, which are openly
accessible with near-live timing. The model successfully predicted the occurrence of
the large peak inflow, on October 22nd, which ultimately caused the spillage. The
model anticipated the occurrence of the ”unexpected” second peak, to some extent,
as early as October 12th, providing an 11-day predicting window.

Overall, this research enhances the understanding of the Bui Dam system by imple-
menting a recalibrated rating curve and developing a conceptual model that incorpo-
rates remote sensing data. The results demonstrate the model’s capability to simulate
past events accurately and predict future inflow patterns, thereby providing valuable
insights for effective dam management and spillage prevention.

One significant discovery regarding the character of the Black Volta River at the Bui
Dam is the limitation of the prediction period to a strict maximum of two weeks.
While the model proves effective within this time-frame, it is advisable for future
research to consider incorporating weather predictions to extend this window further.
Doing so would enhance the model’s forecasting capabilities and provide even more
valuable information for dam operators and decision-makers.
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1 Introduction

1.1 Background

The Black Volta River, originating from Burkina Faso, flows into the Volta Lake
formed by the Akasombo dam. It has a mean annual runoff of 7673x106m3 or 243
m3/s, representing 18% of the total runoff in the Volta Lake [Andreini et al., 2000].
The Black Volta River has significant potential for generating sustainable and reliable
electricity, particularly for the northern region of Ghana. To harness this potential,
the government of Ghana initiated the construction of the Bui Dam in 2009. Located
at the boundary between the Savannah and Bono regions, the Bui Dam was commis-
sioned in December 2013 and is managed by the Bui Power Authority (BPA). It has
an installed capacity of 404MW, consisting of four generating units, including three
133.33MW Francis Turbine Units and a 4MW Turbinette. The dam is a concrete grav-
ity dam with a maximum height of 108m and a crest length of 492.5m.
Additionally in 2019, with the aim of increasing renewable energy in the country’s
energy mix by 10%, a 250MW solar project was started. The first 50MW solar PV was
installed in November 2020. Currently, BPA also studies and tests the possibility of
installing floating solar on the Bui reservoir.

BPA has a mandate to plan, execute and manage the Bui Hydroelectric project. It
makes sure that the dam is working in a safe and reliable way and is ready to gen-
erate at all times. However, BPA is not in control of when and how much electricity
is going to be generated. Managing the national electricity grid is a very complicated
task of matching the electricity demand and offer at any given time. This task is
managed by the company GridCo. Every morning BPA measures the reservoir water
level and communicates to GridCo a range of how much electricity can be generated
during that day. GridCo then processes that information along with all the other
electricity generation plants across the country and orders BPA to generate a specific
amount of electricity during the day. Usually, that demand fluctuates over the day.
The main conclusion about this process is that BPA does not have control on how
much electricity they are going to generate. Except when the dam reaches critical
levels, they have the possibility to request to GridCo to produce more or less electric-
ity.

1.2 Problem analysis

On the 23rd of October 2019, the Bui Power Authority made a controlled spillage,
releasing a total of 538 Mm3, resulting in substantial financial losses of unproduced
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1 Introduction

electricity, the destruction of properties, and thousands of people displaced down-
stream of the dam. The spillage was necessary because the dam was reaching dan-
gerous maximal water levels due to an unlikely wet October month. Again, three
years later on the 12th of October 2022, BPA used the emergency spillway. This time
however in the context of a precautionary safety test. However the year 2022 was the
year with the highest discharge recorded in the past 30 years and the dam was again
reaching maximal levels, so it is unclear if even without the safety exercise, a spillway
would have been necessary.

BPA’s primary objective during each rainy season is to maximize the reservoir’s wa-
ter storage capacity by filling it to the highest possible level. This approach aims to
ensure an ample water supply throughout the subsequent dry season. At the mo-
ment, the main strategy behind the dam operations of BPA is to work in a risk-averse
manner. BPA prefers to steer clear of the repercussions of inaccurate forecasts at
the expense of unrealized benefits, consequently, it is difficult to accommodate for
unexpected large discharge increases as in 2019. Nevertheless, multiple studies us-
ing different forecasting methods all praised the benefits of combining forecasts with
hydropower generation [Hamlet et al., 2002] [Block, 2011] [Lima and Lall, 2010].

In the Volta Basin, the temporal variability of runoff is characterized by a greater
magnitude compared to the substantial year-to-year fluctuations in precipitation. Re-
search conducted by Andreini et al. [2000] reveals that while the mean coefficient of
variation for rainfall in the Volta Basin stands at 7%, it significantly escalates to 57%
for river discharge. This notable disparity emphasizes the heightened sensitivity of
runoff to variations in rainfall. Consequently, even minor changes in annual precipi-
tation can lead to significant modifications in river flow [Obeng-Asiedu, 2004]. This
variability underscores the need for a robust hydrological model that can accurately
identify the specific changes in precipitation capable of causing significant modifica-
tions in discharge.

A study from Jin et al. [2018] applied high climate forcing scenario RCP8.5 to the Volta
river system and showed that during the rainy season, the extreme high flows (Q5) of
the Black Volta River are projected to increase by 11% in 2050 and by 36% in 2090 Jin
et al. [2018]. This again shows the necessity of implementing an hydrological model to
better accommodate this increase and avoid spillage like on the 23rd of October 2022.
Implementing effective forecasts results in an increase in electricity generation, and
fewer spills while the reliability of storage reservoir refill remains mainly unaffected.
Additionally, combining forecast methods with electricity production is particularly
impactful and efficient when there is a high likelihood of larger streamflows Hamlet
et al. [2002].

At present, the only information that BPA uses to make decisions about the future is
daily discharge measurements in Chache and Lawra, respectively 105 km and 320 km
from the reservoir, giving them a 1 to 3-day range inflow forecast window. Further,
BPA does not utilize hydrological models or forecasting methods; however, there is a
keen interest in incorporating them into their operations. To achieve this goal, BPA
is collaborating with TEMBO Africa (’Transformative Environmental Monitoring to
Boost Observations’), which provides cost-effective innovative sensors and reservoir
management services. The aim of this collaboration is to enhance BPA’s capabilities
in its decision-making process.
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1 Introduction

1.3 Research question

This report serves as preliminary research, focusing on studying the hydrological
footprint of the Black Volta Basin and exploring the potential benefits and limitations
of hydrological modeling in enhancing reservoir management. The main goal of the
study is to make a hydrological model on a daily temporal scale that can correctly
model the discharges that caused spills in 2019 and 2022. However, because the spill
in 2022 was a safety exercise, the testing will focus more on the one in 2019. Ideally,
the hydrological model should be able to function using only TAHMO stations. In
this context, it is important to understand the different rainfall distributions and
catchment characteristics. The main research question of this thesis is:

”How can the daily discharge be effectively modeled in the data-scarce Black Volta Basin?”.

The main research question will be answered based on the answers from the follow-
ing sub-questions:

-”Which datasets are available and reliable enough to be used to calibrate and test the hydro-
logical model”

-”What is the impact of the different sub-catchments on the total discharge of the Black
Volta”

-”Could the spills of 2019 be avoided using a hydrological model and TAHMO precipitation
inputs”

1.4 Structure

Chapter 2 ”Study Site and Data” focuses on the comprehensive examination of the
Black Volta basin, which encompasses five sub-catchments. This chapter ensures the
consistency and accuracy of all the data used in the hydrological model.

In Chapter 3 ”Methodology” the chapter is divided into two parts. The first part
provides a detailed explanation of the methodology employed to update the Chache
rating curve. The second part describes the entire process of developing, calibrating,
and testing the hydrological model.

Moving on to Chapter 4 ”Results and Discussion” it presents the newly established
rating curve for Chache and discusses its reliability. Furthermore, this chapter presents
the results obtained from the hydrological model.

Finally, Chapter 5 ”Conclusion” concludes the study by summarizing the findings
and offering recommendations for further research in the field.
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2 Study area and data

2.1 Study area

Figure 2.1: a) Map of the whole Volta Basin, a transboundary basin shared by six
riparian countries b) Black Volta Basin accounting for 18% of total runoff in the
Volta Lake c) DEM of the Black Volta Basin (BVB), which, in the context of this
research, has been reduced such that the Bui reservoir is the most downstream
part of the basin. The BVB was then divided into 5 sub-catchments based on the
Strahler order

The study focuses on the Black Volta basin, which spans between Latitude 7°00100” N
and 14°30100” N and Longitude 5°30100” W and 1°30100” W. It covers an estimated
area of approximately 131,104 km2 (with the Bui reservoir being the downstream
boundary) and is a transboundary river system that extends across Mali, Burkina
Faso, Ghana, and Cote d’Ivoire. In 2000, the basin had a population of around 4.5
million people which is expected to grow to 8 million people by the 2025 [Consult,
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2 Study area and data

2012], with varying population densities ranging from 8 to 133 people/km2. The
Lawra district in Ghana has the highest population density within the basin.

For the purpose of this research, the Black Volta basin was partitioned into five catch-
ments based on the Strahler order level 5 [Strahler, 1957], see Figure 2.1.c. The deci-
sion to divide the catchment at this specific order level was primarily driven by data
availability (or scarcity). Among the catchments, sub-catchment 5 represents the most
upstream portion, while sub-catchment 1 is the most downstream sub-catchment.
Sub-catchment 1 was modified to account in such a way that the Bui Dam is situ-
ated at the downstream end of the entire catchment. In this research, for the sake of
convenience, the term ”catchment” will be used instead of ”sub-catchment.”

The vegetation zones within the study site exhibit a north-to-south orientation. Start-
ing from the sparsely vegetated Sahel in the north, the vegetation transitions through
savannah regions and finally culminates in the Guinea forest zone or rainforest in the
extreme south.

The climate of the study site is characterized by a distinct dry and wet rainfall pattern.
The majority of the annual rainfall, over 70%, occurs during the months of August,
September, and October. In contrast, the months of November to March experience
minimal to no rainfall in most parts of the basin.

The geology of the Black Volta Basin predominantly consists of granitoid. The basin
is underlain by crystalline basement complex rocks and well-consolidated sedimen-
tary formations that share similar characteristics to the crystalline basement complex
rocks. These rocks are primarily impermeable and lack primary porosity. However,
secondary porosities develop through processes such as jointing, fracturing, faulting,
or weathering. The weathered zone serves as a reservoir for groundwater storage,
and the occurrence of groundwater in the Black Volta Basin is mainly influenced by
the development of these secondary porosities [Jung, 2006].

Catchment 5

The Black Volta River, known as the Mouhoun in the Burkinabe area, originates from
its headwater source in the Banfora Cliffs near the town of Bobo-Dioulasso. Unlike
other rivers in the basin, where most of them run dry during the dry season, the
Mouhoun remains the only permanent river [Jung, 2006]. As it enters Catchment 5, it
flows in a northeastward direction. This catchment extends until it receives a Sahelian
stream from catchment 4 on its left bank, providing the main river with a limited
water supply. According to the FAO Land Cover Classification, the primary soil type
in catchment 5 is Rainfed Cropland [FAO, 1998]. The size of Catchment 5 is 20.4 *103

km3, representing 17.1% of the total catchment (but the total catchment again reduced
such that this time Chache, a discharge station important for the hydrological model,
being the downstream boundary).
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2 Study area and data

Catchment 4

The river that originates from Mali in catchment 4 and joins the Mouhoun is called
the Sourou, and during the wettest months of the rainy season, a relatively rare pro-
cess is occurring. The Sourou River flows through a geographical depression known
as the Sourou Depression. During the rainy season, when the Mouhoun’s discharge
surpasses a certain level, water from the river diverts into the Sourou Depression,
where it is stored. In times of low flow, the stored water is released back into the
Mouhoun, helping to manage the flood wave [Shahin, 2003] [Jung, 2006]. The Sourou
depression actually acts as a natural regulator of Mouhoun’s water runoff. In 1984, an
additional regulation mechanism was implemented to control the flow of water and
enable storage of up to 250*106m3 of floodwater, subsequently releasing some of the
surplus water back into the Mouhoun during the dry season [Bro, 2001]. And from
the research of Shahin [2003], it was determined that downstream of the Sourou,
specifically at the Boromo gauge station, the Mouhoun (Black Volta) exhibits a re-
markably low yearly runoff coefficient of less than 3%, attributed to the presence of
the depression and the flatness of the terrain, see Figure 2.2. The primary soil type
in Catchment 4 is Rainfed Cropland and Grassland. The size of the catchment 4 is
31.1*103 km3, representing 25.9% of the total catchment.

Figure 2.2: Left: Zoom in of DEM of the Black Volta Basin (BVB), it can be observed
that the north of the catchment is a predominantly flat area, Right: Sourou Depres-
sion (source: [Jung, 2006]

Catchement 3, 2 and 1

As the Black Volta River flows southward, it merges with a series of small streams
that exhibit a transient-tropical regime. The precipitation and the runoff fraction of
precipitation gradually increase from north to south along its course. In Catchment
3, the average yearly precipitation is ranging from 890mm to 1050mm in Catchment
1. Additionally, the soil type undergoes a transition from Cropland Rainfed in the
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2 Study area and data

north to Shrubland and eventually to a closed, mixed type of Tree cover as we move
south (FAO, 1998).

Moving downstream from the point where catchments 2 and 3 intersect, the first daily
discharge station, Lawra, is located. BPA has been collecting daily discharge data in
Lawra for the past 20 years, albeit with some gaps in certain years. Roughly 220 km
further down the river, the second daily discharge station is found called Chache,
which has a data collection record spanning 25 years. More detailed information
about these discharge measurements will be provided in the upcoming Sections. The
size of catchment 3, 2, and 1 is respectively 34.5*103 km3, 15.2*103 km3 and 18.6*103

km3, representing 28.7%, 12.7% and 15.6% of the total catchment (with Chache being
the downstream boundary).

2.2 Data

One of the research project’s main challenges was finding reliable, daily historical
and actual data in the data-scarce Black Volta region. A lot of time and effort was put
into selecting, acquiring, and checking the following data sources. In Figure 2.3, an
overview was made with all the different rain and discharge gauges.

2.2.1 Precipitation

TAHMO

The Trans-African Hydro-Meteorological Observatory (TAHMO) aims to develop a
vast network of weather stations across Africa openly accessible for scientific research
and governmental applications. In the Black Volta basin, the first stations were in-
stalled in 2017, and currently over 16 stations are installed and this number is likely
to increase in the future. As it can be seen in Figure 2.4, an installed station does not
mean that it is operational all the time. This can be explained due to different reasons
like empty batteries, faulty sensors, broken stations due to storms,...

One of the biggest advantages of the TAHMO stations compared to all the other
precipitation sources is that the measured data is easily and almost immediately
accessible (a couple of hours delay) after the rain event. This accessibility over the
whole Black Volta basin is of crucial importance for predicting the inflows in the
reservoir. The final aim of the research is to use TAHMO data in the hydrological
model as only precipitation input.

The double mass curve method [Searcy and Hardison, 1960] was employed to analyze
and check the in situ rainfall data. The method serves to assess the consistency of
rainfall data by comparing the data from a single station with that of a composite
pattern encompassing several other stations within a similar study area climate. If
the plotted points on the double mass curve exhibited a close fit along a straight line,
it indicates reliable data. By applying this method a couple of precipitation years
from different stations were discarded.
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Figure 2.3: Black Volta basin stations overview. There are four different information
sources: first the rain gauges from the Meteorological Agency of Burkina Faso (blue
triangles). Next all the installed (but not all operational) TAHMO stations (blue
pinpoints). Then there is the two manual discharge stations Chache and Lwara
(grey pinpoint). Lastly the three altimetry stations from DAHITI (green circle)

Direction Générale de la Météorologie du Burkina Faso

The meteorological agency of Burkina Faso has shared its daily precipitation data
for 11 of its stations in the Black Volta basin from 1991 to 2022. These stations are
located in Banfora, Bobo-Dioulasso, Boromo, Dano, Dédougou, Gaoua, Léo, Nouna,
Orodara, and Solenzo, see Figure 2.3. The data was again checked with the double
mass curve, and every station except Leo, which needed some corrections, exhibited
a straight line indicating consistent data. This data is of great importance for the
calibration and testing of the hydrological model. In Gaoua, Boromo, and Dédougou,
there are weather stations operated by TAHMO as well as stations managed by the
meteorological agency of Burkina Faso. These three locations provide an excellent
opportunity to compare data from the two sources. The precipitation measurements
obtained from these stations exhibited a high degree of similarity, indicating a reliable
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Figure 2.4: Overview availability TAHMO stations: some stations have missing
months or the first part of the wet season. The data in this table was checked
and classified as reliable

and consistent data source for both origins. Note that the precipitation registration
data of the meteorological agency of Burkina Faso throughout the day does not follow
the midnight-to-midnight pattern seen in the TAHMO data. Instead, it begins at 6
AM. Thus a two-hour-long precipitation event from 5 AM to 7 AM means that it will
be divided over the day before and the day itself.

National Centers for Environmental Information

The National Centers for Environmental Information (NCEI) gives open access to a
lot of environmental data around the world [Menne et al., 2012]. In the Black Volta
basin, 7 stations are available with daily precipitation data ranging from 1973 to 2022.
The stations are located Wa, Bole, Gaoua, Bobo-Dioulasso, Ouahigouya, Boromo,
and Bondoukou. The data was again checked with the double mass curve and the
results were not good. Also, the stations in Bobo-Dioulasso, Gaoua, and Boromo were
compared with the ones from the meteorological agency of Burkina Faso above. The
data from NCEI showed a lot of gaps, lasting from a couple of days to sometimes
a couple of months. The yearly sums for all the stations were consistently largely
underestimating the precipitation data of the Burkina Faso meteorological agency.
For these reasons, it was decided to not use any data coming from the NCEI source.

Satellite precipitation products

A lot of different satellite products give access to daily historical precipitation data in
the Black Volta Basin. However different papers [Logah et al., 2021], [Dembélé and
Zwart, 2016], [Satgé et al., 2020] do not recommend the use of satellite products in the
basin at a daily temporal scale because of its poor performance and reliability about
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the character and intensity of the daily precipitation. However, at a monthly scale,
from the above-mentioned papers, the CHIRPS is the most recommended satellite
product in the area [Funk et al., 2014].

Interpolation

Due to the availability of a long, consistent, and reliable precipitation dataset obtained
from the meteorological agency of Burkina Faso, this dataset was selected for the
purpose of calibrating and partially testing the hydrological model. The presence
of spatial heterogeneity in system drivers, such as rainfall patterns, should not be
overlooked. Attempting to average out this heterogeneity and its extreme values in
threshold processes would result in a misrepresented understanding of the system’s
response. This is because threshold processes are heavily influenced by these extreme
values. The Thiessen polygons interpolation method [Thiessen, 1911] is best suited
to interpolate against that and was employed with an adequate number of stations in
catchments 2, 3, and 5.

However, for catchments 1 and 4, there is only a single station available. Notably, in
Catchment 4 (’Nouna’), the station is situated south of Catchment 4, resulting in a
significant reduction in precipitation as one moves towards the northern part of the
catchment. Conversely, for catchment 1, the only available station (known as ’Gaoua’)
is located in the northern part of the catchment. The decentralized placement of
precipitation stations in these catchments makes it impractical to interpolate the data
across the entire area of catchments 1 and 4.

To address this limitation, precipitation data from the Climate Hazards Group In-
fraRed Precipitation with Station data (CHIRPS) was utilized. To maintain some
degree of consistency in data sources during the hydrological modeling, the follow-
ing procedure was implemented: the CHIRPS precipitation data for the whole area of
catchments 1 and 4, as well as the data from the individual points Gaoua and Nouna,
were downloaded. A comparison was made between the point-scale and area-scale
data, and the discrepancy factor between the point- and area-scale was determined
for each month of each catchment. Subsequently, this factor was applied to the data
obtained from the stations of the Burkina Faso Meteorological Agency and was used
for the modeling.

2.2.2 River discharges

Discharges from Bui Power Authority

Since studying the possibility of building the Bui reservoir, the Bui Power Authority
keeps track of the daily discharges in Chache and Lawra (see Figure 2.3). Every
day during the dry season and twice a day during the wet season the water level
is measured. Then using a rating curve the river discharge is calculated. This has
been done in Chache from 2000 to the present (missing 2011 and 2012 due to the
construction of the dam) and in Lawra from 2010 to the present (but only 7 years have
usable years for hydrological modeling i.e. no significant gaps). The flow distance
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between Chache and Lawra is 218km and there are no major tributaries flowing into
the Black Volta between these two stations. The unprocessed data can be seen in
Figure 2.5

Figure 2.5: Discharge measured by BPA for station Chache and Lawra

Upon analyzing and comparing the data from the Chache and Lawra discharge sta-
tions, it becomes apparent that the discharge at Chache can exceed Lawra’s measure-
ments by more than 2.5 times. Given the absence of major tributaries between these
two stations, such a significant disparity suggests the presence of an anomaly. Conse-
quently, a field trip was conducted to investigate the measurement location at Chache
and seek an explanation for this substantial difference.

Giving some context: during the wet season, the water flows over the floodplains,
resulting in a maximal additional width of over 500 meters on each side (bearing
in mind that the normal width of the Black Volta is 120 meters under regular flow
conditions!). The rating curve currently in use was established based on river water
levels below 4.6 meters when the flow was contained within the riverbanks. This
rating curve was then extrapolated to cover higher water levels above the river banks.
However, it overlooks important factors introduced by the floodplains, such as the
presence of trees, bushes, and rocks, which significantly affect the friction coeffi-
cient.

The use of a constant friction coefficient in discharge calculations leads to an over-
estimation of discharge values when water levels exceed the river banks (above 4.6
meters). Consequently, there is a need to recalibrate the rating curve to address this
issue before it can be effectively applied to calibrate and test the hydrological model.
The upcoming chapter (Chapter 3.1) focuses on the necessary recalibrating of the
rating curve to improve accuracy in these calculations.

Discharges from Global Runoff Data Centre

The primary objective of the Global Runoff Data Centre (GRDC) [Centre, 2019] is to
enable research on worldwide climate patterns by providing access to environmental
impacts and risks through the storage of data, and promoting long-term hydrological
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studies on a global scale. The GRDC is responsible for maintaining quality-controlled
historical data on mean daily and monthly discharge. In the Black Volta, the GRDC
has records of daily discharges in Lawra from 1975 to 2007. However, only 8 years
(1991 to 1996, 1998, 2002, 2004, and 2005) do not have any gaps and can be used for
the model.

2.2.3 Evapotranspiration

Potential

Potential evapotranspiration data in the basin is extracted from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) instrument on the NASA Terra Platform
satellite launched in 1999. This instrument measures the leaf area index, land cover
type, and albedo at an 8-day temporal scale and 0.5 km spatial resolution. It takes
daily meteorological inputs such as global daily temperature, actual vapor pressure,
and incoming solar radiation. Then the MOD16 algorithm uses the Penman-Monteith
equation [Mu et al., 2011] to calculate the potential evapotranspiration.

Actual

The MOD16 product, adding a surface conductance model, also calculates the actual
evapotranspiration. However, when checking this evapotranspiration data into the
water balance over the catchment results in a large inequality. It can be seen that the
actual evapotranspiration from MOD16 underestimates the actual evapotranspiration
from the water balance by a factor of approximately 2.5 over the long-term water
balance. This is why the MOD16 Ea will not be used any further in the study.

Nevertheless, the paper Weerasinghe et al. [2020] compares nine different remote-
sensing actual evapotranspiration products. From this paper, for the region of the
Black Volta, it was determined that the WaPOR product [FAO, 2018] was the most
suited to calculate the actual evapotranspiration. The spatial resolution is 0.0022°×
0.0022°, the temporal resolution is 10 days and the temporal coverage is from 2009
to present. WaPOR takes inputs from the MODIS and the GEOS-5 instrument and
calculates the soil evaporation (E), canopy transpiration (T), and evaporation from
rainfall intercepted by leaves (I) separately. These values are then summed together
to form the actual Evapotranspiration and Interception (ETIa) [Bastiaanssen et al.,
2012] every 10 days. Checking this data into the long-term water balance is coherent,
as can be seen in the Budyko framework in Figure 2.6

2.2.4 Volume/area curve

In February 2000, the SRTM30 satellite mission [Farr et al., 2007] generated a com-
prehensive global digital elevation map of the Earth. Subsequently, in 2013, the Bui
reservoir was filled, imposing specific water level constraints of 168 MASL as the
minimum and 183 MASL as the maximum. Given that the elevation map predates
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Figure 2.6: Budyko curve relation in the Black Volta Basin, the position on the graph
indicates that the evaporation in the BVB is limited by the water availability

the reservoir’s filling and the known design water levels, it is relatively straightfor-
ward to compute the reservoir’s elevation-area-storage capacity curves using QGIS
and SRTM30.

By utilizing QGIS, the area, and volume below a particular elevation can be calcu-
lated. This process was repeated for each meter between 168 MASL and 183 MASL,
resulting in the generation of the volume and area curve at 1-meter vertical resolu-
tion, as depicted in Figure 2.7. Subsequently, the BPA revealed that they had previ-
ously developed a volume-area curve during a feasibility study. However, this curve
possessed an accuracy increment of 10 meters and is also presented in the Figure.
Notably, the slopes of the two curves are nearly identical, although the BPA curve
tends to slightly overestimate compared to the SRTM curve. Due to the higher ac-
curacy increment and slightly more conservative nature of the SRTM curve, it was
deemed more appropriate for further calculations.

Volume = 0.089632 ∗ h3 − 41.312375 ∗ h2 + 6585.140468 ∗ h − 358308.796 (2.1)
Area = 8831808.816316 ∗ h − 1200311111.188030 (2.2)

Figure 2.7: Reservoir volume curve (left) and the area curve (right) calculated using
the DEM file (blue) on a 1 meter vertical scale vs the curve given by BPA on a
10m scale (orange). It can be seen that the BPA curve is slightly overestimating the
SRTM curve

13



2 Study area and data

Figure 2.8: SRTM data used to calculate the reservoir volume and area curve
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3.1 Recalibrating the Chache rating curve

As discussed in Section 2.2.2, it is likely that the calculated discharge in Chache over-
estimates the actual discharge when the water level exceeds the river banks, approx-
imately at a height of 4.6 meters. To address this issue, a recalibration is required for
the rating curve to account for instances when water flows beyond the river banks.
This update will involve comparing the discharge in Chache with the inflow into the
reservoir and assuming that the inflow (Qinflow) into the reservoir is equivalent to
the discharge in Chache. The inflow into the reservoir will be computed using the
reservoir balance for the Bui reservoir (see equation 3.4).
The distance between Chache and the Bui reservoir is approximately 105 km. Along
this stretch, there are several small tributaries that may not always connect to the
Black Volta during the dry seasons. However, there is one significant tributary orig-
inating from Kopingue (Gbanlou) that flows into the Black Volta. Local visual es-
timations suggest that during the rainy season, the size of this tributary is roughly
one-third of the Black Volta River. Consequently, assuming that the river discharge
in Chache is equal to the inflow into the Bui reservoir represents a very conservative
estimate, i.e. leaning on the safe side to avoid overestimation.

The inflow into the reservoir using the reservoir water balance is derived from the
following expressions:

∆V = Qin − Qout (3.1)

With: Qin = Qin f low + PREC ∗ Areservoir (3.2)

Qout = Qturbines + AET ∗ Areservoir (3.3)

This gives: Qin f low = ∆V − PREC ∗ Areservoir + Qturbine + AET ∗ Areservoir (3.4)

During the year the reservoir will either fill up or empty water depending on the bal-
ance between the inflows and the outflows. BPA measured the water level elevation
every day since the commissioning of the dam. With these daily elevation measure-
ments and the volume-area curve calculated in Section 2.2.4, the daily volume change
∆V can be calculated.

Accurate precipitation measurements are made since 2020 by TAHMO stations, BPA
also keeps records of precipitation since 2018 using a bucket rain gauge.
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Because the actual evaporation from the WaPOR satellite product is not able to cal-
culate from open waters, the AET of the reservoir is determined using the simple
relation AET = 0.8*PET that was determined in a paper from Shoemaker and Sumner
[2006]. The PET data were derived from the MOD16 product as described in sub-
section 2.2.3. Although, the paper from Andreini et al. [2000] describes the actual
evaporation from the Akosombo reservoir as equal to the mean potential evapotran-
spiration. But because the PET data from the MOD16 is already quite high compared
to other PET sources, it was chosen to use the factor 0.8 from Shoemaker and Sumner
[2006]. Note that the MOD16 cannot calculate PET over water surfaces so it is impor-
tant to take the area around the reservoir to have the reference PET of the area. The
MOD16 data goes until the end of 2021, and there is only precipitation since 2018.
So the Chache rating curve will be updated using data from 2018 to 2021. In Figure
3.1, the measured Chache discharge is compared to inflow into the reservoir using
equation 3.4. The data have been resampled to a 4-day period to attenuate the daily
fluctuations of the reservoir balance curve. It is pleasing to observe that in the lower
flows (when the water level is still lower than the river banks), the Qinflow and the
Chache measured discharge are really similar. And as expected, during the wettest
months of the year, the Chache discharge overestimates compared to the inflow into
the reservoir. The difference grows larger in the function of higher Chache discharges
(compare the year 2020 with 2021). These observations confirm the hypothesis that
the rating curve in Chache only correctly calculates the lower flows and updating it
is necessary before using it to calibrate the hydrological model. The updated rating
curve is described in Section 4.1.

Figure 3.1: The comparison of discharge measurements in Chache with the reservoir
inflow (from eq. 3.4). With 2020 being an average flow year and 2021 a high flow,
the disparity increases proportionally with the wetness of the year, confirming the
hypothesis

3.2 Hydrological model

Hydrological modeling plays a crucial role in environmental science and engineering,
enabling the understanding and prediction of various processes. These models can
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vary in their representation of processes, such as conceptual versus physically-based
models[Beven, 1989]. At the catchment scale, conceptual models are widely em-
ployed due to their ability to capture hydrological dynamics efficiently. These models
directly describe the hydrological processes at the scale of interest based on relation-
ships between catchment storage and outflow [Fenicia et al., 2011]. Additionally, the
discretization of the physical domain can be divided into three categories of spa-
tial model organization: lumped configuration, semi-distributed configuration, and
fully-distributed configuration. The lumped configuration assumes uniformity across
the entire physical domain, resulting in simple models with few parameters but the
limited capability to capture spatial variations and produce distributed streamflow
predictions. On the other hand, fully-distributed models, which divide the physi-
cal domain into fine grids and account for flux exchanges between neighboring grid
cells, offer a more detailed representation but require a larger number of parameters
and higher computational demands. The semi-distributed configuration, often im-
plemented by discretizing the catchment into Hydrological Response Units (HRUs)
assumed to exhibit similar hydrological behavior, strikes a balance between the two
approaches in terms of spatial complexity and parameterization.

3.2.1 Analysing the area and defining objectives

Before starting the modeling process, it is important to gain a thorough understand-
ing of the basin’s characteristics. Table 3.2 presents an overview of the annual rela-
tionship between precipitation, discharge, and runoff coefficients.

The daily precipitation data obtained from the meteorological agency of Burkina
Faso’s stations (refer to Figure 2.3) was interpolated, as described in Section 2.2.1,
and then aggregated on a yearly basis. This yearly precipitation of each catchment
was then averaged as a function of the size of the area of the catchment.
Furthermore, the cumulative discharge in the Chache River was computed using
the updated rating curve, and the resulting value was divided by the total area of
the Black Volta Basin, providing discharge values in millimeters for each year. The
runoff coefficient was then calculated as the ratio of the total discharge to the av-
erage precipitation. Additionally, a correlation analysis was performed between the
catchment’s precipitation and the cumulative discharge. From there interesting ob-
servations could be made.

Firstly, it is evident across different years that variations in average precipitation
within catchments 4 and 5 do not exert a substantial influence on the discharge.
This phenomenon can be attributed to the Sourou extraction, which is further dis-
cussed in Sections 2.1 and 3.2.5. Catchment 2 demonstrates the strongest correlation
with the discharge. Remarkably, although the year 2022 exhibited the highest dis-
charge, it ranked only 11th in terms of average precipitation. However, it represented
the second-highest yearly precipitation within catchment 2. Conversely, in 2019, the
highest average yearly precipitation and greatest yearly precipitation in catchment 2
were observed, yet it ranked as the fifth-largest discharge event. This disparity be-
tween 2022 and 2019 underscores the significance of rainfall distribution throughout
the year. In 2022, there were exceptionally wet months in August and September,
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whereas 2019 experienced a more evenly distributed pattern over the months with an
unusually wet month of October.

The modeling challenge lies in the ability of the model to distinguish between various
types of rainfall characteristics while accurately simulating discharge. The primary
objective of the modeling effort is to effectively capture the dynamics of high flows
and peak events.

Figure 3.2: Interpolated precipitation over each catchment using the Thiessen method
and data from the meteorological agency of Burkina Faso. Discharge data is cal-
culated from the updated rating curve and divided by the total sum of the area.
Missing discharge data in 2011 and 2012 due to the construction of the dam

3.2.2 SuperflexPy

SuperflexPy is a versatile open-source Python framework [Dal Molin et al., 2021]
that offers flexibility in constructing conceptual hydrological models using the SU-
PERFLEX principles described in Fenicia et al. [2011]. It is specifically designed to
accommodate models with diverse levels of structural complexity and supports a
wide range of spatial configurations, from a simple lumped reservoir to a distributed
catchment. SuperflexPy is a Python package that empowers modelers to maximize
the capabilities of the framework seamlessly, eliminating the requirement for sepa-
rate software installations. This integration simplifies the usage of SuperflexPy and
facilitates easy interfacing with existing Python code for easier model deployment.
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Numerical implementation

Reservoirs are controlled by ordinary differential equations (ODEs) that cannot be
solved analytically. Therefore SuperflexPy incorporates various numerical approx-
imators and root finders to enhance the modeling experience. The available nu-
merical approximators include implicit and explicit Euler methods, as well as the
Runge-Kutta 4 method. Additionally, the framework offers three root finders: one
implementing the Pegasus method, one utilizing the Newton method, and another
specifically designed for explicit algebraic equations. The SuperflexPy environment
also offers the possibility to create and implement customized numerical approxi-
mators and root finders. For optimal performance, it is recommended, based on
previous modeling studies with the SUPERFLEX framework, to employ the Implicit
Euler approximation and the Pegasus root finder [Dowell and Jarratt, 1972][Fenicia
et al., 2011]. It is a configuration that ensures robust solutions for the ODE.

3.2.3 Model descriptions

The selection of model hypotheses in this study is motivated by several considera-
tions:

1. The type of system and associated dominant processes including prior insights
into the catchment characteristics previously described in Section 2.1. The
model performance is related to signatures of aridity and baseflow, in this case:
high aridity with low baseflow.

2. Previous hydrological modeling in the area from different papers such as Kwakye
and Bárdossy [2020], Shaibu et al. [2012], Sawai et al. [2014] and Akpoti et al.
[2016].

3. The (limited) data availability.

4. The objective of the application: model the high flows and some individual
peaks on a daily temporal scale.

Conceptual models can be divided into three different structures: single (M1), serial
(M2 & M3), and parallel (linear and non-linear: M4 & HBV) structures, see Figure
ref3.3. When the model is cast in this form, it is described as a state-space representa-
tion. A state-space representation is a mathematical model of a physical system as a
set of input, output, and state variables related by first-order differential equations.

In the context of this research five different model hypotheses (all using the SUPER-
FLEX configurations) of varying complexity are considered, see Figure 3.3. Due to
the data scarcity, it was chosen to lump the models over each sub-catchment. All
the models aim to replicate the overall discharge for each individual sub-catchment
by utilizing observed precipitation and pre-estimated actual evaporation (Ea). It was
chosen to use actual evaporation instead of potential because the Ea was deemed reli-
able because of the long-term water balance. Additionally removing two parameters
in the model which accounted for the change of potential to actual evaporation.
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The SUPERFLEX models in Figure 3.3 consists of up to four reservoirs, conveniently
labeled as ”fast” (FR), ”slow” (SR), ”unsaturated” (UR) and ”interception” (IR) serv-
ing different purposes. Furthermore, three models M3, M4, and HBV incorporate a
lag function to account for flow network routing delays. The mathematical equations
governing the models are described in the Section 3.2.4.

Figure 3.3: Overview rainfall-runoff models calculating the discharge output for each
sub-catchment, all the models were made using SuperFlexPy. The parameter for
each model are illustrated in red

M1: 1-bucket model (non-linear reservoir)

The simplest model, M1, represents catchments as ”simple dynamical systems” by
using a single power law reservoir to simulate both catchment streamflow and evap-
oration. This model considers streamflow to be determined solely by the total water
storage of the catchments. The water is drained as fast lateral recharge and is routed
through a fast responding lateral flow path component SF [mm] with a storage coef-
ficient Kf [d-1] and released as preferential flow QF [mm/d] to the stream. Despite
its simplicity, various research [Kirchner, 2009] has shown that even this basic model
can yield accurate streamflow simulations in certain catchments. This model has two
parameters (Kf and α).
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M2: 2-bucket model

The second model incorporates two separate components (”buckets”), to differentiate
between fast flow and unsaturated flow. The unsaturated flow is represented by
a power function that depends on the storage. Specifically, the unsaturated flow
component involves an unsaturated root-zone storage reservoir, denoted as Su [mm],
which has a maximum storage capacity represented by Su,max [mm]. Su,max represents
the maximum volume of water stored in the soil pores between the field capacity and
the permanent wilting point, which is accessible to plant roots. This model has four
parameters (Kf, α, Su,max and β).

M3: 2-bucket model with time-lag

M3 differs from M2 by the addition of a half triangular lag function (more explana-
tion in Section 3.2.4 to the flow that connects the unsaturated reservoir and the fast
reservoir. This model has five parameters (Kf, α, Su,max, β, and Tlag ,max).

M4: 3-bucket model with time-lag

M4 and M5 differ in terms of their reservoir configurations. M4 includes an extra
reservoir, known as SR, which represents a groundwater component and simulates
slow flow. The relationships governing the unsaturated flow (UR) and fast flow (FR)
in M4 are nonlinear. Additionally, the allocation of water to the SR reservoir is de-
termined by parameter D. In total, M4 consists of six parameters (Kf, α, Su,max, β,
Tlag ,max and D).

HBV-model

The HBV model is a lumped conceptual catchment model that has eight model pa-
rameters and takes precipitation and evapotranspiration as forcing inputs. The in-
coming water in the system is the precipitation P, it can evaporate from the intercep-
tion reservoir Si at the potential rate Ei . Once the interception reservoir reaches the
maximum storage capacity Imax water will spill as effective precipitation Pe from the
interception reservoir to the unsaturated rootzone Su and to the fast-responding lat-
eral flow path Sf. Water from the fast reservoir Sf is released as preferential flow Qf.
The water from the unsaturated rootzone will percolate to the groundwater at a rate
determined by the probabilistic approach using the concept of a runoff coefficient Cr.
Next, the groundwater reservoir releases water as groundwater flow Qs. Lastly, Qf
and Qs are summed and routed through the half-triangular transfer function with a
time lag. The parameters in the HBV model are: Kf, Ks, β, Su,max, Imax, Pmax, Cr, and
Tlag,max).
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3.2.4 Mathematical equations

Fast and slow reservoir

The fast reservoir, common in hydrological models, assumes that the storage-discharge
relationship is described by a power function. The behavior of the reservoir is defined
by the mass balance equation:

dS
dt

= P − Q

With: P = precipitation and Q= discharge

The discharge in the above mass balance equation can be expressed as a function of
stored water in the reservoir

Q = K f ∗ Sα (3.5)

With: Kf = storage coefficient [1/d], S = storage state [mm]

The slow reservoir assumes a linear storage-discharge relationship. It is used in the
model to simulate lower-zone storage processes.

Q = K f ∗ S (3.6)

Unsaturated reservoir

The unsaturated reservoir in a conceptual hydrological model represents the storage
and movement of water in the soil’s unsaturated zone. This zone lies above the water
table and contains both air and water, with the water content below its maximum
capacity. The reservoir accounts for processes such as infiltration, percolation, and
drainage. It captures the interactions of precipitation, evaporation, and soil moisture
dynamics.

dS
dt

= P − Eact − Q

S̄ =
S

Smax
(3.7)

Q = P ∗ (S̄)β (3.8)

22



3 Methodology

Half triangular lag

SuperflexPy’s lag elements have the capability to handle any number of input fluxes
and utilize a convolution-based approach with a weight array that defines the lag
function’s shape. The lag elements only differ in the specific definition of their weight
arrays. The inputs and outputs of the lag elements depend on the preceding element
in the sequence. The weight array can be determined by specifying the area beneath
the lag function relative to the time coordinate [Fenicia et al., 2011]. For this research,
it was chosen to use the half-triangular. It is a simple but efficient function that
exhibits linear growth until reaching a certain time (tlag), after which it falls to zero,
as illustrated in Figure 3.4. The slope parameter (alpha) of the triangle is determined
to ensure that the total area under the function is equal to 1.

Alag(t) =α ∗ t f or t ≤ tlag

Alag(t) =0 f or t < tlag

Figure 3.4: Half triangular lag function (source: SuperflexPy [Fenicia et al., 2011])

3.2.5 Modeling the Sourou Extraction

The Sourou depression, discussed in Section 2.1, presents a rare occurrence where
a river changes its direction of flow for a specific period [Shahin, 2003]. During the
wettest months of the year, the Sourou diverts water from the Mouhoun River instead
of flowing in. Despite limited available information regarding the specifics of this
phenomenon, valuable insights can be obtained from the Global Runoff Data Centre
(GRDC) (Section 2.2.2 [Centre, 2019]). From there data of the mean monthly discharge
data collected from 1956 to 1982 at two stations, ’Kouri’ upstream of the intersection
and ’Manimenso’ downstream of the intersection, sheds light on the river’s charac-
teristics. The data was initially gathered during the First GARP Global Experiment
(FGGE). It likely followed the same measurement protocols as a study preparation
for the construction of a regulation mechanism with a storage capacity of 250*106 m3

in the village of Léry in 1984 [Bro, 2001]. By analyzing the data from Figure 4.3, it
can be observed that only during the wetter years, the discharge is diverted from the
Mouhoun. The challenge is to determine at which moment and in which condition
this happens and how could this phenomenon be reciprocated in the hydrological
model. This was done in Section 4.2.1.
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3.3 Calibration

The challenge of making hydrological models is to establish a quantitative link be-
tween the system input, the system state, and the system output. Every model that
can be used is a hypothesis and is at best an incomplete description of reality. Every
physical system consists of multiple interacting components of different scales. It is
hard to identify which parameters are correct. Therefore model development is a
continuous process of testing alternative model hypotheses. The models make use of
the top-down approach and are a combination of conceptual models and data-driven
models. This means that fewer data and model parameters are required in compar-
ison to the bottom-up approach. However, the spatial resolution is lower and the
physics is simplified. The result will not be one right model, but a range of differ-
ent models with different system states, which have the best approximation of the
reality.

The available discharge data for the catchment, along with corresponding precipita-
tion data, is limited to the downstream Section. This poses a challenge when it comes
to determining and calibrating the parameters for the various upstream catchments.
Several papers have addressed this issue and explored calibration techniques in data-
scarce environments. One particularly helpful paper on this topic is the research done
by Hulsman et al. [2020]. It provides valuable insights into different approaches for
calibrating models in regions with limited data, primarily utilizing various satellite
products. Following the strategy described in the above-mentioned paper, the first
step is narrowing down the feasible parameter range involves utilizing data from the
Gravity Recovery and Climate Experiment (GRACE), which captures seasonal fluc-
tuations in total water storage. Secondly, altimetry data is then employed to further
refine the parameter set, this method focuses more on the river dynamics.

It’s important to note that due to limited data availability and equifinality [Savenije,
2001], the goal is not to find the optimal parameter. Instead of risking the rejec-
tion of valid parameter sets [Hrachowitz and Clark, 2017], the calibration focused on
identifying and excluding the most implausible sets inconsistent with the available
data. To achieve this, a Monte Carlo sampling technique with uniform prior param-
eter distributions were used for each method and sub-catchment, generating 10,000
model realizations. These random solutions served as a starting point and were then
progressively refined by identifying parameter sets that did not meet the conditions.
This iterative approach narrowed down the range of feasible parameters for each
sub-catchment and, consequently, reduces uncertainty in the modeled hydrograph
[Hrachowitz et al., 2014].

3.3.1 Parameter selection based on the seasonal water storage:
GRACE

The observations GRACE provides mean monthly data on anomalies in total water
storage. These anomalies encompass all forms of terrestrial water, including ground-
water, soil moisture, and surface water. By monitoring variations in the Earth’s grav-
ity field using two identical satellites, regional changes in mass can be detected, with
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terrestrial water storage being the primary driver once atmospheric effects are con-
sidered [Landerer and Swenson, 2012]. The data was downloaded from the GRACE
database provided by the University of Texas Center of Space Research (UT-CSR)
release 06 monthly solutions filtered with DDK5 [Ries et al., 2016].

As described in Hulsman et al. [2020], this data was then compared using the Nash-
Sutcliffe efficiency [Nash and Sutcliffe, 1970] between the monthly modeled total
water storage of each different model described in Section 3.2.3. The following
equations were used for each model Stot,M1 = S f , Stot,M2&M3 = Su + S f , Stot,M4 =
Su + S f + Ss, and Stot,HBV = Su + S f + Ss + Si. The Nash-Sutcliffe Efficiency (NSE) is
defined as:

NSE = 1 − ∑n
i=1(θobs,i − θmod,i)

2

∑n
i=1(θobs,i − θ̄obs)2 (3.9)

where: NSE is the Nash-Sutcliffe Efficiency, θobs,i represents observed values, θmod,i
represents predicted values, n is the total number of observations, and θ̄obs is the
mean of the observed values.

3.3.2 Parameter selection based on satellite altimetry data

In this calibration methodology, the direct utilization of altimetry data was employed
to establish a correlation between the observed water levels derived from virtual sta-
tions and the modeled discharge [Seibert and Vis, 2016]. This approach is predicated
upon the assumption that the relationship between water level and discharge ex-
hibits a monotonic trend [Hulsman et al., 2020]. The altimetry data utilized in the
Black Volta basin was obtained from the Database for Hydrological Time Series of
Inland Waters (DAHITI) [Schwatke et al., 2015]. For the calibration process, three
virtual stations were selected: one located within catchment 5, another positioned
slightly downstream after the intersection of the Sourou and the Mouhoun rivers,
and a third downstream of catchment 3. The water level data spans from 2016 to
the present and is available at a frequency of approximately once per month. Unlike
GRACE, which provides mean monthly values, the altimetry data represents a single
measured value of water level once a month when the satellite passes overhead. Due
to the lack of knowledge regarding the characteristics of the river between the two
satellite measurement points, the evaluation of the model using the Nash-Sutcliffe
efficiency (NSE) metric is not suitable. Instead, the altimetry data and discharge are
transformed into a relative scale (with the minimum value equal to 0 and the maximal
value equal to 1). Then the relative error is computed (with 1 being a perfect match)
by comparing the relative measured water level obtained from altimetry data with
the relative modeled discharge for the corresponding day, and not by resampling the
data to a monthly scale. This approach focuses exclusively on the river dynamics
rather than considering the volume.

During the calibration phase using the altimetry data, it was observed that the Monte
Carlo sampling technique could lead to the generation of unrealistic discharge values
within the optimal parameter ranges. These values were sometimes either excessively

25



3 Methodology

large or small, this is a consequence of working on a relative scale. To address this
issue, an additional constraint was introduced, namely the runoff coefficient. The
runoff coefficient represents the proportion of rainfall water transformed into runoff
and is calculated as the ratio of the total discharge to the total precipitation over
the course of a year. By incorporating a range of ”realistic” runoff coefficients as
a constraint in the parameter calibration process, the parameter set could be further
constrained. The value of the runoff coefficient is influenced by the specific land cover
types present in the area. For instance, regions with land use and water bodies tend to
exhibit higher runoff coefficients due to their limited capacity for water infiltration.
Conversely, grasslands, shrubs, and forested areas generally display lower runoff
coefficients. Changes in runoff coefficients are primarily driven by the expansion of
urbanization and agricultural land use [Akpoti et al., 2016]. However, since the size
of each catchment is considerable, it is assumed that these effects are mitigated to
some extent.

3.3.3 The final calibrating process

The main idea behind the final calibrating process is the self-proclaimed: ”upstream
to downstream check-point approach”. In summary, the model calculates the output
starting from the most upstream catchments. Controls if the calculated values are
realistic by passing a checkpoint and if it is, the model proceeds to calculate the
output for the downstream catchments, and so on. This approach aims to find the
optimal parameter combination range and can be explained in the following steps:

Step 1: Define the parameter range.

Step 2: Calculate a random value within the given range for each parameter and
calculate the model output for each sub-catchment.

Step 3a: Calculate the runoff coefficient for catchment 5. If it is within the realistic
runoff coefficient range, continue, else go back to Step 2.

3b: Calculate the relative error based on the altimetry data for catchment 5 from
virtual station 24873 (see Figure 2.3). If the error is above a defined threshold,
continue; otherwise, go back to Step 2.

Step 4. Calculate the updated output of catchment 5 and catchment 4 as a result of
the Sourou depression, as described in Section 4.2.1.

Step 5a: Calculate the runoff coefficient with the updated output of catchment 5 and
catchment 4. If it is within the realistic runoff coefficient range, continue; otherwise,
go back to Step 2

5b: Calculate the relative error based on the altimetry data from virtual station
24871 for the updated output of catchment 5 and catchment 4. If the error is above
the threshold, continue; otherwise, go back to Step 2

Step 6a: Calculate the runoff coefficient for catchment 3. If it is within the realistic
runoff coefficient range, continue; otherwise, go back to Step 2
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6b: Calculate the relative error based on the altimetry data from virtual station
12234 for the total output of catchment 3, 4, and 5. If the error is above the
threshold, continue; otherwise, go back to Step 2

Step 7: Calculate the runoff coefficient for catchment 1 and 2. If it is within the
realistic runoff coefficient range, continue; otherwise, go back to Step 2

Step 8: Calculate the total output as the sum of the output of all the catchments at
the Checkpoint

Step 9: Compare the total model output with the measured discharge using the
Nash-Sutcliffe efficiency. If the value is above a defined threshold, save the
parameter set

Step 10: Study and process the parameter set to narrow down the range of realistic
values defined in Step 1

Figure 3.5: The calibrating process ”upstream to downstream check-point approach”
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4 Results and discussion

4.1 The recalibrated Chache rating curve

4.1.1 Results

The main assumption about the method of recalibrating the rating curve was to as-
sume that the reservoir inflows, calculated from the reservoir balance (equation 3.4),
equal the discharge in Chache (105km upstream of the reservoir). This was done
over a period from 2018 to 2021, this limited amount of years is due to the lack of
precipitation data in that area. During that period the water level in Chache was
measured every day and converted to discharge in [m3/s] using the following rating
curve (obtained from BPA):

Qold = C ∗ (h + a)m = 21.5 ∗ (h − 0.55)2.4 (4.1)

Where:

Q : Discharge (in m3/s)
C : Rating curve coefficient
h : Measured water level
a : Offset or constant term

m : Exponent of the rating curve

Next, the calculated discharge from the water balance was then associated with the
water level on that same day, and a rating curve was fitted, see Figure 4.1. In this Fig-
ure, the old rating curve and the updated one determined using the reservoir balance
are compared. It can be seen that the new rating curve returns lower discharges for
higher water levels, again confirming the hypothesis.

The formula for the updated rating curve is:

Qnew = C ∗ (h + a)m = 20 ∗ (h − 0.32)2.27 (4.2)

From Figure 4.1, the updated rating curve makes sense because when the water flows
in the river banks i.e. approximately lower than 4.6 meters, the rating curves between
the old and the new one are almost identical. But when the water flows above the
banks, the difference grows bigger. For the same water level, the discharge is smaller
with the updated curve. The higher the water gets, the bigger the difference between
the results.

Lastly, the calculated discharge with the reservoir balance and the old and new rating
curve was again plotted in Figure 4.2.
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Figure 4.1: Chache rating curves comparison. In this Figure, the old rating curve and
the updated one (fitted in the function of the reservoir inflows (blue dotts)) are
compared. It can be seen that the new rating curve returns lower discharges for
higher water levels

Figure 4.2: Comparing the inflows of the reservoir balance at a 4-day resampled scale
with the updated discharges from Chache

4.1.2 Discussion

As explained earlier the Chache and Bui reservoir are separated by a distance of 102
km. Along this stretch, there exist several small tributaries that, during certain dry
seasons, may not even connect to the Black Volta River. However, there is a larger trib-
utary originating from Kopingue (Gbanlou) that flows into the Black Volta. According
to local visual estimations, the size of this tributary is approximately one-third of the
Black Volta River during the rainy season (approximately confirmed using satellite
imagery from Google Maps). Additionally, the volume-area curve also is made using
a conservative approach as described in Section 2.2.4. Therefore, assuming that the
river discharge in Chache is equivalent to the inflow into the Bui reservoir is a highly
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cautious approach. In the rainy season, due to all the tributaries, the inflow in the
reservoir is without a doubt higher than the discharge in Chache. Because of this
conservative approach, it was deemed appropriate to use the updated rating curve
in the calibration and testing of the hydrological model and for future use by the Bui
Power Authority.

4.2 Hydrological model

4.2.1 Results of the Sourou Extraction

Through an examination of the data presented in Figure 4.3, illustrating the dis-
charge in Kouri, laying right upstream of the intersection between the Mouhoun and
the Sourou rivers, and Manimenso, just downstream of the intersection. It becomes
evident that the diversion of discharge from the Mouhoun River occurs during years
with higher precipitation levels. The task at hand is to identify the specific timing

Figure 4.3: Mean monthly discharge data of Kouri, representing the discharge of the
Mouhoun before the extraction, and Manimenso, just downstream of the intersec-
tion, is the discharge of the Mouhoun after the extraction

and conditions under which this phenomenon takes place and subsequently incor-
porate it into the hydrological model. This was done by calculating the cumulative
discharge of the river for each year until the moment where the discharge of Kouri
is bigger than the one Manimenso i.e. when where there is an extraction by the
Sourou river. By calculating the average of the cumulative values across different
years, the threshold at which the Sourou extraction takes place was determined to be
at the cumulative discharge of 271*106 m3. From this moment a percentage of flow
needs to be deduced from the Mouhoun to account for the Sourou extraction. Again
that factor was calculated from the GRDC data as no information is available on that
matter. For each month where there was a Sourou extraction, the relative difference
between Kouri and Manimenso was calculated. Sourou extraction only happens dur-
ing the wetter months of September, October, and November, the average percentage
extraction is then respectively 17.4%, 29.5% and 25.3% per month. These factors were
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applied to the output of catchment 5 and obviously, during that time the output of
catchment 4 into the Mouhoun goes to zero.

4.2.2 Choosing the hydrological model

Firstly, an examination of the seasonal water storage using GRACE data, as explained
in Section 3.3.1, was conducted individually for catchments 1, 3, and 4. The selection
of these particular catchments was predicated on their geographical distribution, en-
compassing the wetter southern region and the drier Sahel in the northern area. The
assessment of seasonal water storage was contingent upon the availability of data
spanning the years 2019 to 2021, and the results are illustrated in the figure 4.4. The
outcomes indicate that model configurations M2, M3, and M4 produced the most
favorable and accurate results.

Figure 4.4: Seasonal water storage - catchment 4

Figure 4.5: Seasonal water storage - catchment 3

The individual selection of the model based solely on altimetry did not yield sig-
nificant insights due to its reliance on relative scale testing. This process introduced
certain calibrated parameters that produced results at an inappropriate scale, limiting
its effectiveness. However, a more promising approach emerged when catchments 5,
4, 3, and 2 were lumped into a single unified catchment. By employing the distinct
model configurations illustrated in Figure 3.3 and comparing the results against the
Lawra discharge, a more robust assessment was achieved.

The evaluation encompassed the examination of various datasets from different years,
with Figure 4.7 displaying results for the years 2013 to 2014 to maintain clarity. Con-
sistently and superiorly performing models were identified, specifically Model M3
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Figure 4.6: Seasonal water storage - catchment 1

and the HBV model. However, looking more into the character of the outputs of the
HBV model, it can be observed that the model consistently generates smooth curves,
which are deemed less suitable for this research, primarily due to its limitations in
modeling sudden individual peaks. Additionally, the HBV model exhibited inaccura-
cies in the GRACE comparison as depicted in the above figures. Consequently, Model
M3 was selected as the more appropriate model for subsequent analyses within each
catchment in this study.

Figure 4.7: Different models results from lumping the catchments and comparing it
to the Lawra discharge, model M3 and HBV gave the most consistent and accurate
results

4.2.3 Calibration results

The altimetry data range from 2016 to 2022. The year 2017 is a low flow year, which
is not the objective of the model and to limit the calibration processing time, the
calibration period was set from 2018 to 2022. This period includes the two years of
interest, 2019 and 2022, ensuring that the model adequately calibrates based on these
high flows. The calibration process, described in Section 3.3.3 and depicted in Figure
3.5, involved a Monte Carlo sampling of 12,000 loops. From this calibration process,
the results were narrowed down to a feasible range, defined by an NSE >0.80 (refer
to Figure 4.9). The highest calibration result achieved for the calibration period from
2018 to 2022 was 0.85 (see Figure 4.10).
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The results from the calibration process gave the following parameter range for model
M3:

Catchment 1 Catchment 2 Catchment 3 Catchment 4 Catchment 5
Smax [mm] 750-1500 700-1500 1000 - 2000 700-1750 1400 - 1800

β [-] 1.5-3.0 2.2 -3.5 1.6 - 3.5 1.1-3.0 1.75 - 3.0
Tlag,max [d] 1-25 15 -35 10 - 35 35-50 20 - 50

K f [1/d] 0.3-0.55 0.1-0.65 0.45 - 0.9 0.1-0.6 0.1 - 0.6
α [-] 0.5-2.5 1.9-2.9 1.0 - 3.0 0.2-1.25 0.1-1.5

Table 4.1: Parameter range

The unexpectedly wide range of maximum time lags prompted a time-lag correla-
tion analysis. This analysis involved calculating the correlation between the Chache
River’s discharge and the lagged precipitation for each catchment. By examining the
results in Figure 4.8, it can be observed that the maximum time-lag ranges from 20 to
50 days, depending on the specific catchment. This finding aligns with the previously
obtained calibration results, providing further confirmation.

Figure 4.8: Timelag correlation analysis, the maximum range of each plot gives an
idea of the lag time of each catchment

The primary objective of Model M3 is to simulate the discharge by utilizing precipi-
tation as an input. Consequently, it is necessary for Model M3 to adequately capture
the lag between precipitation (P) and discharge (Q). While the unsaturated reservoir
(UR) component does not introduce any lag, and the fast reservoir (FR) component,
though introducing some lag, primarily focuses on fitting the recession phase of the
hydrograph. Thus, the triangular lag function is primarily responsible for fitting the
lag. This lag function accounts for the overall time lag, irrespective of its underly-
ing causes. It is important to consider the lag function and the fast reservoir as a
unified component that shapes the effective rainfall (i.e. the rainfall that produces
streamflow), and that accounts for all kinds of routing processes. It is and remains a
lumped model for each catchment, which lumps many processes.
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Figure 4.9: Calibration results: The feasible range in 2020 exhibits some overestima-
tion, but overall the results are great

Figure 4.10: Calibration results: individual contribution of each catchment

Analysis calibration results

Upon examining the feasible range in Figure 4.9, it is observed that the year 2020
(characterized as an average flow year, see Figure 3.2) was overestimated, while all
the other years (high flow years) exhibited correctly spanned discharge values.

Analyzing the individual contributions that led to the best result in Figure 4.10, sev-
eral observations can be made. Firstly, for catchment 4, each year shows a sudden
drop indicating the onset of Sourou extraction, followed by an increase at the end of
the year, indicating the return flow from Sourou into Mouhoun. Secondly, catchment
2 has a significant impact on the total model output despite its smaller area (repre-
senting only 13% of the total area). Moving on to Figure 4.11, a closer examination
was conducted on the hydrographs of the years 2019 and 2022 to better understand
their characteristics. In 2019, the spill was primarily caused by an unexpected and
very sudden increase in Chache. Modeling this ”double peak” was an important
objective, and the model successfully captured it, as evident in the Figure, with an
individual year NSE of 0.89. Correctly modeling the year 2022 presented another sig-
nificant challenge due to the unusual distribution of rainfall runoff. Although it was
the wettest year, with a 19% increase compared to the previous wettest year, it ranked
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Figure 4.11: Zooming in the calibration results of the individual years causing spills

only fifth in terms of cumulative rainfall. However, the model successfully captured
the dynamics of this year, achieving an NSE of 0.93.

Figure 4.12: Calibration results: the individual output of catchment 5 (left) and the
total output of catchments 5, 4 and 3 (right) compared to the altimetry data

4.2.4 Testing results

Independent test period

A crucial step in evaluating the model’s performance is to assess it against an inde-
pendent test period, without further recalibration. Only based on the results in the
test period, a decision can be made if the model (and its parameters) is acceptable or
not. Because the actual evapotranspiration (AET) data covers the period from 2009 to
the present and to ensure that the test reflects the model with the same ”conditions”
as the calibration period (i.e. after the construction of the dam), the testing period
was set from 2013 to 2016. The results of this evaluation are presented in Figure
4.13, where the highest NSE value obtained was 0.86. This is slightly higher than the
calibration period, testing results having a higher NSE than the calibration results is
quite unusual in hydrological modeling. However, this can be explained due to the
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fact that the years 2019, and 2022 had an unusual (and thus more difficult to model)
rainfall-runoff distribution, having an impact on the calibration results. Whereas the
testing years 2013 to 2016 exhibited a more normal rainfall-runoff pattern.

Upon closer analysis of the results, it is observed that for the years 2013, 2014, and
2015, the model accurately captured the shape of the discharge, albeit with slight
underestimation. Conversely, in the year 2016, the model tended to overestimate
the discharge. However, the overall good NSE results indicate that the model is
performing well.

Figure 4.13: Testing results: independent time frame, without further recalibration
(NSE = 0.86)

Testing with TAHMO data

Another way to test a hydrological model is to change to the input source. This was
done by replacing the precipitation data from the meteorological agency of Burkina
Faso with TAHMO precipitation. The TAHMO precipitation data span from 2018 to
2022 and was interpolated over each catchment using Thiessen polygons [Thiessen,
1911]. Using only TAHMO precipitation data achieves an NSE value of 0.74, as il-
lustrated in Figure 4.14. The decline in performance can be attributed to the poor
performance observed in the years 2021 and 2022, where the discharge increase com-
mences prematurely. A more detailed analysis reveals that this issue arises from
certain TAHMO stations measuring precipitation too early in the rainy season during
these two years, thereby disrupting the model’s functionality.

As described in Section 2.2.1, one of the significant advantages of TAHMO stations is
the easy and almost immediate accessibility of measured data, typically with only a
couple of hours delay after a rain event. One of the research objectives of this thesis
is to explore the potential of utilizing TAHMO stations as input in the hydrological
model to gain insights that can aid in reservoir management decision-making.

To test this hypothesis, the focus will be on the year 2019, which exhibited a double
peak pattern due to an unusually wet October resulting in an unexpected spill. In
2019, only six out of the sixteen TAHMO stations in the Black Volta Basin (see Figure
2.4) were operational. To evaluate the potential usefulness of TAHMO stations, the
model was updated, in light of occurring precipitation events, as if it were in October
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Figure 4.14: Testing the model with TAHMO precipitation, without further recalibra-
tion resulting in an NSE of 0.74

2019. The parameter set used in the model was the same as the one that yielded the
highest NSE in the calibration process (see Figure 4.10).

The first model simulation using only TAHMO data was made on October 9th (see
Figure 4.15.a). On that day, the overall model output closely resembles the measured
discharge in terms of shape even though the peak is slightly underestimated. Later
on, significant precipitation events occurred between October 10th and 12th, causing
the model to predict a small peak (subfigure b). Again different precipitation events
were observed for the dates 13th to 15th causing the model to predict a larger peak
see Figure 4.15.c. From the 15th to the 19th, few precipitation events were recorded,
and the discharge in Chache continued to decrease, while the model still predicted a
significant peak. On the 21st, the last major precipitation event occurred, ultimately
resulting in the measured peak in Chache on the 22nd and leading to the spill being
utilized on the 23rd. In the last subfigure (f), the model over the year was compared
to the cache discharge and it can be seen that both modeled peaks were underesti-
mated compared to the actual measured values, but the proportion and shape were
similar.

In conclusion, as early as October 12th, the model predicted the occurrence of a
second peak, and by the 15th updated to grow larger, and on the 21st, it confirmed
that the size of the peak would be similar to the first peak earlier in the season. The
specific actions the BPA (Black Volta Basin Authority) could have taken based on this
information are beyond the scope of this research. However, utilizing the model in
combination with the near real-time data from TAHMO stations would have provided
them with a 12-day lead time to make informed decisions and effectively manage the
reservoir to accommodate the second peak.

Testing with Lawra

A different approach to evaluate the model is by changing the final testing location.
This was done by shifting from Chache to Lawra, situated 208 km upstream. Lawra is
essentially located at the junction of catchments 1, 2, and 3. Due to this change in lo-
cation, it was necessary to recalibrate the model, particularly to update the lag times.
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Figure 4.15: Model outputs updates based on TAHMO measured precipitation events.
Going further in the month of October, the model predicts a higher peak

Following the construction of the dam, only four years of reliable and consistent data
from BPA are available for analysis in Lawra.

To calibrate the Lawra discharge, it was decided to swap the years that were employed
compared to the calibration of Chache. Specifically, the years 2013 to 2014 were used
for Lawra calibration and 2020 and 2021 for testing, while Chache calibration utilized
data from 2018 to 2022 calibration and 2013 to 2017 for testing (see Figure 4.13). The
Lawra calibration process resulted in excellent results, with an NSE reaching up to
0.92, as illustrated in Figure 4.16.

The model was then tested without any further recalibration for the years 2020 and
2022, yielding NSE results of 0.79 and 0.84, respectively. The decrease in performance
for the year 2020 can be attributed to the omission of modeling the initial smaller
peak in August. Nevertheless, these results are satisfactory and are proving that the
model is working well in different conditions.
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Figure 4.16: Calibration results for Lawra discharge, excellent NSE of 0.92

Figure 4.17: Testing results for Lawra discharge, independent time period without
further recalibration. There is a drop in performance for the Figure on the left due
to not modeling the first small peak

Testing with PET

For this last part, to address the limitation of the length of the AET dataset, modifi-
cations were made to the code to allow the switch from AET to PET. This modifica-
tion allows for further testing of the model’s performance under different conditions
(before 2009 and thus before the construction of the dam). The alteration was imple-
mented in equation 3.7, which involved the inclusion of two new parameters: Ce and
m, and the following equation:

Eact = Ce ∗ Epot ∗
(

S̄ ∗ (1 + m)

S̄ + m

)
(4.3)

The parameter range for Ce is 0.46-0.90 and m is 0.2 to 1.5. Because of the change
of code, the model was recalibrated and retested. To calibration used the years from
2003 to 2006 and the testing from 2006 to 2009. And resulted in an NSE of 0.85 and
0.83 respectively.

When analyzing Figure 4.18, it can be observed that the year 2003 had a similar
”double peak” shape as the one in 2019, which was again well plotted by the model.
However, it must be noted that the cumulative discharge in 2019 was about 35%
bigger than the one in 2003.
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Figure 4.18: Calibration results for Chache discharge with PET

Figure 4.19: Testing results for Chache discharge with PET, independent time period
without further recalibration NSE 0.83

4.2.5 Discussion

The challenge associated with developing hydrological models lies in establishing
a quantitative relationship between the input, state, and output of the system. It
is important to recognize that each model employed represents a hypothesis and,
at best, offers an incomplete depiction of reality. Analytically solving this problem
proves to be infeasible, necessitating numerical approaches. In the present study,
as explained in Section 3.2.2, the numerical method known as Implicit Euler was
employed. However, no investigations were conducted to explore alternative methods
and compare their outcomes.

Furthermore, it is worth noting that numerous other calibration/evaluation methods
exist, such as the Autocorrelation Function and Rising Limb Density, among others.
In this report, only the Pareto optimal solution is utilized. The stochastic Monte-Carlo
sampling method was employed to determine the best parameter set. This approach
represents the ”purest” search strategy and relies on a brute-force method due to the
extensive simulations required. Although time-consuming, this method provides a
reasonable approximation of the parameter set. However, it should be acknowledged
that discovering the absolute best parameter combination is highly unlikely. It is
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4 Results and discussion

important to recognize that there are alternative stochastic and evolutionary strategies
available that lie outside of the scope of this research.

The modeling approach employed in this study involved dividing the Black Volta
Basin into five sub-catchments and subsequently aggregating them into a semi dis-
tributed model. Five distinct conceptual models were investigated, which can be
categorized into three different structures: single (M1), serial (M2 & M3), and paral-
lel (non-linear: M4 & HBV) structures. And ultimately, the M3 model was applied
to each catchment because of its superior performance. However, it is essential to ac-
knowledge that the models utilized in this research were relatively simplistic in their
design and lumped many processes.

The threshold for determining the start and end of the Sourou extraction, a relatively
rare occurrence characterized by a change in river discharge flow direction, was es-
tablished based on monthly mean data spanning from 1956 to 1970. Later, in 1984, a
regulation basin was constructed, which undoubtedly influenced the river’s regula-
tion. Also, working with monthly data from this time period is not ideal, it was the
best available solution due to the scarcity of alternative data sources.

The spill that occurred in 2019 was primarily triggered by an unexpectedly wet Oc-
tober month, resulting in a second peak in the hydrograph. This peak was caused by
three significant precipitation events. The hydrological model, using the parameter
set that yielded the highest NSE during the calibration, successfully predicted the oc-
currence of the second peak 12 days in advance, but only provided a 5-day lead time
regarding its magnitude. This limited time frame poses a real challenge for proactive
reservoir management and reduces the opportunity to release water in preparation
for such events.

Also, it is important to note that literally all the previous research conducted on
hydrological modeling in the Black Volta Basin (Jung [2006], Akpoti et al. [2016],
Sawai et al. [2014], Shaibu et al. [2012], Kwakye and Bárdossy [2020] and even the
most recent Logah et al. [2023]) have calibrated and tested the model with discharge
up until 2008. This is why comparing the results from these models is complicated
since the construction of the Bui reservoir, completed in 2013, has had a substantial
impact on the basin’s hydrology. Notably, the discharges observed in the last five
years have exhibited considerable differences when compared to pre-dam discharges.
Therefore, it is important to recognize the limitations of previous research that did
not account for these changes, as their findings may not fully reflect the current
hydrological conditions and system behavior.
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In the initial phase of this research, data collection was conducted in the Black Volta
basin, encompassing daily precipitation and discharges recorded between 1991 and
2022. The collected data underwent a process of verification, aiming to ensure accu-
racy and consistency. Subsequently, necessary corrections were applied, culminating
in the update of the rating curve in Chache. This update was done using a con-
servative approach of the reservoir water balance of the Bui reservoir. This part of
the research answered the first sub-research question:”Which datasets are available and
reliable enough to be used to calibrate and test the hydrological model”.

The basin was divided into five sub-catchments, each of which was assigned a con-
ceptual model known as ’M3’. This model incorporated two reservoirs connected in
series: one unsaturated reservoir and one fast reservoir linked through a lag function.
The overall model output was then calibrated with the updated Chache discharge
from 2018 to 2022, demonstrating favorable results when assessed on a daily time
scale. The calibration process resulted in an NSE value of 0.85 (for 2018-2022). Dur-
ing the independent testing phase from 2013 to 2016, without further recalibration,
the NSE value increased to 0.86. This higher testing result is uncommon in hydro-
logical modeling. It can be attributed to the unusual rainfall-runoff distribution in
2019 and 2022, which made it more challenging to model and affected the calibra-
tion results. In contrast, the testing years from 2013 to 2016 showed a more typical
rainfall-runoff pattern.

Moreover, the model underwent additional testing by employing a different discharge
station situated in Lawra, approximately 208 km upstream of Chache. Because of the
new setup, the model had a recalibration that resulted in a great NSE of 0.92 (for 2013-
2014) and satisfactory testing results of 0.81 (for 2020 and 2022). Again proving the
functioning of the hydrological model in the Black Volta Basin and answers the main
research question: ”How can the daily discharge be effectively modeled in the data-scarce
Black Volta Basin?”

Incorporating TAHMO data from 2019 proved instrumental in anticipating the oc-
currence of an ”unexpected” second peak on October 22nd to some extent, as early
as October 12th. On that day the model predicted the occurrence of a second peak,
which was updated to grow larger on the 15th, and on the 21st, it confirmed that the
size of the peak would be similar to the first peak earlier in the season. By utilizing
the model in conjunction with near real-time data from TAHMO stations, the Basin
Power Authority (BPA) could have gained a 12-day lead time to make informed de-
cisions and effectively manage the reservoir to accommodate the second peak. This
answered the second sub-question: ”Could the spills of 2019 (and 2022) be avoided using
a hydrological model and TAHMO precipitation inputs?”
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5 Conclusion

Most importantly, the basin modeling process provided valuable insights into the
catchment characteristics that can be utilized for future research endeavors. One
notable insight emerged from the Sourou extraction, which functions as a natural
regulator of the Mouhoun River’s discharge, revealing the limited impact of catch-
ments 4 and 5 on peak flows in Chache or Lawra. Another significant observation
was made during high-flow years, wherein catchment 2 exhibited a substantial im-
pact compared to the other catchments and ultimately contributed significantly to
the spill in 2019 an 2022. This answers the third sub-research question: ”What is the
impact of the different sub-catchments on the total discharge of the Black Volta”

Consequently, it is recommended to augment the hydrology information in catch-
ment 2 to enhance informed decision-making in reservoir management. This could
be achieved through the installation of a new discharge station or additional pre-
cipitation stations, thereby promoting a more comprehensive understanding of the
catchment’s dynamics.
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As explained in the section 4.1.2 the rating curve was updated in a conservative
approach. However, to further minimize the conservative approach and enhance the
certainty and reliability of data for future modeling, it is advisable to update the
Chache rating curve using a conventional and up-to-date measurement approach.
This would involve conducting actual measurements to establish a more accurate
relationship between water levels and discharge. The new rating curve, represented
by Equation 4.2, can then serve as an upper bound for future research and analysis.
By employing this approach, the accuracy and precision of the modeling outcomes
can be significantly improved.

The decision to adopt a semi-distributed modeling approach instead of a gridded
one was primarily driven by the limited availability of data in the region, particularly
with regard to daily-scale precipitation. However, recent research conducted by Lo-
gah et al. [2023] demonstrated that by combining ground precipitation stations with
satellite rainfall products, it is possible to develop a daily gridded hydrological model
with high accuracy (NSE of 0.73-0.85). Updating to a gridded model by incorporat-
ing data from satellite products and TAHMO stations has the potential to yield an
accurate and valuable decision-making tool for reservoir management.

But staying in the context of semi-distributed models, only five (divided in the func-
tion of their structure: single (M1), serial (M2 & M3), and parallel (non-linear: M4
& HBV)) were made and tested in this research. While the selected M3 model ex-
hibited favorable performance, it is essential to recognize that the models tested in
this research were relatively simplistic and may not capture the full complexity of
the system. There is ample room for improvement and extension of these models.
Future investigations can explore incorporating additional variables, refining model
structures, and incorporating more advanced techniques to enhance the accuracy and
reliability of the models. By pursuing these avenues, a more robust and sophisticated
modeling framework can be established, enabling better insights and predictions in
the study area.

For future research, it is recommended to strive for a higher level of certainty in
modeling the impact of the Sourou extraction on the Black Volta Basin. This can be
achieved by incorporating more recent and comprehensive data, particularly at finer
temporal scales. Obtaining a more robust understanding of the dynamics associated
with the Sourou extraction will enhance the accuracy and reliability of the modeling
results.

The large magnitude of the second peak causing the spill in 2019 could only really be
predicted with 5 day lead time using the TAHMO precipitation and the hydrological
model. The limited lead time poses a real challenge for reservoir management. To
overcome this it is recommended to explore the feasibility of incorporating weather
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forecasts into the hydrological model and the decision-making process, which could
potentially extend the limited temporal window for preparation. Discussions with
representatives from BPA have indicated that weather forecasts in Ghana, particularly
in predicting significant rainfall events, tend to be reasonably accurate in terms of
precipitation amounts. However, the accuracy in pinpointing the precise timing of
precipitation events can be less reliable. Nonetheless, further investigation into the
integration of weather forecasts into reservoir management practices is warranted.
Assessing the accuracy of the previous year’s weather forecasts and comparing them
with actual precipitation data would be essential in evaluating the viability of this
approach.

The model calibration process involved, in part, the utilization of satellite altimetry
data and the calculation of the relative error between water level observations and
modeled discharge. However, this approach assumes a monotonous relationship be-
tween the two variables, which is a significant assumption to make. Therefore, it is
advisable to consider incorporating river geometry and friction to convert modeled
discharge into water levels, as suggested by Hulsman et al. [2020]. Regrettably, due
to time constraints in this research, this step was not undertaken, but it is strongly
recommended for future investigations.

Another aspect that warrants further research is the integration of soil moisture satel-
lite data into the model. This type of data can be highly valuable in determining
soil saturation levels and, consequently, in providing insights into reservoir satura-
tion within the model. Previous studies have indicated that the saturation point can
undergo significant shifts in the Volta region within a matter of days and this is
closely related to a sudden increase in the discharge. Therefore, if a soil moisture
satellite product is to be implemented, it is recommended to adopt a daily temporal
resolution. The RZSM-ASCAT-NRT-10 (H26) product from EUMETSAT, which has
been available since 2022, appears to be the most suitable choice for future research
endeavors.
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