
 
 

Delft University of Technology

On the exponents of APN power functions and Sidon sets, SUM-free sets, and Dickson
Polynomials

Carlet, Claude; Picek, Stjepan

DOI
10.3934/amc.2021064
Publication date
2023
Document Version
Accepted author manuscript
Published in
Advances in Mathematics of Communications

Citation (APA)
Carlet, C., & Picek, S. (2023). On the exponents of APN power functions and Sidon sets, SUM-free sets,
and Dickson Polynomials. Advances in Mathematics of Communications, 17(6), 1507-1525.
https://doi.org/10.3934/amc.2021064

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3934/amc.2021064
https://doi.org/10.3934/amc.2021064


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Manuscript submitted to doi:10.3934/xx.xxxxxxx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

ON THE EXPONENTS OF APN POWER FUNCTIONS AND

SIDON SETS, SUM-FREE SETS, AND DICKSON POLYNOMIALS

Claude Carlet∗

Department of informatics, University of Bergen, Norway

Stjepan Picek

Delft University of Technology, The Netherlands

(Communicated by the associate editor name)

Abstract. We derive necessary conditions related to the notions, in additive
combinatorics, of Sidon sets and sum-free sets, on those exponents d ∈ Z/(2n−
1)Z, which are such that F (x) = xd is an APN function over F2n (which is

an important cryptographic property). We study to what extent these new
conditions may speed up the search for new APN exponents d. We provide

results up to n = 48, denoting the number of possible APN exponents after

each necessary condition for a function to be APN.
We also show a new connection between APN exponents and Dickson poly-

nomials: F (x) = xd is APN if and only if the reciprocal polynomial of the Dick-
son polynomial of index d is an injective function from {y ∈ F∗

2n ; trn(y) = 0}
to F2n \{1}. This also leads to a new and simple connection between Reversed

Dickson polynomials and reciprocals of Dickson polynomials in characteristic 2
(which generalizes to every characteristic thanks to a small modification): the

squared Reversed Dickson polynomial of some index and the reciprocal of the

Dickson polynomial of the same index are equal.

1. Introduction. There is a significant number of works investigating APN Almost
Perfect Nonlinear functions (see, e.g., [3]) and, in particular, APN power functions,
i.e., functions of the form F (x) = xd where d ∈ Z/(2n − 1)Z. While we know a
number of exponent values d that result in APN power functions (see Table 1),
there is no substantial progress (e.g., new exponent values) for a number of years.
One of the core reasons for this lack of new results is the computational complexity
required to test large values d in F2n . While new APN functions would not have
immediate use in cryptography, finding new APN exponents or confirming there are
no new APN exponents for a certain value n would significantly impact the APN
research. Informally, we can divide the research on the new APN power functions
into two directions.

1. Reducing the number of possible APN exponents. For a value n, there
are d values that are possible exponents, where d ∈ Z/(2n − 1)Z. Thus, the
goal is to efficiently recognize such values d that will not result in an APN
function.
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Table 1. Known APN exponents on F2n up to equivalence and inversion.

Functions Exponents d Conditions

Gold 2i + 1 gcd(i, n) = 1

Kasami 22i − 2i + 1 gcd(i, n) = 1

Welch 2t + 3 n = 2t + 1

Niho 2t + 2
t
2 − 1, t even n = 2t + 1

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 n = 2t + 1

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t

2. Speed-up the evaluation if a power function is APN. This direction
concentrates on checking if the differential uniformity for a power function
equals 2.

In this paper, we concentrate on the first direction. More precisely, we study the
so-called APN exponents in fields F2n , that is, those values d ∈ Z/(2n − 1)Z such
that the corresponding power function F (x) = xd over F2n is (APN). A function
from F2n to itself is called APN [11, 2, 10] if, for every nonzero a ∈ F2n and
every b ∈ F2n , the equation F (x) + F (x + a) = b has at most two solutions.

Equivalently, the system of equations

{
x+ y + z + t = 0
F (x) + F (y) + F (z) + F (t) = 0

has for

only solutions quadruples (x, y, z, t) whose elements are not all distinct (i.e., are
pairwise equal). Recall that changing d into one of its conjugates 2jd corresponds
to changing F (x) into a linearly equivalent APN function, which preserves APNness.
The APN exponents then constitute a union of cyclotomic classes of 2 mod 2n − 1.
The known APN exponents (Gold, Kasami, Welch, Niho, Inverse, and Dobbertin)
are all those exponents which are the conjugates of those given in Table 1 below,
or of their inverses when they are invertible in Z/(2n − 1)Z. Note that i (in the
definitions of Gold and Kasami exponents) can always be taken lower than n/2
(thanks to conjugacy).

It has been proved by Dobbertin (as described in the survey chapter [3], to which
we refer for more information on APN functions) that an exponent can be APN
only if gcd(d, 2n − 1) equals 1 if n is odd and 3 if n is even. We shall show in
Section 2 that for all exponents given in Table 1, we have gcd(d − 1, 2n − 1) = 1.
This corresponds to the fact that the related functions F have 0 and 1 as only fixed
points, since x ∈ F2n is a nonzero fixed point of function F (x) = xd if and only if
xd−1 = 1.

It happens for some cyclotomic classes that the property gcd(d−1, 2n−1) = 1 be
true for any element in the cyclotomic class, or equivalently that gcd(d−2j , 2n−1) =
1 for every j = 0, . . . , n− 1. We list in Table 2, for the (known) APN exponents of
Table 1 up to n = 32, when gcd(d−2j , 2n−1) = 1 is true for every j = 0, . . . , n−1.
The proportion of such exponents is large. Since such property is unlikely for
random exponents satisfying Dobbertin’s observation recalled above, we can hope
that some other property can be found, which would explain such large proportion,
and could maybe ease the search for APN exponents outside the main classes. This
other property cannot be that gcd(d−1, 2n−1) = 1 for all APN exponents d, which
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Table 2. gcd(d− 2j , 2n − 1) = 1 for every j = 0, . . . , n− 1.

Class name Value

(n|i); i ≤ n/2

Gold (3|1), (5|1, 2), (6|1), (7|1, 2, 3), (9|1, 2, 4), (11|2, 4, 5)
(13|1, 2, 3, 4, 5, 6), (14|1, 3, 5), (15|1, 2, 4, 7), (17|1, 2, 3, 4, 5, 6, 7, 8),

(19|1, 2, 3, 4, 5, 6, 7, 8, 9), (21|1, 2, 4, 5, 8, 10), (22|5, 7, 9),
(23|2, 5, 7, 8, 9, 10), (25|1, 2, 3, 4, 6, 7, 8, 9, 11, 12), (26|1, 3, 5, 7, 9, 11)
(27|1, 2, 4, 5, 7, 8, 10, 11, 13), (29|1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14)

(31|1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Kasami (3|1), (5|1, 2), (6|1), (7|1, 2, 3), (9|1, 2, 4), (11|3, 4), (13|1, 2, 3, 4, 5, 6)
(14|1, 3), (15|1, 2, 4, 7), (17|1, 2, 3, 4, 5, 6, 7, 8), (19|1, 2, 3, 4, 5, 6, 7, 8, 9),

(21|1, 4, 5, 8, 10), (22|3, 7), (23|2, 3, 6, 8, 9, 11), (25|1, 2, 3, 4, 6, 7, 8, 9, 11, 12),
(26|1, 3, 5, 7, 9, 11), (27|1, 2, 4, 5, 7, 8, 10, 11, 13),

(29|1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14),
(31|1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

n

Welch 3, 5, 7, 9, 13, 15, 17, 19, 23, 25, 27, 31

Niho 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31

Dobbertin 5, 15, 25

Inverse 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31

would imply gcd(d − 2j , 2n − 1) = 1 for all j, since we see in Table 2 that some
cyclotomic classes do not satisfy this.

In this paper, we find a new property relating APN exponents to Sidon sets
and sum-free sets (two well-known notions in additive combinatorics [1, 6, 12]; see
the definitions in Section 3): for every APN exponent d and every integer j, the
multiplicative subgroup of F2n of order gcd(d − 2j , 2n − 1) is a Sidon set and a
sum-free set. Note that the relationship between APN functions and Sidon sets is
not new: by definition, an (n, n)-function is APN if and only if its graph is a Sidon
set (see Section 3). The relationship we establish in this paper is different and gives
more insight into APN exponents.

We study the consequences of searching for new APN exponents, which is a
sensitive open question on which the research is being stuck for almost 20 years. We
do not find new APN exponents, but we show that d is an APN exponent if and only
if the function equal to the reciprocal of the Dickson polynomial Dd(X, 1) is injective

from {y ∈ F∗2n ; trn(y) = 0} to F2n\{1}, where trn(x) = x+x2+· · ·+x2n−1

is the trace
function from F2n to F2. Finally, we show a very simple new relationship (which
generalizes to every characteristic after a small modification) between Reversed
Dickson polynomials and the reciprocals of Dickson polynomials: for every positive
integer d, the Reversed Dickson polynomial D2d(1, X) of index 2d and the reciprocal
of the Dickson polynomial Dd(X, 1) of index d are equal.

2. On the Exponents of Table 1. The value gcd(d − 1, 2n − 1) for a power
function F (x) = xd is an important parameter. The number of fixed points of F
equals 2gcd(d−1,2

n−1).

Lemma 2.1. All the exponents d in Table 1 satisfy gcd(d− 1, 2n − 1) = 1.
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Proof. In the case of Gold functions F (x) = x2
i+1, where gcd(i, n) = 1, we have

gcd(d− 1, 2n − 1) = gcd(2i, 2n − 1) = 1.

In the case of Kasami functions F (x) = x2
2i−2i+1, where gcd(i, n) = 1, we have

gcd(d− 1, 2n − 1) = gcd(2i − 1, 2n − 1) = 2gcd(i,n) − 1 = 1.

In the case of Welch function F (x) = x2
t+3, we have according to the Gauss the-

orem (which states that if a divides bc and is co-prime with b then it divides c):

gcd(d−1, 2n−1) = gcd(2t−1+1, 22t+1−1) = gcd(22t−2−1,22t+1−1)
gcd(2t−1−1,22t+1−1) = 2gcd(2t−2,2t+1)−1

2gcd(t−1,2t+1)−1 =

2gcd(t−1,2t+1)−1
2gcd(t−1,2t+1)−1 = 1.

In the case of Niho functions:

- F (x) = x2
t+2

t
2−1, t even, we have, applying the Euclidean algorithm: gcd(d −

1, 2n − 1) = gcd(2t + 2
t
2 − 2, 22t+1 − 1) = gcd(2t + 2

t
2 − 2,−5 · 2t/2+1 + 11) =

gcd(22 · 52 · (2t + 2
t
2 − 2), 5 · 2t/2+1 − 11) = gcd(5 · 2t/2+1 − 11, 31) = 1, since 31

divides 22t+1 − 1 if and only if 2t+ 1 ≡ 0 [mod 5] and the only possibility for that
is t ≡ 2 [mod 5], t

2 ≡ 1 [mod 5] and 2t + 2t/2 − 2 ≡ 4 6≡ 0 [mod 31];

- F (x) = x2
t+2

3t+1
2 −1, t odd, we have gcd(d−1, 2n−1) = gcd(2

3t+1
2 +2t−2, 22t+1−

1) = gcd(2
3t+1

2 + 2t − 2, 2t + 2
t+3
2 − 3) = gcd(2t + 2

t+3
2 − 3, 9 · 2

t+1
2 − 11) =

gcd(2 · 92 · (2t + 2
t+3
2 − 3), 9 · 2 t+1

2 − 11) = gcd(9 · 2 t+1
2 − 11, 31) = 1, since, again, 31

divides 22t+1 − 1 if and only if 2t+ 1 ≡ 0 [mod 5] and the only possibility for that

is t ≡ 2 [mod 5], 3t+1
2 ≡ 1 [mod 5] and 2t + 2

3t+1
2 − 2 ≡ 4 6≡ 0 [mod 31].

In the case of the APN Inverse function F (x) = x2
2t−1, we have, by the Euclidean

algorithm: gcd(d− 1, 2n − 1) = gcd(22t−1 − 1, 22t+1 − 1) = 2gcd(2t−1,2t+1) − 1 = 1.
In the case of Dobbertin APN function F (x) = xd, where d = 24t+23t+22t+2t−1
and n = 5t, we could calculate gcd(d − 1, 2n − 1) by applying again the Euclidean
algorithm but more simply we have gcd(d− 1, 2n − 1) = gcd(d− 1, (2t − 1)(d+ 2)),
and since d ≡ 3 [mod (2t − 1)], and d − 1 is then co-prime with 2t − 1, we obtain
then gcd(d − 1, 2n − 1) = gcd(d − 1, d + 2) = gcd(d − 1, 3), which equals 1 if n
is odd (because we know that 3 does not divide 2n − 1 in this case) and which
equals gcd(2, 3) = 1 if n is even (since, t being then even, we have 24t, 23t, 22t, 2t all
congruent with 1 mod 3 and then d− 1 ≡ 2 [mod 3]).
Then gcd(d− 1, 2n − 1) = 1 in all cases. �

Hence, all the corresponding APN functions have 0 and 1 as only fixed points.

Remark 1. If d is invertible mod 2n−1 and d′ is its inverse, then gcd(d−1, 2n−1)
equals 1 if and only if gcd(d′−1, 2n−1) equals 1, since a permutation has the same
number of fixed points as its compositional inverse.

3. Sidon Sets and Sum-free Sets. We saw in Section 2 that the known APN
exponents might have a property not covered by the Dobbertin observation (recalled
in the introduction). We also saw in introduction that such property (to be found)
cannot be that gcd(d−1, 2n−1) = 1, since this would imply gcd(d−2j , 2n−1) = 1 for
every j ∈ Z/nZ, which is already not true (for some n) for the simplest known APN
exponent 3. In this section, we show that every APN exponent (known or unknown)
satisfies a property that deals with the numbers gcd(d− 2j , 2n − 1), j ∈ Z/nZ, in a
more subtle way. We first need to recall two definitions from additive combinatorics.
Definition 3.1. [1] A subset of an additive group (G,+) is called a Sidon set if
it does not contain elements x, y, z, t, at least three of which are distinct, and such
that x+ y = z + t.
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This notion is due to S. Sidon 1. It is preserved by (additive) equivalence, that
is, if S is a Sidon set in (G,+) and A is a permutation of G such that A(x+ y) =
A(x) +A(y), then A(S) is a Sidon set. The notion is also preserved by translation.
Of course, any set included in a Sidon set is a Sidon set.
This definition is also relevant in characteristic 2. In such characteristic, we have
more simply: A subset of an additive group of characteristic 2 is a Sidon set if it
does not contain four distinct elements x, y, z, t such that x+y+z+t = 0. Indeed, if
two elements are equal, then there cannot be three distinct elements among x, y, z, t
such that x+ y + z + t = 0.

Remark 2. By definition, an (n, n)-function F is APN if and only if its graph GF =
{(x, F (x));x ∈ F2n} is a Sidon set in (F2

2n ,+). Hence, APN functions correspond
to a subclass of Sidon sets in (F2

2n ,+): those S such that, for every x ∈ F2n , there
exists a unique y ∈ F2n such that (x, y) ∈ S.

Remark 3. A subset S of an additive group (G,+) is a Sidon set if and only if,
denoting by PS the set of pairs in S, the mapping {x, y} ∈ PS 7→ x + y is one-to-

one. The size |S| is then (see e.g., [1]) such that
(|S|

2

)
= |S| (|S|−1)

2 ≤ |G| − 1, since
otherwise the number of pairs {x, y} included in S would be strictly larger than
the number of nonzero elements of G; at least two different pairs {x, y} and {x′, y′}
would then have the same sum and these two pairs would in fact be disjoint (if, for
instance x = x′, then y 6= y′ and x+ y 6= x′ + y′, a contradiction).
Definition 3.2. [6, 12] A subset S of an additive group (G,+) is called a sum-free
set if it does not contain elements x, y, z such that x+y = z (i.e., if S∩(S+S) = ∅).

This notion is due to P. Erdös.

Remark 4. A subset S of an additive group (G,+) is sum-free if and only if,
denoting again by PS the set of pairs in S, the mapping {x, y} ∈ PS 7→ x + y is
valued outside S. The size |S| is then (see, e.g., [6, 12]) smaller than or equal to
|G|
2 because the size of S + S is at least the size of S (since G is a group), and if

|S| > |G|
2 then the two sets S+S and S have sizes whose sum is strictly larger than

the order of the group, and they necessarily have a non-empty intersection. A basic

example of a sum-free set in F2n , which achieves this bound |S| ≤ |G|2 with equality,
is any affine hyperplane (i.e., the complement of any linear hyperplane).

Remark 5. The size |S| of a sum-free Sidon set satisfies |S| (|S|+1)
2 ≤ |G| − 1, since

otherwise, the number of pairs {x, y} ∈ PS would be strictly larger than the number
of nonzero elements of G \ S. Note that, in characteristic 2, if S is a Sidon-sum-
free set, then S ∪ {0} is a Sidon set, which gives again the same bound by using
Remark 3.

4. APN Exponents, Sidon Sets, and Sum-free Sets. We now give the new
property valid for all APN exponents related to Sidon sets and sum-free sets.

Theorem 4.1. For every positive integers n and d and for every j ∈ Z/nZ, let
ej = gcd(d − 2j , 2n − 1) ∈ Z/(2n − 1)Z, and let Gej be the multiplicative subgroup

{x ∈ F∗2n ;xd−2
j

= 1} = {x ∈ F∗2n ;xej = 1} of order ej. If function F (x) = xd is
APN over F2n , then, for every j ∈ Z/nZ, Gej is a Sidon set in the additive group
(F2n ,+) and is also a sum-free set in this same group. Moreover, for every k 6= j,

if x ∈ Gek , y ∈ Gej , x 6= y and x 6= y−1, then we have (x+ 1)d−2
k 6= (y + 1)d−2

j

.

1His last name is often also spelled as Szidon.



6 CLAUDE CARLET AND STJEPAN PICEK

Proof. Using the same idea as the one used by Dobbertin for showing the ob-
servation recalled in the introduction, for every x ∈ Gej \ {1}, we introduce the

unique s ∈ F∗2n \ {1} such that x = s
s+1 , that is, s = x

x+1 . Then xd−2
j

= 1 implies

sd−2
j

+ (s + 1)d−2
j

= 0, which implies after multiplication by s2
j

+ 1 = (s + 1)2
j

that sd + (s + 1)d = sd−2
j

= (s + 1)d−2
j

= 1

(x+1)d−2j
. Note that if s = x

x+1 and

s′ = x′

x′+1 , with x 6= 1 and x′ 6= 1, then we have s = s′ if and only if x = x′ (since

function x
x+1 is bijective, being involutive) and we have s = s′ + 1 if and only if

x′ = x−1, since x
x+1 + 1 = x−1

x−1+1 .
Suppose that Gej is not a Sidon set, then let x, y, z, t be distinct elements of Gej
such that x+y = z+ t. Making the changes of variables x→ xt, y → yt, z → zt and
dividing the equality by t, we obtain distinct elements x, y, z of Gej \ {1} such that
x+y+z = 1. Making now the change of variable y → zy, we obtain elements x, y, z
in Gej \ {1} such that x+ 1 = z(y + 1), x 6= y and x 6= y−1 (indeed, the condition
y = 1 in the new setting corresponds to the condition y = z in the former setting,
the condition x = y in the new setting is equivalent (thanks to x + 1 = z(y + 1))
to z = 1 in both settings, and the condition x = y−1 in the new setting, that is
(thanks to x + 1 = z(y + 1) again), zy = 1, is equivalent to y = 1 in the former
setting). We have then 1

(x+1)d−2j
= 1

(y+1)d−2j
and since x 6= y and x 6= y−1, we have

x
x+1 6=

y
y+1 and x

x+1 6=
y
y+1 + 1 and this gives 4 distinct solutions to the equation

sd + (s+ 1)d = 1

(x+1)d−2j
, a contradiction with the APNness of F .

Suppose that Gej is not sum-free, that is, Gej ∩ (Gej + Gej ) 6= ∅, that is without
loss of generality since Gej is a multiplicative group, Gej ∩ (Gej + 1) 6= ∅, then let
x ∈ Gej ∩ (Gej + 1) (which implies x 6= 0, 1) and s = x

x+1 (with s 6= 0, 1 as well), we

have then 1

(x+1)d−2j
= 1 and sd + (s + 1)d = 1 and the equation zd + (z + 1)d = 1

has four solutions 0, 1, s, and s+ 1 in F2n , a contradiction.
The last assertion is a direct consequence of the observations made in the first para-
graph of the present proof. �

Remark 6. Since for s = x
x+1 , x 6= 1, we have sd + (s + 1)d = xd+1

(x+1)d
and since

xd+1
(x+1)d

= (x−1)d+1
(x−1+1)d

, the condition “Gej is sum-free” is in fact a weaker version

of the condition “the equation xd + 1 = (x + 1)d has at most one solution in
F2n , up to the replacement of x by x−1” which is implied by the condition “the
equation xd + (x + 1)d = 1 has at most two solutions in F2n”. We shall say more
in Subsection 4.1. Note that every element of Gej satisfies xd + 1 = (x+ 1)d since

this equation in Gej is equivalent to x2
j

+ 1 = (x + 1)2
j

which is always true, and
this is why Gej plays an interesting role.

Remark 7. Denoting e = gcd(d, 2n−1), we have that Ge itself is a Sidon set since,
as recalled above, we have e = 1 if n is odd and e = 3 if n is even, and G1 = {1},
G3 = F∗4 are Sidon sets (since they do not contain 4 distinct elements). But Ge is
a sum-free set only for n odd, since F∗4 is not sum-free.

Remark 8. An APN function is APN in any subfield where the function makes
sense (i.e., such that F (x) belongs to this subfield when x does). In particular, an
APN power function is APN in any subfield. Applying Theorem 4.1 with a divisor
r of n in the place of n replaces ej by gcd(d− 2j , 2r − 1) and Gej by Gej ∩ F∗2r , so
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it gives no additional information since if Gej is a Sidon-sum-free set in F2n , then
Gej ∩ F∗2r is also a Sidon-sum-free set in F2r .

Remark 9. The condition that Gej is sum-free for every j ∈ Z/nZ implies that, for

every divisor k of n larger than 1, the integer ej is not divisible by 2k − 1, because
otherwise Gej would contain F∗2k , and this is contradictory with the condition. For

k > 2, the fact that ej is not divisible by 2k − 1 is also a consequence of the fact
that Gej is a Sidon set, since it is straightforward that for k > 2, F∗2k is not a
Sidon set and any superset is then not one either. In fact, the property of being a
Sidon-sum-free set is rather restrictive, and this explains the observations made in
the introduction.

Remark 10. We observed that, in characteristic 2, the size |S| of a Sidon-sum-free

set S not containing 0 cannot be such that
(|S|+1

2

)
= |S| (|S|+1)

2 > 2n−1. We deduce
then from the theorem that, if d is an APN exponent, then for every divisor λ of
2n−1 such that

(
λ+1
2

)
> 2n−1 and every j ∈ Z/nZ, this number λ does not divide

d − 2j . Take for instance n = 8 and λ = 28−1
3 = 85, we have

(
λ+1
2

)
> 255 and for

every APN exponent d, we have that 85 does not divide d− 1, d− 2, d− 4, d− 8,
d− 16, d− 32, d− 64 nor d− 128 (all these numbers being taken modulo 255). We

can also take λ = 28−1
5 = 51, we have

(
λ+1
2

)
> 255 and 51 does not divide d − 1,

d − 2, d− 4, d− 8, d− 16, d− 32, d− 64 nor d− 128 as well. For this value of n,
there are only two possible values for λ, but for some larger values of n, the number
of possible λ may be much larger and the condition discriminates then better the
candidates d.

4.1. A general Framework for Deriving Results Similar to Theorem 4.1.
In the proof of Theorem 4.1, we have used that, if x ∈ Gej \ {1} and s = x

x+1 ,

then sd + (s+ 1)d = 1

(x+1)d−2j
. In fact, when relaxing the condition x ∈ Gej \ {1},

we still have an interesting identity, which leads to a new characterization of APN
exponents:

Proposition 1. Let n be any positive integer and F (x) = xd be any power function

over F2n . If x 6= 1 and s = x
x+1 then sd + (s+ 1)d = xd+1

(x+1)d
, and F is APN if and

only if the function x 7→ xd+1
(x+1)d

is 2-to-1 from F2n \ F2 to F2n \ {1}.

Proof. The first identity is straightforward. Hence, function x 7→ xd+1
(x+1)d

is 2-to-1

from F2n \F2 to F2n \{1} if and only if any equation sd+(s+1)d = b 6= 1 has at most
2 solutions s in F2n (indeed, it has no solution in F2) and equation sd+(s+1)d = 1
has only 2 solutions s in F2n (which are 0 and 1), that is, F is APN. �

Note that function x ∈ F2n \ F2 7→ xd+1
(x+1)d

is invariant under the transformation

x 7→ x−1. Note also that instead of s = x
x+1 , we could take s = x

x+1 + 1 = 1
x+1 .

Theorem 4.1 can then be revisited as follows: we use the facts that if a function
is 2-to-1 over some set, then it is at most 2-to-1 over any subset, and that the

expression of xd+1
(x+1)d

is simplified when x ∈ Gej , because xd−2
j

= 1 implies xd+1
(x+1)d

=

x2j+1
(x+1)d

= (x+1)2
j

(x+1)d
= 1

(x+1)d−2j
. The nice thing here is that we obtain an expression

with the same exponent d− 2j as in the definition of Gej and this is what leads to
the Sidon-sum-free property.
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4.2. On the Relationship Between APN Exponents and Dickson Poly-
nomials. Recall that, for every positive integer d, functions xd + (x + 1)d and
x2 + x being invariant by the translation x 7→ x + 1 and the latter one being 2-
to-1, xd + (x + 1)d equals φd(x

2 + x) for some polynomial φd and F (x) = xd is
APN if and only if function φd is injective over the hyperplane H = {x2 + x;x ∈
F2n} = {y ∈ F2n ; trn(y) = 0}, where trn(x) = x + x2 + · · · + x2

n−1

is the trace
function from F2n to F2. This polynomial φd is called the Reversed Dickson poly-
nomial [8] and equals Dd(1, X) (see, e.g., [8]), where Dd is classically defined by
Dd(X + Y,XY ) = Xd + Y d.

Similarly, functions xd+1
(x+1)d

and x + x−1 over F2n \ F2 being invariant under the

transformation x 7→ x−1 and the latter one being 2-to-1, xd+1
(x+1)d

equals ψd(x+ x−1)

for some function ψd, which is here characterized by (ψd(y))2 = Dd(y,1)
yd

, since(
xd+1
(x+1)d

)2
= xd+x−d

(x+x−1)d
. According to Proposition 1, function F is then APN if and

only if ψd is injective over {x+x−1;x ∈ F2n \F2}, that is, over {y ∈ F∗2n ; trn(y−1) =

0} and does not take value 1. Note that Dd(y
−1,1)

(y−1)d
= ydDd(y

−1, 1) equals the value

at y of the reciprocal polynomial of Dd(X, 1). Hence:

Proposition 2. For every positive integers n and d, function F (x) = xd is APN if

and only if the reciprocal polynomial ˜Dd(X, 1) = XdDd(X
−1, 1) of the Dickson poly-

nomial Dd(X, 1) is injective and does not take value 1 over H∗ = {y ∈ F∗2n ; trn(y) =
0}.

We have seen that, for x ∈ F2n \F2, if s = x
x+1 , that is, x = s

s+1 or s = 1
x+1 , that

is, x = s+1
s , we have xd+1

(x+1)d
= sd+(s+1)d. We have then x+x−1 = s+1

s + s
s+1 = 1

s2+s

and therefore xd+1
(x+1)d

= ψd(x+x−1) = ψd

(
1

s2+s

)
= sd+(s+1)d = φd(s

2+s). Hence,

for every z ∈ H∗, φd(z) = ψd(z
−1) and squaring gives (φd(z))

2 = D̃d(z, 1). In other
words, the squared Reversed Dickson polynomial and the reciprocal of Dickson
polynomial of a same index take the same value over H and then, given their
common degree, are equal to each other (this can also be easily seen as a consequence
of the classical recurrence relations satisfied by these two polynomials [8]). We have
then:

Proposition 3. For every positive integer d, the squared Reversed Dickson poly-
nomial of index d (equal to the Reversed Dickson polynomial of index 2d) and the
reciprocal of Dickson polynomial of index d are equal 2. For every z 6= 0 such that

trn1 (z) = 0, we have then (φd(z))
2 = D̃d(z, 1), where D̃d is the reciprocal polynomial

of the Dickson polynomial Dd of degree d. In particular, we have:

xd + (x+ 1)d =
(
D̃d(x

2 + x, 1)
)2n−1

.

This property allows to deduce the expression of Dickson polynomials with so-

called Gold indices: for every integer i, we haveD2i+1(X, 1) = X2i+1+
∑i
j=1X

2i+1−2j .

Indeed, x2
i+1 + (x + 1)2

i+1 = x2
i

+ x + 1 = 1 +
∑i−1
j=0(x2 + x)2

j

and therefore

D̃2i+1(X2 +X, 1) = 1 +
∑i
j=1(x2 + x)2

j

, D̃2i+1(X, 1) = 1 +
∑i
j=1X

2j . The values

2Xiang-dong Hou [7], informed of this property by the authors, has observed that it can be

generalized to any characteristic: XdDd( 1
X
− 2, 1) = D2d(1, X).
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of D2i+1(X, 1) and D2i−1(X, 1) (which are related by D2i−1(X, 1) +D2i+1(X, 1) =

X2i+1) are already known from [5], but Proposition 3 also allows to obtain the ex-
plicit expressions of other Dickson polynomials; for instance with so-called Kasami
indices:

Corollary 1. For every integer i we have:

D4i−2i+1(X, 1) = X4i−2i+1 +X4i+2i+1

 i∑
j=1

X−2
j

2i+1

.

Proof. For every x ∈ F2n \ F2, we have (as already observed and used by Dob-
bertin):

x4
i−2i+1 + (x+ 1)4

i−2i+1 =
x4

i+1(x+ 1)2
i

+ (x+ 1)4
i+1x2

i

(x2 + x)2i

=
x4

i+1 + x4
i+2i + x2

i+1 + x2
i

(x2 + x)2i

= 1 +
(x2

i

+ x)2
i+1

(x2 + x)2i

= 1 +

(∑i−1
j=0(x2 + x)2

j
)2i+1

(x2 + x)2i
,

and therefore, after squaring and denoting X = x2 + x, we obtain:

˜D4i−2i+1(X, 1) = 1 +

(∑i
j=1X

2j
)2i+1

X2i+1 ,

and then:

D4i−2i+1(X, 1) = X4i−2i+1 +X4i+2i+1

 i∑
j=1

X−2
j

2i+1

.

This completes the proof. �

Of course we can deduce D4i+2i+1(X, 1) thanks to the relation D4i−2i+1(X, 1) +

D4i+2i+1(X, 1) = D2i(X, 1)D4i+1(X, 1) = X2iD4i+1(X, 1).
The same method applies more generally to D2j−2i+1 but without the nice fac-

torization above.

Remark 11. The Müller-Cohen-Matthews (MCM) polynomial (see [5]) equals∑k−1
i=0 X

(2k+1)2i−2k and is a permutation polynomial when gcd(k, n) = 1 and k is

odd. Note that it equals φ(X2k+1)

X2k
, where φ(X) =

∑k−1
i=0 X

2i = 1+
(
D̃2k+1(X, 1)

)2n−1

.

5. Experimental Results.
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5.1. Sidon and Sum-free Conditions. Hans Dobbertin and Anne Canteaut have
checked by computer investigation that no unclassified APN exponent exists for
n ≤ 26. By unclassified APN exponent, we mean an APN exponent not equal to
a Gold, Kasami, Dobbertin, Welch, Niho, or Inverse APN exponent, with n odd
in the three latter cases, nor to its inverse mod 2n − 1 when it is co-prime with
2n − 1 (that is, when n is odd), nor to these exponents multiplied by powers of 2
and reduced modulo 2n − 1.

Yves Edel checked the same for n ≤ 34 and n = 36, 38, 40, 42. The main idea for
his computer investigation was to:

1. consider all the elements in Z/(2n − 1)Z, discard (because of Dobbertin’s
observation recalled in the introduction) all those which are not co-prime
with 2n − 1 for n odd and do not have gcd equal to 3 with 2n − 1 for n even,
and

2. discard (because the restriction to a subfield of an APN power function is an
APN power function) all the remaining exponents whose reduction mod 2r−1
is not an APN exponent in F2r for some divisor r of n.

Since the checking that no unclassified APN exponent exists had been already done
previously for r, the condition “is not an APN exponent in F2r” could be replaced
by “is not a known APN exponent in F2r”. Then, after discarding all known
APN exponents in F2n , the remaining exponents were investigated as possibly new
APN exponents; they were gathered in cyclotomic classes, and the APNness of one
member of each class was investigated. No unclassified APN exponent could be
found. Note that in the rest of the paper, when discussing the subfield condition,
we mean the condition as implemented by Yves Edel in his investigation.

In this section, we concentrate on utilizing the same methods as well as our newly
developed Sidon and sum-free conditions to derive the number of possible new APN
exponents to test and see if the Sidon and sum-free conditions contribute to reducing
this number. We use the acronym S for Sidon condition, SF for sum-free condition,
and SSF for Sidon-sum-free condition. We shall call “S values” (respectively, SF,
SSF values) those divisors e of 2n − 1 such that Ge = {x ∈ F∗2n ;xe = 1} satisfies S
(respectively, SF, SSF).

Next, we propose two techniques to calculate S and SF values and one additional
technique to calculate SF values. The first technique for S/SF has high computa-
tional complexity but low memory complexity, while the second one for S/SF has
low computational complexity but high memory complexity. A trade-off can be
considered concerning the available resources. In both techniques, we use a result
from [4]: for every divisor e of 2n − 1, Ge is a Sidon (respectively, a sum-free) set if
and only if, for every u ∈ F∗2n (respectively, for u = 1), the polynomial (X + 1)e +u
has at most two zeros in Ge (respectively, has no zero in Ge).

In the first technique, to determine whether a value e is Sidon (respectively, sum-
free), we visit all the elements u of F∗2n and for each of them we visit all x of Ge
(that is, all those powers of a primitive element whose exponents are multiples of
2n−1
e ) and we:

1. Calculate (x+ 1)e + u.
2. Increment a counter for value u when (x+ 1)e + u = 0.
3. Keep e as Sidon (S) if, for no value of u, the counter reached more than 2 and

as sum-free (SF) if, for u = 1, the counter never reached more than 0.
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This gives computational complexity equal to 2ne. From the memory perspective,
at any time, we are required only to keep two counters (one for S and one for SF).

For the second technique, we visit all the elements x of Ge (that is, again, all

those powers of a primitive element whose exponents are multiples of 2n−1
e ) and for

each, we:

1. Calculate (x+ 1)e.
2. Increment a counter in a table for value (x+ 1)e.
3. Keep e as Sidon (S) if we never reached more than 2 in the table and as

sum-free (SF) if, for value 1, we never reached more than 0.

This technique gives the computational complexity of e and the memory complexity
of 2n. Since we require 2 bits to store the value 2 in memory, in total, we need up
to 2n+1 bits.

Finally, there is a technique (Proposition 5.1 in [4]) to calculate SF that is efficient
from both computational and memory perspectives. As such, we consider this
technique to be preferred for the SF values, but unfortunately, it cannot be used to
obtain the Sidon values.

1. Calculate gcd(xe + 1, (x+ 1)e + 1).
2. If the remainder is 1, then the value is SF.

This technique is efficient as we are required to calculate in F2 only, and we need
only a single bit to store the result.

We show the results for n ∈ [3, 31] in Tables 3 and 4. Observe that sum-free
condition is somewhat more discriminating and enables us to reduce more values e
than the Sidon condition.

Calculating the Sidon condition and, to some small extent, the sum-free condition
as we proposed is efficient only for relatively small values of n or of e or if a value e
is not SSF (since then, we stop the search relatively fast). Indeed, in the cases when
a large value e is SSF, and n is large, calculating Sidon (and possibly sum-free) can
become too expensive in time and space complexities. Consequently, we arrive at
the situation that checking SSF is potentially more expensive than checking if a
value d is a new APN exponent. To circumvent that problem, for larger values of
n, we do not calculate SSF values but the values we call Approximate SSF (ASSF)
values. The ASSF values are those values e that are not shown “not SSF” by the
results of Carlet and Mesnager given in [4]:

Definition 5.1. The Approximate Sidon-sum-free (ASSF) set is the set consisting
of the divisors e of 2n − 1 after discarding the following values:

1. 2r − 1 where r ≥ 2 divides n.
2. gcd(2r + 1, 2n − 1) where r is odd and n is even.
3. gcd(2r + 3, 2n − 1) where r ≡ 2 mod 3 and n is a multiple of 3.
4. gcd(2r − 2k + 1, 2n − 1) where n, r and k − 1 have a common divisor larger

than 1.
5. every divisor of 2n − 1 which is a multiple of one of the values described in

one of the items above.

Analogous to the definition of ASSF set, we define the Approximate Sidon (AS)
set and Approximate sum-free (ASF) set. More precisely, Approximate Sidon (AS)
set is the set consisting of the divisors e of 2n − 1 after discarding the values from
Definition 5.1, conditions 1 and 5. Approximate sum-free (ASF) set is the set
consisting of the divisors e of 2n − 1 after discarding the values obtained from
Definition 5.1, conditions 2, 3, 4, and 5.
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Table 3. Divisors of 2n − 1 which are Sidon-sum-free, part I.

n Specification Values

3 S/SF/SSF 1

4
S 1, 3, 5

SF 1, 5
SSF 1, 5

5 S/SF/SSF 1

6
S 1, 3, 9

SF 1
SSF 1

7 S/SF/SSF 1

8
S 1, 3, 5, 17

SF 1, 5, 17
SSF 1, 5, 17

9 S/SF/SSF 1

10
S 1, 3, 11, 33

SF 1, 11
SSF 1, 11

11
S 1, 23

SF 1, 23, 89
SSF 1, 23

12
S 1, 3, 5, 9, 13, 39, 65

SF 1, 5, 13, 65
SSF 1, 5, 13, 65

13 S/SF/SSF 1

14
S 1, 3, 43, 129

SF 1, 43
SSF 1, 43

15
S 1, 151

SF 1, 151
SSF 1, 151

16
S 1, 3, 5, 17, 257

SF 1, 5, 17, 257, 1 285
SSF 1, 5, 17, 257

17 S/SF/SSF 1

18
S 1, 3, 9, 19, 27, 57, 171, 513

SF 1, 19
SSF 1, 19

Remark 12. Note that all the SSF values belong to the set of Approximate SSF
values, but the ASSF set possibly contains more values.
Still, if we compare the results from Tables 3 and 4 with those obtained from the
ASSF calculations, we see there are only a few values of n where SSF and ASSF
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Table 4. Divisors of 2n − 1 which are Sidon-sum-free, part II.

n Specification Values

19 S/SF/SSF 1

20
S 1, 3, 5, 11, 25, 33, 41, 55, 123, 205, 275, 1 025

SF 1, 5, 11, 25, 41, 55, 205, 275, 451, 1 025, 2 255,
SSF 1, 5, 11, 25, 41, 55, 205, 275, 1 025

21
S 1, 337

SF 1, 337
SSF 1, 337

22
S 1, 3, 23, 69, 683, 2 049

SF 1, 23, 89, 683, 15 709
SSF 1, 23, 683

23
S 1, 47

SF 1, 47
SSF 1, 47

24
S 1, 3, 5, 9, 13, 17, 39, 65, 221, 241, 723, 1 205, 4 097

SF 1, 5, 13, 17, 65, 221, 241, 1 205, 4 097
SSF 1, 5, 13, 17, 65, 221, 241, 1 205, 4 097

25
S 1, 601, 1 801

SF 1, 601, 1 801
SSF 1, 601, 1801

26
S 1, 3, 2 731, 8 193

SF 1, 2 731
SSF 1, 2 731

27 S/SF/SSF 1

28
S 1, 3, 5, 29, 43, 87, 113, 129, 145, 215, 339, 565, 1 247, 3 277, 16 385

SF 1, 5, 29, 43, 113, 145, 215, 565, 1 247, 3 277, 4 859, 6 235, 16 385, 24 295
SSF 1, 5, 29, 43, 113, 145, 215, 565, 1 247, 3 277, 16 385

29
S 1, 233, 1 103, 2 089

SF 1, 233, 1 103, 2 089, 256 999
SSF 1, 233, 1 103, 2 089

30
S 1, 3, 9, 11, 33, 99, 151, 331, 453, 993, 1 359, 1 661, 2 979,

3 641, 4 983, 10 923, 32 769
SF 1, 11, 151, 331, 1 661, 3 641

SSF 1, 11, 151, 331, 1 661, 3 641

31 S/SF/SSF 1

sets are not the same. Naturally, this does not necessarily mean that using ASSF
for larger n does not weaken the techniques.

Remark 13. It is possible to improve the computation speed for calculating the
SSF set by considering the ASSF set: first, we calculate the ASSF set, and then
we check if all those values are indeed SSF values. Trivially, we can exclude values
1 from the check (since we know it is always SSF) and 2n − 1 since we know it is
never SSF.
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Remark 14. When 2n−1 is a Mersenne prime, there is no need to check SSF since
we know value 1 is always SSF, and there is no other strict divisor of 2n − 1.

Remark 15. Based on our experiments and the algorithms’ complexities, we rec-
ommend the following steps in calculating SSF/ASSF values 3:

1. Calculate ASSF values.
2. Check those values that are SSF in subfield since they are also SSF in the field

(which helps by removing some values but also if further reduction is possible
- if all the values are covered in subfield then for sure no further reduction is
possible).

3. Calculate SF values with the gcd approach (Proposition 5.1 [4]). Here, one
needs to check only those values that are ASSF and not covered by the subfield
check.

4. Optional: reduce the number of remaining values by running the first or second
algorithm (Sidon condition only).

As our results show small differences between ASSF and SSF, and since the sum-
free condition is somewhat more discriminative than the Sidon condition, the first
three steps should provide very similar results compared to when added the final
step.

5.2. Calculating the Number of Possibly New APN Exponents. In this
section, we employ all constraints on the possibly new APN exponents d to inves-
tigate the computational effort needed to find new APN exponents or discard all
possible values d for a certain value of n. We start by recalling all the conditions a
value d needs to fulfill to be a possibly new APN exponent. We list the conditions
in the order we apply them.

1. Remove any value d such that gcd(d, 2n−1) 6= 1 if n is odd and gcd(d, 2n−1) 6=
3 if n is even.

2. Remove any value d if it is already a known APN exponent.
3. If n is even, keep only one representative of a cyclotomic class with d being an

element. Keep the minimal representative of a cyclotomic class. If n is odd,
keep only one representative of cyclotomic classes with d and its inverse being
the elements. Keep the minimal representative of both cyclotomic classes.

4. Remove any value d such that gcd(d, 2r − 1) is not an APN exponent in F2r .
5. Remove any value d such that gcd(d−2j , 2n−1) is not an SSF value, for some
j. If n is too large, replace SSF by ASSF.

6. Remove any value d such that there exists a divisor λ of 2n − 1 such that(
λ+1
2

)
> 2n − 1 and there exists j = 1, . . . , n − 1 such that λ divides d − 2j

(see Remark 10).

Remark 16. Note that if n is a prime, then the subfield condition is useless since
there are no subfields to explore.

Remark 17. Since the SSF condition works for all values of n where 2n − 1 is not
a Mersenne prime and subfield condition works for all values where n is not prime,
we consider the SSF condition to be a more general one since Mersenne primes are
rarer than primes.

3We assume that n is large enough, e.g., larger than ≈ 30, as, for smaller values, all algorithms
are sufficiently efficient.
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Table 5. Number of possibly new APN exponents, the total num-
ber of values to consider for a certain n equals 2n− 2, n goes up to
31.

n gcd(d, 2n − 1) Not known APN Cyclotomic rep. Subfield SSF

3 6 3 1 1 0
4 4 0 0 0 0
5 30 5 1 1 0
6 12 6 1 0 0
7 126 49 4 4 3
8 64 40 5 5 4
9 432 315 19 6 4
10 300 260 26 21 21
11 1 936 1 683 78 78 66
12 576 540 45 21 21
13 8 190 7 839 302 302 301
14 5 292 5 222 373 226 226
15 27 000 26 685 893 365 365
16 16 384 16 272 1 017 377 370
17 131 070 130 475 3 838 3 838 3 837
18 46 656 46 566 2 587 697 697
19 524 286 523 545 13 778 13 778 13 777
20 240 000 239 840 11 992 1 592 1 512
21 1 778 112 1 777 545 42 326 12 923 12 923
22 1 320 352 1 320 154 60 007 7 834 7 824
23 8 210 080 8 208 999 178 458 178 458 178 434
24 2 211 840 2 211 672 92 153 2 153 2 135
25 32 400 000 32 398 875 647 981 539 979 539 966
26 22 358 700 22 358 414 859 939 36 844 36 844
27 113 467 392 113 466 339 2 101 232 569 069 569 010
28 66 382 848 66 382 540 2 370 805 31 349 31 127
29 533 826 432 533 824 721 9 203 878 9 203 878 9 202 166
30 178 200 000 178 199 760 5 939 992 11 212 11 212
31 2 147 483 646 2 147 481 693 34 636 802 34 636 802 34 636 801

In Table 5, we give results for the number of values d one needs to examine to
look for new APN exponents (considering values up to n = 32). We note that
this list serves only the illustrative purpose of how the SSF constraint reduces the
number of values to check. Previous results by Y. Edel [9] show that there are no
new APN exponents for those values of n. We can observe as the values of n become
larger, and when 2n−1 has many divisors, the SSF condition can discriminate more
values.

Next, we list the results for 32 ≤ n ≤ 48 in Table 6. Comparing the results with
Table 5, we observe SSF (or, to be more precise, AS and SF criteria) discriminate
more exponent values. Indeed, for odd values, we see that the SSF condition reg-
ularly reduces the number of possible exponents, where for some of the values n,
the reduction is significant. For example, for n = 39, due to the SSF criterion, we
reduce more than 40 000 possible exponent values. Even though the SSF criterion
is applied last (and if applied before, e.g., the subfield criterion, it would remove
many more exponent values), this represents a significant reduction in the number
of possible APN exponents left to test (our experiments show it could reduce the
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Table 6. Number of possibly new APN exponents, the total num-
ber of values to consider for a certain n equals 2n−2, 32 ≤ n ≤ 48.

n gcd(d, 2n − 1) Not known APN Cyclotomic rep. Subfield SSF

32 1 073 741 824 1 073 741 344 33 554 417 229 361 229 328
33 6 963 536 448 6 963 535 029 105 508 114 6 893 976 6 893 596

34 5 726 448 300 5 726 447 790 168 424 935 764 560 764 560

35 32 524 632 000 32 524 630 145 464 637 581 236620975 236 620 012
36 8 707 129 344 8 707 128 948 241 864 693 58 309 58 279

37 136 822 635 072 136 822 632 297 1 848 954 492 1 848 954 492 1 848 954 380

38 91 625 269 932 91 625 269 286 2 411 191 297 3 407 842 3 407 842
39 465 193 834 560 465 193 832 571 5 964 023 502 127 800 480 127 759 412

40 236 851 200 000 236 851 199 360 5 921 279 984 1 480 304 1 480 210

41 2 198 858 730 832 2 198 858 727 429 26 815 350 336 26 815 350 336 26 815 343 652
42 809 240 108 544 809 240 108 082 19 267 621 621 140 857 140 849

43 8 774 777 333 880 8 774 777 330 139 102 032 294 540 102 032 294 540 102 032 289 465

44 4 417 116 143 616 4 417 116 142 780 100 389 003 245 15 054 317 15 054 285
45 28 548 223 200 000 28 548 223 197 615 317 202 480 005 2 004 543 425 2 004 537 282

46 22 957 042 116 160 22 957 042 115 194 499 066 132 939 65 710 726 65 710 708
47 9 339 802 874 699 9 339 802 872 926 1 449 575 966 170 1 449 575 966 170 1 449 575 962 833

48 36 528 696 852 480 36 528 696 851 760 761 014 517 745 1 096 689 1 096 684

time required to check if exponents are APN for several weeks, depending on the
computational power available). Simultaneously, for n even, the SSF criterion does
not significantly reduce the possible new APN exponents.

Remark 18. We applied SSF as the last criterion. If applied before (e.g., before
the subfield criterion), it would remove significantly more exponent values. Then,
the subfield criterion would have only a slight effect.

Remark 19. The exponents removed through SSF are not all the same as expo-
nents removed by any other criterion. Thus, it is impossible to remove any of the
criteria and obtain the same results as here.

6. More Properties of APN Exponents. In this section, we give more results
on APN exponents, which are not so nice to state as in Section 4 but may be useful
for future works.

6.1. Other Necessary Conditions for an Exponent to be APN.

Proposition 4. For every positive integers n and d and for every integer j such
that 0 ≤ j ≤ n − 1, let fj = gcd(d + 2j , 2n − 1). Consider the multiplicative group

Gfj = {x ∈ F∗2n ;xd+2j = 1} = {x ∈ F∗2n ;xfj = 1}. If function F (x) = xd is
APN over F2n , then, for every j, k ∈ Z/nZ and for every elements x ∈ Gfj \ {1},
x′ ∈ Gfk \ {1} satisfying x2

j

(x + 1)d−2
j

= x′
2k

(x′ + 1)d−2
k

, we have x′ = x or
x′ = x−1.

Proof. Writing again x = s
s+1 , s = x

x+1 , the identity xd+2j = 1 implies sd+2j +

(s+1)d+2j = 0, that is, sd+2j +(s+1)d(s2
j

+1) = 0, that is, sd+(s+1)d = (s+1)d

s2
j =

1

x2j (x+1)d−2j
. Hence, if F is APN, every elements x ∈ Gfj \ {1}, x′ ∈ Gfk \ {1} such

that 1

x2j (x+1)d−2j
= 1

x′2
k
(x′+1)d−2k

, or equivalently x2
j

(x+1)d−2
j

= x′
2k

(x′+1)d−2
k

,

are such that x′ = x or x′ = x−1. �
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Remark 20. The interpretation of Subsection 4.1 is in the present case as follows:

if xd+2j = 1 then xd+1
(x+1)d

= x−2j+1
(x+1)d

= x2j+1

x2j (x+1)d
= 1

x2j (x+1)d−2j
.

Other similar properties can be derived, but they are more complex (and give
then less simple ways of discriminating APN exponents).
For instance, for every integers k, j, d such that 0 ≤ k < j ≤ n−1, let ek,j = gcd(d−
2k − 2j , 2n − 1), and let Gek,j

be the multiplicative subgroup {x ∈ F∗2n ;xd−2
k−2j =

1} = {x ∈ F∗2n ;xek,j = 1} of order ek,j . If function F (x) = xd is APN over F2n , then,

if x, y ∈ Gek,j
\{1}, x 6= y and x 6= y−1, then we have xd+xd−2k−2j+xd−2k+2j+xd−2j+2k

(x+1)d
6=

1 and xd+xd−2k−2j+xd−2k+2j+xd−2j+2k

(x+1)d
6= yd+yd−2k−2j+yd−2k+2j+yd−2j+2k

(y+1)d
. Indeed, still

introducing the unique s ∈ F∗2n \ {1} such that x = s
s+1 , we have sd−2

k−2j + (s +

1)d−2
k−2j = 0, and multiplying by (s+1)2

k+2j we obtain sd+(s+1)d = sd−2
k−2j +

sd−2
k

+sd−2
j

= xd−2k−2j (x+1)2
k+2j+xd−2k (x+1)2

j
+xd−2j (x+1)2

k

(x+1)d
= xd+xd−2k−2j+xd−2k+2j+xd−2j+2k

(x+1)d
.

The rest of the proof is similar to above.
More generally, let k be any integer and let xk = 1, x 6= 1, x = s

s+1 , we have

sk + (s + 1)k = 0 and therefore, by multiplication by (s + 1)d−k: sd + (s +

1)d =
∑d−k−1
j=0

(
d−k
j

)
sj+k, which implies that x 6= 1, y 6= 1, x 6= y, x 6= 1

y and

xk = yk = 1 imply
∑d−k−1
j=0

(
d−k
j

)
xj

(x+1)j+k 6= 1 and
∑d−k−1
j=0

(
d−k
j

)
xj

(x+1)j+k 6=∑d−k−1
j=0

(
d−k
j

)
yj

(y+1)j+k .

7. Conclusions. In this paper, we presented necessary conditions related to Sidon
sets and sum-free sets for an element d ∈ Z/(2n − 1)Z to be an APN exponent in
F2n (we call these conditions the Sidon-sum-free, in brief SSF, conditions). This
makes a junction between vectorial Boolean functions for cryptography and additive
combinatorics. We also gave a new characterization of such exponents, which can
be nicely expressed through Dickson polynomials. We proved that Dickson polyno-
mials in characteristic 2 and Reversed Dickson polynomials of the same index are
reciprocal of each other, up to squaring the latter. Since Reversed Dickson poly-
nomials are easier to calculate than Dickson polynomials, this allows simplifying
the determination of the expressions of the latter (we gave two examples of such
determinations).

The new conditions related to Sidon sets and sum-free sets, in turn, enable us to
speed up the search for new APN exponents, i.e., to discriminate even more what
could be possible new APN exponents. Although our experimental results show
that the improvements can be relatively small, they are nevertheless important
from theoretical and practical perspectives. We observe small improvements with
our new SSF condition since we apply it after all the other known conditions, and
we notice that Edel’s subfield condition removes many of the same exponents as
the SSF condition. Finally, our results show that the SSF condition should become
more discriminative as we increase the value n, especially for those values where n
is prime (or even just odd), and 2n−1 has many divisors. Our experimental results
give all results for possible new APN exponents up to n = 48. To the best of our
knowledge, this is the first time such exhaustive analysis has been done.

In future work, we plan to extend our research for new APN exponents for higher
n and investigate how to calculate the Sidon values more efficiently. Finally, we plan
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to investigate techniques that would enable faster evaluation if a power function is
APN.
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