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Abstract

This study proposes a Lane Change Assistance (LCA) system that provides haptic guidance
during lane changes. This system is fully integrated with Lane Keeping Assistance (LKA)
functionality to provide continuous lateral support during highway driving. Two different
system configurations of this LCA are investigated. One is a generalized LCA that provides
lane change reference trajectories based on a fixed lane change duration value of 4 seconds.
The other is an adaptive LCA that provides personalized lane change reference trajectories
through trial-by-trial adaptation to lane change duration of previously driven lane changes.
The effects of these systems with respect to mental workload, lateral control performance
and user acceptance are investigated. This is observed in an experiment with three different
driving sessions for each participant. A manual driving session, a driving session in which
the generalized LCA is active and a driving session in which the adaptive LCA is active. The
experiments are conducted on a 6 Degrees of Freedom (DoF) motion-based simulator with 34
participants, driving in a three-lane highway simulation environment with a scripted traffic
scenario. To measure mental workload, an auditory cognitive secondary N-back task is intro-
duced. The results show that the introduction of a generalized LCA or adaptive LCA does not
have significant influence on mental workload compared to the manual driving session. When
the adaptive LCA is introduced, lateral control performance is enhanced compared to the
generalized LCA and manual driving. Additionally, user acceptance expressed as subjective
usefulness is increased by introducing the adaptive LCA compared to the generalized LCA.
Furthermore, inter-driver variability of the lateral control performance during lane changes
is reduced by the proposed trial-by-trial adaptive LCA system compared to the generalized
LCA system and manual driving.
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Glossary

List of Acronyms
ACC Adaptive Cruise Control
ADAS Advanced Driver Assistance Systems
ANOVA Analysis Of Variance
ASM Automotive Simulation Model
CC Cruise Control
DoF Degrees of Freedom
DI Discrimination Index
HSC Haptic Shared Control
IQR Interquartile Range
LC Lane Change
LCA Lane Change Assistance
LKA Lane Keeping Assistance
LQR Linear Quadratic Regulator
SAE Society of Automotive Engineers
SAT Satisfaction Score
SRR Steering Reversal Rate
TLC Time to Lane Crossing
TTC Time to Collision
USE Usefulness Score
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iv Glossary

List of Symbols

α [-] Cronbach’s coefficient of reliability
x [-] State vector used for state-feedback
∆Y [m] Lateral error
∆Yp [m] Lateral preview error
τ [s] Lane change duration
τavg [s] Moving average lane change duration
θ [deg] Steering wheel angle
θc [deg] Steering wheel angle desired by the controller
θd [deg] Steering wheel angle desired by the driver
θer [deg] Steering wheel angle error between controller and driver
θfilt [deg] Steering wheel angle filtered by second order Butterworth filter
θgap [deg] Steering wheel angle gap value for SRR
amax [m/s2] Maximum desired lateral acceleration
ist [-] Steering ratio
jmax [m/s3] Maximum desired lateral jerk
khsc [deg/Nm] Haptic Shared Control stiffness
tb [s] One-sided blending time hyperbolic tangent blending function
Tlca [Nm] Steering wheel torque applied by lane change assistance
Tmod [Nm] Steering wheel torque applied from the multibody vehicle model
Ttot [Nm] Steering wheel torque applied to the simulator’s steering column
w [m] Lane width
δfc [deg] Front wheel steering angle demanded by the LQR controller
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1-1 Introduction

To enable a transition from automation level
2 to level 3, as defined by the Society of Au-
tomotive Engineers (SAE), it is important to
consider integration of Advanced Driver As-
sistance Systems (ADAS). Level 2 is defined
as partial automation, in which the driver
is supported by several automated functions.
Level 3 is defined as conditional automation,
in which the full driving task is automated
under certain conditions [6]. Most currently
available vehicles are partially automated and
have Lane Keeping Assistance (LKA) sys-
tems installed that do not provide support
during lane changes. Instead, lane keeping
functionality is switched off when the indica-
tor light is engaged.

Furthermore, mental workload is found to
increase significantly during a Lane Change
(LC) maneuver [1], as shown in Figure 1-1.
Therefore, the goal of this research is to de-
sign a system that can mitigate this increase
of mental workload, thus enhancing safety
and comfort during lane changes. To achieve
this goal, this study proposes a Lane Change
Assistance (LCA) system that provides hap-
tic support during lane changes. This system
is completely integrated with an LKA system
to enable continuous lateral support during
highway driving.
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Figure 1-1: Mental workload measured
by EEG, expressed as reference value 1 sec-
ond prior to- and as mean and maximum
value during lane changes, adapted from
Kim et al. [1]

The increasing amount of installed ADAS in
modern vehicles require an effective collabo-
ration between these systems and the driver.
Haptic Shared Control (HSC) is a commonly
encountered solution to balance the control
authority between ADAS and drivers [7].
To enhance smooth collaboration [8] and in-
crease user acceptance [9] of such an HSC sys-
tem, adaptation to a driver’s personal prefer-
ences is desirable. Furthermore, adaptation
to individual driving style can enhance us-
ability and comfort, hence preventing disuse
of the system [10]. This can be done by im-
plicit or explicit personalization, adapting ei-
ther to observed user data or explicitly stated
preference settings, respectively.
Implicit personalization is expected to be
more effective, since up to 67% of drivers have
been shown to incorrectly identify their own
driving style when explicitly stating their pre-
ferred driving style [11]. Driving behaviour
varies widely between drivers, known as inter-
driver variability, but also within a driver,
known as intra-driver variability [12]. Since it
is shown that there is a significant intra-driver
modeling uncertainty when observing driving
behaviour during two hours of lane keeping
[13], continuous adaptation is expected to be
more effective than implicit or explicit per-
sonalization.
In this study, an LCA system is designed that
adapts its reference trajectory to the mov-
ing average of previous lane change durations.
This is implemented by means of trial-by-trial
adaptation, which has successfully personal-
ized trajectories for haptic assistance during
a non-driving task [14]. The effect of this
adaptive LCA system is investigated by com-
paring it to manual driving and driving with
a generalized LCA, which is based on a fixed
value for average lane change duration. The
research question is formulated as follows:
Does trial-by-trial adaptation to lane change
duration of a haptic lane change assistance
system reduce mental workload and increase
control performance during highway driving?

N. J. van Leeuwen Master of Science Thesis



1-2 LCA System Design 3

Figure 1-2: Schematic of the designed Lane Change Assistance system

This leads to the following hypotheses:

I. A trial-by-trial adaptive lane change as-
sistance system reduces mental work-
load of drivers during highway driving.

II. A trial-by-trial adaptive lane change as-
sistance system increases lateral control
performance during highway driving.

To test these hypotheses, the following re-
search objectives have been set:

1. Design a reference path planning algo-
rithm that enables adaptation to indi-
vidual preferences.

2. Design a path-following control algo-
rithm that minimizes mental workload,
lateral error and control effort.

3. Design a suitable LCA logic to switch
from lane keeping to lane changing
functionality and vice-versa.

4. Determine a definition of lane change
duration that can capture the lane
change behaviour of individual drivers,
such that the trial-by-trial adaptation
can be applied to it.

5. Design an experiment and choose cor-
responding metrics to assess the effect
of the LCA system and the effect of the
trial-by-trial adaptation.

1-2 LCA System Design

The novel adaptive LCA system is designed
by integrating the concept of trial-by-trial
adaptation in an LCA system. The planned
reference path is adapted to the duration
of previous LC maneuvers. The reference
path is generated by a double fifth or-
der polynomial path planning algorithm and
subsequently fed to a path-following Linear
Quadratic Regulator (LQR) controller. The
state-space equations of the lateral controller
are formulated using a bicycle model and
driver model, the resulting gains are sched-
uled with longitudinal velocity. All subsys-
tems are schematically shown in Figure 1-2.

Trial-by-Trial Adaptation

Intra-driver variability has been shown to
be greater than inter-driver variability dur-
ing long driving sessions [13]. Therefore, a
learning-based adaptive system using current
driving information is preferred rather than
a personalized system that statically charac-
terizes ones driving style based on historical
data. It is shown that trial-by-trial adapta-
tion reduces control effort and torque conflict
without degrading the performance in a non-
driving task [14]. Therefore, this method is
chosen for implementation in the proposed
LCA to reduce mental workload during an LC
maneuver, increase user acceptance and en-
hance lateral control performance. The trial-
by-trial adaption is based on the duration

Master of Science Thesis N. J. van Leeuwen
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of previous LC maneuvers and is applied to
the planned reference path of the LCA sys-
tem. The LC maneuver duration resulting
from the collaborative steering behaviour on
the HSC interface are registered by the LCA
logic, stored and used to compute a moving
average over 10 trials. This computed value
is subsequently used to determine the desired
duration for the reference path planning of
the next LC maneuver. The registration of
an LC maneuver in the LCA logic is initiated
by the trigger of the indicator light and is con-
sidered completed when the absolute value of
both the lateral error ∆Y= Y −Ydes and lat-
eral preview error ∆Yp, shown in Equation
1-9, are within the lateral margin of 1 meter
from the target lane center. The lane change
is aborted when the indicator light is switched
off before crossing the lane boundary, after
which the lane keeping functionality is con-
tinued in the original lane.
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Figure 1-3: Reference path planning of
the trial-by-trial adaptive LCA for the 37
trials of participant 25

Haptic Shared Control

The HSC algorithm is designed according to
the virtual spring model [15], which is ex-
pressed in Equation 1-2. The HSC stiffness
khsc is tuned for lateral control performance
and user acceptance to a value of khsc = 0.25.
The HSC interface of the steering wheel is
used to combine the inputs of the driver and
the LCA system as follows. First, the front
wheel steering angle δfc resulting from the

LQR controller is multiplied by the steering
ratio ist to obtain the steering wheel angle de-
sired by the controller θc, shown in Equation
1-1. Subsequently, the measured steering in-
put of the driver θd is subtracted to determine
the steering wheel angle error θer. This angle
is multiplied by the HSC stiffness to obtain
the assistance torque Tlca. This assistance
torque is added to the torque from the multi-
body vehicle model Tmod to obtain the total
torque Ttot, shown in Equation 1-3. The total
torque is sent to the servomotor that provides
torque to the simulator’s steering column.

θc = δfc · ist (1-1)

Tlca = khsc · θer = khsc(θc − θd) (1-2)

Ttot = Tmod + Tlca (1-3)
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Figure 1-4: Reference path planning of
the trial-by-trial adaptive LCA for the 34
trials of participant 34

Path Planning

The most commonly used method to plan the
path of an LC maneuver is a fifth order poly-
nomial. However, with a conventional fifth
order polynomial replanning of the path is
not possible. This could potentially lead to
unsafe situations, therefore an adjustment is
needed to enable the possibility to abort an

N. J. van Leeuwen Master of Science Thesis
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LC maneuver after initiation [16]. Further-
more, a human driver uses a higher lateral
acceleration for steering out of the initial lane
than for steering back into the target lane
[17]. This asymmetric human steering be-
havior cannot be replicated by using a single
quintic polynomial. By combining two differ-
ent quintic polynomials, the asymmetric path
can be generated to represent human LC ma-
neuvers more accurately. Therefore, a double
quintic polynomial [18] is implemented to de-
termine the reference path for the path fol-
lowing controller.
s1(t) = c0 + c1 t+ c2 t

2 + c3 t
3 + c4 t

4 + c5 t
5

s2(t) = c6 + c7 t+ c8 t
2 + c9 t

3 + c10 t
4 + c11 t

5

(1-4)
By defining the maximum desired lateral ac-
celeration as amax = 1 m/s2, the maximum
desired lateral jerk as jmax= 1.5 m/s3 and
the lane width of w= 3.5 m, the two polyno-
mials are solved with the symbolic toolbox of
Matlab.

tamax (s1) = −
2 · c4 ±

√
4 · c2

4 − 10 · c3 · c5

10 · c5

tjmax (s1) = − c4
5 · c5

(1-5)
The coefficients can be solved using Equation
1-5 for s1 and s2, under assumption that the
maneuver is initiated without lateral accel-
eration, velocity or deviation from the lane
center. Continuity is guaranteed by enforcing
that the initial values of the second polyno-
mial s2 are equal to the final values of the first
polynomial s1. Since the LCA is integrated
with an LKA, lane position metrics such as
Time to Lane Crossing (TLC) are expected
to cause conflict between the functionalities
of these systems. Furthermore, most lane
change intent prediction algorithms require
eye-tracking or head movement tracking to
accurately predict lane changes in real-time
[19], which were not available for this study.
Therefore, the manual trigger of the indica-
tor light is used to switch from lane keeping
to lane changing functionality.
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Figure 1-5: LC maneuver path planning
for values of lane change duration τavg

that were observed from 27 participants

To ensure smooth transition between the two
polynomials, especially in the case of replan-
ning, a hyperbolic tangent blending function
with a one-sided blending time tb= 0.5 sec-
onds is used, as expressed in Equation 1-6.
LC maneuver paths are computed for lane
change duration values between τ= 1 and
τ = 10 seconds and stored in a lookup ta-
ble. This lookup table enables interpolation
for the exact value for τavg whilst minimiz-
ing computational power during simulation.
The computed reference paths are visualised
in Figure 1-5 for the range of values between
τavg= 2 and τavg = 6 seconds that were en-
countered during the experiment. The fixed
value τavg = 4 that is used as lane change
duration for the generalized LCA is high-
lighted. This value is based on the average
lane change duration of 4.6 seconds and dis-
tribution found in literature [2], as can be
seen in Figure 1-6.

s(t) =
1− tanh( (t−τs1 )

tb
)

2 · s1(t) +

1 + tanh( (t−τs1 )
tb

)
2 · s2(t)

(1-6)
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Figure 1-6: Distribution of lane change
duration according to Toledo & Zohar [2]

Controller Design

A state feedback controller was selected as
path-following controller, since it shows sim-
ilar performance to state-of-the-art path-
following algorithms in highway driving con-
ditions [20]. The selected state feedback con-
troller is a gain-scheduling LQR controller.
State vector x containing 7 states is used to
determine the additional steering angle δfc
that the controller should provide to the front
wheels of the vehicle, which is shown in Equa-
tion 1-7 to 1-9.

δfc = k(Vx) · x (1-7)

x = [Vy ψ̇ ψ Y δfd δ̇fd ∆Yp]
(1-8)

∆Yp = Yp − Y − tp · Vx · ψ (1-9)

The definition of lateral preview error ∆Yp is
visualized by the schematic in Figure 1-7.

Figure 1-7: Schematic of the lateral pre-
view error adapted from Wang et al. [3]

By considering multiple objectives includ-
ing path-tracking error, driver’s physical and
mental workloads and control effort in the
LQR controller, the cost function described
in Equation 1-10 is minimized. J1 repre-
sents the cost for lateral preview error, J2 and
J3 represent the driver’s mental and physical
workload, respectively, and J4 represents the
control effort of the LCA system. To mini-
mize computational power during simulation,
the closed-loop control gains are calculated
offline for a range of longitudinal velocities
and integrated in the model by means of a
lookup table. The control equations are for-
mulated to schedule the gain based on lon-
gitudinal velocity. These control equations
and the corresponding simplified vehicle and
driver model are formulated in section A-1 of
the Appendix.

J =
∫ ∞

0
(J1 + J2 + J3 + J4) dt (1-10)

1-3 Experiment Design

Figure 1-8: A lane change maneuver dur-
ing an experiment in the highway scenario
of the 6 DoF motion-based simulator
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1-3 Experiment Design 7

To determine the effect of the adaptive and
generalized LCA on mental workload, con-
trol performance and user acceptance, exper-
iments with human participants in the loop
are executed on a motion-based driving simu-
lator. This 6 Degrees of Freedom (DoF) driv-
ing simulator utilizes a projected view of 210
degrees horizontally and 50 degrees vertically,
two exterior rear-view mirrors, one interior
rear-view mirror and a dashboard depicting
all relevant dials.

The vehicle model used for the simulation in
the experiment is a 13 DoF dSpace multi-
body Automotive Simulation Model (ASM)
with the parametrization of a generic sedan.
The selected signals of the vehicle model are
recorded at a frequency of 100 Hz. The ve-
hicle is equipped with Cruise Control (CC),
which is set at 100 km/h and can be adjusted
by the driver when necessary. A traffic sce-
nario with 30 recurring entities is scripted
such that the vehicles in the right lane drive
at 90 km/h, 95 km/h in the center lane and
105 km/h in the left lane. The participants
are instructed to adjust the longitudinal ve-
locity as infrequently as possible and return
to the right lane after overtaking, such that a
high amount of LC maneuvers is encouraged.

Group Session 1 Session 2 Session 3
A Manual Generalized Adaptive
B Generalized Adaptive Manual
C Adaptive Manual Generalized

Table 1-1: Participant groups and corre-
sponding sequence of system configuration
in the different driving sessions

The experiment consists of 3 different ses-
sions of 10 minutes on the driving simula-
tor. A baseline measurement is recorded in
a manual driving session, in which the driver
has full lateral control and receives no assis-
tance. Another session is driven with the
generalized LCA system, for which the av-
erage value of a lane change duration τ was

determined to be 4 seconds. A third session
is driven with the adaptive LCA system, in
which the lane change duration is determined
by the LCA logic and implemented in the as-
sistance by means of trial-by-trial adaptation.
These three sessions are shuffled in sequence
by using the Latin squares method to miti-
gate both learning effect and fatigue of the
participants. The resulting three groups are
classified as group A, group B and group C,
which are shown in Table 1-1. The drivers
are only informed if the driving session will
be manual or with haptic assistance. They
receive no prior information about the differ-
ence in LCA systems or which one is active.

Parameter Mean σ Unit
Participant age 36.8 15.6 years
Driver’s license 17.8 16.2 years
Average driving 4.52 3.90 hours/week
CC driving 2.18 3.22 hours/week
LKA driving 0.50 1.95 hours/week
Simulator driving 0.29 0.57 hours/week

Table 1-2: Demographic parameters and
corresponding distribution of the 27 par-
ticipants included in the results

The experiments were executed with 34 par-
ticipants in total, of which five measurements
contained corrupted signals. To ensure equal
distribution over the three groups described
in Table 1-1, two participants were eliminated
randomly to obtain 9 participants per group,
thus 27 in total. The demographics parame-
ters of the 27 participants that are used for
the analysis of the results are shown in Table
1-2. The measurements were rearranged such
that the results can be presented per system
configuration.

Metrics

Mental workload is measured during the com-
plete duration of the experiment by means of
an auditory N-back task [21], which is intro-
duced as a cognitive secondary task.
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In this task participants are asked to respond
by tapping a touchscreen when the audio
fragment of a recorded letter is identical to
the letter played N trials before. N is cho-
sen to be one, considering the substantial
workload required for the driving task. Fur-
thermore, it is shown that the 1-back audi-
tory task results in lower variability of lat-
eral position compared to the 0-back, 2-back
and baseline measurement [22]. The result-
ing score is expressed as Discrimination In-
dex (DI), which is calculated by using the hit
rate H and false-positive rate F , as shown in
Equation 1-11.

DI = 1
2 + sign(H − F ) · (H − F )2 + abs(H − F )

4 ·max(H,F )− 4HF

H = #hits
#signal trials F = #false positives

#noise trials
(1-11)

Figure 1-9: Secondary task influence on
the variability of steering wheel angle [4]

Steering Reversal Rate (SRR) can be used
as complement or alternative to lane posi-
tion metrics to quantify lateral control per-
formance [23]. It is easier to measure in
real-world scenarios compared to lane posi-
tion metrics, therefore SRR is often used as
driving performance metric in field studies
[24] [25]. Furthermore, the introduction of
an auditory secondary task does not influence
steering wheel angle variability, as is shown in
1-9, although it might influence mental work-
load [4]. Since a cognitive secondary task is

introduced in this study, the corresponding
parameters [23] are used to obtain the high-
est sensitivity for this scenario.
The steering wheel angle signal θ is filtered
with a second order Butterworth filter with a
3dB cut-off frequency of 0.6 Hz to obtain θfilt.
If the difference in θfilt of the current and pre-
vious time step is larger than the gap value
θgap= 0.1 deg, it is registered as a reversal.
These are expressed in SRR as reversals per
minute. The SRR metric is also computed
for the LC maneuvers only, by extracting the
lane change sections of the steering wheel an-
gle signal, shown in Appendix B-1.
To express user acceptance of the partici-
pants, a subjective van der Laan [26] ques-
tionnaire is used, in which the generalized
and adaptive LCA system configurations are
rated with respect to the manual driving ses-
sion. The participants are requested to score
the system configurations on 9 different as-
pects of the system, leading to a Usefulness
Score (USE) and a Satisfaction Score (SAT).
It is stated that Cronbach’s coefficient of re-
liability α should be higher than 0.65 for the
results to be valid. No prior knowledge about
the LCA systems is provided to the partici-
pants to ensure unbiased results.
For all presented mean results, a linear
mixed-effect model regression analysis is ap-
plied to obtain the statistical significance
of the metrics. In this way, the individ-
ual participants were regarded as a random
effect with no a-priori expectations. Since
the data is obtained with repeated mea-
surements of one individual participant and
different system configurations, repeated-
measures Analysis Of Variance (ANOVA) is
more suitable than a one-way or two-way
ANOVA. However, mixed-effect modeling is
more robust against systematic inter-driver
variability than repeated-measures ANOVA
[27]. Since inter-driver variability is expected
to be an important influence, linear mixed-
effect model regression analysis is used to de-
termine the statistical significance of results.
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For all presented variance results, Levene’s
test of homoscedacity is applied to investi-
gate the homogeneity of variances across sys-
tem configurations. It is chosen over the two-
sample F-test of equality of variance due to
its robustness against non-normality in the
data and the possibility to compare the vari-
ance of three system configurations. For both
the linear-mixed regression analysis and Lev-
ene’s test of homoscedacity a 95% confidence
interval is applied, resulting in a significance
level of 0.05.

1-4 Results

The means and statistical significance of the
objective metrics for each system configura-
tion are presented in Table 1-3. The variances
of the objective metrics and corresponding
statistical significance are presented in Ta-
ble 1-4. The means, statistical significance
and Cronbach’s coefficient of reliability α for
the subjective metrics are shown in Table 1-
5. The results are displayed graphically in
Figure 1-10 to Figure 1-13 by means of box-
plots. These show the median of participants
in red, the Interquartile Range (IQR) in blue
and the whiskers in black, of which the max-
imum length is defined as 1.5 times the IQR.
Furthermore, the mean results of individual
participants are shown in different colours,
connected by dotted lines between the differ-
ent system configurations.

Metric Man Gen Ada F p
DI 0.808 0.810 0.810 0.216 0.806
SRR 34.67 33.22 32.34 9.390 <0.001
LC-SRR 56.48 54.03 53.55 2.961 0.058

Table 1-3: Resulting means of objec-
tive metrics and statistical significance ob-
tained by mixed-effect linear regression

Metric MAN GEN ADA F p
DI 4·10−4 2·10−4 1·10−4 3.57 0.033
SRR 28.93 29.37 28.28 0.021 0.980
LC-SRR 48.70 91.57 31.22 3.59 0.032

Table 1-4: Resulting variances of objec-
tive metrics and statistical significance ob-
tained by Levene’s test of homoscedacity

Metric GEN ADA α F p
USE 3.444 4.407 0.901 7.773 0.007
SAT 1.889 2.667 0.765 2.338 0.132

Table 1-5: Resulting means of subjec-
tive metrics and statistical significance ob-
tained by mixed-effect linear regression

Mental Workload
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Figure 1-10: Mental workload measured
by the cognitive N-back task per system
configuration for 27 participants

In Table 1-3 it is shown that the small change
of mean DI after introducing an LCA system
compared to the manual driving session is re-
garded insignificant by the mixed-effect linear
regression analysis. The variance of mean DI
decreases across the three system configura-
tions, as can be seen in Figure 1-10. This is
regarded as a significant change in variance
according to Levene’s test with an associated
p-value of 0.032, as shown in Table 1-4.
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Lateral Control Performance
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Figure 1-11: Steering reversal rate dur-
ing complete driving sessions per system
configuration for 27 participants

As can be seen in Figure 1-11 and in Table 1-
3, the mean value of SRR decreases when the
adaptive LCA is introduced compared to the
generalized LCA and manual driving. In Ta-
ble 1-4 it can be seen that the variance of SRR
remains unchanged across the system config-
urations with a p-value of 0.98. Therefore, it
passes Levene’s test for equality of variances.
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Figure 1-12: Steering reversal rate during
lane change maneuvers per system config-
uration for 27 participants

It can be seen in Figure 1-12 that the variance
of SRR during LC maneuvers increases from
manual to generalized LCA. The variance of
SRR during LC maneuvers of the adaptive
LCA decreases compared to both the gener-
alized LCA and the manual driving session.
In Table 1-4 it is shown that this reduction of

variance is significant according to Levene’s
test, with a p-value of 0.032.

User Acceptance
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Figure 1-13: Subjective usefulness score
and satisfaction score per system configu-
ration for 27 participants

In Figure 1-13 it is shown that both the sub-
jective usefulness score and the subjective
satisfaction score increase with the introduc-
tion of the adaptive LCA system compared
to the generalized LCA system. However, in
Table 1-5 it is shown that this increase is only
significant for the subjective usefulness score
USE with a p-value of 0.007. Furthermore,
it can be seen in Figure 1-13 that the useful-
ness score for both the generalized and the
adaptive LCA are higher than the respective
satisfaction score values. The subjective re-
sults are regarded as valid since Cronbach’s
coefficient of reliability α is higher than 0.65
for both system configurations, as is shown in
Table 1-5.

1-5 Discussion
The unchanged mental workload measured
by DI after introduction of the trial-by-trial
adaptive LCA system does not agree with
the expectations expressed in hypothesis I,
thus the hypothesis is rejected. The negli-
gible change in mean DI might be explained
by the fact that the N-back task was executed
continuously with random hits to prevent an
expectation pattern. Therefore workload was
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measured during both lane keeping and lane
changing, possibly reducing visibility of the
effect during LC maneuvers. Additionally, it
could be explained by the low error rate mea-
sured for the auditory 1-back task [5] in a
lane keeping task, as shown in Figure 1-14.
Alternatively, the small change in measured
mental workload across system configurations
could be explained by the large dependence
on traffic environment complexity [28]. This
is in agreement with observations made dur-
ing the experiment, in which it seemed that
secondary task performance degraded in sit-
uations with high traffic complexity.

Figure 1-14: Error rate of the N-back
task according to Mehler et al. [5]

Lateral control performance and SRR are in-
versely related, since the performance is con-
sidered to be reduced when many steering
corrections have to be made. Therefore, the
lateral control performance is increased by
introducing the adaptive LCA system com-
pared to manual driving and the generalized
LCA system. This in agreement with hypoth-
esis II, which is therefore accepted. The the
validity of SRR as metric representing abso-
lute steering performance can be questioned,
since it is affected by the steering task diffi-
culty. However, it is found that the metric is
a valid representation of driving performance
and can therefore be used to compare differ-
ent drivers or conditions [29].
The increased steering wheel activity may be
associated with both increased cognitive load
and reduced lateral control performance [23].

However, literature shows that SRR is no sig-
nificantly affected by a cognitive secondary
task [30] [4], indicating that the change in
SRR is more probable to be an effect of the
different system configurations or traffic com-
plexity rather than the introduced secondary
task.

The reduction in variance of SRR during lane
changes indicates that the inter-driver vari-
ability of performance is reduced by intro-
ducing the trial-by-trial adaptation. This
could result from the fact that the adaptive
LCA accommodates to the personal prefer-
ences of different drivers, thus increasing the
lateral control performance resulting from the
HSC interface of the steering wheel. This is
in agreement with previous studies that ap-
plied a personalized driver model to both an
LKA and an Adaptive Cruise Control (ACC)
system [31] and a personalized LCA system
based on identification of cautious, normal
and aggressive driving style [32]. These stud-
ies also show that the differences in driv-
ing behaviour were accommodated and thus
inter-driver variability could be reduced.

The significantly increased user acceptance
expressed as usefulness score of the adaptive
LCA compared to the generalized LCA sys-
tem is in agreement with results from a pre-
vious study that applied continuous adapta-
tion to personal preference of the longitudinal
assistance system ACC to Time to Collision
(TTC). This study also showed a higher user
acceptance compared to a standard ACC [33].
The unchanged user acceptance expressed as
satisfaction score is not in agreement with the
expectations, this might be explained by con-
flicts of lane change intention caused by the
limitations of the LCA logic.

Limitations

For the purpose of this study, longitudinal
control is supported by means of a CC instead
of an ACC system. This was done to stim-
ulate lane changing rather than car-following

Master of Science Thesis N. J. van Leeuwen



12 Conference Paper

behaviour. However, it was observed during
the experiments that the longitudinal control
task required a lot of additional mental work-
load capacity in situations with high traffic
density. Therefore it is expected that this
has distorted the measurements of multiple
metrics, which could have been mitigated by
integration of the LCA system with an ACC
system.

In this study it was chosen to embed a safety
feature in the LCA logic, by aborting a lane
change if the indicator light is switched off
before crossing the lane boundary. However,
aborted LC maneuvers were almost never en-
countered during the experiments, whereas
many people switched off the indicator light
before crossing the lane boundary during an
intentional LC maneuver. This led to a rel-
atively large number of conflicts between the
LCA logic and the participants. These con-
flicts could have been mitigated by enlarging
the time duration in which the lane boundary
has to be crossed.

Furthermore, two subsequent left or right LC
maneuvers could not be identified as such if
the indicator light was not switched off be-
tween the maneuvers. The conflicts result-
ing from this could have be prevented by ex-
ecuting the simulation on a two-lane highway.
More preferably, the LCA logic should be able
to detect the intention of two subsequent lane
changes.

1-6 Conclusion

The hypotheses of this study were stated as
follows:

I. A trial-by-trial adaptive lane change as-
sistance system reduces mental work-
load of drivers during highway driving.

II. A trial-by-trial adaptive lane change as-
sistance system increases lateral control
performance during highway driving.

The first hypothesis is rejected, since there
is no significant change in mental workload,
measured by the mean discrimination index
of the cognitive secondary N-back task, when
the generalized or adaptive LCA system is in-
troduced.
The second hypothesis is accepted, since
the lateral control performance, measured by
the mean steering reversal rate, is increased
significantly when introducing trial-by-trial
adaptation to lane change duration in the
adaptive LCA when compared to the general-
ized LCA and manual system configuration.
Furthermore, inter-driver variability of lat-
eral control performance during lane changes
is reduced significantly by introducing trial-
by-trial adaptation to lane change duration in
the adaptive LCA compared to the general-
ized LCA and manual driving. In addition to
this, user acceptance expressed as subjective
usefulness is increased significantly by intro-
ducing the adaptive LCA system.

1-7 Future Work
During this study, several observations are
made of aspects that could be improved upon
and topics to be researched in future stud-
ies. First of all, to achieve fully integrated
longitudinal and lateral functionality of lane
change assistance, implementation of HSC on
a longitudinal control interface such as the ac-
celeration or brake pedal would be preferable.
By doing this, excessive braking or accelera-
tion to complete a safe lane change could be
made redundant. By integrating longitudinal
control as proposed in [34], the functionalities
of these systems could be optimized to com-
plement one another and thus lead to more
consistent results with reduced effect of traf-
fic complexity.
Furthermore it is recommended to adjust the
LCA logic to enable a more universal detec-
tion of lane change intention. It is expected
that this will further enhance user acceptance
and driving performance, whilst ensuring safe
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driving behaviour. For example, the lateral
margins defining the end of an LC maneuver
could be reduced to a smaller value to capture
more of both the intra-driver and inter-driver
variability. Alternatively, different metrics
could be chosen to define the start and end
of an LC maneuver.

To improve upon the learning speed of the
adaptive LCA system, naturalistic driving
data of participants could be used to obtain
initial values for the adaptive LCA, opposed
to the generalized value for lane change du-
ration of 4 seconds. Additionally, the ef-
fect of different values for the moving aver-
age window length could be investigated. Al-
ternatively, other learning algorithms could
be applied to obtain the desired value of lane
change duration. Also, further research could
be done to investigate the effect of adaptation
to driver parameters other than lane change
duration, such as preferred lateral accelera-
tion [35].
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Appendix A

System Design

The Lane Change Assistance system was designed within a Matlab-Simulink model that is
used as I/O interface of the dSpace Automotive Simulation Model (ASM). In Figure A-3
to A-5 the model and specific elements of this model are highlighted. The LQR controller
equations are presented in section A-1 and the LCA Logic is explained in more detail in
section A-2.
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A-1 LQR Controller Design
In this section the equations of the LQR controller are displayed more elaborately. The
State-Space equations of the LQR controller are formulated in Equation A-1 to A-8. The
cost function is formulated in Equation A-9 and the corresponding weights are shown in
Table A-1.

A =




2 (Cf +Cr)
m·Vx

−Vx+(2·(Cr·lr−Cf ·lf ))
m·Vx

0 0 2Cf

m 0 0
2Cr·lr−Cf ·lf

Iz ·Vx
−2Cf ·l2f +Cr·l2r

Iz ·Vx
0 0 2Cf ·lf

Iz
0 0

0 1 0 0 0 0 0
1 0 Vx 0 0 0 0
0 0 0 0 0 1 0
0 0 −Rg ·Gh·tp·Vx

a0·T 2
d

−Rg ·Gh

a0·T 2
d
− 1
a0·T 2

d
− 1
a0·Td

0
0 0 −tp · Vx −1 0 0 0




(A-1)

B =
[
0 0 0 0 0 Rg ·Gh

a0·T 2
d

0
]

(A-2)

C =




0 0 −tp · Vx −1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


 (A-3)

D =
[
1 0 0

]T
(A-4)

Qd =



q1 0 0
0 q2 0
0 0 q3


 (A-5)

Q = (CT ·Qd · C) + (DT ·Qd ·D) (A-6)

a0 = τlag · τdelay
T 2
d

(A-7)

Td = (τlag + τdelay) (A-8)

The cost function of the LQR controller is formulated in Equation A-9

J =
∫ ∞

0
(J1 + J2 + J3 + J4) dt

J = (q1 ·∆Y 2
p + q2 · δ2

fd + q3 · δ̇2
fd +R · δ2

fc) dt
(A-9)

The values of the control weighting factors and the state weight factors are obtained by tuning
the controller in a digital simulation with a simplified vehicle model. The resulting values are
shown in Table A-1.
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Table A-1: Weighting factors for LQR Controller

Symbol Parameter Value
q1 Path-tracking weight 5
q2 Physical workload weight 52.96
q3 Mental workload weight 61.7
R Control effort weight 5296

A-2 LCA Logic
The definition of the start and end of an LC maneuver as used by the LCA Logic is graphically
shown in Figure A-1 and Figure A-2. The start of an LC maneuver is defined as the moment
that the indicator light is engaged. The end is defined as the moment that both the lateral
error ∆Y and the lateral preview error ∆Yp are within the defined margins of the LCA Logic.

Figure A-1: Schematic showing the definition of the start of an LC maneuver
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Figure A-2: Schematic showing the definition of the end of an LC maneuver

Figure A-3: Simulink model containing the computation of the desired lateral position, which is
used to determine the reference error for the LQR controller
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Figure A-4: Simulink Model containing the generation of the generalized and adaptive lane
change reference trajectories
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Figure A-5: Simulink Model containing the proposed Lane Change Assistance system
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B-1 Lane Change Sections
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B-2 Torque Conflict Ratios
To express collaborative performance of the human driver and the LCA system, torque con-
flict is measured during the driving session. This torque conflict is expressed in different
ratios, based on the amount of time in which the assistance was in in accordance with the
drivers intention [36]. All the collaborative rates were not changed significantly due to the
larger variance compared to the change in mean. The rates are shown both for complete
driving sessions and for during the lane change maneuvers in Figure B-1 to Figure B-8.

The consistency ratio is formulated as follows:

rconsist = 1
T

∫ T

0
sign (Tdr ·Tc) dt |Tdr ·Tc ≥ 0 (B-1)

The intrusiveness ratio is formulated as follows:

rintru = 1
T

∫ T

0
sign (Tdr ·Tc) dt if Tdr ·Tc < 0 (B-2)

The resistance ratio is formulated as follows:

rresist = 1
T

∫ T

0
sign (Tdr ·Tc) dt |Tdr ·Tc < 0

|Tdr > Tc

(B-3)

The contradiction ratio is formulated as follows:

rcontra = 1
T

∫ T

0
sign (Tdr ·Tc) dt |Tdr ·Tc < 0

|Tdr < Tc

(B-4)

B-3 Raw Data
Here the measured data is presented of the 27 participants who were included in the results
of the research. For the first 16 participants, no lateral position plots are shown. This is
due to an error in the measurement setup, causing the measurement of z position instead
of y position. The different trials in each driving session are plotted over another by using
measured parameters of the LCA Logic.
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Figure B-1: Mean consistency rate during complete driving sessions of 27 participants

Figure B-2: Mean consistency rate during lane changes of 27 participants
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Figure B-3: Mean intrusiveness rate during complete driving sessions of 27 participants

Figure B-4: Mean intrusiveness rate during lane changes of 27 participants
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Figure B-5: Mean resistance rate during complete driving sessions of 27 participants

Figure B-6: Mean resistance rate during lane changes of 27 participants
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Figure B-7: Mean contradiction rate during complete driving sessions of 27 participants

Figure B-8: Mean contradiction rate during lane changes of 27 participants
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Demographics Questionnaire
Lane change assistance analysis on
a motion-based driving simulator

Demographics Questionnaire:

Lane change assistance analysis on a motion-based driving simulator

Please answer the questions truthfully to the best of your ability

What is your age?

What is your gender?

For how many years do you own a driver’s license?

How many hours do you drive per week on average?

YES NO

Do you have prior experience driving with cruise control? � �
If yes, how many hours of driving per week on average?

YES NO

Do you have prior experience driving with lane keeping assist? � �
If yes, how many hours of driving per week on average?

YES NO

Do you have prior experience driving on a driving simulator? � �
If yes, how many hours of driving per week on average?

Friday 22nd January, 2021 Demographics Questionnaire Page 1
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Acceptance Questionnaire:

Lane change assistance analysis on a motion-based driving simulator

Please tick the appropriate boxes

What is your judgement about the first system you have driven with?

USEFUL � � � � � USELESS

PLEASANT � � � � � UNPLEASANT

BAD � � � � � GOOD

NICE � � � � � ANNOYING

EFFECTIVE � � � � � SUPERFLUOUS

IRRITATING � � � � � LIKEABLE

ASSISTING � � � � � WORTHLESS

UNDESIRABLE � � � � � DESIRABLE

RAISING AWARENESS � � � � � SLEEP-INDUCING
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Please tick the appropriate boxes

What is your judgement about the second system you have driven with?

USEFUL � � � � � USELESS

PLEASANT � � � � � UNPLEASANT

BAD � � � � � GOOD

NICE � � � � � ANNOYING

EFFECTIVE � � � � � SUPERFLUOUS

IRRITATING � � � � � LIKEABLE

ASSISTING � � � � � WORTHLESS

UNDESIRABLE � � � � � DESIRABLE

RAISING AWARENESS � � � � � SLEEP-INDUCING
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Please tick the appropriate boxes

What is your judgement about the third system you have driven with?

USEFUL � � � � � USELESS

PLEASANT � � � � � UNPLEASANT

BAD � � � � � GOOD

NICE � � � � � ANNOYING

EFFECTIVE � � � � � SUPERFLUOUS

IRRITATING � � � � � LIKEABLE

ASSISTING � � � � � WORTHLESS

UNDESIRABLE � � � � � DESIRABLE

RAISING AWARENESS � � � � � SLEEP-INDUCING
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Informed consent form
Lane change assistance analysis on
a motion-based driving simulator

1 Research Group

1.1 Researchers in charge of the project

Nico van Leeuwen1 Master Student Delft University of Technology
Christiaan Koppel2 Project Engineer Cruden B.V.
Barys Shyrokau1 Assistant Professor Delft University of Technology
David Abbink1 Full Professor Delft University of Technology

1.2 Organizations

1. Department of Cognitive Robotics; Faculty of Mechanical, Maritime and Materials Engi-
neering; Delft University of Technology; Delft, the Netherlands

2. Cruden B.V.; Amsterdam, the Netherlands

2 This document

This informed consent form has two parts:

• Information sheet, pages 1-6

• Consent form, page 7

Before agreeing to participate in this study, you are asked to read this document carefully. The
information sheet describes the purpose, procedures, and risks of this study. After reading the
information sheet, feel free to ask questions about any part that seems unclear or sections that
you do not understand. You should feel comfortable to speak to all of the researchers involved to
answer any questions you may have at any time. After you have read this information sheet and
all your question are answered and any concerns are discussed, you can decide if you would like
to be involved. At the end of this document, we would like to ask you to sign a written consent
form to confirm your agreement to participate. Your signature is required for participation.

3 Purpose of the research

Advanced Driver Assistance Systems (ADAS) are currently being deployed in the majority of
new vehicles. One of these systems is Lane Keeping Assistance (LKA), which helps the driver
to stay in the current lane when driving on the highway. This system lowers the workload of the
driver and decreases unintentional lane and road departures. However, when the driver wishes
to change lanes to overtake another vehicle, the LKA system can not provide assistance and
therefore the driver is expected to retake full control of the vehicle. This requires a large increase
of workload and subsequently reduces safety and driving comfort. Therefore an extension of
this system is proposed to assist the driver during a lane change maneuver: This Lane Change
Assistance (LCA) system will provide haptic feedback through steering torque. Since a lane
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change maneuver is subject to large intra- and inter-driver variability, the proposed system will
adapt to the personal preferences of the driver. The purpose of this research is to determine
the effectiveness of the proposed system’s capability to reduce workload during lane change
maneuvers. Furthermore, the effect of the adaptive quality of the system on intention conflict
between the system and the driver will be investigated. The knowledge obtained during this
simulator study could be used to create lane change assistance systems for vehicles of the future.

4 Participation

4.1 Location of the experiment

Participation will involve completing a driving experiment on the automotive simulator at Cruden
B.V. Global Headquarters, Pedro de Medinalaan 25, 1086 XP Amsterdam, the Netherlands.

4.2 Eligibility criteria

You are invited to participate in this project if:

• You are 18 years or older.

• You have a car driving license.

• You have normal or corrected-to-normal vision (i.e. glasses or contact lenses).

• You have not experienced severe (simulator) motion sickness in the past.

• You do not have heart, back or neck issues.

• You have not been diagnosed with epilepsy.

• You are not pregnant.

• You have not recently had surgery.

• You are not physically disabled.

• You are not under the influence of drugs, alcohol or prescription substances that may
compromise the comfort when operating a motion-based driving simulator.

The researchers reserve the right at any time to refuse or excuse any participant who no longer
meets the study requirements or who are behaving in an unnecessarily unsafe manner.

4.3 Voluntary participation

Your participation in this project is completely voluntary. We welcome you to contact us to ask
any questions and to discuss your possible involvement in the project, you have the right to refuse
participation at any moment. If you do agree to participate you have the right to withdraw from
the project at any moment without comment or penalty.
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5 Procedure

The research consists of a driving experiment on a motion-based automotive simulator. The
experiment will retrieve lane change data with the aim of analysing the effectiveness of the
proposed lane change assistance system. The driving data will be logged by the driving simulator.

5.1 Prior to the experiment

Prior to the experiment, the informed consent form will be sent to you. When you visit the
location of the experiment, the study details will be explained to you and you will be asked
to sign the informed consent form. After this a demographics questionnaire will be completed
for the statistical analysis of the results. Finally, a safety instruction for operating the driving
simulator will be given.

5.2 Practice session on simulator

The experiment will start with some practice to familiarise yourself with the simulator, the virtual
environment and the procedure of starting an experiment. The practice session takes around 5
minutes and you are encouraged to drive both fast and slow to get a feeling of the dynamics of
the simulated vehicle.

5.3 Experiment

You will be asked to perform three driving sessions of approximately ten minutes in a highway
scenario. Between the sessions, there will be a short break. You will be requested to execute an
n-back working memory task whilst driving. During driving, interaction with surrounding traffic
will be simulated. The simulated vehicle is a generic sedan car and is controlled in the same way
as a normal car. A dashboard with speedometer is available as well as two side view mirrors and
one rear view mirror.

5.3.1 Controls

In addition to common controls such as steering wheel, accelerator and brake pedal, the vehicle
in the driving simulator will have the functionality of cruise control. You will be requested to
maintain a velocity of 100 km/h throughout the session by using the cruise control functionality.
Please drive as you normally would and use the steering wheel for keeping the car in the lane,
as well as for changing lanes when overtaking slower vehicles. You are urged to use the turning
signal when changing lanes in both directions.
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5.3.2 Scenario

Each driving session will start from standstill on the emergency lane on the right side of a three-
lane highway. You will be asked to accelerate to 100km/h and and merge into the rightmost
driving lane by changing one lane to the left. During the experiment other road users will be
driving on the road. You are asked to treat them as you would treat normal road users. The
scenario consists of multiple driving situations on a highway in which overtaking a slow lead
vehicle is desirable. You are asked to overtake this slow lead vehicle as you normally would, in
a safe manner. You are asked to return to the right lane after overtaking.

5.4 Duration

The total time commitment will amount to approximately 45 minutes and consists of signing
the consent form, driving in the simulator practice session, executing the experiment including
breaks and completing questionnaires.

5.5 COVID-19 precautions

To minimize the risk of COVID-19 infection for the participant and operator of the experiment,
both are required to wear a face mask before and after the experiment. During the experiment,
a safe distance of at least 3 meter is guaranteed. To minimize the risk of transmission amongst
participants, all materials used during the experiment will be disinfected after each participant
and a time buffer will be planned between participants to ensure they will not overlap. The
participant and the operator will be the only two people present on the location of the experiment.

6 Expected benefits

It is not expected that the project directly benefits you. However, your participation in this
study will add to our understanding of Advanced Driver Assistance Systems (ADAS) and the
interaction of these systems with human drivers. In this way your participation will assist in
developing new approaches to improve driver safety and comfort.

7 Risks associated with participation

Participants may experience simulator motion sickness. In case a participant experiences such
sickness, the experiment can be stopped at any time. An emergency switch is available to both
the operator and the participant, which will stop the simulation immediately.
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Participants are instructed to wear their seat belt during the entire simulation. The seat belt
can be unbuckled when the simulation has stopped and the operator has given permission to do
so. Unbuckling of the seat belt during simulation will shut down the simulation.

Taking place on the simulator requires you to climb up a small staircase, which might result in
an accidental fall. The participant may only enter the simulator when the simulator is shut-
down, to avoid tripping due to motion of the simulator. During the experiment, an operator
ensures safe conduct of operation of the driving simulator. If the operator notices unsafe or un-
wanted behavior of the simulator or participant, the experiment may be terminated prematurely.

Losing control of the vehicle can result in a collision with the guard rail or other objects. How-
ever, the guard rail and surrounding vehicles are non-solid objects, so a participant can drive
through them without physically experiencing a collision. Riding through a non-solid object can
be an emotionally uncomfortable experience.

8 Privacy and confidentiality

All comments and responses are anonymous and will be treated confidentially. The names of
individual persons are not required in any of the responses. Publications or presentations of the
results will not include any information that could identify you.

Any data collected as part of this project will be stored securely as per TU Delft’s Research
Data Management policy. Only the researchers involved in the project will have access to this
information. Please note that non-identifiable data from this project may be used as comparative
data in future projects or stored on an open access database for secondary analysis.

9 Responsibility

The researchers, funding bodies or institutions involved do not bear any responsibility for possible
inconveniences or damages during travel to or from the location of the experimental activity.

10 Questions about the project

If you wish to ask questions about the project or require further information, please contact one
of the researchers below:

Researcher E-mail Phone
Nico van Leeuwen N.J.vanLeeuwen@student.tudelft.nl +31(0)6 4002 0373
Christiaan Koppel C.Koppel@cruden.com
Barys Shyrokau B.Shyrokau@tudelft.nl
David Abbink D.A.Abbink@tudelft.nl
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11 Ethical approval and complaints

This study has been approved by the Human Research Ethics Committee (HREC). If needed,
verification of approval can be obtained by writing to the mail or e-mail address of the HREC,
noted at the end of this section. If you have any concerns or complaints about the ethical con-
duct of the project, any of the abovementioned involved researchers can be contacted. In case
this does not resolve your concern you may contact the HREC, which is not connected with the
research project and can facilitate a solution to your concern in an impartial manner. Name of
the experiment according to the Ethics Approval Application: Lane change assistance analysis
on a motion-based driving simulator.

Contact Details HREC:
P.O. Box 5015
2600 GA Delft
The Netherlands

HREC@tudelft.nl
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Consent Form for:

Lane change assistance analysis on a motion-based driving simulator

Please tick the appropriate boxes

Taking part in the study YES NO

I have read and understood the study information dated Friday 22nd January,
2021, or it has been read to me. I have been able to ask questions about the study
and my questions have been answered to my satisfaction.

� �

I consent voluntarily to be a participant in this study and understand that I can
refuse to answer questions and I can withdraw from the study at any time, without
having to give a reason.

� �

I understand that taking part in the study involves the logging of driving data and
the completing of questionnaires.

� �

Risks associated with participating in the study

I understand that taking part in the study involves the following risks: motion
sickness due to movement of the simulator. Emotional discomfort due to the
possibility of experiencing a collision scenario.

� �

Use of the information in the study

I understand that information I provide can be used for presentation in scientific
and driving simulator seminars and conferences and published as master theses,
PhD theses and articles in scientific journals.

� �

I understand that personal information collected about me that can identify me
will not be shared beyond the researchers.

� �

Future use and reuse of the information by others

I give permission for the driving simulator data that I provide to be archived in
TU Delft repository so it can be used for future research and learning

� �
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Name of participant Signature Date

I have accurately read out the information sheet to the potential participant and, to the best of
my ability, ensured that the participant understands to what they are voluntary consenting.

Nico van Leeuwen

Name of researcher Signature Date
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Analysis of a trial-by-trial adaptive lane change
assistance system on a motion-based simulator

Nico James van Leeuwen1, Barys Shyrokau1, Christiaan Koppel2 and David Abbink1

(1) Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands, e-mail:
N.J.vanLeeuwen@student.tudelft.nl; B.Shyrokau@tudelft.nl; D.A.Abbink@tudelft.nl

(2) Cruden B.V., Pedro de Medinalaan 25, 1086 XP Amsterdam, The Netherlands, e-mail: C.Koppel@cruden.com

Abstract - This study proposes a haptic Lane Keeping Assistance (LKA) system that adapts its provided reference
trajectory to accommodate lane changes. This system enables continuous support in the lateral control task during
highway driving. Two different system configurations of this Lane Change Assistance (LCA) are investigated. One
is a generalized LCA and one is an adaptive LCA that learns personalized lane change trajectories through trial-by-
trial adaptation to preferred lane change duration. The effects of these systems with respect to mental workload,
collaborative performance and user acceptance are investigated. This is done during an experiment with three
different driving sessions, consisting of a manual session and two sessions in which either the generalized or
adaptive LCA is active. The experiments are executed on a 6 DoF motion-based simulator with 34 participants,
driving in a simulated three-lane highway environment with a scripted traffic scenario. To measure mental workload,
an auditory cognitive secondary N-back task is introduced. The results show that the introduction of a generalized
LCA or adaptive LCA does not have significant influence on mental workload compared to the manual driving
session. When the adaptive LCA is introduced, collaborative performance is enhanced and user acceptance is
increased compared to the generalized LCA.

Keywords: lane change assistance, trial-by-trial adaptation, haptic shared control, mental workload, simulator

Introduction
To enable a transition from SAE automation level 2 to
level 3, it is important to consider integration of longi-
tudinal and lateral assistance systems. German road
statistics of 2017 (Statistisches Bundesamt, 2018)
show that lane changing is the third largest cause
of fatal accidents after speeding and incorrect road
use. However, current Lane Keeping Assist (LKA)
systems do not provide support during lane changes.
Lane keeping functionality is switched off when the
indicator light is engaged. Therefore, this paper pro-
poses an LKA system with integrated lane changing
capability to enable continuous lateral support during
highway driving.
The increasing amount of installed ADAS systems
require an effective and safe cooperation between
these systems and the human driver. Haptic Shared
Control (HSC) is a commonly encountered solution
to balance the control authority between ADAS and
drivers (Lazcano, et al., 2021). To increase collabo-
rative performance (Dintel, et al., 2020) and enhance
user acceptance (Chen and Wang, 2018), adaptation
to a driver’s personal preferences is desirable.
This can be done by implicit or explicit personaliza-
tion, adapting either to observed user data or explic-
itly stated preference settings, respectively (Hasen-
jager and Wersing, 2018). Implicit personalization is
expected to be more effective, since up to 67% of
drivers have been shown to incorrectly identify their
own driving style when explicitly stating their pre-
ferred driving style (Basu, et al., 2017).

Driving behaviour varies widely between drivers,
known as inter-driver variability, but also within a
driver, known as intra-driver variability (Koppel, et al.,
2019). Continuous adaptation is preferred rather than
static personalization, since it is shown that there is
a significant intra-driver modeling uncertainty when
observing driving behaviour during two hours of lane
keeping (Chen and Ulsoy, 2001).

In this study, a Lane Change Assistance (LCA) sys-
tem is developed that adapts its lane change ref-
erence trajectory to the moving average of previ-
ous lane change durations. This is implemented by
means of trial-by-trial adaptation, which has success-
fully personalized trajectories for haptic assistance
during a non-driving task (De Jonge, et al., 2016).

The effect of this adaptation in an LCA system is in-
vestigated by comparing it to manual driving and driv-
ing with a generalized LCA, which is based on an av-
erage observed value for the lane change duration.
The research question is formulated as follows: Does
trial-by-trial adaptation to individual preferences of a
haptic feedback lane change assistance system re-
duce mental workload of a lane change maneuver?

This results in the following two hypotheses:

1. A lane change assistance system reduces the
mental workload of drivers during highway driving.

2. Trial-by-trial adaptation of a lane change as-
sistance system increases collaborative perfor-
mance of the lateral control task.
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LCA system design
The novel adaptive LCA system is designed by in-
tegrating the concept of trial-by-trial adaptation in an
LCA system. The planned reference path is adapted
to the duration of previous Lane Change (LC) ma-
neuvers. The reference path is generated by a dou-
ble fifth order polynomial path planning algorithm and
subsequently fed to a path-following Linear Quadratic
Regulator (LQR) controller. The state-space equa-
tions of the lateral controller are formulated us-
ing a bicycle model and driver model, the resulting
gains are scheduled with longitudinal velocity. All the
subsystems and their interactions are schematically
shown in Fig. 1.

Trial-by-Trial Adaptation
Intra-driver variability has been shown to be larger
than inter-driver variability during long driving ses-
sions (Chen and Ulsoy, 2001). Therefore, an adap-
tive system using current driving information is pre-
ferred rather than a learning-based personalized sys-
tem that statically characterizes ones driving style
based on historical data. Since continuous adapta-
tion encountered in literature does not include calcu-
lation of kinematic feasibility, the method of trial-by-
trial adaptation is preferred to enable this safety fea-
ture. Furthermore, it is shown that trial-by-trial adap-
tation reduces control effort and torque conflict with-
out degrading the performance in a non-driving task
(De Jonge, et al., 2016). Therefore, this method is
chosen for implementation in the proposed LCA sys-
tem to reduce the amount of mental workload that
drivers experience during an LC maneuver.
The trial-by-trial adaption is based on the duration of
previous LC maneuvers and is applied to the planned
reference path of the LCA system. The LC duration
resulting from the collaborative driving behaviour of
the human driver and LCA system are registered by
the LCA logic, stored and used to compute a mov-
ing average over 10 trials. This computed value is
subsequently used to the determine the desired LC
duration for the reference path planning of the next
LC maneuver. The registration of an LC maneuver
is done by the LCA logic, which is initiated by the
trigger of the indicator light and is considered com-
pleted when the absolute value of both the lateral er-
ror Y − Ydes and lateral preview error ∆Y are within
the lateral margin of 1 meter from the target lane cen-
ter. The lane change is aborted when the indicator
light is switched off before crossing the lane bound-
ary, after which the lane keeping functionality is con-
tinued in the original lane.

Haptic Shared Control
The HSC architecture is designed according to the
virtual spring model (Ghasemi, Jayakumar, and Gille-
spie, 2019), which is expressed in Eq. 2. The HSC
stiffness khsc is tuned for collaborative performance
and user acceptance to a value of khsc = 0.25. The
HSC interface of the steering wheel is used to com-
bine the inputs of the driver and the LCA system as
follows. First of all, the front wheel steering angle δfc
resulting from the LQR controller is multiplied by the
steering ratio ist to obtain the steering wheel angle
desired by the controller θc, as shown in Eq.1. Sub-
sequently, the measured steering input of the driver

in the loop θd is subtracted to determine the steering
wheel angle error θer. This angle is multiplied by the
HSC stiffness to obtain the assistance torque TLCA.
This LCA torque is added to the torque from the multi-
body vehicle model Tmod to obtain the total torque
Ttot, shown in Eq. 3, that is sent to the control loader
of the simulator’s steering column.

θc = δfc · ist (1)

Tlca = khsc · θer = khsc(θc − θd) (2)

Ttot = Tmod + Tlca (3)

Path Planning
The most commonly used method to plan the path
of an LC maneuver is a fifth order polynomial. How-
ever, with a conventional fifth order polynomial re-
planning of the path is not possible. This could po-
tentially lead to unsafe situations, therefore an ad-
justment is needed to enable the possibility to abort
an LC maneuver after initiation (Zheng, et al., 2019).
Furthermore, a human driver uses a higher lateral
acceleration for steering out of the initial lane than
for steering back into the target lane (Sporrer, et
al., 1998). This asymmetric human-like behavior can-
not be replicated by using a single quintic polyno-
mial. By combining two different quintic polynomi-
als, the asymmetric path can be generated to repre-
sent human LC maneuvers more accurately. There-
fore a double quintic polynomial (Heil, Lange, and
Cramer, 2016) is implemented to determine the refer-
ence path for the path following controller previously
described.

s1(t) = c0 + c1 · t+ c2 · t2 + c3 · t3 + c4 · t4 + c5 · t5

s2(t) = c6 + c7 · t+ c8 · t2 + c9 · t3 + c10 · t4 + c11 · t5
(4)

By determining the maximum desired lateral acceler-
ation of amax = 1 m/s2, the maximum desired lat-
eral jerk of jmax = 1.5 m/s3 and the lane width of
w = 3.5 m, the two polynomials are solved with the
symbolic toolbox of Matlab.

tamax
(s1) = −2 · c4 ±

√
4 · c2

4 − 10 · c3 · c5
10 · c5

tjmax
(s1) = − c4

5 · c5

(5)

The coefficients can be solved using Eq. 5 for s1 and
s2 under assumption that the maneuver is initiated
without lateral acceleration, velocity or deviation from
the lane centre. Continuity is guaranteed by enforc-
ing that the initial values of the second polynomial s2
are equal to the final values of the first polynomial s1.
Since the LCA is integrated with an LKA and to mini-
mize the influence of the initiation on the results, the
manual trigger of the indicator light is used to switch
from the lane keeping to lane changing functionality.
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Figure 1: Schematic of the Lane Change Assistance system
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Figure 2: LC maneuver path planning for values of lane
change duration τavg that were obtained from 27 participants

To ensure a smooth transition between the two poly-
nomials, especially in the case of replanning, a hy-
perbolic tangent blending function with a one-sided
blending time tb = 0.5 seconds is used, as expressed
in Eq.6. LC maneuver paths are computed for lane
change duration values between τ = 1 and τ = 10
seconds and stored in a lookup table to minimize
computational power during simulation. The com-
puted reference paths are visualised in Fig. 2 for the
range of values between τavg = 2 and τavg = 6 sec-
onds that were encountered during the experiment.
The fixed value τavg = 4 that is used as lane change
duration for the generalized LCA is highlighted.

s(t) =
1 − tanh( (t−τs1 )

tb
)

2 · s1(t) +
1 + tanh( (t−τs1 )

tb
)

2 · s2(t)
(6)

Controller Design
A state feedback controller was selected to perform
path-following, demonstrating similar performance to
state-of-the-art path-followers in highway driving con-
ditions. (Lu, et al., 2018). The LCA system uses a
gain-scheduling state feedback LQR controller. State
vector x containing 7 states is used to determine the
additional steering angle δfc that the controller should
provide to the front wheels of the vehicle, which is
shown in Eq. 7 - 9.

δfc = k(Vx) · x (7)

x = [Vy ψ̇ ψ Y δfd δ̇fd ∆Yp] (8)

∆Yp = Yp − Y − tp · Vx · ψ (9)

The definition of lateral preview error ∆Yp is visual-
ized by the schematic in Fig. 3.

Figure 3: Schematic of the preview model adapted from
(Wang, et al., 2017)

By considering multiple objectives including path-
tracking error, driver’s physical and mental workloads
and control effort in the LQR controller, the cost func-
tion described in Eq. 10 is minimized. J1 represents
the cost for lateral preview error, J2 and J3 repre-
sent the driver’s mental and physical workload, re-
spectively, and J4 represents the control effort of the
LCA system. To minimize computational power dur-
ing simulation, the closed-loop control gains are cal-
culated offline for a range of longitudinal velocities
and integrated in the model by using a lookup ta-
ble. The control equations are formulated to schedule
the gain based on longitudinal velocity. These con-
trol equations and the corresponding simplified vehi-
cle and driver model are formulated in Eq.13 - 29 of
the Appendix.

J = J1 + J2 + J3 + J4

J =
∫ ∞

0
(q1 · ∆Y 2

p + q2 · δ2
fd + q3 · δ̇2

fd +R · δ2
fc)dt

(10)
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Experiment Design

Figure 4: A lane change maneuver during the experiment in
the highway scenario on the 6 DoF motion-based simulator

To determine the effect of the adaptive LCA and the
generalized LCA on mental workload, collaborative
performance and user acceptance, experiments with
human participants in the loop are executed on a
motion-based driving simulator. This six DoF driving
simulator utilizes a projected view of 210 degrees
horizontally and 50 degrees vertically, two exterior
rear-view mirrors, one interior rear-view mirror and a
dashboard depicting all relevant dials.

The vehicle model used for the simulation in the ex-
periment is a 13 DoF dSpace multibody Automotive
Simulation Model (ASM) with the parametrization of
a generic sedan. The vehicle is equipped with cruise
control, which is set at 100 km/h and can be adjusted
by the driver when necessary. A traffic scenario with
30 recurring entities is scripted such that the vehicles
in the right lane drive at 90 km/h, in the middle lane
95 km/h and in the left lane 105 km/h. The partici-
pants are instructed to adjust the longitudinal veloc-
ity as infrequently as possible and return to the right
lane after overtaking, such that a high amount of LC
maneuvers is encouraged.

Table 1: Participant groups for driving sequence of different
systems

Group Session 1 Session 2 Session 3
A Manual Generalized Adaptive
B Generalized Adaptive Manual
C Adaptive Manual Generalized

The experiment consists of 3 different sessions of 10
minutes on the driving simulator. A baseline mea-
surement is recorded in a manual driving session,
in which the driver has full lateral control and re-
ceives no assistance. Another session is driven with
the generalized LCA system, for which the average
value of a lane change duration τ was determined
to be 4 seconds in a pilot study. A third session is
driven with the adaptive LCA system, in which the
lane change duration is determined by the LCA logic
and implemented in the assistance by means of trial-
by-trial adaptation. These three sessions are shuffled
in sequence by using the Latin squares method to
mitigate both learning effect and fatigue of the par-
ticipants. The resulting three groups are classified as
group A, group B and group C, which are shown in
Tab. 1. The drivers are not informed which assistance
system is active during the sessions.

Table 2: Demographic parameters of the 27 participants

Parameter Mean σ Unit
Participant age 36.8 15.6 years
Driver’s license 17.8 16.2 years
Average driving 4.52 3.90 hours/week
CC driving 2.18 3.22 hours/week
LKA driving 0.50 1.95 hours/week
Simulator driving 0.29 0.57 hours/week

The experiments were executed with 34 participants
in total, of which five measurements contained cor-
rupted data. To ensure equal distribution over the
three groups described in Tab. 1, two participants
were eliminated randomly to obtain 9 participants per
group, thus 27 in total. The demographics parame-
ters of the 27 participants that are used for the anal-
ysis of the results are shown in Tab. 2. The measure-
ments were rearranged such that the results can be
presented per system configuration.

For all presented results a linear mixed-effect model
regression analysis is applied to obtain information
about the statistical significance of the metrics. In
this way, the individual participants were regarded
as a random effect with no a-priori expectations.
Since the data is obtained with repeated measure-
ments of an individual participant with different sys-
tem configurations, repeated-measures analysis of
variance (ANOVA) is more suitable than a one-way or
two-way ANOVA. However, mixed-effect modeling is
more robust against systematic inter-driver variabil-
ity than repeated-measures ANOVA (Van Dongen, et
al., 2004). Since inter-driver variability is expected to
be an important influence, linear mixed-effect model
regression analysis is used to determine the statisti-
cal significance of the results.

Metrics
Mental workload is measured during the complete
duration of the experiment by means of an auditory
N-back task (Layden, 2018), which is introduced as
a cognitive secondary task. In this task participants
are asked to respond by tapping a touchscreen when
the audio fragment of a recorded letter is identical
to the one played back N trials before. N is chosen
to be one, considering the substantial workload re-
quired for the driving task. The resulting score is ex-
pressed as Discrimination Index (DI), which is calcu-
lated by using the hit rate H and false-positive rate
F , as shown in Eq. 11.

DI = 0.5 + sign(H − F ) · (H − F )2 + abs(H − F ))
(4 ·max(H,F ) − 4 ·H · F )

H = #hits
#signal trials F = #false positives

#noise trials
(11)

Steering Reversal Rate (SRR) can be used as com-
plement or alternative to lane position metrics to
quantify lateral control performance (Markkula and
Engström, 2006). Since a cognitive secondary task
is introduced in this study, the corresponding param-
eters are specified to obtain the highest sensitivity for
this scenario.
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The steering wheel angle signal θ is filtered with a
second order Butterworth filter with a 3dB cut-off fre-
quency of 0.6 Hz to obtain θfilt. If the difference in
θfilt of the current and previous time step is larger
than the gap value θgap = 0.1 deg, it is registered as
a reversal. These are expressed in SRR as reversals
per minute. The SRR metric is also computed for the
LC maneuvers only, by cutting out the lane change
sections of the steering wheel angle signal.

To express the user acceptance of the participants,
a subjective van der Laan questionnaire is used, in
which the generalized and adaptive LCA system con-
figurations are rated with respect to the manual driv-
ing session. The participants are requested to score
the system configurations on 9 different aspects of
the system, leading to both a usefulness score (USE)
and a satisfaction score (SAT) (Van Der Laan, Heino,
and De Waard, 1997). It is stated that Cronbach’s co-
efficient of reliability α should be higher that 0.65 for
the results to be valid, which is the case for both re-
sults. No prior knowledge about the LCA systems is
given to the participants, therefore the results are re-
garded as unbiased.

Results
The means and statistical significance of the objec-
tive metrics for each system configuration are pre-
sented in Tab. 3. The means, statistical significance
and Cronbach’s coefficient of reliability α for the sub-
jective metrics are shown in Tab. 4. The results are
displayed graphically in Fig. 5-8 by a combination of
boxplots and individual participant results, connected
by lines between the different system configurations.

Table 3: Resulting means of objective metrics and statistical
significance of mixed-effect linear regression

Metric MAN GEN ADA F p
DI 0.808 0.810 0.810 0.216 0.806
SRR 34.67 33.22 32.34 9.390 <0.001
LC-SRR 56.48 54.03 53.55 2.961 0.058
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Figure 5: Mental workload measured by the cognitive N-back
task per system configuration for 27 participants
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Figure 6: Steering reversal rate during complete driving
session per system configuration for 27 participants
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Figure 7: Steering reversal rate during lane change
maneuvers per system configuration for 27 participants

Table 4: Resulting means of subjective metrics and
statistical significance of mixed-effect linear regression

Metric GEN ADA α F p
USE 3.444 4.407 0.901 7.773 0.007
SAT 1.889 2.667 0.765 2.338 0.132

Generalized LCA Adaptive LCA Generalized LCA Adaptive LCA
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Figure 8: Subjective usefulness and satisfaction score per
system configuration for 27 participants
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Discussion
The mean of mental workload required for driving de-
creases slightly by introducing an LCA system. This
can be seen in the slight increase of the measured DI
from the auditory N-back task in Tab. 3. However, due
to the limited amount of change in mean compared to
the variance, the mixed effect linear regression anal-
ysis of variance shows that these results cannot be
regarded as significant. However, it can be seen in
Fig. 5 that the variance of workload reduces by intro-
ducing a generalized LCA system and reduces fur-
ther when introducing an adaptive LCA system.
Collaborative performance and SRR are inversely re-
lated, since the control performance is considered to
be reduced when many steering corrections have to
be made. As can be seen from Tab. 3 and Fig. 6, the
SRR decreases when the LCA system is introduced
and further decreases when the adaptive LCA is in-
troduced. Therefore, the collaborative lateral control
performance is increased by introducing a general-
ized LCA and further increased when introducing an
adaptive LCA system.
Furthermore, it can be seen from Fig. 7 that the vari-
ance of SRR during LC maneuvers is much larger
with the generalized LCA than with adaptive LCA.
This indicates that the inter-driver variability of col-
laborative performance is reduced by introducing the
trial-by-trial adaptation functionality.
User acceptance is expressed in a USE and SAT
score, resulting from the subjective questionnaire. As
can be seen from the Tab. 4, the usefulness score is
increased significantly from generalized to adaptive
LCA system with a p-value smaller than 0.01. The
satisfaction score also increases, however from the
mixed effect linear regression analysis of variance it
can be concluded that this is not significant. Further-
more it can be seen from Fig. 8 that the mean of the
usefulness score is higher for both LCA system con-
figurations compared to the mean of the satisfaction
score of the same system configuration.

Conclusion
The hypotheses of this study were stated as follows:
1. A lane change assistance system reduces the

mental workload of drivers during highway driving.
2. Trial-by-trial adaptation of a lane change as-

sistance system increases collaborative perfor-
mance of the lateral control task.

The first hypothesis is rejected, since there is no
significant change in mental workload, measured by
the discrimination index of the cognitive secondary
N-back task, when the generalized or adaptive LCA
system is introduced.
The second hypothesis is accepted, since the collab-
orative performance, measured by the steering rever-
sal rate, is increased significantly when introducing
trial-by-trial adaptation to lane change duration in the
adaptive LCA compared to the generalized LCA.
Furthermore, inter-driver variability of collaborative
performance is reduced by introducing trial-by-trial
adaptation to lane change duration in the adaptive
LCA compared to the generalized LCA. In addition
to this, the user acceptance is increased by introduc-
ing the adaptive LCA system, of which the subjective
usefulness score is increased significantly.

Recommendations
During this study, several observations are made of
aspects that could be improved upon in future stud-
ies. First of all, to achieve a fully integrate longitu-
dinal and lateral functionality of lane change assis-
tance, implementation of HSC on a longitudinal con-
trol interface such as the acceleration or brake pedal
would be preferable. By doing this, excessive brak-
ing or acceleration to complete a safe lane change
could be made redundant. For the purpose of this
study, longitudinal control is supported by means of
cruise control instead of adaptive cruise control to
stimulate lane changing rather than car-following be-
haviour. However, it was observed during the exper-
iments that the longitudinal control task required a
lot of workload capacity in situations with high traf-
fic density. Therefore it is expected that this has dis-
torted the measurements, especially in terms of men-
tal workload. By integrating longitudinal control, the
functionalities of these systems could be optimized
to complement one another.

Furthermore, if this longitudinal HSC interface is in-
tegrated, distance and relative velocity to a lead ve-
hicle could be used as a trigger or advice for a lane
change. An additional prerequisite would be to inte-
grate sensors such as blind spot sensors to observe
vehicles in the parallel lanes. In this way, the safety
and comfort of the LC maneuver could be evaluated,
thus largely improving the user acceptance of the
system.

It is highly recommended to adjust the lane change
detection algorithm to facilitate a more universal de-
tection of lane change intention. For this study, it
was chosen to embed a safety feature in this detec-
tion by aborting a lane change if the indicator light
is switched off before crossing the lane boundary.
However, aborted LC maneuvers were almost never
encountered during the experiments, whereas many
people switched off the indicator light before crossing
the lane boundary during an intentional LC maneu-
ver. Furthermore, an LC maneuver of two lanes in
once could not be identified as such if the indicator
light was not switched off in between. This led to a
large number of conflicts between the LCA logic and
the driver, which are defined as instances that the
lane change intention is incorrectly observed by the
LCA system. These conflicts could be mitigated by
enlarging the time duration in which the lane bound-
ary has to be crossed or implement a completely dif-
ferent LCA logic. It is expect that this will further en-
hancing user acceptance and ensure safe collabora-
tive driving behaviour.

To improve upon the learning speed of the adaptive
LCA system, data of a practice session could be used
to obtain initial values for the preferred lane change
duration of a person. Also, further research could be
done to the effect of adaptation to driver parameters
other than lane change duration, such as preferred
lateral acceleration.
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A =




2 (Cf +Cr)
m·Vx

−Vx+(2·(Cr·lr−Cf ·lf ))
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0 0 2Cf
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0 0 2Cf ·lf
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0 0
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a0·T 2
d

−Rg·Gh

a0·T 2
d

− 1
a0·T 2

d

− 1
a0·Td

0
0 0 −tp · Vx −1 0 0 0




(12)

Appendix
In this appendix, the design of the gain-scheduling
state feedback LQR controller used for the LCA sys-
tem is discussed and the are corresponding control
equations are formulated.

Control Equations

B =
[
0 0 0 0 0 Rg·Gh

a0·T 2
d

0
]

(13)

C =
[0 0 −tp · Vx −1 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 1 0

]
(14)

D = [1 0 0]T (15)

Qd =
[
q1 0 0
0 q2 0
0 0 q3

]
(16)

Q = (CT ·Qd · C) + (DT ·Qd ·D) (17)

a0 = τlag · τdelay
T 2
d

(18)

Td = (τlag + τdelay) (19)

The state-space system to be solved is the simplified
form seen in Eq. 20, since the system matrices C
and D are incorporated in state weighting matrix Q.

ẋ = A(Vx)x + B(Vx)u (20)

The closed-loop control gain vector k(Vx) is deter-
mined by solving the Ricatti equation for the state-
space system with corresponding state weighting
matrix Q and control weighting matrix R. The gain
vector k(Vx) is solved for each longitudinal velocity
Vx = 0 − 120km/h and stored in the matrix K. After
obtaining the interpolated gain vector corresponding
to the longitudinal velocity from the lookup-table, it is
multiplied by the state vector to determine the addi-
tional front wheel steering angle to be added by the
controller. This can be expressed as shown in Eq. 21.

δf = δfc + δfd

δfc = k(Vx) · x
(21)

Simplified Vehicle Model
The simplified vehicle model used for the controller
design is a 2-DoF bicycle model. The parameters of
this vehicle model are based on the generic sedan
multibody vehicle ASM that is used for the simulation
in the experiment. The values of the corresponding
parameters are shown in Tab. 5.

The lateral and yaw dynamics of the simplified vehi-
cle model are expressed in Eq. 22- 24.

mV̇y = −mVxψ̇ + Fyf cos δf + Fyr (22)

Izψ̈ = lfFyf cos δf − lrFyr (23)

Ẏ = Vx sinψ + Vy cosψ (24)

The equations used to determine the front and rear
lateral tire forces are shown in Eq. 25, using the for-
mulas for front and rear slip angle shown in Eq.26

Fyf = −2Cfαf Fyr = −2Crαr (25)

αf = β + lf
ψ̇

Vx
− δf αr = β − lr

ψ̇

Vx
(26)

Table 5: Simplified Vehicle Model Parameters

Symbol Parameter Value Unit
lf Distance from CoG to front axle 1.185 m
lr Distance from CoG to rear axle 1.665 m
m Full vehicle mass 1500 kg
Iz Inertia moment around z-axis 2450 kg ·m2

Rg Steering gear ratio 1/18 -
Cf Front cornering stiffness per wheel 103130 N/rad
Cr Rear cornering stiffness per wheel 73854 N/rad

Driver Model
The steering behaviour of the driver model is ex-
pressed as a transfer function from lateral preview
error ∆Y to the driver’s front wheel steering angle
δfd and is shown in Eq. 27. The calculation of the
lateral preview error ∆Y is shown in Eq. 28. The pa-
rameters used in both equations are specified in Tab.
6 and are based on the benchmark controller (Wang,
et al., 2017).
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δfd(s) = Gh (1 + τlead · s) e−τdelay·s

1 + τlag · s ∆Y (s) (27)

∆Y (s) = Ydes(s)·eτprev·s−Y (s)−Vx ·τprev ·ψ(s) (28)

Previous studies have shown that human preview
times vary between 0.5 and 2 seconds and that pre-
view time is inversely correlated with the road curva-
ture as is shown in Eq. 29 (Yang, et al., 2020).

tp = λ(ρ)Lpn
Vx

+ [1 − λ(ρ)]Lpf
Vx

(29)

Table 6: Driver Model Parameters

Symbol Parameter Value Unit
Gh Proportional Gain 0.8 -
τlead Lead time constant 0.12 s
τdelay Delay time constant 0.05 s
τlag Lag time constant 0.09 s
τprev Preview time constant 2 s

Preview time tp is expressed as function of the road
curvature λ and near and far preview point Lpn and
Lpf , respectively. The far preview point Lpf is defined
as 40 meter for a velocity of 20 m/s and the road cur-
vature of the highway in the experiment is zero. Since
preview distance increases linearly with longitudinal
speed L = tp ·Vx (Schnelle, et al., 2017), the resulting
preview time is tp = 2 seconds. Therefore it is cho-
sen to use this value for the preview time constant
τprev opposed to the original value of τprev = 0.68
seconds for a double lane change maneuver found in
the benchmark driver model (Wang, et al., 2017).
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