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Abstract: Current monitoring systems to detect sporadic E use ground-based setups, ionosondes,
and the network of GNSS satellites in order to assess the phenomenon of sporadic E. This paper aims
to monitor sporadic E using a miniature space-based platform in an atypical way. The setup consists
of multiple radio-amateur beacon systems aboard satellites, each having a specific modulation and
transmission scheme. This Radio Amateur Beacon System for the Investigation of the Ionosphere
(RABSII) is coupled to a GNSS receiver, revealing the location of the platform. Multiple beacon data
streams are sequentially sent from a satellite platform towards the Earth. By receiving and comparing
the Signal-to-Noise ratios of these streams using a dedicated ground-based radio-amateur network of
receiving stations, the presence of sporadic E can be determined, and a location-based model can be
built. The advantage of this miniaturized, low-power, low-cost instrument is its ability to be put on
any satellite platform in the future in order to map sporadic E.

Keywords: PocketQube; sporadic E; ionosphere; solar radiation; space weather

1. Introduction

The ionosphere is a layer of the upper atmosphere which is ionized by solar radia-
tion [1]. It plays a role in atmospheric effects and forms the inner edge of the magnetosphere.
It affects radio wave propagation and has practical importance for long-distance radio
communication. The main effects of the ionosphere on radio propagation are reflection,
refraction, and scattering [1].

One of these effects is linked to sporadic E, a temporary ionospheric radio propaga-
tion reflection phenomenon with a low prediction probability. The region in the Earth’s
atmosphere in which these reflections can occur is around 100 to 120 km in altitude, with a
horizontal extent between 2 and 100 km, moving at a horizontal speed of 20 to 130 m/s
while having a thickness roughly between 0.6 and 5 km [2]. The sporadic E layer can
last for several hours or even less [2]. Sporadic E can create interference for low-power
communication devices as well as broadcasting services. On the other hand, the presence
of a temporary reflection layer can be used for emergency communication purposes [3].

Currently, there is no clear explanation for the cause of this effect. Previous research
has tried to link its occurrence to the 11-year solar cycle, but the results are inconclusive.
In Europe, there appears to be a connection between the peak of sunspot activity and the
occurrence of sporadic E. However, in other regions, the opposite appears to be true, with a
decrease in sporadic E occurrences during times of high sunspot activity [4]. A possible
explanation is linked to an eventual correlation between the formation of sporadic E and
iron-magnesium meteor ablation located at around 100 to 140 km above the surface of the
Earth [4,5].

The sporadic E phenomenon has been studied using multiple techniques, such as
sounding rockets [6,7], ground-based instrumentation [8,9], ionosondes [10,11], space-based
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GNSS Radio Occultation (RO) [12,13], and even combinations of these techniques [14,15].
These methods all contribute to gaining a deeper understanding of the spatial and temporal
behavior of sporadic E clouds, but they come with their specific disadvantages. Ground-
based measurement techniques require expensive infrastructure and are limited to local
observations. This is also the case for sounding rockets and ionosondes. Space-based
measurements like GNSS ROs have global coverage, but they come with their specific
drawbacks. The GNSS RO technique uses high GNSS frequencies (1557.42 MHz and
1227.60 MHz), which suffer from errors such as refraction, temperature errors, and water
vapor influences [16]. This paper aims to research sporadic E at much lower frequencies
in the 10 m band (28 MHz), as well as in the 6 m band (50 MHz) [3], using space-based
beacon systems. Ground-based reception is globally covered by using widespread, readily
available radio-amateur receiving stations [17,18]. This creates a small, low-cost, and low-
power dedicated monitoring system which can be piggybacked onto any satellite platform.
This paper describes the basic concept, as well as the design, building, and testing of such a
prototype beacon system.

2. The Ionosphere and Sporadic E Reflections

The ionosphere, which is part of the Earth’s atmosphere, is generated by the radi-
ation of the Sun and partially by cosmic rays [19]. Its dimensions range from 60 km to
1600 km [20]. The electrical properties of the ionosphere have a fundamental effect on radio
propagation, linked to the intensity of the Sun’s radiation [20]. The ionosphere is formed
by an intense process of ultraviolet light and X-rays derived from the Sun’s activity, which
interact with the atoms and molecules in the atmosphere. Hence, free electrons and ions
are generated, of which the intensity varies with height and the time of day/night [21].

The ionosphere can be divided into different layers based on altitude and varying
electron density. These layers exist due to the differential absorption of solar radiation at
different heights. A distinction can be made between D, E, and F layers (Figure 1).
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Figure 1. Ionospheric layers.

The E layer extends from 100 to 125 km, and is present during day- and nighttime.
The layer is relatively thin (5 to 10 km), is ionized by X-rays and UV radiation, and its
variability is limited. Hence, the layer is unintermitted due to the slower recombination
rate creating some residual ionization [22,23]. Inside the E layer, a specific phenomenon
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occurs, called sporadic E [24]. The height at which these temporary reflections take place is
from 100 to 120 km [2]. Sporadic E can be observed at different frequencies, namely in the
High Frequency HF (3–30 MHz), as well as in the Very High Frequency VHF (30–300 MHz)
band [3].

The most common mechanism responsible for the formation of sporadic E is wind
shear [24]. Wind shear can be described as the interaction between ftidal winds and the
magnetic field of the Earth. This phenomenon occurs when horizontal wind patterns in the
ionosphere generate areas where charged particles converge or diverge, leading to their
accumulation in thin layers. This process is fully controlled by the dynamics of ions [25].

Another mechanism which contributes to the formation of sporadic E, especially in
the polar regions, is linked to disturbances in magnetic activity and associated with the
K-index [23]. Two possible interactions exist for auroral sporadic E; the eastward auroral
electrojet and the westward auroral electrojet [26]. These interactions are connected to the
electron density gradient, producing plasma instabilities in the E layer region.

Additionally, meteoric ablation can cause sporadic E to be formed [5]. Sporadic E
formation is linked to meteor showers by different research, but no full confirmation has
yet been found [5].

As indicated above, different mechanisms exist which can contribute to the formation
of sporadic E. The exact contribution of each mechanism is still not fully understood [27].
Additionally, sporadic E causes signal propagation to deviate significantly from what is
anticipated based on experience or computer propagation models, which often results in
unforeseen long-distance propagation [3]. The concept of this paper adds an additional
monitoring system in order to access sporadic E from space. If successful, this low-cost
payload can be globally distributed onto multiple satellite platforms in order to have a fully
functional monitoring system. Hence, a contribution can be made to existing models and
the results can be used to verify prediction methods.

3. Sporadic E Monitoring System Design

From the discussion above, it is clear that further research on how the sporadic E layer
is formed is necessary. It is still unclear how and to what extend each mechanism contributes
to the formation of the sporadic E layer. Also, the temporal and spatial distribution of this
layer needs further research.

Currently, different ground-based monitoring systems exist in order to observe and
analyze these temporal and spatial aspects of sporadic E, such as a ground-based observa-
tion network using the VHF band [28], using convolutional neural networks [29], using
ground-based HF beacons [3], using ionosondes and incoherent scatter radars [30], and
satellite-based observation techniques [31,32]. For satellite-based observations, certain
techniques can be used to assess sporadic E, each with their pros and cons. The idea of this
proposal is to work with a different approach, namely, to use a space-based multi-beacon
system in combination with an established ground-based amateur-radio receiving network.
The idea of the Radio Amateur Beacon System for the Investigation of the Ionosphere
(RABSII) is to use two modulation schemes sending at different frequency bands, each
having a dedicated Signal-to-Noise Ratio (SNR). A beacon system will sequentially transmit
an FT4 and a CW (morse code) signal, while ground stations receive the transmitted signal.
The analysis of sporadic E will be conducted in an atypical way, meaning the ground
stations will continuously receive a signal (if the satellite is visible above the horizon) and
conclude in this case that no sporadic E is present. As soon as a sporadic E layer appears,
the beacon will be reflected by the sporadic E cloud, interrupting the reception of signals at
the ground stations (Figure 2).
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The described concept allows for the comparison of the SNR of the FT4 and CW
signals, which can reveal information about ionospheric parameters such as electron
density, refraction, and electron density gradients. The electron density influences the
signal attenuation α [33,34] as follows:

α =
∫ L

0
σeN(s)ds (1)

in which σe is the electron collision cross-section, N(s) is the electron density measured
along the propagation path (s) of the signal, and L is the length of the propagation path
through the ionosphere. This attenuation can be linked to the SNR value [33,34] as follows:

SNR =
Pt

Pn
e−α (2)

in which Pt is the transmitted power and Pn is the noise power.
Additionally, the SNR value can be linked to the electron density gradient [33,34]

as follows:
SNR =

Pt

Pn
e−α f (N′

e) (3)

in which f (N′
e) is the electron density gradient on scintillation and diffraction. The

former refers to the effect of signal scattering causing variations in the amplitude and
phase of the signal, while the latter refers to the bending of the signal due to changes in
atmospheric conditions.

Hence, by measuring the SNR value of the received signal at different frequencies,
these ionospheric parameters can be modeled. Using a beacon system with two signals,
each having a dedicated SNR value for detection at different frequencies, creates the
possibility of analyzing ionospheric parameters in a different way.

Besides the E layer, the F layer can also influence incoming radio signals as such [23].
The two installed beacon systems transmitting at different frequencies enable the recep-
tion on ground of different signal levels, which enables the opportunity to check on the
influences of other effects, like F layer behavior. Additionally, the obtained data can be
compared with existing F layer models [35,36] in order to distinguish between sporadic E
and F layer effects on the signals.

If in the future these beacon systems are piggybacked on multiple satellite platforms,
this approach creates the possibility of worldwide mapping of sporadic E, using widespread
receiving stations. These maps will contribute to the already existing monitoring systems
for sporadic E and will enlarge the validation possibilities of existing models.

In the next paragraphs, the beacon payload, the spacecraft platform, and the radio-
amateur ground-station monitoring system are described.
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3.1. The Beacon Payload Design

In the radio-amateur community, multiple digital modes are used on the HF (3–30 MHz)
and VHF (30–300 MHz)/UHF (0.3–3 GHz) bands, such as morse (CW), Packet Radio, Radio
Teletype (RTTY), AMTOR, and PACTOR [37]. Recently, more advanced digital techniques
are used as well, such as FT4, FT8, Phase Shift Keying 31 baud (PSK31), and JT65 [38,39].
All of these digital modes are developed taking into account a static transmitter receiver
setup. For the monitoring of sporadic E aboard a satellite system, the situation is distinctly
different. The satellite is moving in a Low Earth Orbit (LEO), while the receiving ground
station is at a fixed location. Hence, a dedicated selection of a digital mode, robust enough
to withstand this Doppler shift, has to be performed.

Sporadic E can be observed in the HF and VHF band. For this setup, two frequencies
in the upper HF region are envisioned: one in the 10 m band (28 MHz) and another in the
6 m band (50 MHz). There will be two separate instruments designed: one for the 10 m
band and another for the 6 m band. The satellite platform will consist of two separate
satellites, each housing an individual instrument. At both frequencies, a sequential beacon
of FT4 and CW modulation will be transmitted.

In order to trace the location of sporadic E, the position of the satellites has to be
known and will be implemented inside the coding of the beacon system. For this, the
radio-amateur Maidenhead Locator System will be used [37]. While moving at the horizon,
the locator setting of the satellite will change, using an onboard GNSS receiver. This will
allow the receiving station to determine the location of the beacon system and hence the
location of the possible sporadic E cloud.

3.1.1. The FT4-Beacon System

Specifically for the monitoring of sporadic E on the 10 m band, FT4 is an interesting
mode. This mode uses short transmit/receive sequences, which is preferrable in the case of
a moving satellite. FT4 relies on synchronized time-based transmissions and structured
messages utilizing lossless compression. Additionally, strong Forward Error Correction
(FEC) is an essential component of FT4. The message always consists of 77 bits of user
information and a 14-bit Cyclic Redundancy Check (CRC) in a 2500 Hz bandwidth. An
additional 83 bits are added for FEC, resulting in a total codeword length of 174 bits [40].
FT4 is a transmitted burst of a 4-tone Continuous-Phase Frequency Shift Keying (CPFSK)
over 5.04 s, synchronized at every 7.5 s starting at timestamp 0 of GNSS time. The tone
patterns, known as Costas arrays [41], are necessary for synchronization purposes at the
receiving side. The burst consists of 105 tones (frequencies), and each tone represents
two bits. The transmitting function receives an array of 105 numbers. Each number has a
value of 0, 1, 2, or 3.

0 = Lowest Frequency (LF)
1 = LF + 1 × 20.8333 Hz
2 = LF + 2 × 20.8333 Hz
3 = LF + 3 × 20.8333 Hz
The SNR of FT4 can go as low as −17.5 dB, depending on the decoding algorithm [40].

This creates opportunities to detect sporadic E in a detailed and robust way.

3.1.2. The CW-Beacon System

The Continuous Wave (CW)-beacon is a purely analog mode, compared to the digital
FT4-mode. In CW mode, information, in essence morse code, is transmitted using a
simple on-off keying of the RF-signal. Hence, messages consist of dots (short in duration)
and dashes (long in duration) representing letters and numbers. In CW, only a limited
bandwidth of 100 Hz is used. Typical SNR values of −1 dB can be decoded, depending on
the filter setting and setup of the receiving station on the ground [37].

By using two modulation systems at different frequencies, each with their dedicated
SNR values during reception, a comparison can be made between the two signals. The
receiving network on the ground for the reception of CW can detect SNR values as low as
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−1 dB, while for FT4, this is as low as −17.5 dB. Said in a different way, a comparison is
possible between a low-power signal (CW) and a very-low-power signal (FT4). Based on
these levels, FT4 is detectable below the noise level, while CW needs a higher amplitude
signal. Consequently, if reception of FT4 is possible, but not of CW, the intensity of the
sporadic E cloud is high. If both modulation schemes are received, it means the intensity
of the sporadic E cloud is lower. This permits a comparison between both signal levels,
enabling an alternative way of building the sporadic E model.

The combination of FT4 and CW as a beacon setup consists of alternating the FT4
and CW signal in a periodic transmission scheme. From timestamp 0 s to 15 s, FT4 will be
transmitted. Additionally, CW is activated for 15 s. This sequence is determined by the
mission scenario aboard the satellite and also depends on the available power and other
payloads onboard the satellite.

3.2. Spacecraft Platform Design

This compact and low-power instrument can be carried by any satellite, including
very small platforms like PocketQubes, measuring 5 × 5 × 5 cm for 1 unit (1P), and having
a mass of around 250 g [42]. They are cheaper to build and come with a lower launch
cost compared to bigger platforms. As a technology demonstrator, TU Delft launched
a 3P PocketQube, Delfi-PQ, on 14 January 2021 [43]. Implementing a new standard
for its subsystem functionalities and components enabled the rapid development, de-
sign, and manufacturing of new subsystems and payloads in an educational environ-
ment, actively involving students in their Space Engineering Master program in satellite
end-to-end development.

The instrument will be hosted on a platform derived from Delfi-PQ, implementing all
the lessons learnt with that mission. This time, a pair of twin satellites will be launched,
each equipped with laser reflectors, GNSS sensors, inter-satellite communication systems,
and radiation sensors, along with the primary payload aimed at enabling atmospheric
measurements through the fusion of data gathered by these sensors. The two satellites
will fly in a formation, maintaining a maximum separation of 100 km to ensure they
would be sampling the same atmospheric region. Station-keeping will be carried out using
differential drag, achieved by actuating a set of spoilers on both the satellites to create
“high” and “low” drag configurations, helping to develop expertise for future TU Delft
satellite missions employing autonomous formation flying. Figure 3 illustrates one of the
Delfi-Twin satellites in its high-drag configuration. The other drag configuration is achieved
by reducing the angle of the deployed panels with respect to the direction of motion.
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In order to fit inside a pico-satellite platform, the dimensions of the Printed Circuit
Board (PCB) and its mass shall be limited. The future engineering model will be suitable
for the PocketQube-sized PCB of 42 × 42 × 20 mm. The requirements for this engineering
model are listed in Table 1 below but need additional adaptations in the frame of the
developed PocketQube.

Table 1. Parametric overview of the used space-based platform.

Parameter Value Unit

Orbit
Mass

550
10.5

km
Grams

Volume 42 × 42 × 20 mm
GNSS onboard needed Preferably

Voltage level 5 V
Power consumption 300 mW

RF output power level >10 mW
Current consumption (idle) 20 mA
Current consumption (peak) 60 mA

Power supply Solar based
Frequency for satellite 1
Frequency for satellite 2

28
50

MHz
MHz

3.3. Radio-Amateur Ground-Station Monitoring System

In order to receive these beacons, the worldwide network of radio-amateurs can pro-
vide an automated global receiving system. Currently, several monitoring systems such
as the Weak-Signal-Propagation-Reporter network [17] and the CW Reverse Beacon Net-
work [18] exist and are fully operational to monitor propagation aspects. These networks
are already used for space weather monitoring [44], which entails sporadic E monitoring.

The instrument will be designed to be used on two dedicated frequencies in the HF
band: one in the 10 m band (28 MHz) and another in the 6 m band (50 MHz). For both
frequencies, the radio-amateur receiving network can provide the necessary monitoring
using sources such as OpenWebRX [45,46] and the Reverse Beacon Network [47].

4. Preliminary Design and Results
4.1. Beacon Hardware

The beacon system consists of multiple elements which are controlled by a STM32
Nucleo64 microcontroller [48] linked to a GNSS module in order to align with the timing.
A Si5351 clock generator [49] is used to create the output signal, which can be applied to an
additional amplifier before being transmitted by an antenna (Figure 4).

The GNSS module (Figure 4) is used for receiving accurate positioning and timing
information. This board is connected to an extension board, which is connected to the
Nucleo64 (Figure 5). In the final design, a GNSS receiver will be available aboard the
satellite platform, hence, this signal will be provided by the spacecraft bus.

The Si5351 PLL clock generator board is used to generate the final output signal of
FT4 and CW. These signals are transmitted using the antenna connected to the output of
the amplifier, the input for which is connected to the clock output (CLK0) of the Si5351.

A laptop is used in order to program the Nucleo64 evaluation board. The firmware
is designed in-house and is based on an interrupt service routine which is engaged every
48 ms (complementary with 20.8333 Hz). This time resolution of 48 ms is used for transmit-
ting the FT4 and CW signals. The CPU has a clock frequency of 80 MHz, which divided
by 64,000 and additionally by 60 generates the interrupt frequency of 20.8333 Hz. The
time unit info used by the interrupt service routine is stored in a rotating buffer with two
pointers (input pointer and output pointer) using an eight-bit value. The GNSS signal is
used as a trigger in order to start the FT4/CW burst.
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Figure 5. Prototype board containing the Nucleo64, the Si5351 and the GNSS module (amplifier
not shown).

The next step will be the redesign of the breadboard of Figure 5 into a smaller PCB,
enabling its housing aboard a small satellite platform. Hence, dedicated SMD components
need to be selected and will be placed on a 42 × 42 × 20 mm PCB. Also, a specific impedance
matching circuit and filter design for the 6 m and the 10 m band must be designed to connect
the antennas and beacon systems. Additionally, the powering of the different components
is part of future design. These depend on the available voltage levels and stability of the
spacecraft power bus.

4.2. Beacon Testing

The setup in Figure 4 was used to test the beacon system in the 10 m band in FT4
and CW configuration. With this setup, a power level of 1 W was generated at the output
of the amplifier. The OpenWebRX system was used to monitor FT4, while the Reverse
Beacon Network checked on the reception of CW. In Figure 6, an example of CW reception
is indicated, including a map of the propagation paths (top of the figure), while in Figure 7,
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the reception of an FT4 example is shown using OpenWebRX. It is clear that multiple
propagation paths are possible and that the setup as such works for FT4 and CW.
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4.3. Doppler Shift Testing

A Doppler shift is inseparable linked to the use of a moving satellite platform in LEO.
This Doppler shift can be calculated using Equation (4) as follows [50]:

f = f0

(
1 +

v
c

)
(4)

in which f is the observed frequency by the ground station, v is the speed of the approach-
ing satellite and c is the velocity of the speed of light. Using the values for v = 7823 m/s,
c = 3.108 m/s, and f0 = 28.106 Hz, the observed frequency on the ground f = 28,000, 730.17 Hz.
This means a difference of 730.17 Hz is observed while the satellite is approaching the
ground station, and the same value in case the satellite is drifting away from the station.
Hence, a total shift of 1460.34 Hz can be observed. The satellite has a pass-over time of about
10 min, meaning a shift of 146.1 Hz/min, or 2.435 Hz/s. The time needed for FT4 transmis-
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sion is 0.048 s [40], or 20.83 Hz. Consequently, a shift of 2.435 Hz/s/20.83 Hz = 0.117 Hz
or 117 mHz is valid for each tone out of the four tones in FT4.

Tests were conducted in which an artificial shift was implemented in the FT4 trans-
mitting beacon in order to check if detection by ground-based decoding systems was still
possible. Tests were conducted using the setup shown in Figure 4. Using OpenWebRX, in
Figures 8–10, different situations were investigated in which a tone shift was implemented
of 120 mHz, 200 mHz, and 240 mHz. On the top of the figures, the command with the
applied Doppler shift is shown (“Doppler delta = XXX mHz”). In the middle, the waterfall
signal is shown, indicating a Doppler shift. At the bottom, the time (UTC), the signal level
of reception (dB), the frequency (Hz), and the message are shown. The latter contains
the callsign (ON5ADL) and the locator value (JO20PX). It is shown in the lower part of
Figures 8 and 9 that the decoding of the transmitted signal having a shift of 120 mHz and
200 mHz is still possible (message is received). A test was also performed at 250 mHz,
but as shown in Figure 10, no reception occurred. However, at 240 mHz, reception was
possible. Hence, the Doppler shift linked to the setup (i.c. 117 mHz) does not create any
issues in the ground station network for decoding.
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5. Conclusions and Future Work

In this work, an FT4-CW beacon system able to assess sporadic E aboard a low-flying
platform is described. The system transmits in the 6 m and 10 m radio-amateur bands,
using a worldwide spread receiving network of radio-amateur stations in order to check
on the SNR values received during FT4 and CW transmissions. Comparing the SNR values
of two signals at reception enables the detection of ionospheric phenomena. The design of
such an analytical model is part of future work. A fully functional prototype is described,
accompanied with functional and Doppler effect tests. The results show the potential of
this concept to be used in sporadic E analysis.

The current design needs further improvements like miniaturization in order to fit
onto a PocketQube-sized PCB by converting the schematics into an SMD-based circuit.
Currently, a prototype SMD version of the described lumped circuit is built and will be
tested in the near future. Additionally, the power handling system needs to be worked
out, as well as the filtering and impedance matching network for the two dedicated radio-
amateur bands (6 m and 10 m). Additionally, dedicated deployable antennas are under
investigation. Due to the small size of the satellite platform, compromise antennas shall be
designed for the two radio-amateur bands. With this in mind, link budget calculations are
necessary to see if the output power levels are satisfying for ground-based signal reception

The low cost, compactness, and versatility of this instrument allows it to be flown
on any platform as a piggyback payload, enabling the deployment of multiple beacons
for a more thorough investigation of the issues at hand. Hence, global coverage with a
high temporal revisit time can be achieved. The design, simulation and testing of such a
constellation is part of future work.
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