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Preface

The report is written by a team of five bachelor computer science students at Delft University
of Technology. For our software project in the final quarter of the second year, we developed
a labyrinth game with hyperbolic geometric features in virtual reality. This report is an
assignment for the integrated technical writing module of the software project, and serves
to introduce the design and development of the game.

Readers are assumed to have basic technical background. Required mathematical knowl-
edge on hyperbolic geometry will be explained in section 3.2. Considerations on design choices
can be found in chapter 3, and actual implementation details are laid out in chapter 4.

We would like to thank our client, Dr. Martin Skrodzki from the Computer Graphics and
Visualization Group at TU Delft, for laying out clear requirements for the product and offering
consistent valuable feedback during development. We also want to thank our technical writing
lecturer, Maarten van der Meulen, for his instructive lectures and constructive feedback on the
assignments. We are thankful to our coach, Dr. Bart Gerritsen for his insightful suggestions on
the report as well as the game. We are also very grateful to our TA Nathalie van de Werken,
for monitoring the progress of the project and giving helpful feedback on game experience.

Delft, 7 June 2022
The “Holonomy” Team:
Baran Ozan Yarar
Bo Bakker
Ravi Snellenberg
Riley Slotboom
Wenkai Li
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Summary

Hyperbolic space is a representation of space that is different than what most people are accus-
tomed to. In the past few centuries, it was almost exclusively researched by mathematicians
and physicists. But recently there has been increasing interest in visualizing hyperbolic space
in virtual reality. It will not only help people understand the concept of hyperbolic space in a
more intuitive way, but will also open up new opportunities for experiments in other fields of
research.

The goal of this report is to describe the design and development of an interactive VR
game that lets a player experience non-euclidean geometry. The implemented game will serve
as a prototype for behavioural experiments to facilitate research on navigation and exploration
abilities in non-euclidean geometry. These researches can contribute to understanding how
orientation is hard-wired in the human brain and whether different modes of orientation can
be learned.

The game was created based on a list of requirements that outline what features the game
should have in order to serve its research purposes. The most important requirements are
hyperbolic room connections, aligning physical walls, and displaying a minimap. Firstly, the
rooms are connected in a hyperbolic way, to avoid the need to implement a full hyperbolic
render engine. This means that the rooms themselves use euclidean geometry, but the player
needs five turns to return to their original location. Secondly, the walls in the virtual world
are aligned with those in the physical play area, allowing the player to reach out to a virtual
wall in front of them and feel the corresponding physical wall. Lastly, a map is shown on the
player’s HUD to help them visualize nearby tiles and locate desired items. This map uses the
Poincaré disk model, a way of projecting a hyperbolic space onto a flat surface.

Though all of the above has successfully been implemented, there is still a lot of room for
improvement. In particular, some optimization can still be done to improve the performance
of the game. Next to that, many mechanics can still be generalized to be more flexible. For
instance, the tile grid could be extended to have a variable size, or the hyperbolic tiling could
be extended to have more than five rooms around each vertex.
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Chapter 1

Introduction

Hyperbolic space is a different representation of space than the euclidean space that people are
familiar with, but what does “different” mean exactly? For example, hyperbolic space is curved
such that two parallel lines would diverge from each other, rather than being equidistant like
in euclidean space. Unique properties of hyperbolic space like this are described by hyperbolic
geometry, a term first coined in 1871 by Felix Klein [1].

However, it remains challenging to understand the unique hyperbolic geometry without
proper visualizations. Over the years, efforts have been made by computer scientists to render
and visualize hyperbolic space on a screen [2]–[4]. These visualizations turned out to be not
only educative but also entertaining, such that it sparked interest in game developers as well
[5].

In more recent years, there has been increasing interest in simulating curved spaces in virtual
reality [6]–[8]. Virtual reality not only provides a more immersive visual experience, but also
allows users to walk around in this virtual hyperbolic world by tracking their movements in
the physical world. Therefore, it is possible to provide an even more interactive way to explore
the non-euclidean world.

The focus of this project lies on simulating one particular property of hyperbolic geometry
in VR: “holonomy”. Holonomy is a property that manifests when people travel in a loop in a
non-euclidean space, which will cause them to be rotated away from their starting orientation
(see Figure 1.1). When holonomy is utilized properly in a virtual hyperbolic world, it would
allow people the possibility of traversing arbitrarily far in the virtual space while being confined
to a finite space in the real world.

The goal of this report is to describe the design and development of an interactive VR game
that lets a player experience non-euclidean geometry. To accomplish this, a list of requirements
was elicited from the client, Dr. Martin Skrodzki, using the MoSCoW method. It was then
reviewed by the client again to ensure concrete and unambiguous goals for the project. After
agreement on the requirements, research was done into how the goals can be accomplished
and an outline of the game structure was designed. Following that outline, the game was
implemented using the Unity game engine and HTC Vive Pro 2 VR headset.

(a) Positive
Holonomy

(b) Zero Holonomy (c) Negative
Holonomy

Figure 1.1: Illustration of the 3 types of holonomy [8, Fig. 1]
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The purpose of the game is to serve as a prototype software for behavioural experiments
that can help researchers understand navigation and exploration behaviours in the alien non-
euclidean space. For this purpose, the use of VR is essential since it can create a highly
immersive experience of navigation in the virtual world, compared to using only a screen. Al-
lowing players to directly walk to the goal in a straight line would also defeat the research
purpose since the person would not actually need to navigate or explore anything at all. For
that reason, together with the need of running the program with limited physical space avail-
able, the labyrinth setup is introduced that confines the physical space to a finite bounded grid.
There are existing games that utilize features of hyperbolic space, but none of them satisfy all
of the requirements (see appendix C.1).

The report starts with chapter 2, which will give an overview into the goals and context of
the project. With that in mind, chapter 3 will dive more into what exactly it means for a space
to be hyperbolic and the mathematical foundations behind it. Design and ethical implications
of the game are also detailed in this chapter. Chapter 4 will then go into the implementation
details of the features that were designed for the game. Chapter 5 will go over alternative
design choices (and why they were not followed) and possible avenues of further expansion of
this project. Conclusions and key takeaway points are laid out in chapter 6.
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Chapter 2

Exploring Hyperbolic Space in
Virtual Reality

Virtual reality makes it possible to explore non-euclidean spaces and experience the unique
phenomenons with great immersion. This chapter will introduce the hyperbolic context and
lay out the goals of the project. Section 2.1 gives an introduction to two unique properties of
hyperbolic space and an example of how these properties can be utilized in the project. After
that, section 2.2 will describe the goals that were set for this project. Section 2.3 explains how
those goals were formalized into requirements.

2.1 The Unique Properties of Hyperbolic Space

Hyperbolic space brings many unfamiliar phenomena. This section will introduce two inter-
esting properties that people would experience in hyperbolic space, and give an explanation to
the holonomy property utilized in the project1.

The first interesting phenomenon one would notice in hyperbolic space is that objects in the
distance appear much smaller than they actually are. They seem to be “squished” together.
This effect also occurs in euclidean space, but it is exponentially magnified in hyperbolic space.
For example, a ten-meter-high tree seen from only a few meters away might not appear much
bigger than a person, given that the curvature of the space is sufficiently large.

In hyperbolic space, light appears to curve outwards, rather than travelling in a straight
line (see Figure 2.1). This is not because light behaves differently than in euclidean space,
but because it follows the curvature of hyperbolic space. At the same distance, eyes can
capture exponentially larger areas when light curves outwards, compared to when light travels
in straight lines. An object in hyperbolic space would therefore have a much smaller projection
area on the eyes.

The second unusual phenomenon of the hyperbolic space is called holonomy [8]. If a person
makes four consecutive 90◦ right turns, they will not find themselves in the original position. In
hyperbolic space, pentagons2, rather than squares, have 90◦ angles. When making 90◦ turns in
the physical play area, a person follows the edges of a pentagon in hyperbolic space. Therefore,
in order to return to their starting position, they would need to take a fifth 90◦ turn. This
yields a total rotation of 450◦. Thus, in the real world, they are now facing a different direction
from when they started.

The unique property of holonomy enables people to travel arbitrarily far in a hyperbolic
virtual space, while walking in limited physical space. This is achieved by repeating the
holonomy process. First, a person needs to make four 90◦ turns in the same direction. This
brings them back to the physical starting point, but gives an offset of one step from the virtual

1For more insight into the underlying mathematics, see section 3.2
2In a space with larger curvature than that is used in the game, it would be other types of regular polygons

(e.g. hexagons) that have 90◦ angles
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Figure 2.1: Light rays diverge in hyperbolic space [7].

starting point. Then, a person can accumulate virtual offsets in all directions by repeating
this process in different directions. This allows a person to walk infinitely far in the hyperbolic
space, as long as the physical space allows making four 90◦ turns in all directions. The simplest
setup for this, would be a 3x3 grid of squares.

2.2 Description of the Problem

The problem laid out by the client consisted of 5 steps:

1. The virtual grid
The first step will be to create a virtual representation of the physical play area. This will
consist of a 3x3 grid of virtual rooms, corresponding to a 3x3 grid of squares in physical
space. In the virtual space, walls will be rendered as boundaries and will always align
with the walls in physical space.

2. The non-euclidean grid
The virtual grid will be extended to have 3 different geometries available: euclidean,
hyperbolic, and spherical. In the original grid, the user must make four 90◦ turns to
end back where they started. In the hyperbolic grid, they need five 90◦ turns. In the
spherical grid, they need three.

3. The map
There will be an option to enable an in-game map of the virtual space to help players
navigate in the non-euclidean space. This map shows a top-down projection of the room
the player is currently in, as well as nearby rooms.

4. Navigation tasks
The first game mode is navigation. In a navigation task, the player must find a way from
their starting room to a destination room. The distance from the starting room to the
destination room can be configured by the operator3 of the game before game starts.

5. Exploration tasks
The second game mode is exploration. In this mode, the player must find a number of

3For example, the behavioural researchers.
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keys that are scattered within a certain distance from the starting room. Once all keys
are collected, the player must return to the starting room, where they will use the keys
to open a chest. Again, the distance from the starting room to each of the keys can be
configured, as well as the total number of keys to be found.

2.3 Requirements Elicitation

Requirements for the product are elicited through in-depth discussion with the client. First,
we introduced our understanding and envisioning of the product to the client. Second, we
proposed the priorities of each feature, based on the five steps in the project statement. Lastly,
we confirmed whether our ideas and expectations aligned with those of the client and adjusted
accordingly. Research on the feasibility of the product was also conducted before the discussion.
In this way, we were able to explain to the client with more confidence what is or is not
technologically feasible.

After the first meeting, we drafted the list of requirements using the MoSCoW method
and presented it to the client for final review. Each individual requirement was discussed
and received approval from the client in a second meeting. The complete list of approved
requirements can be found in Appendix A. The eight “Must Have” requirements are listed
below.

1. The virtual space must be based on a physical grid of 3 by 3 squares.

2. The game must be able to connect rooms according to the square tiling of the euclidean
plane or the order-5 square tiling of the hyperbolic plane.

3. The game must be able to map physically present walls into virtual space and align
accordingly.

4. The game must start at a marked starting square in the physical grid.

5. Players must be able to navigate between rooms in the virtual space by moving around
the physical space.

6. The player must have a map in their HUD that represents the location they are in, in
the virtual space using the Poincaré disk model.

7. A room must have one transparent passage to each adjacent room corresponding to a
physical square.

8. The game must have a main menu for access to the game, and an in-game menu for
customization during gameplay.

5



Chapter 3

Designing a Hyperbolic
Labyrinth Game in VR

This chapter aims to outline key design choices of the game. In section 3.1 our method for
simulating non-euclidean space will be explained. The next section (3.2) goes over tilings
and representations of the hyperbolic plane, as well as the graph generation and navigation
algorithms designed for the game. Next, three approaches to the generation of the different
levels in the game are explained (3.3). Section 3.4 will explain how the player is able to interact
with virtual space by interacting with physical space. Finally, section 3.5 details the ethical
implications of the game.

3.1 Non-Euclidean Connection, Euclidean Rendering

The game is developed to research human navigation abilities in a non-euclidean virtual space.
For this purpose, rooms need to be connected as if they are on a hyperbolic plane, to realize
the holonomy property. On the other hand, rendering full-blown non-euclidean geometry is
not necessary, and even undesired for the purpose. Non-euclidean rendering, especially in VR,
can present players with many distorted visual effects and create an unpleasant experience1.

Implementing the room connections instead of fully simulating non-euclidean geometry still
allows the player to experience the effect of holonomy. This approach fully satisfies our purpose,
while leaving out unnecessary hyperbolic visual effects that can cause discomfort.

3.2 Mathematical Prerequisites

Even without the need to fully simulate hyperbolic geometry, there are substantial mathemat-
ical hurdles that have to be cleared in order to implement the game. First, the rooms are
laid out according to a tiling of the hyperbolic plane, and representing the room connections
is not straightforward. Moreover, in order to render the minimap, precise mathematical rep-
resentation of the hyperbolic plane is still required. The mathematical knowledge needed to
understand the design of the game are explained in this section.

3.2.1 Tilings of Hyperbolic Plane

There are an infinite number of ways to tile the hyperbolic plane with regular polygons. It can
be tiled with any set of regular polygons so long as 1

p + 1
q < 1

2 , where p is the number of sides
of the polygon and q is the number of polygons that meet at a corner.

1See [6] for an example of rendering light rays in hyperbolic space.
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The two most important tilings for the game are the Order-4 Pentagonal Tiling and the
Order-5 Square Tiling [9], as seen in Figure 3.1. Virtual rooms in hyperbolic space are repre-
sented as vertices in Figure 3.1a, and squares in Figure 3.1b.

(a) Order-4 Pentagonal Tiling (b) Order-5 Square Tiling

Figure 3.1: Tilings of H2, with rooms as vertices of (a) and faces of (b)

3.2.2 Models of Hyperbolic Space

In order to represent coordinates in hyperbolic space, the Minkowski hyperboloid model is used.
In this model, points on the hyperbolic plane are represented as points on a hyperboloid in
three-dimensional Minkowski space [10, pp. 12, 54–99]. This space has three coordinates: x, y,
and t, with the hyperboloid satisfying the Minkowski quadratic form: {(x, y, t) : t2−x2− y2 =
1}.

Converting this representation to the Beltrami–Klein model [10, p. 7] or the Poincaré disk
model [10, p. 8] is straightforward. Since the hyperboloid in Minkowski space is analogous to
the unit sphere in three-dimensional Euclidean space [10, pp. 61-72], a simple stereographic
projection can be applied to the hyperboloid to obtain the Poincaré disk model [10, pp. 122-
130], or a gnomonic projection to obtain the Beltrami–Klein model [10, pp. 188-194]. The
Poincaré disk model is used to render the minimap.

3.2.3 Graph Generation and Navigation Algorithms

In order to connect the rooms according to a hyperbolic tiling, a data structure representation
of the tiling needs to be constructed. This is an especially important design choice, because it
directly determines the difficulty of implementing other features. The following approach was
adapted from [11], with one addition to the reduction rules.

First, the Order-4 Pentagonal Tiling is chosen as the underlying representation, where
rooms are represented as the vertices. This allows easy access to a room through index of the
vertex. A spanning tree structure (see Figure 3.2) is used to represent the tiling, because tree
structure can guarantee a unique shortest path to any node.

Next, every room needs to be identified with a unique index2, which can be generated by
taking the (shortest) sequence of steps needed to get there. Discrete representation is preferred,
because numeric representations, such as coordinates, can introduce serious precision issues,
especially with the hyperbolic setup. This unique index will be used to link a game object and
a color to each location.

Representation of the step sequence is as follows: rooms are first indexed by a choice of
branch (North, West, South or East), and then by a choice of directions (Forward, Left or

2This is necessary in order to implement other required features, since specific properties like colors or items
need to be associated with specific rooms.
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Figure 3.2: The spanning tree of the graph of room connection [11]

Right), with moving backwards corresponding to deleting the last step. Including an actual
backward step can give multiple valid indices to a room and thus the uniqueness of room indices
will be violated. Therefore, the first step needs a different representation since there are four
valid directions of movement from the origin.

In order to ensure that the sequence of steps is unique, two algorithms are designed. The
first is used to determine whether a step is valid. That is, it determines whether a step stays
on the current branch of the spanning tree rather than moving to a different branch. The other
algorithm is used to normalize an invalid sequence of steps into a valid one.

The validation algorithm works as follows. A forward step is always valid. A right step is
invalid if and only if the previous step was also a right step. A left step is invalid if and only
if there is no right step in between it and the last left step.

The normalization algorithm applies the following transformations:

{x,R,R} → {r(x), L}

{x, L, L} → {ℓ(x), R}

{x, {R,F}n, R,R} → {r(x), L, {F}n}

{x, L, {F}n, L} → {ℓ(x), {R,F}n, R}

where r(x) rotates the previous step, either branch or direction, to the right, and ℓ(x) is
rotation to the left. This normalization ensures that the sequence of steps corresponds to a
connected and unique series of edges of the spanning tree, starting at the point of origin.

Besides the graph generation algorithms, it is also necessary to indicate directions on the
minimap. In order to do this, the current location of the player, as well as the location of the
target room, are converted into Minkowski hyperboloid coordinates. Using these coordinates,
the direction can be simply found by taking the x and y coordinates of both points and
computing the angle between these two points in two dimensions. Since the angle is only used
as a visual indicator on the minimap, it does not have to be very precise. Therefore, the usual
mathematical inaccuracy of this process (when the points are very far away from each other)
is not an issue.
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3.3 Level Generation

The game can generate a level in non-euclidean space in 3 ways: manual level creation, pa-
rameterized generation, and procedural generation using a seed.

Manual level creation is possible because the game loads its files from a JSON format. This
is an easily readable format that follows a clear structure, making it easy to edit manually.
In this structure a location is linked to an objective. By creating a JSON file and writing
locations and objectives in accordance with the structure it is possible to manually create save
files for the game.

But parameterized generation is still indispensable for this game as manual creation would
take a lot of time for bigger levels. It can quickly generate similar levels by inputting desired
parameters or constraints. Level generation works for both navigation and exploration task.

For navigation tasks, the operator (the person who sets up the level) can decide that the flag
the player needs to find should be placed within a radius of x virtual tiles away. For exploration
tasks, the operator can choose to place x number of keys between y and z tiles away from the
starting point. The program will create a save file of the level after it is generated. Loading
and using these generated levels is thus also possible at a later date.

It is also important to be able to load a generated level. The game is able to take a save
file and output the level that was saved. The save files are designed to be very lightweight,
containing only the locations of the cubes that have a special feature. At run-time, the game
can spawn the corresponding object when needed and treat all the location that are not in the
save file as a default cube.

Another option is to lazily generate the level around the user. This can be done by providing
a seed and a custom function (which can be modified to satisfy the given input) that can use
the unique identifier of a room to decide if an object should be placed. With this approach,
new objectives can be generated on the fly. This has the benefit of making the virtual space
seem truly infinite, though the operator no longer has precise control of object placement.

3.4 Integration with Virtual Reality

There are three steps in the integration with virtual reality: tracking the player’s physical
movement, detecting boundaries, and enabling interaction with virtual objects.

Firstly, when the player moves, the VR headset will track their position on a physical grid,
and this will allow the player to move between rooms. When a player moves from one square
to an adjacent square, the player will move into the next room in the game. The game matches
a virtual representation of the physical grid against its own representation of the hyperbolic
space.

Secondly, when the player reaches the edge of the physical grid, the game will erase passages
between rooms and place a wall instead. The same will happen whenever there is a physical
barrier between two squares in the grid. By aligning virtual walls with physical walls this way,
players will have a more immersive experience, and will be less likely to hurt themselves by
unwittingly running into a physical obstacle.

Finally, the player is able to interact with objects by proximity. If a player reaches a
flag, they will automatically complete the corresponding navigation task. If a player stands
near a key, it will be added to their inventory. If a player stands near a chest, and has the
corresponding key, the chest will open automatically.

3.5 Ethical Implications

The game is to serve as a prototype for behavioural researches that will involve human par-
ticipants, and may even be publicly released in the future. In other words, we may not have
full control over how our product will be used by end users. Therefore, we have to take active
responsibility [12] towards the potential ethical issues during development stage, and try to
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address every possible concern while we can. In the following subsections, we discuss our con-
cerns and design values regarding human participants who will be interacting with our project,
those regarding the environment, health and safety of the users and those for the personal data
belonging to the participants.

3.5.1 Human Participants

Human participants will be involved in the use of the game, since it serves as a tool for
behavioral experiments. It is important that these participants are aware of what the game
entails. Otherwise, the unfamiliarity with the non-euclidean virtual space can come with the
issues outlined in 3.5.2.

During development stage, participants outside the development team may be involved
to test, give feedback on and validate game design and implementation choices. When the
development process is complete and the game is ready to be used by the researchers, the
participants to their behavioral experiments will also play the game. In either case, the partic-
ipants will be volunteers and there will not potentially be any patients, vulnerable individuals
or minors.

Alternatively, the game may be publicly released, if it turns out to be enjoyable also for
people beyond experiment participants. In that case, the users will still likely be volunteers,
but there can be no guarantee that they do not potentially belong to certain vulnerable groups.
All the game objects used in the game will made sure to be neutral-looking and suitable for
all potential users.

3.5.2 Environment, Health and Safety

The planned activities in this project does not really challenge or affect societal values, nor
does it manipulate the physical environment. However, it involves manipulation of the virtual
environment that players experience. The game transforms a 3x3 grid in physical space to an
infinite labyrinth in virtual non-euclidean space, with the help of VR technology.

As people may not be used to non-euclidean or virtual spaces, manipulating their observed
environment may cause slight issues. These issues include but are not limited to: motion
sickness [13], stress, confusion and so on. People with certain conditions, such as epilepsy, may
also be vulnerable to visual effects in virtual reality [14], especially effects developed without
taking such conditions into consideration.

To address these issues, the best practice of room scale VR development will be followed
to minimize the effect of motion sickness and other sources of discomfort. Extra care will be
taken to not include any stimulating visual effects in the game, to reduce risk of seizure and
other conditions for potentially vulnerable users.

In addition to dealing with the issues above, the team is also responsible for making sure
that the players do not hurt themselves due to obstacles in the real world. This is done by
aligning the virtual walls with real walls in the physical space, so the player can view and
navigate around the walls without needing to remove the headset.

3.5.3 Personal Data

Collection of personal data is another concern over the research use of the game. Personal
data of the participants may be collected by researchers in order to categorize participants
into different groups and carry out more detailed analysis. This can however lead to biased
conclusions, and this possibility will be minimized during development.

In the game, certain metrics, such as time and number of rooms travelled, are logged
for researchers to analyze and evaluate the performance of the participants. To address the
personal data concern, the game provides no means of collecting participants’ personal data
that can be used to identify them. The only data that may be collected are the performance
metrics when playing the game and are strictly for research purposes (or for entertainment if
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the player likes to see how well they performed). The potential risk of collecting too much or
misuse of users’ personal data will be reduced to the minimum.
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Chapter 4

Implementing the Labyrinth
Game

This chapter aims to offer more insight into the approaches adopted in the actual implemen-
tation of the game. Section 4.1 details the underlying data structures that allow the game to
represent a hyperbolic space. Once a game level is started, there are certain objectives players
need to achieve. Section 4.2 goes into the objectives of navigation and exploration task. To
complete the game tasks, players need to interact with game objects, such as collecting keys
to open a chest. Section 4.3 will explain how the interaction with game objects works in VR.
Section 4.4 introduces the loading and generation of game levels. Section 4.5 introduces the
user interface of the game, including menus, metrics and minimap display. Finally, section 4.6
will introduce the details of rendering a minimap.

4.1 Representing the Hyperbolic Space

The Unity game engine is not built to support non-euclidean space, as well as most other game
engines. Workarounds are therefore implemented to represent the hyperbolic space. In this
section, the methods used to represent a hyperbolic space in Unity and the use of portals to
mimic hyperbolic room connections will be discussed.

4.1.1 Creating Unique Tiles

The game has an underlying data structure that is used to represent the connections between
different rooms. This data structure is a core part of the game as it represents its hyperbolic
nature through these connections. Section 3.2.3 already goes into the logic the program uses
to keep track of which tiles are neighbouring each other and how to keep each tile location
unique. All of the logic that is explained in that section is implemented in a class called Or-
derFourPentagonal. The OrderFourPentagonal can be used to modify and normalize instances
of the TreePath class, which represents locations within the graph structure.

The separation of the TreePath class from the OrderFourPentagonal class was done to
separate functionality. The TreePath class only represents the location but holds multiple
fields that make the operations that need to be done on it simpler and more efficient. The
operations that are executed on a TreePath are specific to the tiling that is used. This means
that if the game would ever be expanded to use more types of tiling a new class would need
to be created with operations specific to that new tiling. However the functionality of the
TreePath would not have to be changed. So separating their functionality makes it easier to
add new tilings in the future.

The TreePath class still has two important methods even though all of the graph logic is im-
plemented in the OrderFourPentagonal class. The first method returns a string representation
of the TreePath. The second method uses this identifier to assign a color to the TreePath.
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The string representation generated by the first method serves as a unique identifier. It is
used to interact with the map (see section 4.4) and to make debugging easier. The identifier is
simply a sequence of letters that follow the steps taken to get to the represented location. O
for origin, N, E, S and W1 for the initial direction and l, f, r2 for all the steps after the initial
direction.

The color returned by the second method is mostly unique to a location. It is not possible
to make these colors entirely unique, since there are infinite locations but not infinite possible
colors. The method uses an MD5 hashing function. There are two reasons the program uses
the MD5 hashing algorithm for this. The first reason is that the color of a tile must not change
between calls of the method. Otherwise, the color would not actually be representative of
a location and would thus not aid in navigating the space. Hashing algorithms satisfy this
property since inputting the same value multiple times always returns the same output each
time. The second reason for using the MD5 hashing algorithm is that we want widely different
colors from almost identical id’s. The MD5 hashing algorithm is known for its widely differing
outputs with very similar inputs, so using it also solves this second problem.

4.1.2 Room Connections and Spawning

The game needs a way to render the connections between different rooms in a non-euclidean
way, since it is only here that the non-euclidean nature of the game becomes apparent (as
explained in section 3.1). But this requires a workaround, since certain rooms (e.g. the
”North-Right” and ”East-Left” rooms) would occupy the same position in the euclidean game
engine, despite being distinct rooms in non-euclidean space.

The workaround used is the inclusion of portals [15]. Portals come in pairs, where each
portal is a plane whose face shows the view from a camera positioned at the linked portal.
This allows the grid to be divided into various segments that are placed far apart in the game
world, while creating the illusion that the player is looking at a connected grid. Using strategic
placement of portals, the player can then see both the ”North-Right” and ”East-Left” tiles
from the origin.

A significant downside of such portals is that their rendering is computationally expensive.
Therefore, to maximize the performance of the game, portals should only be used where abso-
lutely needed. That is, if a tile can be seen from only one side (as seen from the player’s current
position), that tile should be placed directly into the grid, rather than utilizing portals. The
process of placing tiles and portals (illustrated in Figure 4.1) thus starts with directly placing
all tiles that are in the same row or column as the player’s current tile. The adjacent rows
and columns then alternate between portals and directly placed tiles. Each of these portals
connects to a smaller grid, on which this process is repeated.

4.2 Navigating the Labyrinth

Game tasks keep players motivated while navigating the labyrinth, and provide more structured
ways to analyze their performance. Different game tasks are configured by placing different
special tiles in the virtual world. This section introduces the configuration of navigation and
exploration tasks.

Game Starting Point

The starting point of the game is set to be the tile that the player is standing on when the
game starts. This is calculated from the positional tracking data of the Head-Mounted Display
(HMD). In order to designate a starting point, the operator can simply ask the player to stand
in the desired tile when the game starts.

1N = North, E = East, S = South and W = West
2l = left , f = forward and r = right
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(a) The main grid (b) The first layer of
portal grids

(c) The second layer
of portal grids

Figure 4.1: Example of the placement of portals and physical tiles in the grid. The red dot
marks the player’s current location. Gray tiles mark physical tiles. Colored walls mark portals.
Each portal is linked to the portal of the same color in the next layer.

Navigation Tasks

In a navigation task, the player needs to find their way from the given starting point to a set
destination in the virtual world. This destination is marked by a special tile on which a flag is
placed. Once the player reaches that location in the virtual world, they can interact with the
flag to complete the game task.

Exploration Tasks

In an exploration task, a special tile with a locked chest is placed at the starting point. The
player must explore the hyperbolic world and find a number of keys to open the chest. When
the placements of keys are determined (see section 4.4), special tiles with keys will be spawned
in those locations. Once the player has collected all of these keys, they must return to the
starting point to open the chest. When they do, the “closed chest” tile will be replaced by an
“open chest” tile. This way the chest stays open if the player moves away from and back to
the starting tile.

4.3 Virtual Object Interaction

Interaction with virtual game objects makes the virtual world more entertaining and enables
the configuration of various game tasks that players can complete. In order to offer better
player experience without losing compatibility, three approaches of interaction were devised:
proximity activation, proximity of controller, and controller ray interactor.

First, proximity activation takes the position of the player and activates a game object when
they come close. Position of the player is measured and updated by the positional tracking
data from HMD. This approach provides the best compatibility, without need for controllers.
A capsule collider, 0.5m in diameter and 2m in height, is placed at the player position for
proximity detection with game objects.

Second, proximity of controller is one step further from the previous approach. The player
can try to reach virtual objects with their controller, and they can receive haptic feedback as
confirmation of a successful interaction. Virtual hand models are rendered at the position of
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tracked controllers to provide more immersion. A box collider of 0.15m on each side is attached
to the virtual hand for collision detection. Upon reaching a game object, players would receive
haptic feedback.

Finally, the ray interactor approach utilizes the capability of controllers to the fullest. The
player can point a virtual ray with their controller. When the ray lands on a game object, its
color would change as an indication. The player can then pull the trigger on the controller
and activate the game object. A haptic impulse would also be sent as confirmation. With this
approach, the player has a more entertaining way to interact with the game objects.

4.4 Creating the Labyrinth

This section will go into the placement of objectives. It will explain how the game keeps track
of those placements across different sessions, and how the game automatically generates those
configurations with input parameters.

4.4.1 Using Maps

A game level is represented by a MapDictionary data structure, which determines the placement
of the objectives at runtime. The MapDictionary is a collection of key-value pairs, where the
key represents the unique id of a tile location and the value represents the objective to be
placed at that location. When the game needs to place a new tile at a location, it would first
check the MapDictionary if it contains a key that corresponds to the location. If the key is
present in the MapDictionary, the corresponding special tile will be placed. Otherwise, the
game places a default tile.

It would also be convenient if game levels can be reused. Researchers, for example, may
want to use the same level among different participants. After a level is generated, the Map-
Dictionary is converted to a JSON file and saved in a dedicated folder for save files. If the same
level needs to be used, loading the game with the save file will recreate the MapDictionary and
give the same level.

A level generated from a seed can also be reused, but the seed is not saved locally. The
operator needs to remember the seed they have used. When starting a game with the same
seed, the same level is generated.

4.4.2 Creating Maps

Creating a map can be done in three ways. The first is to do it manually. The save files that
store different maps are in a JSON format. This format is not hard to read and write by hand.
It is thus possible to create a plain text file and write a map by hand by following the structure
the save files use.3

The second way is to generate a MapDictionary by giving certain input parameters. These
input parameters include the amount, distance and type of cubes the operator wants to place in
the map. The methods that are responsible for creating the MapDictionary change depending
on the distance the objective is to be placed away from the origin as there is a large overhead
to make sure collisions (trying to place an objective in the same spot) do not occur. And after
a certain point (that is decided by a field in the game) the chance of collisions is so small that
the overhead is not worth it.

The third and final way does not require a MapDictionary. Instead, it lazily decides if an
objective needs to be placed at a location. This is achieved by concatenating the id of the
location with the seed and putting that into a hashing function. The outcome of the hash
function is then transferred to a function that returns a certain objective with a probability
equal to a user given frequency.

3A better guide on how to do this along with many other factors of operating the game is available in the
game documentation
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4.5 Menu and Visuals

The game has a few displays for varying purposes. Some are to make the operation of the game
easier for the user. Others are for displaying information to the user while they are trying to
navigate hyperbolic space. This section is about those displays and the elements they show.

4.5.1 Menu Options

The main menu was designed with simplicity and user-friendliness in mind. The menu uses
contrasting colors to be easily distinguishable in VR. Two-way navigation is possible between
menu pages, meaning the user can move back and forth if they want to.

The main menu has four options: “Play”, “Tutorial”, “Settings”, and “Quit”. Among these
options, “Play” and “Settings” have their own sub-menus. Users can change the game settings
in the “Settings” sub-menu, by using toggle buttons. The “Play” sub-menu allows the user to
create a new level based on provided inputs, or load a previously saved level. The “Tutorial”
option allows the user to initiate a level to learn the basics, and “Quit” allows exiting the
application.

4.5.2 In-Game User Interface

In the exploration task, the player needs to find a certain number of keys to open the chest.
The number of collected keys and the number of required keys are displayed in the top left
corner of the screen to give a clear view of the player’s progress.

If the operator sets a time limit on a game task, a countdown timer will be displayed in the
top right corner of the screen. When this countdown reaches 0, the game will show a screen to
let the player know the game has ended. The player will still be able to walk around in case
they did not want the game to end yet.

4.6 Minimap Rendering

It is easy to get lost in the massive and unfamiliar hyperbolic space. A minimap that indicates
the player’s location and orientation can help them plan longer routes through the labyrinth.
Therefore, the operator of the game can allow players to use a minimap to help with navigation.
In this section, the appearance and behavior of the minimap, as well as the details of how it is
generated, are discussed.

4.6.1 Minimap Layout

When the minimap is enabled, it can be displayed at the top of the screen. The minimap
is circular, and it renders the Poincaré Disk model of the hyperbolic plane, with the rooms
laid out according to the squares of an order-5 square tiling [9]. When the player turns, the
minimap rotates along with them. An illustration of the minimap, rendered with the player
at the origin and without rotation, is displayed in Figure 4.2.

The minimap is always centered on a tile, and not on the relative position of the player
within that tile. This is to avoid having to recompute a new minimap every frame, which
would significantly impact the overall performance of the game.

Objectives are indicated on the map to make it easier for players to find them. When an
objective tile is on the minimap, it is indicated with stripes in opposite color.

4.6.2 Minimap Generation

Since hyperbolic room connections are simulated by dynamically spawning the required tiles,
it is not possible to simply use an orthographic camera view from above the player. It is also
not feasible to use a fully precomputed minimap, since the number of rooms grows exponen-
tially with the distance from the origin. Because of these constraints, the minimap has to be
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Figure 4.2: An image of the minimap, with the colors of the squares matching the colors of
the tiles in the game.

generated dynamically. This is achieved as follows: when a player enters a room, the TreePath
of the tile is used to find the index of a specific edge of that tile4. The position of this edge
is then found by appplying a series of matrix transformations. The approach taken here is
derived from [16], adapted to draw tiles instead of edges.

The matrices in question are listed below. The first is a rotation matrix, which rotates the
hyperbolic plane by an angle θ. The second and third are translation matrices, which move a
point by a distance x or y.cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0
0 0 1

 1 0 0
0 cosh(x) sinh(x)
0 sinh(x) cosh(x)

 cosh(y) 0 sinh(y)
0 1 0

sinh(y) 0 cosh(y)


In order to make it easier to manipulate the hyperbolic coordinates, they are stored as

Minkowski Hyperboloid coordinates, not Poincaré Disk coordinates (see section 3.2.2). These
matrices are then applied to a column vector containing the x, y and t coordinates of the
hyperboloid. When the proper sequence of transformations has been applied, the positions of
the other three edges are computed from the first.

After that, a texture is generated for each tile. First, points on a disk are projected onto
the hyperboloid, with one point for each pixel. Next, the four edges of the tile are used to check
if a given point is inside or outside of the tile. If it is inside, the color of the corresponding
pixel is set to the color of the tile. This process of finding edges and generating textures is
repeated for every tile reachable in n steps or less5, and the resulting textures are merged into
one. This merged texture is then rendered onto the HUD.

If the minimap must be rendered with the center at a tile other than the origin, the TileShift
class is used. This class is used to compute which tile is shifted to a given location when the map

4Usually, this edge is the right-hand wall from the perspective of the player, but since a TreePath has four
branches, and an EdgeTree has five, there are certain tiles for which this does not hold, and those must be
handled separately.

5In practice, more than 3 steps is too computationally expensive if a new minimap has to be generated every
time a player moves between tiles.
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has been centered to a new tile. This new tile can then be used to determine the color of the
equivalent old tile in the minimap. This way, the number of matrix transformations required to
render the minimap is constant for a given depth, which prevents both performance degradation
and issues with numerical precision that commonly occur when using floating-point arithmetic.
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Chapter 5

Discussion and
Recommendations

This chapter explains how this project can be improved and used in the future. Section 5.1
goes over potential additions and improvements to the game. Section 5.2 explains how the
game can be used for various experiments.

5.1 Possible Alternatives and Improvements

This section will go over a few additions and improvements that could be made in the future.
These have not yet been implemented either because they were not in the scope of this project,
or because there was not enough time. They include: optimization, the usage of different
tilings, customization of the grid, the addition of new game modes, and improvements to the
in-game menus.

Optimization

Due to time constraints, the performance of the game has not yet been optimized. The minimap
and the portals are the two features that still require much optimization. The minimap could
be optimized by implementing a different algorithm to render it. The amount of portals could
possibly be reduced even further to compensate for the cost of rendering them.

Different hyperbolic tilings

An interesting but non-trivial expansion would be to generalize the Order-5 square tiling that
is currently used to other hyperbolic tilings. This addition would facilitate new experiments
regarding the navigation of hyperbolic space. It would be non-trivial because many algorithms
used in the game rely on the tiles being squares in a specific layout. The graph of the room
connections (3.2.3) and the minimap (4.6) are examples of such algorithms.

A customizable grid

The game is currently always played on a 3x3 grid. In the future, the width and height could
be determined by the operator or the player. Most of the algorithms that are used for the
placement of rooms on the grid have already been made with a variable size matrix in mind
(4.1.2). Adding this feature only requires integration with the menu and a simple algorithm
that to generate a grid of variable width and height. There could also be a setting to place
additional walls between grid tiles, to force the player to think of other routes.
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New game modes and tiles

The game could be expanded with new game modes and special tiles. Such additions may
facilitate a wider variety of research. An example of a possible game mode can be one where
certain tiles are only accessible to players when they have reached some objective first. This
mode would open up new possibilities as players explore the virtual world. An example of a
new special tile is a teleportation tile, which would add another element to keep in mind during
navigation.

Menus

One of the key requirements for the project was to have an in-game menu so the player can
change settings on the fly. The game has no such thing at the moment. The player can at
most toggle the minimap from visible to invisible. The main menu is also still a bit lacking as
a lot of possible settings are not currently implemented. For example, the main menu cannot
be used to control how many keys are needed to open a chest, or which statistics the player is
able to see in their HUD.

5.2 Further Research

This project is intended specifically for behavioural experiments, but it may facilitate other
types of research as well. Two of these research possibilities are introduced in this section.

For example, it might be interesting to research a practical way to utilize the hyperbolic
geometry as a new way of travelling in VR. In the current state of the game, it is possible to
travel arbitrarily far from the the starting point while being in a confined physical space. It
would be interesting to generalize this feature to a larger variety of VR games and applications
that require a lot of walking space, as they can then be used even with a physical setup of
limited space.

It would also be interesting to study navigation behaviours in hyperbolic space when there
is no visual cue available to players. Currently, the players can see a few tiles away through
the portals. Instead, what if they cannot see any surrounding tiles at all? Will they still be
able to navigate the hyperbolic space in this setup? These questions can point to the potential
limitations of navigation abilities in hyperbolic space.
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Chapter 6

Conclusion

The goal of this report was to describe the design and development of an interactive VR
game that lets a player experience non-euclidean geometry. This game was meant to test the
navigational skill of people in a non-euclidean environment. To do so, the form of the game
first needed to be decided. This was done by doing research on non-euclidean geometry and
existing projects that render or simulate such geometry in VR.

The core requirements of the game are as follows. The game should be based on a 3x3 grid
of cubes that are connected in a hyperbolic way. The grid should be surrounded by walls that
are synchronised with the boundaries that were set up in the real world. Players should be able
to traverse the virtual space by moving around in the real world. Players should have access to
a Poincaré disk projection of their surrounding to use as a minimap. Finally the game should
have a menu so that users are able to configure the parameters of navigation and exploration
levels, among other settings.

The eventual form of the game uses a 3x3 grid in the physical world. Each square in
the grid corresponds to a square in the virtual world and the alignment of boundaries is also
implemented. The squares in the virtual world are connected based on a discrete representation
of an order-5 square tiling. This means that it would take 5 right turns to end up back in
the same spot in the virtual world. Because this would cause two different squares to take the
same spot in the 3x3 grid, portals are used to display different squares from different angles.
To help players distinguish between different squares, each square is assigned a unique color.
There are also objectives the player needs to complete, such as finding their way to a flag that
is placed on the map or collect some key to open a chest. The game can generate different
worlds with these objective by placing them in different locations. Furthermore, player has
information displayed on the screen to help them with their tasks. For example, a minimap of
their surroundings and the number of keys they have already collected. Finally the game has
a main menu that allows operators to set up levels and alter setting options, while an in game
menu is absent. The game satisfies the core requirements laid out by the client in its current
form.

The game is in its prototype stage, and there are still a lot of possibilities of expansion. For
example, it is possible to make the size of the grid more dynamic or to generalize the order-5
square tiling the game is currently using to an order-n square tiling. The game could also
definitely still be improved in an optimization perspective as the portal and minimap features
require a lot of computing resources. However, the current version of the game does satisfy the
most important requirements, and is usable for testing navigational skills in a non-euclidean
environment.
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Appendix A

Requirements

A.1 Must Have

• The virtual space must be based on a physical grid of 3 by 3 squares.

• The game must be able to connect rooms according to the square tiling of the euclidean
plane or the order-5 square tiling of the hyperbolic plane.

• The game must be able to map physically present walls into virtual space and align
accordingly.

• The game must start at a marked starting square in the physical grid.

• Players must be able to navigate between rooms in the virtual space by moving around
the physical space.

• The player must have a map in their HUD that represents the location they are in, in
the virtual space using the Poincaré disk model.

• A room must have one transparent passage to each adjacent room corresponding to a
physical square.

• The game must have a main menu for access to the game, and an in-game menu for
customization during gameplay.

A.2 Should Have

• The game should have a mode that adds a time limit.

• The operator should be able to select and customize the game mode the player will play
(e.g with or without a map).

• The operator should be able to create and save levels.

• The operator should be to automatically generate a level using given input parameters
(e.g 3 chest within a map with the radius of 10 squares)

• The game should be able to load previously saved levels.

• The game should have an option to add opaque doors between the rooms.

• The game should have a tutorial mode.

• The player should be able to pick up and interact with placed objects by proximity.
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A.3 Could Have

• The game could have alternative modes, such as but not limited to:

– a survival horror mode.

– a mode that gradually makes tiles inaccessible to travel depending on the time the
user spends to complete their task.

– a mode where additional walls are added between certain rooms (besides the ones
present in the physical space).

– a mode where the user needs to complete a certain task before being able to go to
the next room.

• The game could collect and display game metrics (e.g. time played, tiles visited).

• The game could be able to deterministically generate levels from a seed.

• The game could be adapted to a physical grid of n by m squares.

• The game could have a mode that makes a spherical space appear bigger.

• The game could allow for interacting with objects through pointing a controller and
pressing a button.

A.4 Won’t Have

• The game won’t have true non-euclidean rendering and physics.

• The game won’t have a multiplayer mode.

• The game won’t have advanced graphics (which may hinder performance).

• The game won’t have variable tiling (different types of tilling in one level).

A.5 Non-Functional Requirements

• We must use Unity to develop the application.

• We must use Git and Gitlab.

• The game must be runnable on an HTC Vive and/or Oculus Rift.

• The game should run on a normal computer.

• The deliverable should be able to be run on both Windows and MacOS.

• The game could be exportable to WebVR (under certain conditions/ if possible).
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Appendix B

Division of Labour
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VR Setup x x
Graph Datastructure x x
Euclidean Demo x
Git Integration x
Pipeline x
Menu x
Portals x
Walls x
Level Creation x
Level Generation x
Time Limit Mode x
HUD and Metrics x
Minimap x x
Object Interaction x
Non-Euclidean Demo x x x x x
Report x x x x x
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Appendix C

Feasibility Study

C.1 Existing products

The products that were examined and researched by the team prior to the design process are:

C.1.1 HyperRogue

Similarities. HyperRogue [5], [17] is a top-down game set on the hyperbolic plane. This
top-down perspective is similar to what our game’s map should look like.

Shortfalls. Movement in HyperRogue works vastly differently from what we need, as it is
top-down rather than first-person virtual reality. As such there is also no connection between
physical and virtual space. Lastly, HyperRogue uses an irregular tiling of hexagons and hep-
tagons rather than a regular tiling of squares.

C.1.2 Hyperbolica

Similarities. Hyperbolica [18] is a first-person/VR game set on the hyperbolic plane. Like
our game, it focuses on exploration of this hyperbolic setting. It has also created a way to get
Unity to render the game in an actual non-euclidean way. The developer has released most of
the source code for this Unity backend [19].

Shortfalls. While Hyperbolica can be played in VR, it does not have any physical setup
like the grid and the walls we will be using. This means it does not have the connection
between physical and virtual space that our game must have.

C.1.3 hypVR

Similarities. hypVR [20] uses a VR headset, both for computing user’s location and move-
ment. It also uses H2 × R, meaning the virtual space has a euclidean vertical axis and hyper-
bolic horizontal axes, which solves certain issues of using a VR headset in non-euclidean spaces.

Shortfalls. hypVR creates no barriers between rooms, while in our case, the client requested
virtual walls that correspond to the physical walls in the room. It also does not have alternative
game modes other than simply exploring the place.

C.1.4 WalkAbout

Similarities. WalkAbout [21] is a system for VR locomotion designed to let the user move
around in physical space to move their character in virtual space. This is also what we are
trying to achieve.
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Shortfalls. WalkAbout achieves this locomotion by letting the user ”freeze” the virtual move-
ment. That is, the user can press a button that allows them to turn around in physical space
without moving in virtual space. This means that it does not achieve our goal of aligning
virtual walls with physical walls.

C.2 Time Constraint

The client pictures the product as a prototype that can be used for psychological experiments,
which allows for simplification of some development strategies, such as how should we render
the virtual space. Our client has very considerate expectations on what is considered as the
“bare minimum” of the product. Considering the scope of the project, and our motivated and
experienced team members, we are confident that we can complete the project within the time
frame.

C.3 Game Engines

Game engines provide developers with a powerful framework and a set of useful tools, so
that game developers can focus less on low level implementation details such as physics and
rendering, and more on the actual game design. With the time span and the focus of the
project, it is only reasonable that we base our development on an existing game engine rather
than building one from scratch by ourselves.

C.3.1 Non-Euclidean Game Engines

However, since the real world (usually) follows regular euclidean geometry, so do most of the
game engines. Over the years people have developed tools to help with the development of
non-euclidean games. One game engine[22] that we discovered was developed by HackerPoet,
or CodeParade. It is written for Windows, which may create some compatibility issues with
MacOS (which some of our team members will use for development). This compact engine
provides support for non-euclidean physics, collision detection and rendering, but it has no
support for virtual reality, which will likely cause some problems if we were to use it. Therefore,
this engine is not the most suitable choice given our circumstances.

Another project that could be a viable option is HyperEngine [19]. This project was also
developed by HackerPoet (also known as CodeParade) and is an extension to the Unity game
engine. It adapts the unity rendering and physics engine to non-euclidean space, and since it
builds upon the unity engine, it should still be compatible with virtual reality development,
even though it was made with a focus on regular gameplay. Integrating it with VR development
and making it run smoothly could still be very challenging and time-consuming, but if we need
to fully adapt the unity engine to non-euclidean geometry, using this would save us a lot of
time and trouble.

C.3.2 Euclidean Game Engines

Alternatively, it is also possible to simulate non-euclidean geometry with regular euclidean
game engines, by manipulating the rendering pipeline and with programming workarounds.
This approach has sound mathematical basis [6], [7] and is proven feasible by multiple existing
software like Hyperbolica [19] and hypVR [20]. This gives us the liberty to choose from a wide
variety of game engines the one that is most suitable for our use case.

Unity is the engine proposed by the client and the one we spent most time researching.
Unity is one of the most popular cross platform engines that support both Windows and
MacOS. It uses C# as programming language, which our team members should be able to pick
up without extensive learning. Unity has great support for integration with a wide variety of
VR headsets, and a Unity project can be easily exported to WebVR, which is useful for testing.
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Therefore, Unity ticks every box on our client’s list of requirements and is indeed a feasible
choice for the project.

Simulating non-euclidean geometry in a euclidean game engine results in a number of
problems, to which special attention ought to be paid. One such problem arises because Unity
does not render objects that are not in the field of view. Normally, this is an effective way to
save resources. However, the methods used for this are based on euclidean geometry and will
not work for our use case. If we were to use them with non-euclidean geometry, the engine
may omit objects that are actually in the field of view, or waste resources on objects that are
not.

Another problem of simulating non-euclidean geometry is related to the matrix transfor-
mations. Unity uses matrix multiplication for various transformations, such as translation and
rotation. Again, this is based on euclidean geometry. To adapt this to non-euclidean geometry,
we would need to change such matrix multiplications to use gyrovectors [23].

And not just the rendering of the scenes causes problems the physics engine of unity
also does not work well with non-euclidean geometry. This happens because objects get
stretched/squished depending on the distance in non-euclidean geometry while the physics
engine of Unity does not work well with that at all.

C.4 Development Pipeline

Game development is somewhat different from the software development we are used to, and
it often utilizes specialized software to manage the development process and pipeline. For
example, the version control systems that Unity has integrated in it are Perforce and Plastic
SCM, and not Git, which we are most familiar with.

There are a few motivations behind this different approach. The large number of assets
involved in game development can contain large binary files, which Git was not initially de-
signed to handle, and they can lead to merge conflicts that are very difficult to solve. Besides,
Unity keeps its reference to objects using Globally Unique Identifiers. If those GUIDs are not
handled properly with Git, the same code can break for other team members.

Fortunately, Git developers have kindly catered to such needs over the years, with features
like Git Large File Storage (LFS) and file locking. LFS can be utilized to track and store large
asset or binary files, while file locking can prevent concurrent edits to certain critical asset from
different team members.

The game developers community has also come up with a more accessible solution to
continuous integration for game development, which is GameCI [24]. It utilizes Docker image
to support continuous integration and smooths the game development pipeline for developers.

C.5 Resources and Support

Certain resources are indispensable to the development of this project, such as virtual reality
headsets and a room where we have enough space to navigate. The client has kindly made
arrangements for such resources which we can start working with from as early as the third
week. Additionally we may get a cardboard virtual reality headset (for use with a smartphone)
for simpler testings at home.

C.6 Risk Analysis

Our group is attempting to create an unconventional product (a non-euclidean VR game) while
having limited experience in developing large applications, especially games. This implies that
there are a number of things that could go wrong during the development of our application.
Below, we will mention possible sources of risk that may cause issues and hinder development
in the course of creating our product.
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C.6.1 Inexperience with Unity

We aim to create our product with the Unity game engine. Since the majority of our group
has little to no experience with Unity, we can expect that there will be a learning curve at the
start. This may not just lead to a slow start in the development of the product, but also to
errors and bugs due to lack of insight in the way Unity compiles and runs its files. However,
considering we have a member experienced with Unity and also that Unity is regarded as one
of the more beginner friendly engines, the learning process may be relatively easy.

C.6.2 Dependence on physical equipment

A big part of our product is the integration of Virtual Reality. This brings with it that testing
our product can not be fully done using only a computer. To properly test our product we
need the equipment to run and play Virtual Reality games. The equipment for this is luckily
provided by our client, but if this equipment were to malfunction, we would not be able to test
our product anymore. We are also limited to testing large parts of our code on site where the
equipment is available, which results in a potentially slower testing feedback cycle.

C.6.3 Unforeseen requirements/problems

While there are some precedents to the non-euclidean game we want to develop, it is still not
a common and proven practice, and there are quite a few experimental parts to our product.
Adding the fact that none of our group members have any experience in tasks like what we want
to accomplish, there will be a decent chance that we will encounter many problems during the
development that we have not yet foreseen at this stage of planning. Each of these problems
may increase the risk that the product does not reach the intended quality level before the end
of the deadline.

C.6.4 Testability

Testing games, and in particular virtual reality games, can be very different from how we
are used to testing normal software. Sometimes the code may not be suitable for automated
testing and manual testing and visual confirmation may be required. Our team members are
not very experienced with the common and best practice of game testing, or with the Unity
testing framework. This can lead our code to end up insufficiently tested, or may mean that
we will need to spend a significant amount of time on inefficient manual testing, leaving less
time for other parts of the development.
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