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1 | INTRODUCTION

| Wenhan Dong!

| Maolong Lv2® | Zongcheng Liu'3® |

| Haoming Feng!

Abstract

This work proposes a nonsingular adaptive fixed-time switching control method
for a class of strict-feedback nonlinear dynamics subject to full state con-
straints. The peculiarity of this design lies in overcoming the singularity issue
that typically appears in the existing backstepping-based fixed-time control
methods caused by the iterative differentiation of fractional power terms as
tracking errors approach to zero, while guaranteeing the nonviolation of full
state constraints. Crucial in solving such singularity issue is to skillfully intro-
duce a smooth switching between fractional power and integer power terms,
which guarantees that fractional power term is confined within a positive
interval all the time. An asymmetric time-varying barrier Lyapunov function
is delicately incorporated into control design, rendering state variables to be
within prescribed time-varying bounds. Besides, radial basis function neural net-
work is employed to handle system unknown nonlinearities. It is rigorously
proved that all the closed-loop signals eventually converge to small regions
around origin within fixed-time. Comparative simulation results are finally
given to validate the effectiveness and superiority of the proposed control
strategy.

KEYWORDS

adaptive backstepping control, fixed-time stability, switching control, time-varying state constraints

Over the past few decades, the tracking problem of uncertain nonlinear systems has received considerable atten-
tion, due to its significance both in theory and practice. In addition, as an iterative design method, back-
stepping technique has provided a structured and systematic method for Lyapunov function design of complex
nonlinear systems.> To go further, universal approximators such as neural network (NN) and fuzzy-logic sys-
tem have been introduced to handle unknown dynamics.*® Approximation-based adaptive backstepping controller
design has been widely applied in industrial control systems including robot control,” flight control,®!° and so
forth.1-13
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In order to obtain a satisfactory tracking performance, there are many transient response indexes and steady-state
indexes that are required to be taken into account. As one of the important factors that affects tracking performance, con-
vergence rate has attracted extensive interest. It is worth mentioning that conventional works are solely able to make the
system asymptotically or exponentially stable, that is, closed-loop signals converge to a residual set when time goes to
infinity. Finite-time stability is therefore proposed to provide an upper bound of convergence time, while guaranteeing
closed-loop stability. Based on finite-time stability, massive results have been acquired.!*!> To list a few: in Reference 16,
the finite-time adaptive fuzzy tracking control problem of pure-feedback nonlinear systems was addressed, and a criterion
of semiglobal practical stability was first formulated. By fusing the command filter and backstepping control technique,
the problem of finite-time control for a class of uncertain nonlinear systems with unknown actuator faults was studied
in Reference 17. However, it has to be noted that the upper bound of convergence time in the above-mentioned works
relies on their initial conditions, and the settling time might become larger when initial values stay far away from the equi-
librium. To remove the dependence of convergence time on initial conditions, fixed-time stability is thus developed and
has been attached tremendous attention since it was proposed.'®!° For instance, a decentralized adaptive fuzzy fixed-time
control design was given in Reference 20 for interconnected nonlinear systems. An adaptive practical fixed-time control
strategy was investigated for strict feedback nonlinear systems in Reference 21. By employing tan-type barrier Lyapunov
function (BLF) and NN techniques,?? considered fixed-time control of nonstrict-feedback nonlinear system subject to
dead zone and output constraint.

However, it is worth emphasizing that the main challenge of incorporating fixed-time control method under back-
stepping framework comes from the fact that the derivatives of intermediate control variables might become infinity as
the tracking errors approach to zero, leading to a singularity issue. This is because the negative power terms appear in
the derivatives of intermediate control variables.

On the other hand, state constraints are typically required to be satisfied in practical systems since their transgres-
sion might cause system performance degradation or even system instability.2>?* Therefore, remaining the states within
prescribed bounds has become a major research topic for the sake of safety consideration. BLF has been a power-
ful tool in guaranteeing full state constraints and some commonly seen forms include tan-type BLF, log-type BLF,2¢
and integral-type BLF.?” Generally, most of the existing results are concentrated on strict/pure feedback nonlinear sys-
tems with output constraints or full state constraints.?®?° In Reference 30, the asymptotic control laws were presented
for single-input single-output nonlinear systems, while the symmetric and asymmetric BLFs were explored to prevent
the output constraint violation. Later on, an asymmetric time-varying BLFs was employed to ensure output constraint
satisfaction in Reference 31. Aiming at improving convergence speed, an adaptive finite-time tracking control strat-
egy was investigated for strict-feedback nonlinear systems subject to time-invariant full state constraints and dead-zone
in Reference 32. Independent of the initial conditions, an adaptive fixed-time control scheme was studied for nonlinear
systems with the time-invariant full state constraints in Reference 33. However, these results fail to work in the case that
fixed-time control and asymmetric time-varying full constrained states are considered simultaneously.

Motivated by the aforementioned discussion, this article focuses on the nonsingular fixed-time tracking control
problem for a class of strict-feedback nonlinear systems with asymmetric time-varying full state constraints. The main
contributions can be summarized as follows.

1. Thisarticle, to our best knowledge, presents a pioneering result about nonsingular fixed-time control of strict-feedback
nonlinear systems subject to asymmetric time-varying full state constraints.

2. We devise a novel differentiable fixed-time adaptive control scheme by introducing a smooth switching between
fractional power and integer power terms. Among this switching, the fractional power term used in con-
troller design is confined within a positive interval, which can avoid the singularity issue that the negative
power terms increase to infinity as the tracking errors approach to zero. Such singularity issue might appear
in the derivatives of fractional power terms by incorporating fixed-time control method under backstepping
framework.

3. In addition to guaranteeing fixed-time convergence, the proposed fixed-time design relies on a new corollary which
first proves a smaller upper bound of convergence time than the existing literature.

The rest of this article is organized as follows. In Section 2, problem formulation and preliminaries are provided.
In Section 3, the fixed-time tracking control scheme with full state constraints is developed. Subsequently, the stability
analysis is given in Section 4. In Section 5, a numerical example and a practical example are, respectively, performed to
demonstrate the effectiveness of the developed scheme. Finally, Section 6 concludes the work.
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2 | PROBLEM DESCRIPTION AND PRELIMINARIES

Consider a class of nonlinear strict-feedback systems given by

2i =i + &)X + diCyy)
Xn =fuln) +&(u+d(y) 1)
Y=n

where 7, = [x1, 12, ... » xilf € Rland y = [ 1, 12, ... » xn]? € R" denote the state variables of the system, u € R is system
control input and y € R is system output. f;(¥;),i = 1,2 ... , n are unknown differentiable system functions, g;(y;) repre-
sent the unknown differentiable control-gain functions, d;(y;) denote the external disturbance and system uncertainties.

Particularly, all the system states y; are constrained in the compact set Q, := { XYER" k. (D)< y< Ecl_(t)} such that

k () > k_ (), where k .(t) and k_ (1) are prescribed time-varying constraint functions.
The control objectlve is to de31gn an adaptive fixed-time tracking controller such that not only the system output y
can follow the desired trajectory y, in a fixed time, but also all the states do not violate the constrained set.

Assumption 1. (34) The desired trajectory y, is smooth, and its n th order derivatives y4, y4, and y4 are bounded and
satisfy Qg := { va. Va» ya| ! ’yfi + y; + j}fi < By } where B, is a positive constant. For any ¢ > 0, there exist functions Y ()
and Y (¢) such that the desired trajectory yq satisfy Y () <ya(®) < Yo(t) and Yo(t) < Ecl(t), Y, () >k, 1 (t). Moreover, the
time derivatives of the desired trajectory satisfy Y (£) < y(’)(t) <Yit),i=12,....,n

Assumption 2. (35) There exist known positive constants g, and gis such that 0 < g, < g(x) < gim-

Assumption 3. (36) For the disturbance term d;(y;), there exist unknown positive constants djy; such that |di (?i)| < dwmi,
i=1,2,...,n

Lemma 1. (37) Suppose that there exists a continuous positive definite and radially unbounded function V(y(t)) : R —
R* U {0} such that V() < —(aVP(y (@) + ﬂV‘I(;{(t)))k + 7 for constants a, f,p, q, k,n > 0 satisfying pk < 1,qk > 1, the
residual set of the system solution with 0 < 6, < 1 is represented as

{ lim V(o) < min {72 [n/ (1= 66)] "7 5/ [0/ (1 - 06)] 7 } } : @)

Furthermore, the origin is fixed-time stable with the convergence time being defined as

1 1
T, (x(0) < Thax := . 3
(x(0)) Pak(1 - plo + gk —1) (3)

Corollary 1. Suppose that there exists a continuous positive definite and radially unbounded function V(y(t)) satisfying
same conditions as Lemma 1, then the system is fixed-time stable. Furthermore, a smaller convergence time T, is given
below

1-pk

1 a\ 1 a %
(+O) 6ka*(1 - pk) (ﬂ) "o gk - 1)<ﬁ> @

Proof. In light of V(x(t)) < —(aVP(x(t)) + BV (£)))* + n, we obtain for V(y(t)) < ¢, it has V(y(t)) < —a VP (x(t)) + n;
For V(x()) > ¢ > 0, it has V(y (1)) < =V (1)) + 1.

Note that there exist 0 < 6y < 1, so the above inequality can be further expressed as the form that for V(y(¢)) < ¢, it
obtains V(x (1)) < —0kaXVPX(y(1)) — (1 — 6X) a*VP*(x (1)) + n; And for the case that V(y(t)) > ¢ > 0, one can obtain that
V(x(0) < =08 VI(x(0) = (1 = 0F) BV (D)) + 1.

To begin with, for any y(t) such that V((0)) > ¢, when VI(x(0)) > the inequality V(y (1)) < -0V (x (1))

(- 9")ﬂk ’

exists. Divide both sides by V9 (y(f)), and then integrating it over time ¢, one gets /| ¢ Vz,ﬁgz)))dt fOTl ok pkdt, that is
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to say L [Vl‘qk( x(T) — V=% (x(0))] < —6kp*Ty. To go further, we can rewrite the above inequality in the form of

T < m [V=#GAT) = VI O)] S g VG (T).
When taking value V(y(T1)) = c, we have

1 1-gk
< —=" 79, 5
= o gk — 1) ©

Since V(y (1)) is a decreasing function, we can guarantee that for time t > c!=9k it holds that V(y(¢)) < c.

Hkﬂ"( k-1)
Next, for any y(¢) such that V(y(t)) < c, the following two cases is considered. Denote Q, = { 2IVPE(x (1) < = ek) }
and Q, = { AVPGA) > b }

Case 11If y(t) € Q,, the inequality V(y(t)) < =0k ak VPR (1)) exists.
Similar to the above proof process, in order to get y(t) € Q,, then we can infer

T [V PG () = VI ()] < =050 (T, = T). (6)

Then, the settling time is estimated by

1 1-pk 1-pk 1 1-pk 1 1-gk
<T . — VN T \Va's T . S by 2 - = ek 7
<T+ egak(l-pk)[ (1) = VP (T)] < P pk)c T (7)

T,
Case 2 If y(t) € Q,, then the trajectory of y(f) does not exceed the set Q, .
To sum up, the settling time to reach the set 2, is bounded by a maximum value.
Define the function

Tr (c) — k;cl_pk + k;cl_qk. (8)
050 (1 — pk) 05 6% (gk — 1)
e
Let T (¢) = 0, and we can obtain ¢* = <%) o,
Lpk 1gk
o s : . PO . £\ 1 a ) ap 1 a\ P
Thus, the minimum settling time is given by Ty (y(0)) < Tmax := Ty (c*) = —ogak (1_pk)< ﬂ> + —eg I (qk_1)< ﬂ> ]

Remark 1. In the current work on fixed-time control, numerous research results are based on the classic fixed-time sta-
bility theory proposed by Polyakov,'® in which the convergence time is described as Tyax 1= #_pk) m. However,
only the special case that ¢ = 1 in (8) is considered to get this settling time, leading to an incomplete analysis result. Actu-
ally, there exists a smaller convergence time, so an new upper bound of fixed-time T, (c*) is derived in Corollary 1. It is
noteworthy that according to the definition of the function T; (c), we can seen that its second-order derivative T;’ (c) >0,

that is to say, the function T, (c) is a concave function. Moreover, there is just one point where its derivative is zero, so this

1
stagnation point ¢* = (a/f#)+» must be the minimum point of the function and T, (¢*) < T, (1). Therefore, it is proved for
the first time that a smaller upper bound of convergence time can be obtained under conditions in Lemma 1, and this
time is smaller than the time revealed by the existing fixed-time control schemes.3?

Remark 2. 1t is worth noting that there is no loss of generality in Polyakov’s derivation of this bound. The Lyapunov func-

. . _1 s : 1
tion can also be redefined as W(y(t)) = - V(x(t)), then the settling time can be estimated by ¢ > g + gD

1 1-pk
Ok ak(1-pk) +
c'~9* is defined and the concavity and convexity of this function is analyzed. As a result, the minimum settling

with 0 < 6y < 1. In addition to the classic fixed-time derivation result, the new function T, (c) =
_r
05 p*(qk=1)
time is given through rigorous and complete proof which is the main contribution that distinguish from the traditional
fixed-time control result.

Lemma 2. (39) Forx,y € R, and any real numbers c,d,y > 0, it holds that

c e
Iyl < H—dylxch“d xd aly|+e. ©)
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Corollary 2. For ® € R*, and any real numbers 0 < h < 1, the following holds
" < A(h) + @, (10)
where A(h) = (1 — )k > 0.

Proof. Inequality (10) is deduced from Lemma 2. In view of inequality |x|¢|y|¢ < x| 44 c+idy_§ ly|“+4, choose x = 1,
y=®,c=1-h,d=h,y=e"/1-Mhh thyswe can get ®" < A(h) + ®. n

Lemma 3. (40) Consider y; € R,i=1,2, ... ,n,and 0 < p < 1, one gets

n p n n p
(Z |xl-|> < Ylul < nH’(Z |xi|> : €8))
i=1 i=1 i=1

In addition, the following inequality holds:

n

n 2 n
Yt < <Z;ﬁ) < anf. (12)

i=1

Lemma 4. (41) The radial basis function neural network (RBFNN) is utilized to approximate the continuous function
Si(Z;) over a compact set Q7 C R" as

Si(Z) = ©yi(Z) + ei(Z), VZ; € Qz CR", (13)

where O] is ideal weight vector, £;(Z;) is the approximation error such that ||e(Z))|| < en; with ey > 0 is an unknown
constant, and y;(Z;) is chosen as the commonly used Gaussian functions

—(Zl-—(piﬂzi—(pi)] Zla o w (14)

vi(Zi) = exp l 3
@;

where @;, w;, and w represent the center, width, and number of the Gaussian function, respectively.

3 | FIXED-TIME ADAPTIVE TRACKING CONTROL DESIGN

We start the design by giving the following coordinate transformation

{el s 15)

ei=;(i—ai_1,i=2,3, e .n

where e; is the tracking error and «;_; is the virtual control input that will be designed later.

The recursive design procedure contains n steps. First, at each step of the backstepping design, the intermediate control
a;_1 is designed to make the corresponding subsystem toward equilibrium. And at the final step, the stabilization of system
can be achieved with the actual control input u to be designed.

Step 1: In the design, the following definition will be needed.

1, >0
rie;) = {O ‘< o (16)
, € =

It can be easily seen that r; (g;) = rl.2 (e)and 1 —ri(e;) = (1 —ri (e))>.
Due to Assumption 1, the positive time-varying barrier functions are given by

ko, (0 1= ya® =k, (0, K, (1) 1= ke, () = ya0), 17)

where lgbl <kp, () < kp,, Iga 1 < kg, (t) < kg, with positive constants Igbl, ky, , Ka g and k, .
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By a change of error coordinates, we arrive at

€1

e G, (0= —2—. GO =ri (), O+~ r1(e))a, . (18)

Cal(t) = kbl(t) >

Consider the following BLF candidate:

k2 (t) _ K2 (1)
L = r1(er) b, + 1—r1(e1) o a, ’ (19)
2 k; (£) — e 2 ks () — e
where log(e) represents the natural logarithm of e.
Then we can rewrite (19) into a form that does not depend explicitly on time
r1 (e1) 1 1-ri(e1) 1 1 1
L = 10 =+ 10 = — 10 . 20
T2 itz T 2 itz 2 ti-go o
And it is clear that L, is positive definite and continuously differentiable in the set |{(¢)] < 1.
Considering the following subsystem of (1) and noting e; = y; — y4, one gets
e1 =) + &z +diCn) — Vas (21)
where y, is virtual control input.
To move on, the time derivative of L; along (19) is
. ri (e1) &, () ks,
L= 3 <Sl(Zl) +g1(x1)x2 + di(x1) — elE)
k(@ (1-820) o
(1 —ri(e1) &e, (® kq
+ —————— | S1(Z) + g1 + di(x) —er— |,
ko, (0 (1-82.() < ka,
where $1(Z)) = fi(x1) — Y4 with Zy = [ y1,94] € R2.
By employing the NN in the general form of (13) to approximate S;(Z;), one obtains
ri(e1)e oT ke, (1)
=——7-10 Z) +e1(Zy) + +d —e
1 kﬁ (t)—e% < L wiZ) +e1(Z) + g1 x2 1) 1kb1([)
A-ree [ ka, (8)
=LAV 0Ty (Z2)) + e1(Z0) + +di(p) —e——
kﬁl(t) _ e% < 1 wi(Z) +e(Z1) + &a1(xz 1) — e ke, ()
20 T 2 i (23)
<1 (@) egiC)r by CowiZ) I elle(Z) + di(n)] er  ky (D)
<rne 2 — 2 5 2 2 T2 — 2
kbl(t) ¢ (kil - e%) kbl(t) e kbl(t) e? ky, (1)
20w T (Z)wn(Z)) Z)+d PN ()
=1 () 61281()(1))(22 L aivn e ; + L + 91[51(2 1) 12()(1)] - 1 _ a ’
kg () —e; 20 (kgl o -é) 2 kg () —e; kg () —e; ka, (£)

where [; is a positive design parameter.
Define 6; = ||©; ||2 and the generalized NN weight estimation error ; as 8; = 6; — g;,,0;, where 0; is the estimate of 6;.
Devise the virtual fixed-time control «; as follows:

e e ey (Z1) w1 (Z1)

1
—4 — (e — k157 (e
Co-¢ "Ron-¢ ameo-a waTamie

ap=0-ri(e) |-

. (24)
e e e (Z) i (Z)

1
1 —Ah
ki () — e} ke O—e o (ki () — ef)

+ri(e))| —c — hi(t)er — k151 (e1) |,
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where c¢;, 41, and k; are the positive design parameters.
The time-varying gain 7, (¢) is given by

. 2 . 2
| (ko o, (0
MmO = (km(r)) +<kb1<t>> on (25)

where o is a positive design parameter.

Remark 3. Currently the BLF-based adaptive control schemes mainly focus on tacking state constraints problem,
which prescribed state constraints are usually defined to be time-invariance or symmetric. By contrast, we permit
the barriers to vary with the desired trajectory in time and an asymmetric BLF is employed in fixed-time control. To
realize the objective of time-varying state constraints, a change of tracking error coordinates is used to eliminate the
dependence explicitly on time, and the time-varying gain is introduced to compensate the effect brought by dynamic
barriers.

And the smooth switching law ; (e;) is defined as

1-h -
e [rl(e1)<<k§l(t)—ef) >+(1—rl(eo)((k;(t)—e%)1 ")] ifleil 2 6

r1(er) (per +viied) + (1 —ry(e) (pnzer + vized) if ler] <61

Si(e) = ; (26)

ith = 2212 () = 2 l_h_ 2 = h—=1D2"2 (12 (1) = 2 =, K2 (f) — 2 h _ 2h-2
wit Hi11 = gl bl(t) gl Vllgla Vi1 = ( )gl bl(t) gl + gl bl([) gl 5 Hi2 = gl

1
satistying ¢; < kp, (£), 61 < ko, (£). From 0 < h < 1, we have vy, vi; < 0and gy, p12 > 0.
The estimation 6, is determined by the following adaptive control law:

(k2 (1) - gf)l_h —viagZ, vip = (h - 122 [(kﬁl(t) - gf)l_h ARSILAGE gf)_h], and ¢ is a small positive parameter

eyl (Z) w1 (Zy) D) eyl (Z)wi (Z1)
2

2 2\2 @7
24 <kil(f) - ef) 2L (kal 0 -e)

A N .3
01 = p1|—o1161 — 01201 + 11 (e1)

where p;, 611, and o7, are the positive design parameters to be specified later. It can be inferred that 6, > 0forVt > 0 after
choosing 0, (0) > 0.
Invoking x, = e; + a1, 71 (e1) - (1 — 11 (e1)) = 0 and Assumption 2, substituting (24) into (23), we obtain

gilree, c18ime] _ Mgimer _ e%glmélllflT (ZV)y1 (Z1) e131 (e1)

Li<d-r(e) - x1g1(n)
' TR O-8 Ro-e)} (Ro-¢f  2h(ko-2) e e

0w (Zowi(Z) I, eleZ) +d e? e? ka,
(=1 )] 2 Uy Lo, 1 1(2 1) 12(){1)] — (g1 1 ap— 1 zi
211 (kﬁl (t) - e%) 2 ka1 (t) - el kal (t) - el kal (t) - el kal
(n)ere c18ime’ Mgime egimb1y! (Z1) y (Z1) 1S (e
+ r (el) ilz /%;1 ! ; - e > - e > - 1o ! P - Klgl(XI)—k; tl( 1)2
W04 (Ro-a) (ko-¢)  am(ko-e) n(H—a
eyl (Zowi(Z) 1, eleZ) +d e? e? kbl
+r (o] 2 + E1 + 1l 1(2 1) 12()(1)] — m(Ogin— 1 - 1 — (28)
21, (ki (t) — e%> ki () — e} k- k() ky,

To move on, it further holds that
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C1g1m€‘1‘ " gl()(l)elez €131 (e1) " e%élwlT(Zl)Wl(Zl)

Li<A=ri(e)]- — k181 (1)
1 r (er (kﬁl(t)—ef)z ke () —ef k18101 ke (t)— e 211(k§1(t)—e§)2

I hgine  elaZ)+di)] | A-ne)e ka, ()
rd—re) 51_ méy - 1 1(2 1) 12()(1) - A (g + ka t
(o-a)  Ko-4 G0-a 0
c181me) eie e; 3 (e 201y (Z)y1(Z1)
tren|- m€] i +i12()(1) 1 ; —K1g1(}(1)k21 1( 1)2 L a 12 =
(eo-a) %0-a B0 220 -e)
1
l A181me? eile1(Z) +d ] ry(e)e? ks, (£)
+ri(en)| 5 - s ~ = 1;2 1(3) _812(}(1) eo _;2 M (Ogim + kbl(t) (29)
(ki1 ) - ef) by 1 b, 1 )
where él >0 and 51 = 61 _glmél-
By utilizing Cauchy’s inequality and Young’s inequality, one has
B Mgime; L a8 (Z1) < £1(Z1) < Eant o Mgimer N erd, (1) < di (n) < .,
2(k2.(6) - e%)z k() —ef ~ 2h&m ~ 248im 2(k2,(5) - ef)z ko () —ef ~ 2M&m ~ 248im
__ Mg RREGICARS S@) _ &n o hewme L adn) G G g
2<k§ o - ef) kp () —ef = 2hgim — 248im 2<k§ ) - ef) kp () —ef — 2hgim — 2481m
With the aid of (25), we obtain
kb, (1) ka, (0)
a(Oim + 1 (&) s + (1= @) k—(t) > 0. (31)
According to the inequalities (32) and (33), (31) can be rewritten as
2 ~
. el (x)ere S (@)  ehw!@owm@)| 1, e, +d
Ly <r(er) —Clg1m<—2 - 2> + 8—12 A7 ; - k181(x1) 21 o 1)2 + 1 — |+ 51 + —]gl/l M
kb1 () —e; kb1 () —e; kbl(t) —e 21 (kgl (t) — e%) 181m )
32
2 ~
et (r)ere S (@) e Zowi(Z)
F = r )| —egin o | 4 B o a5 | ST !
kal(t) - el ka1 (t) - el kal (t) - el 2l1 (kél (t) - e%)

Step i(2 <i<n-1): A similar procedure is employed recursively for each step i(2 <i<n—1). The positive
time-varying barrier functions k, (¢) and k,, (¢) are specified later on.
Consider the following quadratic Lyapunov function candidate:

(e ks () —ri(e k2 (1)
rz(el)lo b; +1 rl(el)lo a;

L= . (33)
2 kii(t) —e 2 kﬁi(t) —e
Invoking e; = y; — @;_1, the dynamics of e;-subsystem can be described as
ri-1 (ei—1) i (&) <k§i(t) - e,-z) (1 —ri1 (i) A —ri (&) (K2 () — €?) G
g =— + l gi-1(xi_1)ei1
2
() (kii_l 0-e,) A =ri(e)’ (k0 —ef,) (34)

+ Si(Z) + & (x (e + o) + di(xy),
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ra(e)r(@)(6,0-) | G-na(en))n(e)(k,0—)
Rk o-e,) (1-n(e))’ (k2 0-¢2,)
[7i iz, a1, &i21] € R*3 and ag = yg.
By employing the NN in the general form of (13) to approximate S;(Z;), the time derivative of L; along (33) is

' ks, () _ ria(eic) 8i-1(rimyeie
0 2 (t-e

ka,-(t)) ~ A =ria(e)gia(xieie

where Si(Z) = fitx) + l ] gisi(Xic1)eis1 — &ia with Zi=

__h (e)) e
k;i(t) —e

i

<®leI/i(Zi) +&(Z) + 8(x)xin +di(x) —e

A —-ri(e))e

<®lel/i(Zi) +&(Z) +&(xxim +di(x) —e

k2 (t) — e 0 2 -,
o eleiZ) + dix; eyt a6 Z) + di(7 & ot
<ri(e) L N 6’1[51(2 i) zg)(l)] . - b, (1) L d-r@) L N 91[51(2 ) 12)(1)] . - (1)
2 k, () —¢; ki () — €} ki (1) 2 k2 (t) — & K -eka® ) (35
A =ria(e) g (Xia)eie L) gZDeen  gew 0w (Zywi(Z)
kCzli—l (t) - ei2—1 ki(t) - eiZ kczll(t) - eiz 2ll(k§l([) _ 61.2)2
ri-1(€i-1) 8i-1(xi—1)ei-1€i g(zeen  srew  €0w] (Zowi(Z)
- TR + i (e:) o2 oot -1
b, O~ G -6 kKO- 21z(k§.(t) - ef)

where [; is a positive design parameter.
Devise a virtual fixed-time smooth control input ; as follows:
A = rie) e; PR ey (Z) wi (Z)
a =L =ri(&)) | =G — A -
ke®—e k- 20 (k2@®-e)

— ni(He; — ki (ei)]

\ - (36)
e e; eilbiy; (Zi)wi(Zi)

Ci d —/11' -
KO- Tko-¢ o (kn-e)

+ri(e)|— - hi(He; — ki (&) |

where c;, 4;, and k; are the positive design parameters.
Along similar lines, the time-varying gain #;(¢) is given by

. 2 . 2
0 (kRO (k®
hi(t) = gl—m (kai(t)> + <kbi(l’)> + 0;. 37)

And the smooth switching law S; (e;) is defined as

e [rz (e;) <(k§'(t) - ef)l_h> + @1 —ri(e) ((kﬁi(t) - ef)l_h>] ., iflel 2 g

ri(e) (pne +viel) + (1 —ri(e) (uinei + vioe?) , if leil <gi

Si(e) = , (38)

1-h 1-h —-h
with = 2(R0-¢) —we == [(k;_(t)—gf) +e(kRo-¢) ] i = 2

(ka.(t) - gl.z)l_h — Vol vip = (h - 1)gi2(h_2) [(kﬁi(t) - gl.z)l_h +¢2 (k2 () — gl.z)_h], and ¢ is a small positive parameter

satisfying ¢; < k, (), i < kg (). From 0 < h < 1, we have vi1, vi < 0 and p;1, pip > 0.
The estimation ; is determined by the following adaptive control law:

.2.TZi iZi ZTZl iZi
ey, (Zowi( z"‘(l_ri(ei))elll/l( Ywi(Zy) , (39)

A N A3
0; = pi| —0110; — 0120; +1;(e) . —
2412 (- &) 20 (k2. (6) - €)
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where p;, 011, and oy, are the positive design parameters to be specified later.
Then, substituting (36) into (35), it gives

() i (rimDeimer  (L—ria(6i-1)) i1y )eie

Li< k2 (t)— 2 k2 (t)— 2
b, ei—l i ei—l

cigime; {(xeie e (e 20! (Z)wi(Z)
+(1-ri(e)| - e LG LI 2
(Ro-e) kKb-¢ KO-¢  21(en-e)

I Aigime? JelZ) +dizpl| A —ri(e))e? ka, (1)
+1-rie)|3 - AR I

(k2 () —e?) ka, (6) =€ ke, (D —¢; ka, (1) 40)

Cl‘gime;1 gi(?i)eiei+l eisl' (ei) eizéiWiT(Zi)Wi(Zi)

+rie)|— 2t e h—& Kigi()(i)kz -7 + >
(kﬁ_(t) - ef) b, i b, i 2li(k§(t) - ef)

+ 1 (e;)

L g€ eleZ)+di)l| e ks, (1)
2- T eo-e | eo-e\"Prtne )
(kg(t) - ef) b (D~ b D € :

where §; > 0 and 6; = 6; — gin0:.
By utilizing Cauchy’s inequality and Young’s inequality, one has

Aigime? L eEZ) VM) - ery ~ Aigime? edi () _ d? () B dy,
2(kz (1) —el.z)2 ke () —e — 24igm 24i8im’ 2(k2(0) - ei2)2 k2 () —e = 24igim ~ 22igim

Aigime; aei(Z) _ 5@ _ gy Mgmeg L et () G 4

2(k2 - 62>2 ki_(t) —e’ " 2higm 24i8im~ 2<k2 ) - e2)2 ki_(t) —e’ " 24igm ~ 2Aigim
b, i ' b, i '

(41)

With the aid of (37), we obtain

Jes, (1) ka, (1)
hi(D)gim + 1i (&) A0 + 1A -ri(e)) ke O > 0. (42)

From (41) and (42), (40) can become

RS () g@aZivee (A—rii(e)gaFieae L &+
=" 2 2 - 2 5 St
kbi_1 O —e ki (O—e, 2 2i8im

2 .
¢ (Zee; _eSie) 0w ZywiZy)
+ (1 —r (ei)) —Ci8im - - + glz i l+21 _ Kigi()(i) - ( )2 + 4 i)¥i 12
kg (D) —e; kg, () — e ke (D) — e Zli(kg,(t) _ eiz) (43)

2 2 — 200, T
+ri(e) —Cigim( - ) +gi(xi)eiei+l 43 () + & o @iz )

20 _ 2 20 _ 2 - xigi(x1) 2/ _ 2 2
k, (O —¢; k, (O —e; k, (O —¢; 21i<k§.(t)_ei2)

Step n: From e, = y, — a,-1, the dynamics of e,-subsystem can be described by

Fn-1 (€n-1) Tn (€n) (ki,,@—ei) (1= a1 (en1)) (1 = (en)) (K2 (6) — €2) G
gn—l )(n—l €n—1

én = gn(?n)u - +
e (k2 o-e.,) (1= ra(en))” (G, , (0 =€) (44)

+ Sn(Zn) + dn(xp),
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_ (e )r(e) (,0-¢)  (=ni(en))(1-ra(e) (R, 0 ) _ :
h Sn(Zy) = s = _ 1 — Ay th Z,=
where  S,(Z,) =f,(7,) + e <k§,,,1(f>‘eﬁ-1> o, (en))z(kén,l(f)—eiq) gn1(Xp-1)en-1 — @n-1 Wi n

[?n, QAp—2, An—1, dn—l] € R"3,
Consider the following quadratic Lyapunov function candidate:

2
AN ke ® 1, (e o X0 )
2 k() —ep 2 K2 (1) — €2’

L,=

By employing the NN in the general form of (13) to approximate S,(Z,), the time derivative of L,, along (45) is

nll/n (Zn)Wn(Z ) _n enlen(Zy) + dn(yn)]
k; () — ey

gn()(n)en gn—1(7n_1)€n—1€n
2 i _ 2 — 2 2
G Ok O-e, 21,,(k§ 0-¢) °

_(1 =1 (€n-1)) 8n-1(X n_1)€n-1€n + =1y (e) gn(xpent e onll/ (Zn)V/n(Zn) e%l kan(t)
2 2 ni=n 2 2 2 2 2
ke (O —e ky () —ep 21”( K2 (0 - en> kan(t) e? kq, (D)
" (46)
e (en—1) 8n-1(X n-1)€n-1€n () (X nenu nV/n (Zn)U/n(Zn) e;%l kbn(t)
ke O—er; ke D—e n<k2 0 —e¢ )2 kgn(t) — 2 ky, (1)
bl’l
n n Zn dl’l _n
ooy enlenZ) + )l
2 k (t) —e;
where I, is a positive design parameter.
Construct the actual smooth control input u as
e,a:l e, an (Zn)Wn(Zn)
u=>Q-ry(e —C -1 — (e, — k.S (e
( n ( n))( nkﬁn(t)—ef, nkﬁn(t)—efl n(kgn(t)—en) n(en — Ky Sy (en)
3 (47)
Z Z
+ 1 (en) —Cn ) 2 5 /1n ) on ) nl//n( n)ll/n( n) - hn(t)en - Knsn (en) ’
ko-a Tkon-a <k§ ®-e)
where c,,, 4,, and «, are the positive design parameters.
Along similar lines, the time-varying gain #,(¢) is given by
. 2 . 2
1 ka, () ks, (1)
() = — - + - + 0. 48
8nm <kan(t)> (kbn(t) ( )
And the smooth switching law 5, (e,,) is defined as
1-h
21y, (en) | (K2 (0) — €2 + (1 =ry(en k2 (t)—é? l_h], if leq| > ¢,
5 (o [ ( )((bno ) > a-nen ((2,0-)™")|. Flalza )
if lenl < Gn

¥ (en) (ﬂnlen + anez) + (1 —rn(en)) (ﬂnzen + Vnzef;) >

1-h 1-h —-h
with =2 0-¢) -wcd = h-Dg" [(kina) -¢) +a(ew-c) ] o =
g2h- (k2 (1) - )l_h — V2, Vm = (h— 1) [(kﬁn(t) - g,zl)l_h +6r (k2 () - gﬁ)_h], and ¢, is a small positive

parameter satisfying ¢, < kp, (£), 6u < kg (). From 0 < h < 1, we have vy, vy < 0and pp, pinz > 0
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The estimation 8, is determined by the following adaptive control law:

X R A VA 2wl (z yA
b = pu —amen—anzei+rn<en>M+(l— 1 (o)) Sn¥n ) ¥n (Zn) | (50)

20,12 () e ) 21 (k2 (0 = )

where py, 0,1, and oy, are the positive design parameters.
With the aid of (48), we obtain
N0) kq, (£)

kbn(t) — Iy n)) k (t) _0 (51)

N (D)8nm + T (e

Similarly, substituting (47) into (46) and then utilizing Young’s inequality and (51), we have

n-1 (en—l)gn—l(ynq)en—len _ 1 = rp-1(en-1)) gn—1(7n_1)€n—1€n + l " Eiin + d]2\4n

Ly<- 2 2 2 2 =
kbn—l t) — e 1 kan_l t) — e 2 2An8nm

& >2 oGy &S ) | B )

1- n\tn —tnsnm\ TS5 5
N (kéna)—e% 20-a a(en-a)

2
2 ~
> ) — kn8n(Xn) €nSn (€n) + an (Z WnlZn) , (52)

+7n (en) _Cngnm(ﬁ D) P
kbn(t) 6 kbn(t) ~én 2ln<ki @® - eﬁ)
where 8, > 0and 8, = 0, — gunb»
The design process of nonsingular fixed-time adaptive tracking controller has been completed.

4 | STABILITY ANALYSIS

We are at the position to present our main results in the following Theorem 1.

Theorem 1. Consider the nonlinear system (1) under Assumptions 1-3. The virtual control laws are constructed as (24)
and (36), with the adaptation laws (27) and (39). Based on the designed control laws, the actual control law is proposed as
(47). If the initial conditions satisfy —kq, (0) < ey (0) < kp, (0), the proposed approach can ensure that: (1) the signals of the
closed-loop system are bounded and converge into the arbitrarily small regions in a fixed time; (2) all the states constraints

are never violated, that is, each state y; will remain in the set Q,, := {){ eR": Ec[(t) <x< kci(t)}.

Proof of Theorem 1. To analyze the stability of the closed-loop system, we consider the following Lyapunov function
candidate:

L=L,+ Ly, (53)

n rt(e) kO 1- r,(e) k. () 1 a2
where L, = Y, L= Y, lo 8 e T lo 8 17, 02 andLg = Y, 15,00

It follows from (32), (43), and (52) that the time derlvatlve of L, is

2 ~
. ‘ e; . _ . eSie L e20wy ! (Z)wi(Z)
Le < (1 —ri(e) _zcigim ] - ZKigi(xi) = K 1)2 + Z 3
= ke, (D) —¢; = ko (D —e 1T 20(k2 (1) - €?)

2 2 q n 25 T
_ eSS (e e:0iy; (Zowi(Z)
+ 71 (e) E Ci8im - E Kigi(X;) () + z
k2 (t) k2 (t) —e? 2
= pD-& = ZIi(ki.(t) - ef)
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n + dz
. 54
In combination with 51’ =0; - giméi = —giméi, considering (27), (39), and (50) gives
L=L.+1Ly
- e; Py _ . eSi(e; - N ~ A3
<@ =ri(e)) —Zcigim<wl_2> - ZKigi()(i)#(_l)z + <O'i19i9i + 01200, )
i=1 ai( ) e i=1 ai( ) i=1 (55)
! e’ Zon e\s(e) "L e +d,
o ; ‘ Lm<k§i(t) —e ; ot k2 (- Z\2  2M8m
. ~ A 0 02
Since 6;0; < —— + ——, one has
%im 2im
e? 2o S (e) "L e +d2,
e lz:f : ""(kz (t) - e ; enAt Ro-e| G\2° 2igm
s e? 2 " eSS (er)
s d-rien -Nee [ — ) _ Vo) S50
( i (€1)) ; lglm(ki(t) — 312> ; lgl(){l)ki(t) 2
noézh naézh n0'0 6119 - 3
i10; i10; i1 5 A
- — ) + — ) - + (a- 0;0; ). (56)
(; 28im ) <; 28im ) ; 28im 2 28m G\ )
By utilizing Corollary 2, let ® = Z" 5’19’ , it yields that
n ~2 h
i10; 0
<Z—‘§? ‘ > <am+ 3ot 67
i=1 “8im
Substituting (57) into (56) arrives at
. " e.z 2 " e; ‘5 (e) " Il + d2 .
o ; ’ ""(kii(t)—ef ; ol kz (- ~\ 2" 2kgm
‘ 3.2 ’ ‘ 4] \5 (e ) ( )
( i (e:)) ; 1g1m< kﬁi(t) ~ elz) ; 8(X) S —— k2 (t)
n . 92 h 2 n ;
il A A
(Y ) L Amy+ + <a 0.0, )
<§ 28im > Z 8im ; =
Since 6,0, = :% (4913 —3620; + 30,0, — 9?), (53) can be expressed as
" e.2 2 " e; ‘; (e " + d2
L<ri(e — ) =) kg —— [+
e ; ‘g‘”‘<k2 0 - ) ; Ly - ; z/uglm
- 2 Pl eSS (e 6 0 "
i i 11
—ri(e C
i (e1) Z:‘ lglm<k2 (0 — > lz:‘ lgl()( )k2 (l’) l < Zgzm
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~4

+A(h)+zn: +Zn:3 0070 +zn: z":alzé)

i=1 lm i=1 lm i=1 lm i=1 glm i=1

01299 " 30'129 9

By using Young’s inequality, we have

~ ~ <2
i3ai2939i 290'126 43} Z 30,20} iﬁizf)if)? < =\ 30120; 67 N i 0,20}
i=1 gfm i=1 i=1 454 i=1 g?m i=1 gfm i=1 1281-3,,1

Then using Lemma 3, (58) can be further expressed by

2

. i e.z i eSS (e) " Il 512\4. + dil

L<re)|-) cgm| 5= | - ) x&x)5——= |+ =
& <k§,.<f> —ef) DX 2Aigin

i=1 i=1

1
“ e . eii (e)
+ 1 =ri(er)) _Zcigim 2o—2) Z’Q’&'(Iﬂm + A(h)

i=1 i=1 4g;,, i

For convenience, we rewrite (58) as
n

2 2
. _. eSJi(e) et
L<r(e) Cigim - 8 X)) 5——— |t =
@|-Ses (kzm ) - B e,

i=1

¢\ & aSi@
+1=r(e) chglm<m> - ngi(ﬂm)m

i=1 i=1
noos2 \" 2 2 4/3 nooz \?2
( v Z 0; 4p;oin — 9p;one Z 0;
— (oupi — | - :
o =1 20i8im ngim =1 20i8im
= 2 X+d o; 6[ 30; 0 ; 6’
where E = 11< +;4/1g )+A(h)+2:’12; +le4é; Zlnhzzg
From the definition of J; (¢;),i =1, ... ,nin (40), the followmg two cases should be considered.

Case 1: When |e;| < ¢;,i=1, ... ,n.
Substituting S (;) = 7i (€;) (unei + vine?) + (1 — qi (e)) (uizei + vio€? ) into (61) gives

2
] Cigim n ei2 n 62 4
L<ri(e)]|— n < E (t) ) - E Ki8imHi1 k2 ([_) - E Ki 11g1()( )k2 ([)

llb i=1 i i=1

cgm < & Pl e; et
+(1-ri(e)|——— : - Kigimlhz— kivi&(X ) ——
n ;kﬁi(t)—ef Z:‘ k2 (1) — € z:' N AGETA
no =2 \" 2 2 4/3 noox2 0\ 2
(oup)" Z 0; 4pioin — 9p;oine 2 0; +E
— (6i1p; _ =,
o =1 20i8im Nngim =1 20i8im
By utilizing Corollary 2, let ® = quglm/m 2 (:) 2,one reaches
i=1

e2

h
" e? " .
Gimpn ———— | < Ah) + iimbin ————.
<2Kg Mlki_(t)—e?) h) ;Kg Mlk;(t)—elz

i=1

. h
_ io‘ileiz B i 40ip — 96i2€ . + 251102 4 3(7i29;‘ + i 020}
20, 3 0; 2 463 3"
8im 8im -1 4e gim : 12g

(59)

(60)

(61)

(62)

(63)

(64)
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h
Remark 4. Aiming to obtain the indispensable fractional power term <Zl 1 Ki8imMi1 2 (:) 2) to implement the subse-

quent fixed-time stability analysis, thus it needs to convert the existing integer power terms into the form of fractional
power term. Hence the inequality (10) builds the relationship between the fractional power term and integer power term,

which can effectively make the fractional power term displayed in the stability analysis process.

In view of vi1, viz < 0, |e;| < ¢i, ¢ < min {kp (£), ko, () } and (17), one has

n n

KigimVil g Kigim VlZg
_ZKIVllgl()( )k2 (t) < _Z _ZKIVLZgl()( )k2 (t) < _Z .

l
a;

Thus, we can rewrite (63) as

n 2 2 n 2 h
i Ci8im ei h e
L<rie)|— — (KigimHi -
<ri(e) " <i=1k§(t)_ei2> (KigimHi1) <l§1 b(t)—e)

n 2 2 n 2 h
Cigim & h &
( (e) n <i=§1 ktzli(t) ~ elz) (Kigim Mi2) < z: kzi(t) _ e12)

i=1 "a

~ 2 - h
(oot (6 @\ i\
Ngim = 2pigim U\ & 2igim ’

where 2 = E + 2A(h) — YL 1—;§Mvg T 1—K§£M_v’;g .

Case 2: When |¢;| > ¢;, i = 1 .

Substituting S (e:) = ¢/*! [ri (« <<ki-(t) - ei2>1_h> + (1 -ri(e)) ((k?z,-(t) —e)' " ] into (61) arrives at

P lglm c ’ c ez !
L<ri(e)|- (;k 2 (=@ > Kigim<;_k§[(t)l_ ei2>
cgm( < & ’ S '

+ @A =ri(e))|— ” <i§‘k§i(t) — ei2> - Ki&'m(Z K20 - eiz) '

N2 N
- (e Seieec Z 3 Z "
1 13
Ngim = 2pigim = 2pi8im

Summarizing above two cases leads to

(@) () " noa\
. _ r; (e —ri(e N i
L<-— L _

< < 2 Lz}ki (t) — ) ( lz:‘ki tH-e ) w1<; 2Pigim>

J
N

(&) 2\ [(1-r e\’ noog\’
— ri (€ —ri(e A i —_
- ( 2 lz}ki(t) > ( 2 ;ki(t)—e> ( wz(gfzpigim) +=

J

h h " ~2 h
_ ri(e:) ¢ 1-r(ep) e’ 0;
< -m < 2 ; ki - e? > < ; ki (t) — > <; 2pi8im )

(65)

(66)

(67)
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2 N
~ r; (e;) e —ri(e) 0; —_
%) =, (68)
< 2 ; kp (0 — > < 2 ; ki (t) > <l=21 2pigim )
where ®; = min {ZhKigim, xigimpn)", (ZKigimHiz)h}, @ = (onp)" and @, = min {51,@1}- Wy = 46"%, ) =
<4Pi20'i2_n?’i26i264/3 > and ;2 — min {52’ @2}
) ) (e, [ ACI— k; () A
With the aid of L = Y, (e) log = fr)—ef + rz(e) log oo + XL 13, and Lemma 3, it follows that
n k2 (1) k2 h noox2 h
(o ) 1—=r7(e; (0 :
Ih < Z r; (e;) log b; " ri(e;) log a; " Z 0;
2 kﬁ_(t) -e 2 ke () — e} = 2pigim
ri (e;) e; —ri(e) e e\ )
i\C i\%i i
< 2 ;ki(t)—e ) ( 2 Z;kg(t) ) <i=2129igim> ’
n k2 ®) k2 2 n ~2 2
. (e; . 1 =7 (e [0 ‘
12 <2n4 Z ri(e;) log _ b; _ + ri(e;) IOg _ a; _ + z 0; (
i=1 2 kb,(t) - e[ 2 ka,(t) - ei i=1 zpigim
; 7 (70)
2 2 no =2 2
<ond rz(el)z e 1_rl(el)z 2 4 Z 0; (
B 2 i=1 ki Oh e 2 i=1 ki 0 - e i=1 2pigim
Combining (68), (69), and (70), the following inequality holds
L < - L' — w,[* + &, (71)

where w, = %
According to Lemma 1 and Corollary 1, the parameters are selected as follows: ¢ = 2,k = 1.
The fixed convergence time can be derived as

1-

1 w1 \ > 1 [O) %
Thax §= —————— — (&), 72
e Opw1(1 = h) < 2) * Oow1 <w2> (72)

N S N
for {lim,_,Ty L(x) Smin{wlh<ﬁ>h,a)22<l_¢9 )2}}With0< 0y < 1.

Then, the internal error signals e; and 07 will converge into the following compact sets:

B3

L

1 1
o TR(_E \h
le;] < min kbA\/l—e 20, <1_90> ,
1

(73)

|0:] < min{ v/2pigim

(74)

As a consequence, it can be concluded that the error terms converge to an arbitrarily small neighborhood of the origin
within fixed-time by appropriately online-tuning the design parameters.
Now, it is the time to prove that full state constraints are guaranteed.
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If the initial conditions satisfy —k, (0) < e; (0) < k;, (0), it is equivalent to |£1(0)] < 1, Then, we can show that
[&1(0)] < 1. Since [£1(8)] < 1, we have —k;, (f) < e (f) < kp, (t). Together with the fact that y; (£) = e; (¢) + yq (f), we infer
that yq (t) — ka1 ®) <@ <kp, () +ya (t) for all ¢ > 0. From the definitions of k,, (f) and k;, (¢) in (17), we conclude that

(t) <n< kCl (9). To verify that k, (t) << kcz(t) it needs to show that there are positive functions a; and a, so that
—gl < a1 < a;.Invoking (74), one has that 8, is bounded, then ; is also bounded. Due to the fact that «; is a function of &,
X1, €1 and y,4, in which lgcl(t) <n< Ecl (1), —kq, (t) < e1 (t) < kp, (1), Y () < ya(t) < Y1 (1), there must exists a bound of ;.
And then define k;, () = Ecz(t) —ay and kg, (1) = —l_ccz(t) —a, wehave -k, () —a, <exta, < p<exta <k, ()+a,

and thus, one has k. ()<< Ecz(t). Similarly and iteratively, we have that a;_; for i = 3, ... ,n are bounded, together
2
with =k, (£) < e; (t) < kp, (t), we can in turn prove that k_ (f) < y; < kc,(¢). Thus, the system states y;, i = 1,2, ... ,nwill
remain in the set Q, all the time.
This completes the proof. [

Remark 5. In (26), the appropriate parameters 11, 412 > 0, and vq1, vz < 0 are selected to guarantee the virtual control
input a; and its derivative &, are both continuous in the set Q,. Dividing it into three kinds of situations and discuss:
First, it can be shown that S, (e;) and its derivative ; (e;) are indeed continuous in the case that e; € (—¢1,¢1) or |ey| €
(gl, ks, (£)). Second, by skillfully designing parameter 411, 12, and vi1, vi2, we can derive that both S, (¢f) = 31 (¢7) and
$1(¢f) =S (¢7) hold in the case of e; = ¢. Third, the continuity of 3, (e;) and 5 (e;) are ensured similarly when
e; = —¢1. Hence, the virtual control input and its derivative are continuous, which makes them possible to implement the
backstepping technique.

Remark 6. The main benefit of the proposed smooth switching is to eliminate singularity issue effectively, and achieve
the fixed-time control subsequently. In view of (26), the equation is investigated by two cases: (1) when |e;| < ¢, due to
the possibility of existence that the tracking error approaches to zero, the switching law is designed in the integer power
form, so there is no singularity problem with derivatives of integer power term. (2) when |e;| > ¢, the fractional power
term designed in the switching is limited in a positive interval, which can avoid the singularity issue that the derivatives
of fractional power term might increase to infinity in the combination of fixed-time control and backstepping process.
Moreover, this novel switching between the fractional and integer power form is proved to be smooth and continuous.

Remark 7. 1t is worth noting that the fixed-time control strategies have been widely studied, such as References 20-22.
However, all of these works encounter singularity issue. Especially, the fractional power utilized for fixed-time controller
design and stability proof is settled to a specific constant in References 20,21. In contrast to the above results, we present
a smooth switching between the fractional and integer power forms to guarantee that fractional power term is confined
within a positive interval, such that the singularity issue can be eliminated and the fractional power remains in an allow-
able range. Although the singularity-free fixed-time adaptive control has also been proposed in Reference 7, the robotic
system can only convert to a second-order system. As improved, we develop a BLFs-based nonsingular fixed-time switch-
ing control approach for a high-order nonlinear dynamic system, this design controller plays a key role in ensuring the
strong robustness and fast convergence rate of the closed-loop systems.

Remark8. Asawhole, there are only two scalar parameter adaptation laws (37) and (39) involved in our design besides the
virtual and actual fixed-time smooth control law, which makes it simpler than time-varying BLFs-based adaptation laws
without using NN technique in backstepping approach.3! In addition, the proposed switching mechanism can be simply
implemented as a static nonlinearity as in (38), which is comparable to the complexity of state-of-the-art approaches
proposed for solving nonsingular issues or switched systems. On the whole, the computation complexity of the considered
methods in this article is acceptable and the result is viable on the basis of its implementability.

5 | SIMULATION RESULTS

In this section, an application example of ship autopilot system is given to demonstrate the effectiveness of designed
method. To begin with, the mathematical model of the ship dynamics is described as follows*?

{¢ +(K/T)H($) = (K/T)6 3

é+(1/Ts) 6 = (K/Tp) 65
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FIGURE 1 Trajectories of y; and ¢y,

where K = 0.2 and T = 64 are parameters which are functions of ship’s constants forward velocity and length, 6 denotes
the rudder angle and ¢ denotes the heading of the ship. Tr = 2.5 is the time delay constant, Kz = 1 is the control gain and
6g denotes the order angle of the rudder actuator.

And the “spiral test” experiment can approximate the function H(¢) as

H(@) = a1+ ar” + azd’ + ... , (76)

where a; = 1, a; = 30, a; = 0 are real-valued constants.
The reference model satisfying realistic performance is selected as

D (D) + 0.1¢h,,,(£) + 0.0025¢,,(£) = 0.0025¢,(t), 77

where ¢, is the desired system performance during the ship autopilot control, and ¢, is a command signal, which changes
its value in the interval (0, 30 Deg) every 200 s.

Let the state variables be y; = ¢, y» = ¢, y3 = 6, and control input be u = &g, then (75) can be transferred into the
following expressions

X1=1

#2=—K/T)H(r) + K/T) 13
J3=—Q1/Tp) p3+ Ke/Tp)u
Yy=xn

(78)

In practice, the heading y,, the heading velocity y,, and the rudder angle y; are restrained by the compact sets 2,
{ ZER 1k ()< z <k (t)} with ke, (1) = 35 + 0.4 cos(0.16) and k_ (1) = =5+ 0.45in(0.10), ke, () = 1 + 0.2 cos(0.1¢) and

k. (t) = —1+40.15sin(0.1¢), k ,(f) = 35+ 0.1 ¢cos(0.05¢), and k, (t) = —35+ 0.1sin(0.1t). The control objective is to ensure
that the heading y; can follow the desired heading ¢,, in a fixed time, and all the state variables do not violate the
prescribed constraints.

In accordance with Theorem 1, the design parameters in Step 1 are set as: ¢; =1, 4; =0.5, [; =1, x; = 0.06,
h =0.6, py =0.01, 61, = 612 = 0.5 with barriers k, (f) = 1+ 0.4sin(0.1¢) and kj, (¢) = 2 +0.4co0s(0.1¢); In Step 2, the
design parameters are set as: ¢; =1, A, =25, , =1, kK, = 5, ¢, = 0.01, p, = 0.01, 031 = 02, = 0.5 with barriers k,, (f) =
0.4 +0.15sin(0.1¢) and kj,(£) = 0.7 4 0.2 cos(0.1t); The design parameters in Step 3 are set as: c3 =2, 3=1, I3 =1,
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FIGURE 3 Trajectory of y3

k3 =2, ¢3 = 0.01, p3 = 0.01, 031 = 63, = 0.5 with barriers k,,(¢) = 0.3 + 0.1sin(0.1¢) and kj, (¢) = 0.4 + 0.1 cos(0.05¢). Let
the initial conditions for [1 (0), x2 (0), 73 (0)] = [0,0,0], [81 (0),8, (0,85 (0)] = [0,0,0]. According to the guideline for
selecting parameters of Gaussian network in Reference 43, the RBFNN to approximate the function S;(Z;) contains
five nodes with centers evenly spaced in the interval [—4,4] X [-4, 4] and the function S;(Z,) contains 11 nodes in
the interval [—-10, 10] X [-10,10] x [—10, 10] X [-10, 10] X [—10, 10], the RBFNN for function S3(Z;) contains 13 nodes
spaced in [—12,12] X [—12,12] X [-12,12] X [-12,12] X [—12,12] X [-12,12] and the width of each one equals to two
specifically.

It can be obviously observed from Figure 1 that the heading ¢ can follow the desired heading ¢, in a fixed time and
fairly good tracking performance is obtained. The curves of the heading velocity y, and the rudder angle y; are shown in
Figures 2 and 3 separately, and all the system state variables are restrained by the prescribed constraints. By employing the
asymmetric time-varying BLFs, Figures 4-6 display the tracking errors e, e,, and es, respectively, and prescribed barriers
are not violated. The response curve of the bounded and continuous adaptive laws 6;, the switching law S; and the virtual
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control law «; are depicted in Figures 7-9, respectively. In addition, it can be seen from Figure 10 that the control input is
bounded and in an allowable range. In contrast to the traditional controller given by

1 en _ eiénll/y{(zn)ll/n(zn)
kO=e a1, (k2 m-e)

U = ry(ey) | —cnen — Ap(t)e, — kpey —

(79)

+ 1 —=ry(ey —cpen — hy(He, — knen — Ay —
( (€n) < ® ko () —en 2, (K2 (1) —e?)

e Ryl (Zn>wn(zn>>

our proposed method exhibits a faster convergence rate and higher tracking accuracy. Specially, Figure 9 pro-
duces a chattering behavior during the switching transient, especially when the tracking errors approach to the
prescribed barriers, the control efforts would increase dramatically due to the fractional term and the barrier
terms in the denominators. Even so, our nonsingular fixed-time controller maintains a less control effort than the
traditional controller, which can reduce fuel consumption and enhance the practicability for the ship autopilot
system.

6 | CONCLUSION

A nonsingular adaptive fixed-time switching control scheme is presented for a class of strict-feedback nonlinear disturbed
systems under the full state constraints conditions. The main contribution is to address the singularity problem arising
from that the negative power terms stem from the iterative differentiations of fractional power terms might increase to
infinity as the tracking errors approach to zero. By skillfully employing a smooth switching between fractional power and
integer power terms, the fractional power term is confined within a positive interval to avoid singularity. Compared with
the common fixed-time control strategies, a less conservative convergence time is excavated for the first time. Moreover,
by integrating NN techniques and the asymmetric time-varying BLF, the proposed control scheme can guarantee that the
state variables constraints are not violated. Eventually, all the closed-loop signals can converge into the arbitrarily small
regions with fast fixed-time convergence rate and high accuracy. Simulation results are given to confirm the effectiveness
of the proposed control approach. In the future works, we will consider applying this nonsingular adaptive fixed-time
control approach for high-order or nonstrict-feedback nonlinear systems*-4 with dynamic surface control technique to
reduce computing burden.
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