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Estimating the Safety Effects of
Congestion Warning Systems using
Carriageway Aggregate Data

Hans van Lint1, Tin Thien Nguyen1, Panchamy Krishnakumari1,
Simeon. C. Calvert1, Henk Schuurman2, and Marco Schreuder2

Abstract
Is it possible to use just aggregate carriageway data for the evaluation of congestion warning systems (CWS) in large
networks—or any system affecting traffic safety for that matter? In this paper, two hypotheses related to this question are
tested. The first hypothesis is that it can be done by comparing large-scale congestion patterns on road stretches with and
without CWS. The underlying rationale is that heterogeneous congestion patterns with many disturbances, frequent wide
moving jams, and large speed differences result in more potentially unsafe traffic conditions than more homogeneous conges-
tion patterns. The second hypothesis is that it is possible to compare differences in average (maximum) deceleration distribu-
tions into congestion waves between road stretches with and without CWS. Both hypotheses have been tested for similar
bottlenecks with similar demand patterns and the results suggest the first hypothesis must be rejected. Although the idea
seems plausible (CWS result in more homogeneous congestion patterns) there were too many confounding factors in the
data to make the case. However, persuasive evidence was found for the second hypothesis. Statistically significant differences
were found between (maximum) deceleration distributions on road stretches with and without CWS that suggest CWS
do—as expected—contribute positively to traffic safety. It thus seems to be possible to monitor safety effects using just aver-
age speeds. However, the method is limited to providing relative comparisons. Furthermore, to fully rule out the effects of
unobserved factors, more evidence and validation with microscopic data are needed.

Congestion warning systems (CWS) belong to the oldest,
and still successful, intelligent transportation systems
(ITS) applied on freeway networks. For example, in the
Netherlands, the so-called MTM (motorway manage-
ment and signaling) system was installed on large parts
of the Dutch freeway network in the mid-80s and is still
considered one of the important contributors to the (dra-
matic) decrease in rear-end collisions on freeways since
then—positive results that are also reported elsewhere
(1). The principle idea is simple: use data from sensors
(e.g., induction loops) to detect congestion downstream,
and, if this is the case, display a warning pictogram or
reduced advisory speed limit on variable message signs
on gantries, to warn upstream traffic of the (backward
moving) congestion wave ahead. Over time, these sys-
tems have been improved with more accurate and lane-
specific loop detectors; and more diversified lane-specific
messages, but the essence has not changed. What has
changed is that in some cases these CWS (both sensors
and variable message signs) are also used for different
purposes, for example, for speed homogenization or pro-

active congestion management with dynamic speed limits
(2, 3). With the arrival of alternative sensing systems
(other than loops), and the possibility of using the vehi-
cle itself as both sensor and actuator, one of the key
questions for road operators today is whether continu-
ous investments in infrastructure-based CWS is a cost-
effective strategy for the near-term (and longer term)
future. This policy question forms the background of this
study.

Cost-effectivity in the context of this paper relates to
how well current infrastructure-based CWS perform in
relation to preserving/increasing traffic safety in compar-
ison with possible alternative CWS that make use of
alternative sensing and actuation, particularly in-vehicle.
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The prospect of increasing percentages of connected
(and automated) vehicle automation opens up many new
possibilities for traffic management in general. Whereas
much research attention around that theme goes to
understanding and evaluating the effects of dynamic
speed limits on throughput and congestion, much less
attention goes to evaluating the effects of these systems
on traffic safety under such changing conditions (3–6).
For example, what is the optimal mix of in-car and
infrastructure-based sensing and actuation for conges-
tion warning during a transition to (eventually) 100%
connected (and possibly automated) vehicles in relation
to potentially prevented accidents? The key methodologi-
cal difficulty in answering this question is that, despite
the fact that traffic is the number eight cause of death
globally, and even number one for people under 30, traf-
fic accidents are extremely rare events relative to the
total amount of traffic interactions (7). For example, the
accident rate in the Netherlands is in the order of 1 in
106 km driven, and the fatality rate is about 4 in 109 km
driven (8). Since CWS support drivers in their perception
of congestion downstream, the key of successful CWS
lies in detecting this congestion. The requirements for
CWS thus boil down to minimizing type I errors (detect-
ing congestion when there is none) and time-to-detection
(congestion); under the constraint of zero type II errors
(not detecting congestion when it is present). Algorithms
with densely placed loop detectors are fairly good at
doing this job, so for alternative CWS systems typical
research questions include: Which factors govern the
robustness of these alternative solutions? How sensitive
are these new combinations of (vehicle- and infrastruc-
ture-based) sensing, algorithms, and actuation for CWS
to errors in the data, in the communication (protocols)?
What role is played by errors in human perception and
response when bringing CWS (partially) in-vehicle?

These ‘‘what if’’ type research questions relate to the
ex-ante assessment of CWS. There are also ex-post
research questions, which are at least as relevant as ex-
ante questions and suffer from similar methodological
problems. Since accidents are rare, accident statistics
alone may not give an unbiased assessment of the effi-
cacy of CWS, particularly without contextual data that
depict causal mechanisms. For example, it is difficult to
find strong empirical (behavioral) evidence in field data
that a head-tail collision would have been preventable
with a CWS, or vice versa, that an accident on a road
with CWS would have also happened without CWS.
There are many contextual factors that come into play
here. For example, maybe the driver did not see the
braking lights downstream because they were distracted
by something inside or outside the vehicle regardless of
CWS. Maybe they took unacceptable risks. Or maybe
other factors (geometry, traffic mix, etc.) played a role in

a particular case. Accident records rarely contain suffi-
ciently reliable information to warrant such inference, let
alone allow conclusions to be drawn from it.

The alternative for accident statistics are surrogate
safety measures as indicators (proxies) for traffic (un)saf-
ety and thus of the efficacy of CWS (9–12). However, to
compute most surrogate measures, individual speeds and
headways are required from either individual vehicle pas-
sages at a local detector (e.g., a loop) or vehicle trajec-
tories. This makes ex-post evaluation of CWS over entire
networks expensive and impractical at the very least. An
ideal scenario would be to derive alternative surrogate
safety measures from data that are readily available on
the entire road network, for example, flows and speeds
from loops or other infra-based sensors, or even average
speeds fused from a multitude of sources, including probe
vehicle data. This would allow network-wide monitoring
and assessment of CWS, and this is the objective of this
paper. It discusses two such methods and is outlined as
follows.

First, in the next section, the two hypotheses under-
neath these methods and the associated assessment fra-
meworks to test these are formulated and discussed.
Next, the data used and some of the issues related to fil-
tering and processing are briefly overviewed. Then, the
results from applying the assessment frameworks are
presented in two separate sections (one for each hypoth-
esis), in which relevant methodological detail (e.g., clus-
tering and statistical testing), and, of course, the results
are discussed. The paper closes with a synthesis and criti-
cal discussion of the findings and conclusions.

Hypotheses and Assessment Frameworks

The a priori reason why deriving surrogate safety mea-
sures from carriageway aggregate data for the assessment
of CWS seems feasible is that CWS inform drivers about
(unsafe) downstream drops in speed. CWS thus specifi-
cally give information about, and affect, longitudinal
movement (speed choice and acceleration). These longi-
tudinal speed dynamics are captured well by carriageway
average speeds. Particularly around capacity, drivers are
largely constrained in choosing their desired speed
because a significant fraction of drivers are car following.
The assumption is therefore that carriageway average
speed dynamics are informative of the potential unsafe
traffic conditions individual drivers may experience.
More precisely, it is assumed that average space-time
contour plots of speeds and the derived acceleration pat-
terns from these contour plots are informative of poten-
tial unsafe traffic conditions.

Before discussing which two hypotheses will be tested
in this paper, two remarks are made. First, both hypoth-
eses are tested against the null hypothesis (H0) that
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differences between either congestion patterns or decel-
eration distributions are because of other (non-observed)
factors than the presence of a CWS. However, claiming
that this null hypothesis can be rejected completely will
be refrained from. In the authors’ view the best that can
be done is making it plausible that the presence of CWS
is an important contributing factor, that is, NOT reject-
ing the alternative hypotheses. Second, since the CWS
considered in this paper convey information using vari-
able message signs (VMS), the terms VMS and CWS are
used interchangeably.

Hypothesis 1 (H1): It is possible to assess safety effects
of CWS by comparing large-scale congestion patterns
at comparable regular bottlenecks under comparable
demand patterns.

The underlying rationale of this hypothesis is that, in
heterogeneous congestion patterns with many
disturbances—frequent wide moving jams and, thus,
large speed differences—more potentially unsafe vehicle
interactions take place than in homogeneous congestion
patterns with very few or no disturbances and thus smaller
speed differences. In case it is found that congestion pat-
terns on non-CWS road stretches are systematically more

heterogeneous than patterns on CWS stretches, this pro-
vides indirect (corroborating) evidence that CWS may
result in safer traffic conditions.

Figure 1a sketches the assessment framework to test
this hypothesis. The key of this framework is to derive
and classify (label) congestion patterns such that it is pos-
sible to statistically test systematic differences between
the labels (i.e., type of congestion patterns) occurring at
stretches with and without CWS. So, given two road
stretches (one equipped with CWS and one without), the
logical flow is as follows:

(a) First assess whether the geometry and topology
of both regular bottlenecks (from which the con-
gestion patterns emanate) are sufficiently similar.
In this case, this means (i) the same number of
lanes up- and down-stream, (ii) the same bottle-
neck type (e.g., on ramp, off ramp, or weaving
section), with (iii) by and large similar dimen-
sions (length merging sections, etc.)

(b) Then construct congestion patterns using the
adaptive smoothing method (ASM) (see below)
and group these according to similarity in demand
patterns (13, 14). The idea is that congestion pat-
terns can only be compared if the underlying
demand pattern is similar; otherwise, differences
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in congestion patterns can be attributed just as
well to differences in demand patterns.

(c) If sufficient pairs of congestion patterns are
found on similar bottlenecks with similar demand
patterns, these congestion patterns are now clas-
sified using the method proposed by Nguyen
et al. (15). This method automatically derives
highly compact feature vectors from congestion
patterns that include amongst other things the
number of wide-moving jams, and spatiotem-
poral extent. Using these small but informative
feature vectors it is possible to build a cluster-tree
of the patterns.

(d) With each pattern clustered it is possible to use
statistical tests to determine whether the feature
vectors that represent the congestion patterns for
the CWS and non-CWS patterns systematically
differ.

Hypothesis 2 (H2): It is possible to assess safety effects
of CWS by comparing distributions of (maximum)
average decelerations at regular bottlenecks.

The underlying rationale of this hypothesis is similar
as for hypothesis 1: higher average (maximum) decelera-
tions are indicative of potentially unsafe vehicle interac-
tions. If systematic differences in (maximum) deceleration
distributions are found between CWS and non-CWS road
stretches in this direction (i.e., larger [maximum] decelera-
tions), this provides indirect (corroborating) evidence that
CWS may result in safer traffic conditions.

Figure 1b sketches the assessment framework to test
this hypothesis. The key of this framework is to derive
these deceleration distributions such that systematic dif-
ferences can be statistically tested. Given two road
stretches, one equipped with CWS and one without, the
logical flow is as follows:

(a) Again, first assessed is whether the geometry and
topology of both bottlenecks from which conges-
tion emanates are sufficiently similar (see above).

(b) Then, instead of looking at feature vectors of
entire congestion patterns, deceleration patterns
into the tails of congestion waves emanating
from the bottlenecks are looked at. The criterion
for selecting such waves is that there is a suffi-
cient amount of free-flowing traffic upstream of
it, therefore the term ‘‘first’’ congestion waves in
Figure 1b. Average (longitudinal) vehicle trajec-
tories si x, tð Þ are then estimated using the so-
called Filtered-Speed-Based (FSB) travel time
estimation method into this congestion wave
(16). This reduces to drawing (synthetic) trajec-
tories through area in the speed contour plot

upstream of the wave. The slope of this trajectory
dsi=dt at point t, xð Þ equals the speed v t, xð Þ in the
contour plot at point t, xf g. From these trajec-
tories, only those parts are then selected in which
each synthetic ‘‘vehicle’’i decelerates (ai t, xð Þł 0),
and partition this sub trajectory into segments sij

with fixed length Dx of around 10m.
(c) For each resulting trajectory segment sij an aver-

age deceleration value dij = aij

�� �� is computed.
For each trajectory i a maximum deceleration
dmax

i =maxj dij

� �
is also identified. These are then

used to construct two empirical distributions,
constituted by all decelerations, and the maxi-
mum decelerations, respectively.

(d) It is now possible to use statistical tests to assess
whether systematic differences between distribu-
tions from CWS and non-CWS road stretches
are observed. It is important to note that, since
smoothed speeds are used (ASM computes a
weighted average speed on each point t, xð Þ), dis-
tributions of smoothed decelerations are com-
pared. Discussed below is whether this has
consequences for the statistical tests (the hypoth-
esis is that it does not).

Data and Processing

The data for this study come from the national data
warehouse of traffic information (NDW) (www.ndw.nu),
which are continuously collected and processed in the
DiTTLAB cloud environment. In this environment there
are over 7 years of speeds and flows for the entire Dutch
freeway network and the main motorway network (about
1 TB raw data per year), including a detailed graph
model to combine data from different sources, and a
range of processing and filtering services for these data.

Data

For this research, 3 months of data in 2017 were selected.
A challenge is that road stretches without VMS signaling
(so without CWS), have a far less densely spaced set of
loop detectors. The distance between loop detectors on
those stretches is between 1000 and 2500m in contrast to
the 400 to 600m loop spacing on most signaled road
stretches. In some cases, no loop detectors are available
at all. Figure 2 (right) shows a map with the freeway net-
work in the Netherlands, in which thin lines indicate
road stretches without signaling; thick blue lines road
stretches with signaling; and thick semi-transparent lines
those road stretches selected for this project—Figure 2
(left) zooms in on one of these.

To remedy this problem (fewer loop detectors on non-
CWS road stretches), two data sources are used:
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� Loop detectors measuring minute averaged speeds
and flows solely to estimate demand patterns into
the bottleneck, which are used to test hypothesis 1.

� Floating car data (FCD) in the form of average
speeds over 50-m segments to construct the speed
contour maps needed to test both hypotheses. The
underlying data are sampled vehicle trajectories
(i.e., records of vehicle location, time, and speed)
sourced from a popular Dutch route information
and navigation app (FlitsMeister), which are (in
this aggregated form) made available by NDW for
the entire Dutch road network.

A potential complication for this study is that the
investment decision for (or against) installing CWS on
particular road stretches over the years is/was closely
related to the frequency with which congestion occurred
on these road stretches. Although in the North, East,
and South-West part of the network congestion does
occur, the duration and severity are indeed usually less
than in the West, central, and mid-South part. As illu-
strated in Figure 2 (right), most CWS are located in the
more congested Western part of the Netherlands. This
may bias the outcomes of testing hypothesis 1. To make
sure that in comparing congestion patterns (H1) and
deceleration patterns (H2) it is possible to attribute the
differences to whether or not a CWS is installed, the fol-
lowing rationale is used:

For hypothesis 1, entire congestion patterns are com-
pared. Roughly speaking, two categories of factors deter-
mine the shape and characteristics of these congestion
patterns: (1) the demand pattern over time into the bot-
tleneck; and (2) the supply characteristics of the bottle-
neck, which are assumed to be largely determined by the
bottleneck topology/geometry. A fair comparison
between congestion patterns on CWS and non-CWS
road stretches thus requires that both demand and sup-
ply characteristics on those road stretches are similar.
For hypothesis 2, deceleration patterns are compared
into a single congested wave. In this case, it is argued
that, for a fair comparison, the larger scale demand pat-
tern over time does not matter much, because only very
short time periods are looked at, during which platoons
of vehicles drive into the congestion wave. All drivers
upstream MUST decelerate, and the hypothesis is that
the presence of CWS affects how they do this. The
assumption is that sufficient similarity in (the severity of)
these waves may be expected in case the topologies of
bottlenecks are similar.

In summary, the CWS and non-CWS cases are com-
pared, such that if differences are found in congestion
patterns (H1) and deceleration patterns (H2), respec-
tively, these differences can be attributed to the presence
of a CWS on one of the two road stretches. To this end,
topological similarity (both hypotheses) and similarity in
demand patterns (H1 only) are required.

A1L (No-VMS)

(VMS) A1R

A1

A12
A73

A67

A2

Non-VMS road 

stretches thin lines 

VMS road stretches 

thick blue lines  

Selected road 

stretches thick 

transparent grey

Figure 2. Example road stretches with and without congestion warning systems (CWS) (left), and map of CWS on Dutch freeways
(right) annotated with all road stretches selected for this research.
Note: VMS = variable message signs.
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Data Smoothing and Consequences for Assessment
Methods

All selected data are smoothed using the ASM (13, 14).
The ASM computes average speed u t, xð Þ as a weighted
average of speed observations uobs tk , xdð Þ around the
point t, xf g. In this averaging process, two types of
weight are used. The first weight, which can be computed
by any reasonable kernel centered around t, xf g, is inver-
sely proportional to the distance in space xd � xj j and
time tk � tj j of each observation to the estimation point.
By skewing the axes along the two dominant wave
speeds, that is, at around –20km/h in congestion, and
slightly below average vehicle speed otherwise, the ASM
preserves wave patterns in the traffic data, which would
be destroyed by averaging orthogonally, that is, between
locations or time instants. This process results in two
weighted averages: one for congestion and one for free-
flowing traffic, respectively—the difference between the
two relates to which data points are weighed more heav-
ily. To obtain one final weighted average, the two esti-
mates are combined using a second (non-linearly
computed) weight based on a principle that informally
can be understood as ‘‘congestion wins.’’ This principle
follows the intuition that—at least on freeways—it is
more likely that congestion waves that seem connected,
are indeed connected (propagate backwards), rather than
that they contain ‘‘holes,’’ that is, small road stretches
with freely flowing traffic over very short time intervals.

The traffic dynamics of the latter case are not impossible,
but in most cases much less plausible. This ‘‘congestion
wins’’ principle is implemented in the ASM by taking the
minimum of the two speed estimates to determine this
second non-linear weight. The ASM is powerful in that
it accurately reconstructs speed contour maps even if up
to 50% of the observations is missing (13). However, the
ASM is a low pass filter. This means that extreme
changes in speeds (accelerations and decelerations) are
smoothed out. These extremes, however, are precisely
needed for the assessment based on hypothesis 2.

The example case in Figure 3 supports the intuition
that, nonetheless, the assessment in hypothesis 2 is valid
because the ‘‘error’’ because of smoothing is a systematic
bias—it always has the same (predictable) consequences
for the resulting statistics. For illustration purposes, in
Figure 3 a single linear kernel is used to smooth the
speed along the trajectory of a vehicle, so that some
back-of-the-envelope computation is possible. The ratio-
nale is, however, the same as with reconstructing vehicle
trajectories on a speed contour map with just the free-
flow kernel of the ASM. This point is returned to below.
For clarity in this section, deceleration is considered as a
positive number (d tð Þ= a tð Þj j, a tð Þł 0), since for hypoth-
esis 2 trajectory segments are considered in which vehi-
cles decelerate only. First observe that smoothing speeds
u tð Þ result in both over- and under-estimations of the real
decelerations d tð Þ= du=dt. Figure 3a illustrates an
extreme deceleration (emergency stop) and shows that

Figure 3. Two cases of decelerations that demonstrate a systematic estimation bias by kernel smoothers.
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over- and under-estimation of deceleration directly
relates to the sign of the rate of change in deceleration
(jerk j tð Þ= d2u=dt2) along the vehicle trajectory. The
error induced by smoothing results in underestimation of
deceleration for j tð Þ\0; and in overestimation of decel-
erations for j tð Þ.0. In case j tð Þ= 0, as in Figure 3b, the
reconstruction is exact. Since the smoothing kernel com-
putes a weighted average, it effectively distributes the
deceleration pulse over a larger part of the vehicle trajec-
tory resulting in approximately symmetrical positive and
negative ‘‘errors’’ around this pulse. As long as the differ-
ences in magnitude of deceleration pulses (congestion
waves) are still observable in the smoothed data, which
for normal parameter settings of the ASM is always the
case, the statistics of smoothed decelerations (mean and
variance) will be proportional to the statistics of the
underlying raw decelerations.

Note that the ASM is much better suited for smooth-
ing vehicle trajectories and preserving their characteris-
tics than the linear filter in Figure 3. In the ASM, as
speeds fall below the threshold between free-flowing and
congested traffic, most weight will be assigned to the con-
gested kernel along the dominant congested wave speed,
which means that in congestion most of the smoothing
occurs perpendicular to (and not along) vehicle trajectories.
In the deceleration zones (into shockwaves) the smoothing
is adaptive (hence the name ASM), in that it increasingly
takes place along this dominant congested wave speed.

In summary, if statistical differences are found in the
smoothed data, it can be guaranteed that these differ-
ences coincide with larger differences of the same sign in
the underlying (not observable) real deceleration values.
In Figure 3a, the computed decelerations (on the right)
over the deceleration pulse equal 0.95m/s2, which is con-
siderably smaller than during the underlying emergency
deceleration (6.3m/s2), but still nearly twice as large as
the smoothed values in the ‘‘mild deceleration case’’ in
Figure 3b, where the smoothed decelerations are in fact
equal to the underlying value of 0.48m/s2. In the ASM
expect smaller differences can be expected between fil-
tered and (underlying) real data—the results below will
confirm this.

Clustering and Comparing Congestion
Patterns

In this section, the steps in the assessment framework in
Figure 1a are followed. In the first section, the first two
(finding comparable bottlenecks and demand patterns)
are discussed, and in the second section, the last two steps
(comparing congestion patterns and statistical testing)
are discussed.

Finding Comparable Bottlenecks with Comparable
Demand Patterns

The criteria for comparable bottlenecks with and without
CWS/VMS are qualitative: geometries are looked for
with similar discontinuities (on ramp, off ramp, lane
drop, weaving section) with approximately similar
dimensions; traffic rules (e.g., maximum speeds); and the
same number of lanes up- and down-stream of the bottle-
neck. As shown in Figure 2 (right), a limited number of
road stretches have been selected with multiple bottle-
necks that could be compared by hand. The result is eight
sets of two comparable bottlenecks, one with and one
without CWS. Note that two non-CWS bottlenecks
(A73L and R) were also considered, because the Dutch
highway authority (Rijkswaterstaat, RWS) was inter-
ested in the deceleration statistics there too—these are,
however, not considered in the statistical tests since there
is no comparison to make. Qualitative similarities do not
guarantee that different congestion patterns may arise
just because one has CWS and the other does not.
Clearly, there are many other factors that may explain
such differences. A priori the most important factors
seem to be the demand pattern into the bottleneck, and
the capacity distribution—emerging from collective driv-
ing behavior—at the bottleneck. Because of the limited
project duration, it was necessary to make the (debatable)
assumption that the capacity distributions of bottlenecks
are sufficiently ‘‘covered’’ by similarities in bottlenecks.
The assumption is debatable, because also differences in
traffic mix may lead to systematic differences in driving
behavior and thus influence differences in congestion pat-
terns. This point is returned to further below.

The criterion for comparable demand patterns is
quantitative. For the eight sets of comparable bottle-
necks, for each congestion pattern the first loop detector
far enough upstream of the bottleneck was selected so
that the congestion waves do not spill over this detector
location (see Figure 4c). From these loop detectors the
inflow pattern (demand pattern into this bottleneck) was
collected for every congestion pattern. For each bottle-
neck average daily patterns were constructed (see Figure
4a for an example). Average patterns were constructed,
rather than individual patterns, at the bottlenecks to
allow for some margin of dissimilarity between individ-
ual days—without this step no clear patterns were dis-
cernable. Finally, clustering was used to construct the
dendrogram, which is a tree that visualizes the numerical
distance (pat1, pat2), where patX is the time series of
average (weekday) demands (see Figure 4b). In Figure 4b
an example of three patterns A, B, and C is highlighted,
in which A and C are more dissimilar than A and B.
Two distance metrics D were tested to construct this
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dendrogram: the Euclidean distance between the average
demand time series, and the Euclidean distance between
the same time series aligned with a dynamic time warp-
ing (DTW) algorithm. Both gave very similar results, so
the simplest one (without time-warping) was used.

Using the demand dendrogram Figure 4b, pairs of
similar bottlenecks that have the closest demand patterns
are selected and the feature extraction method in Nguyen
et al. is applied to the associated congestion patterns of
each pair (15). This method automatically derives highly
compact feature vectors from congestion patterns (speed
contour plots) that include amongst other things the
number of wide-moving jams, the amount of homoge-
neous congestion, and the total spatiotemporal extent of
the congestion pattern. This results in small, equal-sized
and highly informative feature vectors with which in turn
a dendrogram of congestion patterns can be constructed
as in Figure 4d. As with the demand patterns in Figure
4b, the Euclidean distance between two feature vectors is
used as distance measure.

Comparing Congestion Patterns?

The question now is what can be concluded from these
two dendrograms. Unfortunately, when examining the

cluster-trees (dendrograms) of demand patterns and con-
gestion patterns, in Figure 4b and d respectively, both
seem to suggest systematic differences between road
stretches with and without CWS. This calls into question
the plausibility of hypothesis 1. Consider, for example,
the pattern with label C in Figure 4b. To the right of this
pattern there is a cluster of ‘‘blue’’ road stretches (with
CWS) and to the left there is a cluster of ‘‘red’’ road
stretches (without CWS). All demand patterns on the
‘‘blue’’ (with CWS) road stretches are more similar to
each other than to demand patterns on the ‘‘red’’ road
stretches (without CWS). This means that it is (just as)
likely that the congestion patterns on these ‘‘blue’’ road
stretches differ from their ‘‘red’’ counter parts because
the demand patterns are different, than whether or not a
CWS is installed.

In general terms, a statistical comparison between
congestion patterns that occur at two bottlenecks with
average demand patterns dpat1 and dpat2 (with and with-
out CWS respectively) is meaningful only if (dpat1, dpat2)
(the vertical axis of the dendrogram in Figure 4b) is rela-
tively small, that is, smaller than, for example, D(dpat1,
dpat3), where dpat3 is the average demand pattern of a
third bottleneck with CWS. If two demand patterns at
similar bottlenecks with CWS look more alike than two

(c) space-time contour plot (d) feature vector extraction

Spatiotemporal 

extent

Space

Time

(a) (avg) demand pattern in bottleneck

(e) dendrogram congestion patterns at VMS and non-VMS roads(b) dendrogram of demand patterns intoVMS and non-VMS roads

A B C

Pattern A and C are more 
dissimilar than A and B

D(A,C)

D(A,B)

bottle 
neck

Figure 4. Methods and clustering results for hypothesis 1. (For an explanation of the subfigures see running text.)
Note: VMS = variable message signs.
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demand patterns at bottlenecks with and without CWS,
respectively, this is a tell-tale sign that differences in con-
gestion patterns have more to do with differences in
demand patterns than that one of the two has CWS. The
easiest way to deduce this from Figure 4b is to look at
the horizontal axis: here it is possible to see very clear
clusters of blue (with CWS) and red (without CWS).
There are also clusters visible at the dendrogram of con-
gestion patterns Figure 4d, although they are less

pronounced. The conclusion has to be that hypothesis 1
must be rejected—even without formal statistical testing.

Comparing (Maximum) Deceleration
Distributions

Table 1 and Figure 5 show the results of applying the
assessment framework in Figure 1b to the data. In this
case, the results are very different than those for

Similar 
bottlenecks: 

VMS vs 
Non-VMS

(a) deceleration 

distribution on ALL 

road stretches (b) maximum 

deceleration 

distribution on ALL 

road stretches

(c) deceleration distribution of 

comparable road stretches next 

to each other

(d) maximum 

deceleration 

distribution of 

comparable road 

stretches next to each 

other

Figure 5. Results comparison (maximum) deceleration distributions for hypothesis 2.
Note: VMS = variable message signs.

Table 1. Results Statistical Tests for Hypothesis 2

Kolmogorov-Smirnoff test t-test

All decelerations Maximum decelerations Maximum decelerations

p-value Samples p-value Samples p-value Samples

Overall 1,68E-183 248766 6,57E-120 69497 5,72E-184 4541
A1R 1,02E-15 44576 1,37E-10 6530 3,58E-08 388
A1L 2,34E-17 44741 2,15E-12 28149 1,76E-15 1345
A2R 1,09E-40 11771 1,73E-54 3247 3,14E-72 365
A2L 4,40E-23 1947 6,87E-23 9609 3,51E-31 1100
A15R 5,60E-106 49523 1,67E-108 13812 1,33E-162 836
A15L 6,33E-55 58165 1,89E-41 5686 1,85E-67 354
A67R 1,05E-08 6917 4,26E-04 2178 7,52E-04 124
A67L 3,42E-05 31126 1,47E-01* 286 5,15E-01* 29

*Reject hypothesis 2; Otherwise: DO NOT reject hypothesis 2.
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hypothesis 1. The distribution of deceleration values in
the non-VMS cases differ systematically from the VMS
cases. This holds for the total distribution, that is, all
deceleration values for all bottlenecks as illustrated by
the box-plots in Figure 5a, and the distribution of all
maximum decelerations for which Figure 5b shows the
box-plots.

To compare the distributions quantitatively, the
Kolmogorov-Smirnoff (KS) test and a two-sample t-test
are used, which test the (maximum) distances between
the empirical distributions, and the differences between
the means of these distributions, respectively. In the lat-
ter case, the maximum deceleration distributions only
were considered; the distributions of all decelerations are
too heavily skewed for a t-test. Both tests give statisti-
cally significant results for the total distributions of
(maximum) decelerations (Table 1 top row). This also
holds when comparing the distributions of all (maxi-
mum) decelerations at individual (comparable) bottle-
necks in Figure 5, c and d, respectively. There is one
exception in Table 1 (bottom row) (the A67L), in which
the sample is simply too small to reject the null hypoth-
esis. Having said that, the number of observations in all
other cases is very large, which usually means a KS test
will dismiss the possibility of differences because of
chance even if the distributions are close. This implies it
is not possible to dismiss the probability that other fac-
tors than CWS may be of influence.

However, the systematic results do provide persuasive
evidence that the differences found can at least to a sig-
nificant degree be attributed to the presence of conges-
tion warning using VMS. This is illustrated in Figure 6
which shows cumulative deceleration distribution for
one of the bottleneck pairs on the A15R. Clearly, higher
decelerations cover a much larger portion of the distribu-
tion on the segment without VMS than on the road seg-
ment with VMS.

Conclusion and Discussion

In this paper, two hypotheses are tested related to asses-
sing safety effects of measures on road networks using
carriageway aggregate data only. The first (H1) is that
differences in large-scale congestion patterns can be used
as proxies for (un)safety. The underlying rationale is that
heterogeneous patterns with many disturbances, frequent
wide moving jams, and large speed differences result in
more potentially unsafe traffic conditions than more
homogeneous congestion patterns. The second hypoth-
esis (H2) is that differences in average (maximum) decel-
eration distributions into congestion waves can be used
as a proxy for (un)safety.

It turns out that sufficient evidence was not found to
support H1. It was not possible to attribute the

differences between large-scale congestion patterns to the
presence of CWS. However, because the method in itself
is interesting and because reporting negative results is
good science, it was decided to include these results
nonetheless. Conclusive evidence was found for H2.

From the results, it can be concluded that distribu-
tions of smoothed carriageway average (maximum)
decelerations differ systematically between road seg-
ments equipped with CWS and those without CWS. By
extension, it can be concluded that these distributions
will also differ for the actual underlying decelerations of
vehicles. This is positive, because it potentially offers
road operators such as Rijkswaterstaat a surrogate safety
measure based on average carriageway data, with which
they can economically and continuously monitor the
effects of CWS (or any other ITS) on traffic safety.

The term ‘‘potentially’’ is used, because there are likely
confounding factors that may—in different degrees for the
bottlenecks investigated in this study—explain some of the
systematic differences observed. These probably include
traffic mix (e.g., % trucks), and, for example, local factors
like road inclination, visibility lines, and distractions. It
was not possible to account for these factors on the basis
of the information available. A more in-depth assessment
that involves checking for these factors, and validating the
method with microscopic data is needed to confirm the
hypothesis more rigorously.

However, given the systematic differences found, the
evidence is persuasive enough to attribute at least a por-
tion of the differences to the presence of CWS. This con-
clusion is all the more justified because it is highly
plausible that warning drivers about a dramatic speed

Figure 6. Empirical cumulative distribution functions (CDF) for a
pair of congestion warning systems (CWS) and non-CWS road
segments (on the A15R).
Note: VMS = variable message signs.
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change (a deceleration) ahead will result in smoother and
(in the absolute sense) smaller decelerations.
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