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* Correspondence: j.kalkman@tudelft.nl

Abstract: We show non-invasive 3D plant disease imaging using automated monocular
vision-based structure from motion. We optimize the number of key points in an image pair
by using a small angular step size and detection in the extra green channel. Furthermore,
we upsample the images to increase the number of key points. With the same setup,
we obtain functional fluorescence information that we map onto the 3D structural plant
image, in this way obtaining a combined functional and 3D structural plant image using a
single setup.

Keywords: structure from motion; computer vision; plant imaging; 3D imaging

1. Introduction
3D imaging is an important field that is used in a variety of application fields such as

process control [1], cultural heritage [2], bioimaging [3], and archaeology [4]. In contrast to
2D imaging, 3D imaging eliminates occlusions, provides depth/height information of an
object, and records the full structural information of the object. In the field of agriculture,
3D imaging plays an increasingly important role as it is an essential tool for monitoring
plant growth from the cellular level up to the level of entire crop fields.

There are various non-destructive techniques to image the 3D structure of plants such
as optical coherence tomography (OCT), which has been used for imaging Arabidopsis and
measuring leaf thickness [5] and plant infection [6], light detection and ranging (LIDAR)
which has been used for visualizing whole plants [7], canopies [8] and trees [9]. In addition
to the aforementioned active techniques, passive techniques exist, like monocular-vision
applied to sunflower and soybean [10], binocular-vision for imaging pachira glabra [11]
and soybean plants [12], structure from motion (SfM), which was applied to cotton [13] and
eggplant [14] and sugar beet [15]. Moreover, fusions of active and passive methods show
great performance, such as demonstrated by a combination of LIDAR and SfM applied
to vegetation structure [16], a fusion of LIDAR, SfM, and a microbolometer sensor for
measuring Gossypium species structure [17], and utilization of SfM and simultaneous
multi-view stereovision for Ocimum basilicum [18] and nursery paprika [19].

Most of these techniques, like LIDAR and multi-sensor techniques, are costly and/or
involve complicated multi-modality data analysis. Most importantly, they only provide
structural information and not functional information of the plant. Functional information
is important because it gives more information about the actual state of the plant. Functional
information can be obtained from the spectral data, which is useful as the color of the
plant gives information about the processes that occur in the plant such as senescence [20],
dehydration [21]. Fluorescence imaging provides information on photosynthesis [22],
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and metabolic responses to stress [23], and plant infection processes [24–26]. However,
combining structural information with functional information commonly uses an additional
imaging setup.

SfM is a 3D reconstruction technique that provides a 3D image of an object while
preserving the spectral information of the object [27]. Depth information in SfM is obtained
from the relative motion of point-like features in two images acquired at slightly different
angles [28]. SfM has been applied for the reconstruction of dynamic scenes of non-rigid
objects [29], height estimation of sorghum plants [30], and imaging of wheat crops [31].

In this study, we present the implementation of a monocular vision-based SfM tech-
nique to 3D visualize the combination of plant structure and disease in a lettuce plant using
structural and UV-induced blue-green fluorescence image data, respectively. The setup
only uses a single monochrome camera and a rotation stage to reconstruct the 3D structure
of a lettuce pot plant. To capture more image features and create a highly detailed image of
the surface texture, we optimize the image contrast and number of identified key points. In
this way we provide a cost-effective method using a single imaging system to provide both
structural and functional plant information.

2. Methods
2.1. Experimental Setup

A schematic of the experimental setup is shown in Figure 1. The setup consists of a
white-light source (LDL2-33X8SW, CCS), a UV light source (LDL-138X12UV2-365, CCS),
a monochrome camera (acA1440-220um, Basler), an objective lens (C125-0818-5M-P f:
8 mm, Basler), three spectral filters (BP635, BP525 and BP470, Midwest Optical Systems
Inc.) that transmit light in red, green, and blue color mounted on a filter wheel (FW102,
Thorlabs). Infected areas of lettuce leaves show an enhanced fluorescence intensity in the
blue-green spectrum between 400 nm and 560 nm [26] (ch.4). The blue and green filters
were chosen to cover this area of enhanced emission and sufficiently overlap with the
green and blue channel of normal RGB imaging. The blue fluorescence of the veins made
the green channel most selective as biomarker for infection. The red filter was chosen
on the lower wavelength side to avoid camera saturation due to the high fluorescence
at the red edge of the visible light spectrum [26] (ch.4). The sample is mounted on a
rotation stage (PRMTZ8/M, Thorlabs). The monochrome camera has 1440 × 1080 pixels,
square pixels with a size of 3.45 µm, and a frame rate of 227 fps. To demagnify the
plant and fit its entire image on the camera, the objective with a focal length of 8 mm
is mounted on the monochrome camera providing a pixel resolution of 120 µm. The
angular field of view (FoV) of the objective is 58-by-45 degrees. The distance between the
objective and the monochrome camera is adjusted to create a sharp image of the lettuce pot
plant. The orientation and distance of the camera is set to visualize the whole plant with
minimal occlusion.

The white light source illuminates the lettuce cultivar Salinas plant to acquire a struc-
tural image of the plant. Red, green, and blue spectral filters can be rotated in front of the
camera are used to sequentially collect images of the plant at different spectral bands. After
obtaining structural images using the RGB filters, the UV light source illuminates the plant
to attain UV-induced fluorescent images using the RGB spectral filters, which are chosen to
optimize the blue-green fluorescence that is indicative of infection [24,26]. Subsequently,
the rotation stage changes the perspective of the plant after obtaining structural and fluores-
cence images. The filter wheel, light sources, monochrome camera, and rotation stage are
controlled by a script run in Python 3.11.5. For our setup, the acquisition speed is limited
by the rate of filter wheel rotation.
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Figure 1. Experimental setup for structural and functional SfM 3D plant imaging. The setup consists
of a white light source, a UV light source, a rotation stage, one filter wheel, a demagnifying objective,
and a monochrome camera.

2.2. Camera Calibration and Image Processing

The imaging setup was computationally calibrated to correct for optical distortions pre-
sented in all plant images. To obtain the calibration parameters, images of a 7 × 9 squares
checkerboard calibration sample with 13 mm square size were collected from various
orientations. The MATLAB estimateCameraParameters function was used to compute a
homography, expressing the projective transformation between the world points and the
image points, to obtain the calibration parameters. From the correspondences of multiple
images of the checkerboard calibration sample the camera parameters were obtained. The
calibration procedure also provided intrinsic parameters such as the focal length of the
objective f and the principal points (u0, v0) expressing the center point of the camera that
are necessary to reconstruct the 3D image of the plant, as defined in Equation (1). Using
ku and kv, which are the number of pixels per mm on the x and y axes, we obtained the
intrinsic matrix of the camera K as presented in Equation (1).

K =

 f ku 0 u0 0
0 f kv v0 0
0 0 1 0

. (1)

3D image reconstruction starts after acquiring an R, G, and B image of a lettuce plant
from two different perspectives. The images are captured in a sealed enclosure to control
environmental parameters such as temperature, airflow, and ambient illumination. To
process the images, they are converted into five different spectral channels: red, green, blue,
grayscale, and extra-green. The grayscale images are computed by averaging the intensity
values at each pixel in the red, green, and blue channels. The ExG images are determined
by employing the extra-green (ExG) algorithm through

ExG(x, y) = 2 × I(x, y, G)− I(x, y, R)− I(x, y, B). (2)

where I(x, y, G), I(x, y, R), and I(x, y, B) represent the pixel values of the images obtained
with the green, red, and blue filters, respectively.
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2.3. 3D Image Reconstruction

In SfM depth information is obtained from two images after locating the shift of a
key point in two images acquired at different angles. A key point X̃j is a feature located
in an image frame j that resembles a part of the structure. To identify the key points,
first, the RGB images were converted into ExG images. Then, the images were digitally
upsampled using cubic interpolation before all key points in each image were detected by
employing the scale-invariant feature transform (SIFT) algorithm [32]. The SIFT algorithm
identified each key point and labeled its location within a certain diameter. Therefore, we
can only obtain depth information within the diameter of a key point. Then the key points
in an image pair are matched with the Fast Library for Approximate Nearest Neighbors
(FLANN) matcher [33]. The FLANN-based matcher coupled two key points in two images
by considering parameters as the distance ratio of 0.6, FLANN index kdtree of 1, and
trees of 5.

A key point describing a part of a structure in the world coordinate system is ex-
pressed as [ X Y Z ]. These coordinates need to be recovered SfM from a subsequent
measurement of the same point on the pixel coordinate [ u v ]. A homogeneous 3D
coordinate of the key point has the form [ X̃ Ỹ Z̃ W̃ ] with a nonzero scale factor W̃.
The relation between the homogeneous 3D coordinate and the pixel coordinate is based on
a 4 × 4 perspective transformation matrix Q according to[

X̃ Ỹ Z̃ W̃
]⊤

= Q
[

u v 1/d(u, v) 1
]⊤

. (3)

The disparity d(u, v) in Equation (3) is the difference in the location of the same key
points in two images. Using the disparity and mathematical and geometric relations, the
homogeneous 3D coordinates of a disparity point are estimated with Equation (3). Here,
the matrix Q is

Q =


1 0 0 −u0

0 −1 0 v0

0 0 s f ku 0
0 0 0 1

. (4)

The perspective transformation matrix Q is obtained from the camera calibration and bears
details of the camera intrinsic matrix as seen in Equation (4) where the parameter s = 0.02
is obtained with our calibration. Lastly, we express the coordinates of a key point in the
world coordinates by dividing the homogeneous 3D coordinates by W̃ as [ X Y Z ] =
[ X̃/W̃ Ỹ/W̃ Z̃/W̃ ]. The data processing time for generating a 3D image is one minute
using two images on a desktop PC (Intel(R) Xeon(R) CPU E5-1660 v3 @ 3.00 GHz).

3. Results
To make a good 3D plant image acquisition, we investigate important data acquisition

and processing parameters of the imaging system such as the number of camera pixels, the
angle step size between a consecutive image pair, and the spectral information of the plant.
Most importantly, we increase the number of matched key points to create a high-resolution
3D reconstruction.

First, we investigate the effect of the spectral information on the number of matched
key points. The SIFT key point detection approach identifies key points in a complex
image based on the presence of contrast. The contrast is strongly affected by the functional
properties of the plant, the plant geometry, the scattering of light over the plant, the signal
intensity, and the noise. In Figure 2, we demonstrate the intensity variation of one plant
image in different spectral channels. The numbers of matched key points for each spectral
image are as follows: 1733 for red, 1162 for green, 3035 for blue, 1023 for grayscale, and
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3987 for ExG. The ExG image yields the highest number of matched key points, and, as a
result, generates high contrast variation over the plant. As seen here, due to the intensity
saturation in the image under the green filter, we encounter less number of matched key
points compared to red and blue color channels because of the presence of smooth intensity
variation over the plant in the green channel. Further 3D reconstruction is performed with
the ExG data.

Figure 2. The image of the pot plant under different spectral filters with the number of matched key
points indicated for 1 degree angle step.

Second, we investigate increasing the number of key points. The number of pixels in
the monochrome camera is 1.5 million (1080-by-1440), imposing a limit on the number of
key points and features in each image. To monitor the pot plant with a higher number of
matched key points, each plant image is digitally upsampled using cubic interpolation to a
higher imaging format of 5400-by-7200 pixels. As a result of this operation, the number
of matched key points for the images varies from 1856 for 1.5 million pixels to 3987 in
the case of 38.9 million pixels. The upsampling increases the computational cost. When
we upsample images from the imaging format of 1080-by-1440 pixels (1.4 s) to 3240-by-
4320 pixels and to the maximum of 5400-by-7200 pixels, the calculation duration becomes
14 times (20 s) and 41 times (60 s) longer compared to the case without the upscaling on
the same PC, respectively. However, this is still affordable with an average PC. The digital
upsampling enables the detection of a higher numbers of matched key points in the images,
which provides a more accurate 3D image formation. For further results, we use digitally
upsampled images containing 38.9 million pixels.

Third, we investigate how the number of matched key points depends on the angle
step size. The number of matched key points differs for the various image pairs because of
the variation of the structure in each image pair. Figure 3 shows the variation of the number
of matched key points as a function of rotation angle for different angular step sizes for
maximum upsampled images. When the angle difference between two consecutive images
increases, the number of matched key points decreases, as seen in Figure 3. In general,
there is a variation in the number of key points due to the variation of the plant structure
as a function of angle.

Figure 4a shows two 2D ExG images of the pot plant attained at a 1-degree angle
difference under white light illumination obtained from three images obtained with the
RGB color filters. The images from the two perspectives dominantly carry the same view of
the plant in addition to a small new structure that is occluded. Thanks to the overlapping
structure occupying similar key points, successfully, 3987 matched key points in the image
pair were detected and used to reconstruct the surface of the leaves. Based on the key point
perspective change, the depth of the key points from the camera plane is reconstructed,
as shown in Figure 4b. Figure 4c shows the rendered image of the plant structure in 3D,
with overlaid the ExG intensity. Based on the calibrated camera magnification, and the
pixel size of the camera, the 3D structure of the plant is scaled to obtain the plant structure
coordinates in the world coordinate frame. The plant is visualized along three axes with
respect, as can be seen in Figure 4c.
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Figure 3. The number of matched key points in ExG plant image pairs as a function of rotation angle
for three different angle step sizes for maximum upsampled images.

Figure 4. (a) The RGB images of the pot plant obtained under white light illumination at 1 degree and
2 degrees, respectively. The key points in the image pair are connected by red lines. (b) The 3D image
of the plant with varying colors indicates depth variation. The color transition from red points to
green points demonstrates the nearest and the farther points in the plant with respect to the camera
location, respectively. (c) The 3D-rendered image of the plant with 7.2 million points is visualized in
3D coordinates.

Finally, we capture functional information of the lettuce pot plant infected with Bremia
lactucae race BI:33EU, as shown in Figure 5. Figure 5a shows the RGB image of the plant
under white light illumination, no infection is visible. The same plant under the UV
light illumination visualized with the RGB spectral filters is shown in Figure 5b. The
UV light source emits radiation at a spectral window centered around 365 nm, and this
spectral region is not sensed by the monochrome camera positioned after the RGB filters.
Thus, during this data collection operation with UV light on, the camera only monitors
fluorescence signals emanating from the lettuce plant. The image of the lettuce pot plant
in the green channel under UV illumination corresponds to fluorescence signals. We
filter these points from weaker non-specific autofluorescence by tuning the thresholding
parameter based on visual verification to preserve only signals related to the infected
area corresponding to the plant disease. The thresholding parameter removes signals
smaller than 110 counts to keep only the plant disease signals. As seen in Figure 5c, one
of the leaves contains a high green fluorescent signal, which is related to the presence of
plant disease [24,26]. In this image, there are 285771 disease pixels on the surface of the
plant. They are mainly located in the infected area, but the plant veins also carry some
similar signals.

Lastly, we register the UV fluorescence disease signal onto the 3D image of the plant,
shown in Figure 4c. The generation of a 3D image based on UV-image key points is not
possible due to the low number of features in the green image of the plant under UV
illumination. Therefore, we created a 2D color map demonstrating the disease points in red
color, and then registered the color map onto the 3D rendered image of the plant as seen in
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Figure 5d. The non-red signals in the color map demonstrate the healthy parts of the plant.
Considering the number of structure points and the number of disease points, about 4% of
the plant surface is covered with disease.

Figure 5. The RGB image of the plant under (a) the illumination of the white light source, (b) the
illumination of the UV light source. (c) The plant disease points in the green channel of the image in
(b) after performing the thresholding operation. (d) The 3D image of the plant using structural and
fluorescence signals. The red points demonstrate disease signals.

4. Discussion and Conclusions
We have demonstrated the 3D visualization of the structure and function of the

lettuce plant using a single camera, acquisition at two angles, and only 7 images (2 RGB
images under white-light illumination and 1 green image in fluorescence). Our results
demonstrate a high-fidelity representation of the plant surface. Thanks to different data
processing techniques, we increase the number of key points in an image pair to improve
the accuracy of the plant structure in 3D. Moreover, we demonstrate the effect of the image
processing techniques on the number of key points that lead to improving the feature
detection which is the most important issue in the field of photogrammetry. Compared
to other 3D imaging techniques like the monocular-vision and LIDAR, our method has
more spectral information, has an enhanced number of key points, and is realized in a
cost-effective instrument.

Successfull 3D plant reconstruction is based on obtaining a sufficient number of
keypoints. This can be obtained by optimizing the light source intensity, camera integration
time, and optical properties of the spectral filters. The lettuce plant turned out to have a
sufficient number of key points in the ExG channel, with many features visible in the red
and blue channels. For application to other plants and lighting conditions, the combination
of color channels can be optimized to achieve a similar number of key points. An automated
procedure for optimization of the data collection parameters can be implemented to produce
consistent output for different plants and/or environmental conditions.

This work can be further developed by implementing artificial neural network for
image segmentation aimed at plant disease identification [26,34–37]. Moreover, different
color segmentation approaches such as HSV color space (H: hue, S: saturation, V: color
brightness value) may enable the identification of more and better plant features [12]. This,
for example, can be applied to estimate chlorophyll content for vegetation growth status,
assess plant damage, and determine plant aging of eggplants [14].

Our method can aid in the detection of plant disease, its spatial distribution over the
plant, and progression over time. This information is of critical for the fundamental study
of plant-pathogen interactions. In addition, it can of significant aid in the (automated) plant
phenotyping, which is pivotal for breeding better and more resistant crops.
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