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Abstract

Doppler ultrasound imaging of cerebral blood flow faces challenges arising
from a low signal-to-noise ratio (SNR) and a wide dynamic range. Echo signals
received from blood cells are significantly weaker compared to surrounding tis-
sues, such as the skull or brain soft tissue, resulting in inhibited visualization of
small blood vessels and deep brain areas. To address this issue, this thesis ex-
plored the feasibility of employing and improving coded excitation techniques
to enhance the SNR of Doppler ultrasound images. Furthermore, an optimized
code for Doppler ultrasound imaging is designed, represented by a generalized
encoding matrix. The research begins with the definition of a linear signal
model that incorporates the encoding matrix. Subsequently, a trace-constraint
optimization problem is formulated based on maximizing the Fisher informa-
tion matrix to find the optimized encoding matrix. The feasibility and per-
formance of the optimized encoding matrix are assessed through simulations
on both small and large array settings, which operate above Nyquist sampling
frequency and under Nyquist sampling frequency respectively. The imaging
results indicate that the optimized code exhibits higher SNR in deep image
regions compared to existing coded excitation methods like Barker code while
using the same number of transmissions, bit length, and same average transmit
energy, albeit with a trade-off of decreased axial resolution. Nonetheless, this
resolution degradation can be mitigated through the application of the itera-
tive imaging technique LSQR. Finally, the optimized code is tested in a clinical
transducer setting, and a blood flow simulation is conducted. The outcomes
showcase the capacity of the proposed optimized code to enable higher SNR
in Doppler ultrasound imaging and more accurate and informative clinical as-
sessments.
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Abstract

Doppler ultrasound imaging of cerebral blood flow faces challenges arising from a low
signal-to-noise ratio (SNR) and a wide dynamic range. Echo signals received from
blood cells are significantly weaker compared to surrounding tissues, such as the skull
or brain soft tissue, resulting in inhibited visualization of small blood vessels and deep
brain areas. To address this issue, this thesis explored the feasibility of employing
and improving coded excitation techniques to enhance the SNR of Doppler ultrasound
images. Furthermore, an optimized code for Doppler ultrasound imaging is designed,
represented by a generalized encoding matrix. The research begins with the defini-
tion of a linear signal model that incorporates the encoding matrix. Subsequently, a
trace-constraint optimization problem is formulated based on maximizing the Fisher
information matrix to find the optimized encoding matrix. The feasibility and per-
formance of the optimized encoding matrix are assessed through simulations on both
small and large array settings, which operate above Nyquist sampling frequency and
under Nyquist sampling frequency respectively. The imaging results indicate that the
optimized code exhibits higher SNR in deep image regions compared to existing coded
excitation methods like Barker code while using the same number of transmissions,
bit length, and same average transmit energy, albeit with a trade-off of decreased ax-
ial resolution. Nonetheless, this resolution degradation can be mitigated through the
application of the iterative imaging technique LSQR. Finally, the optimized code is
tested in a clinical transducer setting, and a blood flow simulation is conducted. The
outcomes showcase the capacity of the proposed optimized code to enable higher SNR
in Doppler ultrasound imaging and more accurate and informative clinical assessments.
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Introduction 1
Ultrasonography, also known as ultrasound imaging, is nowadays one of the most im-
portant medical diagnostic methods. The first implementation of ultrasound in medical
and diagnostic fields dates back to 1942 when Karl Dussik attempted to detect brain tu-
mors by transmitting an ultrasound beam through the human skull. Later from 1948 to
1951, the invention of one-dimensional amplitude mode (A-mode) and two-dimensional
brightness mode (B-mode) devices made the commercialization of ultrasonography be-
comes possible. The utilization of the Doppler effect promoted the development of
Doppler ultrasound technology. Around the 1970s, the creation of spectral Doppler
and color Doppler ultrasound instruments enabled the imaging of blood flow in the
heart and brain. In clinical applications, a noninvasive way to detect blood flow ve-
locity inside the brain is transcranial Doppler (TCD) ultrasound imaging [3] [4], which
can assist in the diagnosis of diseases caused by blood clots such as strokes [5] [6] or
sickle cell disease [4]. However, TCD suffers from a low signal-to-noise ratio (SNR) and
a large dynamic range since the echo signals received from red blood cells are much
weaker than that of the surrounding tissue, such as the skull or brain soft tissue. This
disadvantage inhibits the visualization of small blood vessels and also deep brain areas,
which can provide clinicians with important and more accurate diagnostic information
[5]. Doppler ultrasound on small animals such as mice for neuroscience research is
usually conducted after a craniotomy to avoid the high attenuation from the skull and
achieve a high SNR and flow sensitivity.

Starting from the 1980s, with the maturity of ultrasound technology, researchers
focused more on improving imaging quality. Two important criteria for imaging quality
are SNR and frame rates. A high SNR can give a clearer image that helps with the
diagnosis in clinical applications while higher frame rates can enable real-time imaging
and improve the temporal resolution. There are mainly two ways to improve SNR, one is
an invasive way which is by injecting microbubbles into subject bodies as contrast agents
[7]. However, due to the short lifespan of microbubbles inside the body, this method
tends to have low stability and consistency in imaging. The other is a noninvasive way,
which is to increase the total amount of energy sent by the ultrasound transducer. This
method has a low cost and is usually easy to implement in ultrasound systems. A few
researchers have already explored this area.

Tiran and Deffieux et al. [8] designed a multiplane wave scheme to increase the
SNR in Doppler ultrasound imaging. Instead of sending out one planewave each time
like Mace et al. in [2], they proposed to transmit N wavefronts with different angles
quasi simultaneously. It is reported that for N multiplane wave transmissions, the
SNR can be increased by a factor of N compared to conventional Doppler ultrasound
imaging. Researchers have also explored the use of coded excitation in ultrasound
imaging. Misaridis and Jensen demonstrated in 2005 [9] [10] [11] that sending out
longer encoded pulses, known as coded excitation, can increase the SNR of ultrasound
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images as well as the penetration depth. Moreover, Zhao and Gao [12] showed that using
long-bit streams of Barker code (a specific type of coded excitation) can significantly
increase the sensitivity for ultrasound color flow imaging. Coded excitation involves
using longer encoded pulses, achieved through appropriate coding of the transmit signal,
allowing increased pulse duration without raising amplitude and avoiding tissue heating
issues. It enables a drastic SNR increase in ultrasound imaging without exceeding
the FDA safety limit [13], which refers to regulatory guidelines and limits set by the
U.S. Food and Drug Administration (FDA) to ensure the safe and appropriate use
of medical ultrasound devices. By decoding received echoes, axial resolution can be
retrieved, albeit with a slight degradation. Building on the success of coded excitation
in ultrasound imaging for over two decades and its long-standing use in radar for more
than 70 years, researchers are now keen on exploring further improvements.

Coded excitation methods in ultrasound imaging can be enhanced through various
approaches. One such avenue is the exploration of hybrid coding techniques, which
involve combining different coding sequences to leverage their respective advantages.
Fan and Rudlin [14] proposed a novel approach by convolving Barker and Golay codes,
demonstrating that the combination of these codes effectively suppresses sidelobe levels
and leads to an increase in SNR. Similarly, Benane and Bujoreanu et al. [15] introduced
chirp-modulated Golay codes, integrating orthogonal binary codes with pre-enhanced
chirp, resulting in a significant enhancement of more than 10 dB in the echo SNR.

Another avenue for improvement is the incorporation of advanced signal processing
algorithms to decode and reconstruct received echoes efficiently. Vienneau and Byram
[16] proposed using a Finite Impulse Response (FIR) filter to decode echoes from Barker
code transmissions and effectively suppress sidelobe energy. Their method also allowed
the design of longer Barker codes using Kronecker products, enabling transcranial func-
tional ultrasound neuroimaging.

Furthermore, there exists potential for optimized code design to improve the SNR
for Doppler ultrasound imaging. There has been extensive research in optimized code
design in the radar area for robustness and high resolution [17] [18] and has shown
great improvement in radar detectability. Although substantial research has been con-
ducted on hybrid coding and advanced signal processing, there remains a gap in the
literature regarding optimized code design for Doppler ultrasound imaging. Therefore,
an intriguing avenue for investigation lies in the exploration of coding sequences that
maximize SNR while achieving the desired penetration depth, potentially leading to
significant improvements in Doppler ultrasound imaging performance.

1.1 Problem Statements

The primary objective of this thesis is to investigate and design optimized transmit
codes for Doppler ultrasound imaging, focusing on increasing SNR. By addressing this
problem, this study aims to improve conventional coded excitation schemes and con-
tribute to the gap in optimized code design in ultrasound studies.
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1.2 Thesis Outline

The first chapter will cover the background and motivation of this thesis, including
basic Doppler ultrasound and coded excitation theories. In this chapter, the concept
of encoding matrix will also be presented. The signal model and its corresponding
imaging techniques will be discussed in Chapter 2, after which Chapter 3 will focus on
articulating the optimization methods for the encoding matrix. Results are presented in
Chapter 4, where the application scenario for the proposed method and its limitations
are further discussed.

1.3 Doppler Ultrasound Imaging

Doppler ultrasound imaging is a well-established technique widely used for imaging
blood vessels, leveraging the principles of ultrasound and the interaction of mechanical
pressure waves with tissues and red blood cells. The Doppler-shifted ultrasound signals
arise from the scattering of red blood cells, and the recorded Doppler frequency is
directly related to the velocity of these cells. The Doppler frequency fD can be expressed
as [2]:

fD = −2v

c0
fus cos θ = fR − fT , (1.1)

where v is the velocity of the scattering entity (e.g., red blood cells), c0 is the speed of
sound in the medium, fus is the transmitted ultrasound frequency, and θ is the angle
between the ultrasound beam and the direction of blood flow. A negative fD indicates
that the scatter is moving away from the transducer (resulting in a lower received
frequency fR compared to the transmitted frequency fT ), while a positive fD indicates
movement towards the transducer (resulting in a higher fR).

The core component of ultrasound imaging is the transducer, which consists of an
array of piezoelectric elements capable of both transmitting and receiving mechanical
pressure waves. When a voltage is applied to a piezoelectric element, it undergoes
vibration, generating a mechanical pressure wave with a specific frequency. The fre-
quency of vibration determines the ultrasound frequency used for imaging, typically
ranging from 1 to 30 MHz.

During imaging, the transmitted pressure wave encounters various acoustic
impedance as it penetrates tissues. The impedance differences cause echoes to backscat-
ter back to piezoelectric elements. The elements then convert these echoes into small
voltage signals. which is also known as radio frequency (RF) data. The ultrasound
system records these RF data, which undergoes further processing, including high-pass
filtering and beamforming, to create an image.

Conventional ultrasound imaging employs focused ultrasonic waves, as illustrated
in Figure 1.1 (a). This approach involves sending a single focused wave during each
transmission, reconstructing one line of the image at a time. However, this scanning
method might not achieve enough sampling frequency and could result in not accurate
analysis for functional ultrasound [2].
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In contrast, planewave imaging utilizes one pulsed plane wave per transmission and
captures backscattered echoes from all points within the image, as shown in Figure 1.1
(b). This enables the reconstruction of a full image from a single transmission using
parallel beamforming, such as delay-and-sum beamforming. Planewave imaging offers
several advantages over the conventional method. It can obtain a much higher number
of images for the same number of firings and acquisition time. With a small number
of planewave transmissions, it is possible to gain higher contrast, SNR, and resolution
compared to the traditional ultrasound imaging method. Therefore, planewave imaging
is particularly advantageous for Doppler imaging, where simultaneous excitation of all
transducer elements is often preferred [2].

Figure 1.1: Two different methods of ultrasound imaging. (a) is the conventional ultrasound
imaging method using line by line focused ultrasonic waves. (b) is the demonstration of a
planewave imaging scheme.[1]

However, one of the trade-offs associated with planewave transmission, in compari-
son to conventional transmission, is a reduction in resolution and contrast. To mitigate
this reduction, a technique known as compounding is commonly employed. Compound-
ing involves consecutively sending out multiple planewaves with different angles to
acquire information from various perspectives and then averaging the collected data
points for each pixel. By compounding data obtained from these different angles, a
high-resolution, high-contrast ultrasound compounded frame can be generated.

The number of transmissions L required to generate a compounded image depends
on the highest Doppler frequency fD that needs to be detected. While utilizing more
transmissions enhances resolution, the maximal firing rate is related to imaging depth.
An excessively high firing rate could potentially lead to transducer overheating and
subsequent damage. Therefore, a balance must be struck between the number of trans-
missions and the desired resolution, taking into account practical considerations such

4



as imaging depth and the duty cycle of the transducer [2].

Figure 1.2: Data processing chain for Doppler ultrasound imaging using coded excitation
schemes.

In this thesis, the performance of various coded excitation methods is assessed by
examining the Power Doppler Image (PDI) they produce. Power Doppler is an imaging
technique that concentrates on visualizing blood flow based on the amplitude or power
of the Doppler signal, rather than its frequency shift. Unlike color Doppler imaging
(CDI), which represents blood flow velocity through color mapping, PDI emphasizes
the detection of moving blood cells by highlighting regions with strong Doppler signals,
signifying the presence of blood flow regardless of its velocity. This approach proves
especially valuable for capturing low-velocity or weak blood flow instances, such as
in cases of slow or microvascular circulation, where CDI might struggle to offer clear
representations [19].

The entire data processing chain, from raw RF data acquisition to PDI formation, is
visualized in Figure 1.2, which provides an illustrative representation of the sequential
steps involved in Doppler ultrasound imaging using coded excitation schemes. Detailed
explanation for every step is unfolded as follows.

1. Raw RF Data Acquisition

Acquire raw RF data from L transmissions. The number of transmissions re-
quired typically ranges from 10 to 20 for mouse brain imaging. Montaldo et al.
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experimentally validate that when L is larger than 16, the gain in SNR and image
contrast will only have little improvement [20]. For Barker code or Golay code,
this may involve L transmissions with the same transmitting pulse but different
transmission angles. For random and other coded schemes, L distinct transmit
pulses need to be used for the transmissions. It will be elaborated in later sec-
tions that all coded excitation schemes can be generalized into an encoding matrix
C, which can be seen from the first row in Figure 1.2. The L transmissions are
completed in 1 ms.

2. Beamforming and Coherent Compounding

Beamformed on the obtained raw data to generate a single ultrasound image.
This can be achieved through techniques like delay-and-sum beamforming, as
described in [21], or Model-based beamforming, as discussed in [22]. Subsequently,
coherently sum and average the L images to produce a single high resolution and
higher SNR compounded frame. As can be seen in Figure 1.2, after compounding,
the ultrasound image gained higher contrast (The compounded images at the
fourth row).

3. Doppler processing and PDI formation

To visualize the blood flow characteristics, Ne compounded frames are sequen-
tially acquired over time. This process culminates in a 2D space-time matrix with
dimensions (Nz×Nx,Ne), where Nz, Nx, and Ne denote the number of samples
in the spatial-depth, spatial-width (along the transducer array), and temporal di-
mensions, respectively. In Figure 1.2, Ne = 200, and this is also known as the
ensemble size.

A Singular Value Decomposition (SVD) [23] filter can be applied to this 2D space-
time matrix to separate the tissue and blood vessels. Another way to do it is by
using a high-pass filter, which is computationally easier than SVD but has less
accuracy [24]. The final PDI image is formed by taking an average over all the
filtered temporal frames and reshaping back to an image with size Nz ×Nx.

Both the high pass filter and SVD filter will result in a significant energy loss. This
can be seen from the energy level spectrum in Figure 1.2, where the beamformed
image and compounded image have an energy spectrum from -50 to 0 dB while
after the SVD filter only -30 to 0 dB left. Figure 1.3 also shows that after high-pass
filtering, there is a large energy loss in the received signal. Consequently, utilizing
coded excitation schemes can increase the received energy of the ultrasound signal
and potentially improve the quality and sensitivity of Doppler imaging.

1.4 Coded Excitation Methods

Coded excitation is a specially designed longer encoded pulse that after pulse compres-
sion, yields a high mainlobe-to-sidelobe ratio, which results in comparable or slightly
worse axial resolution compared to a single short pulse. The design of coded excitation

6



Figure 1.3: (a) and (b) show the Fourier spectra of the received ultrasound signal the signal
after high-pass filtering for a pixel respectively. Both spectrum amplitudes are shown with
the same normalization. It can be clearly seen that after high-pass filtering a large amount
of energy is filtered out, resulting in diminished sensitivity in Doppler images. [2]

pulses typically employs frequency encoding or phase encoding techniques based on a
short pulse [25].

Frequency encoding entails linearly modulating the carrier signal frequency, com-
monly achieved through linear frequency modulation (FM), also known as chirp. This
technique is widely used in coded excitation schemes [10]. On the other hand, phase en-
coding is accomplished by modulating the phase of the transmitted pulse. Specifically,
two commonly used phase encoding techniques are considered: linear phase modulation
and bi-phase modulation [9]. In linear phase modulation, the phase of the transmitted
pulse is modulated linearly. In bi-phase modulation, the transmitted pulse is encoded
with either a 0-phase shift (represented by 1) or a 180-degree phase shift (represented
by -1).

The two frequently used sequences for bi-phase modulation are the Golay code
and Barker code. These codes exhibit specific properties that make them suitable for
coded excitation schemes. Golay and Barker codes have been extensively employed in
ultrasound imaging for their favorable autocorrelation properties and ability to produce
high-quality images with improved signal-to-noise characteristics.
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Barker Code

Barker code is a binary sequence that possesses good autocorrelation properties, which
means that after matched filtering, the outputs have a high mainlobe-to-sidelobe ratio.
An illustration of a 4-bit Barker code and the output of the matched filter can be seen
in Figure 1.4.

However, existing Barker codes only have lengths of 2, 3, 4, 5, 7, 11, and 13, which
limits the total amount of energy that can be transmitted. A way to generate longer
codes is to calculate the Kronecker product of two Barker codes [16]. For example, the
4-bit Barker code [1 1 -1 1] can be lengthened to a 16-bit code [1 1 -1 1 1 1 -1 1 -1 -1 1
-1 1 1 -1 1] after doing a Kronecker product with itself. This, however, will result in a
degradation in autocorrelation property. Further sidelobe suppression can be achieved
by using an inverse filter [16] or spiking filter [25], but this will also result in a decrease
in SNR. The expected gain in SNR using Barker codes is GSNRb = 10log10(K) [16],
where K is the length of the Barker code.

Figure 1.4: Illustration of Barker codes and Golay codes and the output after pulse compres-
sion.

Golay Code

The Golay code, also known as Golay complementary sequence pair, is defined as a
pair of finite equal-length binary sequences. Different from single transmit signals
like Barker codes that have range sidelobes after pulse compression, as can be seen
from Figure 1.4, the Golay pair is designed to perfectly cancel out the range sidelobes.
The condition that a pair of bidirectional sequences A and B of length K are Golay
complementary sequences holds true if and only if the following formula holds,

A(k) ∗ A(−k) +B(k) ∗B(−k) = 2Kδ(k), (1.2)

where ∗ is the convolution operator. An illustration of a 2-bit Golay pair and the
output of the matched filter can be seen in Figure 1.4. The expected SNR gain using
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Golay codes is GSNRg = 10log10(2K) [11].

The disadvantage of Golay pairs is that the frame rate will be halved since it re-
quires two transmissions to get one image. This could also result in motion-dependent
decoding errors. Trots et al. [26] proposed that by transmitting two pairs of mutually
complementary orthogonal codes, the same frame rate as a single transmission code
can be achieved.

Random Code

Barker encoding and Golay encoding methods solely utilize phase encoding over time.
However, recent advancements by Ni et al. introduced a novel random encoding ap-
proach that incorporates both time and space encoding [27]. Unlike previous methods,
where all transducer elements transmit the same encoded pulse, this new method excites
each element with a distinct random encoded pulse. The authors demonstrated that
the random transmitted waves constructively and destructively interfere in the imaging
area, giving rise to intricate spatiotemporal interference patterns. Consequently, this
generates low pixel-to-pixel correlations, resulting in a high-resolution image. The com-
bination of time and space encoding in this random method opens up new possibilities
for improving ultrasound imaging capabilities.

Figure 1.5: Illustration of encoding matrix for different coded excitation methods.
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1.5 Encoding Matrix

Coded excitation techniques can be generalized using an encoding matrix denoted as
C ∈ RK×N , where K represents the bit length of the code, and N corresponds to the
number of elements on the transducer. In this study, amplitude encoding and bi-phase
encoding are considered. Bi-phase encoding involves 0 degrees (indicating a positive
sign) and 180 degrees (indicating a negative sign). The work by Richard et al. [28]
discussed the advantages of amplitude encoding in radar applications, which has the
potential to broaden the waveform bandwidth, thereby enhancing SNR and detection
performance. Consequently, it becomes pertinent to investigate whether amplitude
encoding could similarly improve the imaging SNR in ultrasound imaging within this
study. Therefore, the value of each entry in matrix C represents the weight for am-
plitude encoding and its polarity symbolizes the phase encoding for the transmitted
ultrasound pulses. A visual representation of this encoding matrix concept is provided
in Figure 1.5.

• For the non-encoded transmission scheme, the encoding matrix C degenerates
into an all-ones vector, resulting in uniform amplitude and phase weighting for
each transducer element during transmission (Figure 1.5 (a)).

• For a Barker code transmission with a length of 5, C is a matrix with all the
columns as [1 1 1 -1 1] (Figure 1.5 (b)).

• In the case of random encoding, the entries in the encoding matrixC are randomly
selected from the set -1, 1 (Figure 1.5(c)).

In previous pilot experiments of mouse brain imaging conducted in CUBE, Erasmus
MC, I have shown that coded excitation, in this case, Barker code and Golay code can
indeed increase the SNR of images and detect more details in the deeper area, as can
be seen in Figure 1.6.

It can be seen from the full image and the zoomed-in areas in Figure 1.6 that, with
a single pulse transmission, the image has the most background noise in it and fewer
blood vessels can be seen, especially in the deeper area (around 9 mm). The 13-bit
Barker and 8-bit complementary Golay codes all show a much better image quality
than the single pulse one. In the deep imaging area around 9 mm, as shown in the
third column in Figure 1.6, Golay and Barker codes show the blood vessel while for the
single pulse, the vessel is hardly visible. Golay codes show a slightly better result than
the Barker code e.g., more blood vessels can be seen, shown in the zoomed-in area 1
in Figure 1.6. This is an expected result since the transmitted Golay pair is slightly
longer than the Barker code.

This promising experimental result raises the question of whether we can design an
optimized coded excitation scheme for Doppler ultrasound imaging, more specifically,
an encoding matrix that outperforms traditional coded excitation methods.
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Figure 1.6: Comparison of ultrafast Doppler imaging on a mouse brain between (a) single
pulse, (b) 13-bit Barker codes and (c) 8-bit Golay pairs. The first column shows the full
image from the mouse brain, the second and third columns are the zoomed in area 1 around 5
mm (in black rectangular) and area 2 around 9 mm (in white rectangular) respectively. The
dynamic range was then set between -35 dB to 0 dB to fully visualize the background noise
dynamic.
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Mathematics Model and
Imaging Techniques 2
This chapter focuses on building a comprehensive mathematical signal model for the
ultrasound imaging problem. The integration of the encoding matrix C into the model
and its impact on image reconstruction will be explored. Furthermore, three main
imaging techniques will be discussed to identify the most suitable approach for the
specific problem addressed in this thesis.

2.1 Signal Model

The initial consideration in constructing a signal model is to determine the relevant
information that needs to be incorporated. In medical ultrasound imaging, the conven-
tional approach only takes the geometric information in the imaging area into account,
which involves employing delay-and-sum (DAS) beamforming techniques. DAS beam-
forming leverages the time delay associated with a signal traveling from the transmitting
element to the imaging point and back to the receiving element. By applying appro-
priate time delays to the received signals at each receiving element and subsequently
summing them, an image is formed [21]. A limitation of DAS is that it assumes a
propagation medium with a homogeneous speed of sound. Additionally, DAS does not
work optimally when each element on the transducer transmits different pulses (e.g.
random codes) since the interference between different pulses will result in incoherence
summation and delay mismatch. Another shortage is that it does not accommodate
the inclusion of the encoding matrix C in the model.

To overcome these limitations, a more sophisticated technique known as model-
based beamforming is adopted. This approach utilizes a signal model that accounts
for various factors influencing ultrasound wave propagation, including tissue density,
scattering, attenuation, and spherical spreading. By integrating this knowledge into
the image reconstruction process, model-based beamforming can mitigate artifacts and
enhance spatial resolution.

In the context of a transducer with N elements, consider a single transmit-receive
event where all the elements transmit and subsequently receive the backscattered signal.
The first step of model-based beamforming is to discretize the imaging area into a
virtual grid comprising M pixels of equal size. Each pixel is treated as a potential
scatterer and is assigned a reflection coefficient xm, representing the property to be
estimated for image reconstruction. Under the assumption of Born approximation [29]
and linear transducer transfer function, a single-element measurement model can be
expressed as a linear combination of the scattering coefficients and pulse-echo signals
from all scatterers [22]. The Born approximation assumes that the interaction of an
ultrasound wave with biological tissues is a linear process, where the scattered waves
are directly proportional to the incident ultrasound wave, and is applicable when the
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contrast between different tissue types is relatively small and significant nonlinear effects
are not present during wave propagation.

In this thesis, all the models will be built in the frequency domain. Assume a sam-
pled frequency set Ω = {ω1, ω2, · · · , ωT}, where the frequencies are uniformly sampled
within the positive side of pulse bandwidth, the linear measurement model for a single
receiving element n at frequency ω can be expressed as

yn[ω] =
M∑

m=1

xmhr[ω]g
(r)
n,m[ω]

N∑
i=1

g
(t)
m,i[ω]si[ω]ht[ω]. (2.1)

In this signal model, yn[ω] represents the received ultrasound signal on the nth element
and xm denotes the scattering intensity of the mth pixel. si[ω] represents the excitation
pulse sent by element i at frequency ω. The Green’s function at frequency ω on pixel

m measured at element n is denoted as g
(r)
n,m[ω]. Furthermore, g

(t)
m,i[ω] is the Green’s

function for the wave propagating from the transmitting element i to pixel m. Here,
the superscript (r) and (t) refer to the receive Green’s function and the transmit Green’s
function.

In the context of this thesis, ht[ω] and hr[ω] correspond to the transmit and receive
responses of the transducer, respectively. It is assumed that they are known in this
research.

The computation of the Green’s function takes into account factors such as the dis-
tance between the transmitting \receiving elements and each pixel, attenuation during

propagation in the tissue, and the spreading factor. The functions g
(t)
m,i[ω] and g

(r)
n,m[ω]

can be defined as follows,

g
(t)
m,i[ω] = exp

(
−j ω

c0
di,m

)
, (2.2)

g(r)n,m[ω] =
1

4π(di,m + dm,n)
× exp

(
−j ω

c0
dm,n

)
. (2.3)

Here, di,m denotes the distance from the transmitting element i to pixel m, and dm,n

is the distance traveled by the backscattered signal from pixel m to sensor n. c0 corre-
sponds to the speed of sound in the medium. The first term in equation (2.3) accounts
for the geometric spreading of the pressure field, encompassing the entire distance the
wave travels from the source to the pixel and back to the sensor. Typically, the Green’s
function is written in one expression, combining both transmit and receive terms. How-
ever, the geometric spreading term cannot be separated into two distinct components
since the distances di,m and dm,n are part of the same overall wave propagation path
and are not independent of each other. As a result, the geometric spreading term is
only considered in the receive Green’s function. The exponential terms in both (2.2)
and (2.3) represent the phase shift caused by the delay from the source to the pixel and
back to the sensor.

Note that the excitation pulse si[ω] in equation (2.1) is transmit-element-dependent.
Remember in section 1.5 we show that every transmission scheme, including single
short pulse planewave transmissions and long coded excitation transmissions, can be
generalized and numerically shown in an encoding matrix C. In this thesis, a less
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complicated case where all N elements transmit longer pulses consisting of an equal
number K of base pulses and every base pulse is amplitude and bi-phase encoded with
a weight cn,k is considered. Thus, the excitation pulse si[ω] at transmitting element i
can be written as,

si[ω] =
K∑
k=1

ci,k · pk[ω] = cTi p[ω], (2.4)

where pk[ω] denotes the kth base pulse. The relation between two consecutive base
pulse is pk+1[ω] = pk[ω]e

−jωτ where τ is the duration of one base pulse. p[ω] =
[p1[ω], p2[ω], . . . , pK [ω]]

T is the base pulse vector and ci = [ci,1, ci,2, . . . , ci,K ]
T is the

amplitude and bi-phase codes related to transmit element i.
Till now only the linear measurement model for one sensor element is considered.

If we take all the sensor elements into account, the measurements from all elements
are stacked in a vector y[ω] ∈ CN , and the transmit and receive Green’s functions for
every element and pixel pair can be stored in a matrix. The measurement model for
all elements at frequency ω can be written as,

y[ω] = hr[ω]ht[ω]G
(r)[ω]diag(G(t)[ω]Cp[ω])x. (2.5)

Here C ∈ RN×K is the phase encoding matrix, defined as C = [c1, c2, . . . , cN ]
T. diag

is an operator to transform a vector into a square diagonal matrix with the elements
of the vector on its main diagonal. Vector x ∈ RM contains the scattering intensities
from all pixels. G(r)[ω] ∈ CN×M is the receive Green’s function matrix at frequency
bin ω and G(t)[ω] ∈ CM×N is the transmit Green’s function matrix. They are defined
as follows,

G(r)[ω] =


g
(r)
1,1[ω] g

(r)
1,2[ω] . . . g

(r)
1,M [ω]

g
(r)
2,1[ω] g

(r)
2,2[ω] . . . g

(r)
2,M [ω]

...
...

. . .
...

g
(r)
N,1[ω] g

(r)
N,2[ω] . . . g

(r)
N,M [ω]

 , (2.6)

G(t)[ω] =


g
(t)
1,1[ω] g

(t)
1,2[ω] . . . g

(t)
1,N [ω]

g
(t)
2,1[ω] g

(t)
2,2[ω] . . . g

(t)
2,N [ω]

...
...

. . .
...

g
(t)
M,1[ω] g

(t)
M,2[ω] . . . g

(t)
M,N [ω]

 . (2.7)

It is clear from (2.5) that every element of the encoding matrixC is linear with the other
components in the equation. In the following, the frequency notation ω is dropped to
keep the equation clear and concise. As a result, the right part of (2.5) can be written

into G(C) =
∑N

n=1

∑K
k=1 cn,kGn,k, where Gn,k ∈ CN×M is given by

Gn,k = hrhtG
(r)diag(G(t)On,kp). (2.8)

On,k ∈ RN×K is a matrix with only one non-zero entry, i.e., [On,k]n,k = 1. On,k plays
the role of selecting which code entry is active.
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Assume the measurement model contains additive noise. By calculating other fre-
quency components of matrix G(C) following the same procedures above and stacking
them and all frequency measurements vertically together, (2.5) can be written into the
linear model,

y = G(C)x+ n. (2.9)

Where vector y ∈ RTN encompasses all measured samples from the array transducer
in the frequency domain, where T represents the number of samples and N denotes
the number of transducer elements. Matrix G(C) ∈ RTN×M is referred to as the
model matrix, where each column corresponds to the impulse response that would be
measured if only that pixel were active. It is important to note that (2.9) is valid
only when multiple reflections between scatterers are not considered, which is under
Born approximation. Figure 2.1 illustrates the process of building the general imaging
model.

Figure 2.1: Illustration of the model-based imaging problem.

For a single short pulse planewave transmission, the encoding matrix C degrades to
an all-one vector, denoted by 1T and this special signal model can be written as,

y = G(1T)x+ n. (2.10)

The signal model (Equation (2.10)) remains linear with respect to vector x, similar to
the general imaging model (Equation (2.9)). As a result, both signal models can be
solved using the same inversion techniques

2.2 Imaging Techniques

Assume the noise n ∈ CNT in signal model (2.9) is zero mean complex white Gaussian
noise, n ∼ CN (0, σ2

nI). There are multiple imaging techniques to estimate image x
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from measurement y. Since the model matrix G(C) contains spatial and temporal
information about pixels in each column. When y and the model matrix are combined
to estimate the image, they utilize all the measurement data when estimating any single
pixel, and this can be seen as a spatio-temporal estimator. A spatio-temporal estimator
leverages the information from the neighboring locations and time stamps to improve
the estimation accuracy and robustness [22]. In the following, a few imaging techniques
that are related to this thesis will be discussed for the general signal model (2.9). For
more detailed information regarding these imaging techniques, we refer the interested
reader to [30].

Matched Filtering: This technique aims to maximize the signal-to-noise ratio
(SNR) in the presence of additive Gaussian noise. It correlates the measurement data
y with the pre-defined model matrix, leading to the solution:

x̂ = G(C)Hy. (2.11)

Matched filtering is easy to implement since it only takes the conjugate transpose of
the model matrix and measurement data into account. However, this method heavily
relies on the accurate construction of the pre-defined model matrix.

Least Squares Estimation: This imaging technique involves minimizing the sum
of squared differences between the measurement vector y and the estimated vector
G(C)x:

x̂ = argmin
x
||y −G(C)x||22. (2.12)

The least squares estimator can be solved by finding the pseudoinverse of the model
matrix G(C),

x̂ = G(C)†y = (G(C)HG(C))−1G(C)Hy. (2.13)

The last expression only holds when G(C) is full rank and its inversion exists. If
the model matrix G(C) is ill-posed, in order to find feasible solutions, regularization
techniques should be applied. The most commonly used technique is Tikhonov regu-
larization [31], which requires to modify equation (2.13) to,

x̂ = argmin
x

(
||y −G(C)x||22 + λ||x||22

)
. (2.14)

The second term in equation (2.14) plays the regularization penalty part and pro-
vides prior knowledge about the estimated problem. The regularization term λ can be
found at the corner of the L-curve. The L-curve is a graphical tool used in the context
of regularization to find an appropriate value for the regularization parameter λ. The
L-curve is created by plotting the norm of the residual error ||y −G(C)x||2 (y-axis)
against the norm of the regularized solution ||x||2 (x-axis) for different values of the
regularization parameter λ. The solution now becomes,

x̂ = (G(C)HG(C) + λI)−1G(C)Hy. (2.15)

This shows that regularization helps to make termG(C)HG(C) invertible by adding
an identity matrix to it.
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Minimum Mean Square Error Estimation (MMSE): Besides minimizing the
sum of the squared modeling error, another way to approach this is by minimizing the
mean square error, which can be written as,

x̂ = argmin
x

E
(
(x− x̂)(x− x̂)H

)
. (2.16)

If x is random and has a prior distribution of N (µx,Cx). For the linear model and
under the zero-mean white noise assumption, x̂ is given by,

x̂ = E(x|y) = µx + (C−1
x +G(C)HCn

−1G(C))−1G(C)HCn
−1(y −G(C)µx). (2.17)

The prior distribution of x is often not known and needs an assumption. Note that
(2.17) will be equal to the Tikhonov least squares estimation (2.15) when x is zero
mean with covariance matrix Cx = λI.

Among these imaging techniques, matched filtering (2.11) will be the main tech-
nique employed in this thesis due to its efficiency and ease of implementation, which is
particularly advantageous considering the large imaging area in this thesis.
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Optimization of Encoding
Matrix 3
In the previous chapter, a general imaging model encompassing the encoding matrix
was formulated, and various imaging techniques were discussed. This chapter focuses
on finding the optimal encoding matrix in the mean-squared-error sense. It begins by
demonstrating how the optimization problem can be translated into minimizing the
mean square error of the estimator concerning the encoding matrix. Subsequently,
a suboptimal but more flexible and efficient solution will be explored, followed by
presenting the joint optimization scheme for Doppler ultrasound imaging.

The general signal model with additive zero-mean white complex Gaussian noise
(2.9) was introduced in Section 2.1. The goal is to find an optimized encoding matrix
C that results in a high-quality image estimate x̂. For parameters estimation problems,
a commonly used performance measurement is based on minimizing the trace of the
error covariance matrix [32] [33]. In this thesis, the image estimation error covariance
matrix is utilized to find an optimized encoding matrix, which is denoted as,

Ce = E
(
(x− x̂)(x− x̂)H

)
. (3.1)

However, the prior distribution of the image x is not known in this case and (3.1) can
not be found in a closed-form expression. Therefore, Cramér–Rao lower bound (CRB)
is used as a simpler substitute for the error covariance matrix. CRB provides a lower
limit on how well an unbiased estimator can perform in terms of its variance. It is
derived from the Fisher Information, which quantifies how much information a dataset
carries about the parameter of interest. The relationship between the error covariance
of any estimator and its CRB can be found in [34],

E
(
(x− x̂)(x− x̂)H

)
≥ CRB(x) = F−1(x). (3.2)

The Fisher information matrix F(x) for the linear Gaussian model (2.9) is calculated
as [30],

F(x) = σ−2
n G(C)HG(C), (3.3)

which due to the linearity of the model becomes independent of the image x and hence
only depends on the matrix G(C). Therefore, minimizing the MSE can be written as
minimizing,

f(C) =
1

M
trace

(
(σ−2

n G(C)HG(C))−1
)
. (3.4)

Importantly, this objective function f(C) is independent of the unknown variable x.
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3.1 Encoding Matrix Optimization for Single Transmission

3.1.1 Optimal Solution

With the cost function (3.4) and the addition of an energy constraint, the optimization
function can be formulated as follows,

min f(C)

s.t. ∥c∥2 = 1,
(3.5)

where c = vec(C). However, the cost function is not convex with respect to C. The
nonconvexity arises from the presence of quadratic forms in the cost function. For
instance, notice that,

G(C)HG(C) = (
NK∑
i=1

ciGi)
H(

NK∑
j=1

cjGj)

=
NK∑
i=1

NK∑
j=1

c∗i cjG
H
i Gj.

(3.6)

c∗i represents the complex conjugate of ci. Solving nonconvex problems can be challeng-
ing because traditional optimization algorithms may get stuck in local optima or have
difficulty converging. This necessitates some relaxation before solving this minimiza-
tion problem. To make the optimization problem more tractable, a common relaxation
technique is used, which involves absorbing the quadratic term c∗i cj into a single variable
C∗

i,j [32]. This leads to a linear cost function with respect to the variable C∗
i,j,

G(C)HG(C) =
NK∑
i=1

NK∑
j=1

C∗
i,jG

H
i Gj. (3.7)

By storing all C∗
i,j into a matrix C∗, where [C∗]i,j = C∗

i,j. The equivalence between

(3.6) and (3.7) only holds when C∗ = ccH, which requires C∗ to be a rank 1 matrix
and this constraint is not convex. One way to relax the constraint C∗ − ccH = 0 is by
writing the original function as [35],

min f(C∗)

s.t. C∗ ⪰ 0

1Tdiag(C∗) = 1.

(3.8)

By solving for C∗, the optimized encoding matrix can be found. However, since the
solution Ĉ∗ from (3.8) is not guaranteed to be rank-1, approximating the rank-1 solution

can be done by finding the largest eigenvector of Ĉ∗. Another widely used approach
is the randomization method [36], where Ĉ∗ is treated as a covariance matrix. The

randomization method involves generating multiple random vectors ĉ ∼ N (0, Ĉ∗),

following a Gaussian distribution with zero mean and covariance Ĉ∗. Note that here
every random realization is normalized to satisfy the energy constraint. Each candidate
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is then applied to the original problem (3.5), and the realization with the lowest MSE
is selected as the solution.

The randomization method can be interpreted as solving the nonconvex problem
(3.5) on average over the distribution of ĉ ∼ N (0, Ĉ∗) [37].

3.1.2 Suboptimal Solution

The previous optimization scheme (3.8) represents the optimal MSE solution. How-
ever, due to the large number of pixels in the imaging area (over M > 40000), the cost
function f(C∗) involves calculating and saving a significant number (NK > 400) of
GH

i Gj ∈ CM×M matrices, making it computationally challenging and memory-intensive
to implement and solve in cvx, which is a toolbox in MATLAB for solving convex opti-
mization problem [38]. To address this limitation, a suboptimal optimization function
that is less complex and more efficient is explored.

Instead of minimizing the trace of MSE, we can maximize the trace of the Fisher
information matrix. This approach provides more flexibility than (3.8). Unlike CRB,
which is a global lower bound on the error covariance matrix Ce for all components in
vector x, the Fisher information matrix can give insight into how much information a
certain set of measurements contains about the parameter being estimated. Therefore,
with a large number of pixels, a subset of the imaging area can be selected to build
the model matrix and maximize the Fisher information in that specific ROI to obtain
an optimized encoding matrix. This method proves to be more efficient and flexible
compared to the optimization scheme in (3.8), although it may not be optimal in the
MSE sense, leading to a potential deterioration in image quality.

The expression for the Fisher information matrix is given in equation (3.3). By
transforming G(C)HG(C) using (3.6), it can be expressed as a Kronecker product:

G(C)HG(C) =
NK∑
i=1

NK∑
j=1

c∗i cjG
H
i Gj

=
NK∑
i=1

NK∑
j=1

c∗i cjAi,j

= (cH ⊗ I)A(c⊗ I),

(3.9)

where ⊗ is the Kronecker product, Ai,j = GH
i Gj and A is a block matrix with the size

M ×M matrix Ai,j = GH
i Gj on block entry (i, j); it is defined as,

A =


A1,1 A1,2 . . . A1,NK

A2,1 A2,2 . . . A2,NK
...

...
. . .

...
ANK,1 ANK,2 . . . ANK,NK

 . (3.10)

To maximize the trace of the Fisher information, we define another matrix Atr ∈
RNK×NK where each entry is [Atr]i,j = trace(Ai,j). The suboptimal optimization for-
mulation can then be expressed as,
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max trace(F(x)) = cHAtrc

s.t. ∥c∥2 = 1.
(3.11)

It is clear that (3.11) can be handled by the Lagrangian function [39]. Set λ as the
Lagrangian multiplier, the Lagrangian function can be written as,

L(c, λ) = cHAtrc− λ(∥c∥2 − 1). (3.12)

The optimal solution is found by taking the partial derivatives of (3.12) with respect
to c and λ and setting them to be equal to zero, which gives,

Atrc = λc. (3.13)

This indicates that c is an eigenvector of Atr with λ as its eigenvalue. Since the
goal is to maximize the cost function, the solution should be finding the eigenvector of
Atr corresponding to the largest eigenvalue.

It is important to note that the matrixAtr is of complex nature, leading to its leading
eigenvector also being complex. However, this thesis restricts its focus to amplitude
and bi-phase encoding with discrete angles of 0 and 180 degrees out of simplicity. Thus
the encoding matrix C is constrained to the real domain. Decompose the cost function
in (3.11) into the real and complex parts, it can be written as

trace(F(x)) =
[
Re[c]T Im[c]H

] [Re[Atr]
Im[Atr]

] [
Re[c]
Im[c]

]
. (3.14)

Since only the real part of c is taken into consideration for amplitude and bi-phase
encoding, the imaginary part can be set to Im[c] = 0. (3.14) can thus be written as,

trace(F(x)) = Re[c]TRe[Atr]Re[c]. (3.15)

It is clear that the amplitude and bi-phase encoding matrix can be found by the leading
eigenvector of the real part of the matrix Atr.

3.2 Encoding Matrix Optimization for Multiple Transmissions

In Doppler ultrasound imaging, to compensate for the resolution loss from the non-focus
transmission, usually, L planewave transmissions with different angles are required to
obtain one Doppler frame [2]. By transmitting planewaves at different angles, the
ultrasound system can receive echoes from various directions. This allows for the con-
struction of a higher resolution and contrast compounded image because each angle
provides unique information about the structure being imaged, allowing for a more
accurate representation.

In this thesis, we focus on designing L different encoding matrices for the L trans-
missions to aid in constructing a more accurate compound ultrasound image. Assuming
the pixel intensity x remains constant across these L transmissions, a signal model for
L transmissions and measurement events can be written as follows,
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y =


y1

y2
...
yL

 =


G(C1)
G(C2)

...
G(CL)

x = G(C)x. (3.16)

It can be seen that model (3.16) is still linear with respect to x and the encoding
matrices Cl, thus the same optimization methods described in sections 3.1.1 and 3.1.2
can be applied to solve it.

Leading Eigenvectors Transmissions

Solving for encoding matrices in (3.16) using the optimization function (3.8) described
in section 3.1.1 would still encounter memory issues when implemented due to the large
number of pixels. However, the suboptimal solution (3.11) discussed in section 3.1.2,
which involves maximizing the trace of the Fisher information matrix, would result in
identical encoding matrices for all L transmissions, i.e., C1 = C1 = · · · = CL. This
is because when maximizing the Fisher information matrix for (3.16), it will maximize
for each G(Cl) matrix separately and this will give an identical encoding matrix C,
which is not ideal for multiple transmissions as we desire different encoding matrices
for each transmission.

To address this challenge, an alternative approach can be considered. In the sub-
optimal solution, the optimized encoding matrix for one transmission is found by the
leading eigenvector of the real part of matrix Atr. By examining the eigenvalues of
Re[Atr] (as shown in Figure 3.1), multiple large eigenvalues are observed in close prox-
imity to each other, indicating the presence of multiple suboptimal solutions. Therefore,
utilizing the first few leading eigenvectors corresponding to these large eigenvalues for
multiple transmissions could be a potential solution. The feasibility and effectiveness
of this approach will be further discussed in the next chapter.
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Figure 3.1: Eigenvalues of matrix Re[Atr].
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3.3 Constraints in the Problem

To implement the optimized encoding matrix in a real-world experimental setup, for
example, to image blood vessels in a mouse brain, there are some physical and hardware
constraints that should be taken into consideration.

First, the maximal duration of the coded pulse is bounded and determined by the
blind area allowed in the image. This is because the ultrasound device cannot receive
backscattered echo until the transmission process is over. Therefore, the longer the
transmitted pulse, the larger the near-field blind area is. The relationship between the
duration of the pulse tpulse and the depth of the blind area dblind is,

tpulse =
2dblind
c0

, (3.17)

where c0 is the propagation speed of the ultrasonic wave, which in this case is 1540 m/s.
For a mouse brain imaging setup, the probe is fixed at least 4 mm above the mouse
brain. The reason for this offset is that the elevational focus starts to build up only
after this propagation distance, therefore there is at least a 4 mm dead zone. Using
(3.17), we have tpulse ≤ 5.19µs.

Second, the number of transmissions L per compound image is bounded by the
desired Doppler frequency fD and maximum imaging depth dimage. Assume that we
want to achieve a 500 Hz Doppler frequency, compliance with the Nyquist theorem
fD < fsamp/2, the sampling frequency fsamp should be set to at least 1 kHz. The
maximum imaging depth is set to dimage = 11 mm, therefore, the maximal firing rate
can be calculated as c0/2(dimage + dblind) = 51 kHz.

If the sampling frequency fsamp is set to be 1 kHz, the optimal approach would
involve acquiring images at this frequency while employing coherent compounding. The
number of transmissions per compound image is determined by the firing frequency of
the probe. However, the previously calculated maximal firing rate of 51 kHz is often
infeasible in practice. It is necessary to introduce a dead time between transmissions to
accommodate reverberations on the remaining skull bone or other interfaces [2]. This
dead time also serves to reduce the probe duty cycle, as continuous firing could result
in heat-induced damage. Striking a balance, a practical compromise involves halving
the theoretical maximum firing frequency, yielding an experimental firing rate of 25
kHz. Moreover, Montaldo et al. experimentally validate that when L reaches 9, the
resulting contrast and SNR are already satisfying and when it is larger than 16, the
gain in SNR and image contrast will only have little improvement [20]. Therefore, a L
between 10 and 16 should be sufficient enough.
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Simulation Results 4
To validate the effectiveness of the optimized encoding matrix, simulation experiments
are conducted using the K-Wave. K-Wave is a specialized numerical simulation tool-
box widely utilized for modeling and simulating the propagation of acoustic waves
in complex media [40]. Due to computational memory constraints, the suboptimal
optimization function (3.11) discussed in section 3.1.2 is used to generate optimized en-
coding matrices. In this approach, the optimized encoding matrix is obtained through
the leading eigenvector of the matrix Re[Atr].

Two distinct scenarios were considered to evaluate the performance of the proposed
optimized code. The first scenario involved a smaller array with an element pitch-
to-wavelength ratio, denoted by pitch/λ, less than 0.5. The objective was to assess
the capabilities of the optimized code in cases where the array elements are relatively
closely spaced compared to the operating wavelength.

The second scenario aimed to test the optimized code on a larger array that violates
the Nyquist sampling frequency condition, with a pitch-to-wavelength ratio approxi-
mately equal to 1. Both sampling conditions can be found in clinical hardware where
large, sub-Nyquist element probes are often referred to as linear arrays, and small
element probes are named phased arrays.

By conducting these simulation experiments, we sought to verify the efficiency and
reliability of the proposed encoding matrix optimization method and to ascertain its
suitability for both closely spaced and sub-Nyquist-sampled large arrays. The results
of these experiments provide crucial insights into the method’s practicality and its
potential for real-world applications.

4.1 Small Array

The small array used in this thesis comprises 128 elements with a pitch of 25µm between
adjacent elements. The imaging area consists of equidistantly placed point scatters.
The experimental setup is illustrated in Figure 4.1. The ultrasound transducer emits a
base pulse with a center frequency of 15 MHz. The region of interest for imaging spans
from a depth of 4 mm to 11 mm, which is analogous to the imaging region for mouse
brain studies.

An optimized encoding matrix of size 128 × 5 is designed, which means the pulse
has a bit-length of 5. This chapter aims to compare the imaging performance of four
different transmission methods: single short pulse planewave, 5-bit Barker code, 5-bit
random code, and 5-bit optimized code. All the codes are normalized to have the same
average energy before transmission. The transmit pulse shapes in the time domain for
these four methods are depicted in Figure 4.2, along with the frequency spectrum of
the single short pulse (base pulse).
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Experiment Setup for Small Array
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Figure 4.1: Experiment setup in K-Wave for a small array with 128 elements and 25µm pitch.
The imaging area is a set of equidistantly placed point scatters.

To compare the quality of a single ultrasound compounded image, images from
L transmissions are compounded. For the optimized multiple transmission case, the
leading eigenvectors transmission scheme as described in section 3.2 is employed. When
maximizing the Fisher information matrix, an image subset between 6 to 11 mm in
Figure 4.1 was chosen for optimization. The corresponding encoding matrices are shown
in Figure 4.3. Initially, the wave propagation pressure field and the imaging results
obtained using the L leading eigenvectors transmissions were investigated.

Figure 4.4 shows the pressure field from 10 leading eigenvectors transmissions and
their corresponding imaging results. The pressure field is obtained by placing sensors at
every grid point in the imaging area and measuring its maximum pressure. The images
here are obtained using matched filtering. Figure 4.4 shows that each eigenvector
transmission yields a different focusing area in the image, and their corresponding
imaging results exhibit variations. For instance, the second eigenvector focuses more
on the two sides of the image, while the third one has more energy transmitted to
the middle. Even though the first and the fourth transmissions have similar pressure
fields, their resulting image results are different. These findings highlight the need for
different optimized encoding matrices for multiple transmissions.

The number of transmissions L is determined by the Doppler frequency to be de-
tected and the desired frame rate. However, another constraint can be considered on
the number of leading eigenvectors transmissions to ensure a good compounded image
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(d) 5-bit Random codes s60 and s70
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Figure 4.2: Transmit pulse shape for (a) single short pulse (base pulse), (b) frequency spec-
trum of base pulse, (c) 5-bit Barker codes, (d) 5-bit random codes on elements 70 th and 80
th, and (e) 5-bit optimized codes on elements 70 th and 80 th.

quality, which can be analyzed from the CRB perspective. The CRB is a lower limit
that indicates the performance of an unbiased estimator: lower CRB values correspond
to lower variance and better unbiased estimators.

Thus, how the CRB changes when compounding more leading eigenvectors for mul-
tiple transmissions is investigated. In Figure 4.6a, the normalized CRB (ranging from
0 to 1, where 0 represents perfect estimation and 1 indicates the worst estimation)
is plotted for a pixel located at depths of 4.5 mm and 11 mm when compounding 1
to 40 leading eigenvectors transmissions. It becomes evident that after compounding
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Figure 4.3: The ten optimized encoding matrices for the small array. The size of the matrices
is 128 × 5. The y-axis indicates the channels and the x-axis indicates the bit length. The
color map shows the amplitude and bi-phase encoding value of the code.

5 transmissions, the CRB no longer decreases significantly, and for the pixel in the
deeper area, it has already reduced to a low level. Taking the Doppler frequency into
consideration, the number of transmissions L is set to 10 to ensure good compounded
image quality.

Furthermore, a comprehensive investigation of the compounded imaging results ob-
tained from the optimized code is conducted and compared with 5-bit Barker, single
pulse planewave, and 5-bit random transmission methods. For each imaging scenario,
the same level of white Gaussian complex noise was added to the measurement data at
a signal-to-noise ratio of 10 dB. The corresponding results are illustrated in Figure 4.5.

The image on the left represents the outcome of the optimized code, obtained by
compounding data from 10 leading eigenvectors transmissions. The second and third
images display results from Barker-5 transmissions and single pulse planewave transmis-
sions, respectively. Both of these involve compounding data acquired from 10 insonified
angles spanning [−12◦, 12◦]. The fourth image is acquired and compounded through 10
instances of 5-bit random code transmissions.

The obtained results reveal that optimized transmission exhibits the highest SNR,
particularly in the deeper area ranging from 7 to 9 mm. In contrast, both the Barker
code and planewave transmissions show distortions starting at around 7 mm, where
the scatters are not represented in a straight line. While Barker codes outperform
planewave in the deeper region, they still fall short compared to optimized transmission.
On the other hand, random transmission appears to be the most sensitive to additive
noise, leading to a significant degradation in image quality.

It is important to note that there is a trade-off for the optimized code, as the
achieved resolution is somewhat compromised compared to the other methods. This
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Imgaing results of the first ten eigenvectors
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Figure 4.4: (a) shows the pressure field from 10 leading eigenvectors transmissions and (b)
shows their corresponding imaging results.
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Optimized transmission
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Figure 4.5: Imaging results comparisons between optimized transmissions, Barker codes trans-
missions, planewave transmissions, and random transmissions (On the figure from left to
right). The same level of noise where SNR = 10dB is added to each scenario.
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Figure 4.6: (a) shows the CRB over compounding eigenvectors for a pixel at depth 4.5 mm
and depth 11 mm. (b) shows the CRB over depth for random, Barker, planewave, and
optimized code. The results are after ten transmissions compounding.

phenomenon stems from the limitation in the optimization formulation (3.11), where the
autocorrelation property of the code is not considered. The autocorrelation function
(ACF) of the optimized code (on the 80th element) and the 5-bit barker codes are
plotted in Figure 4.7 and the numerical analysis is shown in Table 4.1. It can be
seen that the normalized mainlobe amplitude (the highest peak) of the optimized code
(0.55) is higher than the Barker code (0.25) by a factor of 2. However, the mainlobe
to sidelobe (the second highest peak) ratio of the optimized code is only 1.89 which is
much lower than that of the Barker code (5). A high mainlobe level can result in a
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higher SNR in the image but a low mainlobe to sidelobe ratio will cause a degraded
resolution.

The CRB analysis is also performed to assess the estimation accuracy of the four
different methods across the imaging depth, as depicted in Figure 4.6b. The results
demonstrate that the optimized code yields the lowest CRB, indicating superior estima-
tion precision. While the Barker code and short pulse planewave exhibit similar CRB
curves, the former slightly outperforms the latter. On the other hand, the random code
displays the highest CRB values, which is consistent with the imaging results. This
analysis further confirms the effectiveness of the optimized code compared to the other
tested methods in terms of both image quality and estimation accuracy.

Figure 4.7: Autocorrelation function for optimized codes (on the 80th element) and Barker
code of length 5.

Table 4.1: Autocorrelation function analysis for optimized codes (on the 80th element) and
Barker code.

Code Mainlobe amplitude Sidelobe amplitude Mainlobe to Sidelobe ratio

Optimized Code 0.55 0.29 1.89

Barker Code 0.25 0.05 5.00

4.2 Large Array

In this section, the applicability of the proposed optimized encoding matrix is investi-
gated in a realistic scenario using the Verasonics L22-14v high-frequency probe setting,
commonly employed in mouse brain blood flow imaging. This probe consists of 128
elements with a 0.1 mm element pitch. The center frequency for transmitting pressure
pulses remains at 15 MHz and the wavelength λ is 0.102 mm. Same as the previous
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Pressure field of the first ten eigenvectors
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Figure 4.8: (a) shows the pressure field from 10 leading eigenvectors transmissions and (b)
shows their corresponding imaging results for the large array with a transmitting center
frequency of 15 MHz.

section, an encoding matrix of size 128× 5 is optimized for an image subset from 6 to
11 mm.

Figure 4.8 presents the transmitting pressure field for the first ten leading eigenvec-
tors, along with the compounding imaging result. The pressure fields show that the
transmitting waves do not have the focusing ability in the focused area (6 to 11 mm)
and there are clear grating lobes existing in the transmitting beams. The compounded
image as shown in Figure 4.8b shows clear distortion and blurring for scatters. The
scatters are either elongated (the middle area between 9 to 12 mm) or slanted (scatter
points at two sides). Scatters in near-field areas are blurring, making it difficult to
distinguish the shapes. The results are not satisfactory, and there are two primary
reasons behind this outcome.
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Firstly, the pitch-to-wavelength ratio (0.1 / 0.102 mm) is close to 1, the array does
not meet the Nyquist sampling theorem requirement. Consequently, the array is oper-
ating under the Nyquist frequency, which might generate aliasing and negatively impact
image quality. Aliasing occurs when the sampling rate is insufficient to accurately cap-
ture the high-frequency components of a signal, leading to the misrepresentation of
these frequencies in the reconstructed image. As a result, fine details, such as small
structures and tissue textures, might be poorly represented or entirely missing from the
image.

Secondly, the large element size poses limitations on the beam steering mobility
of the array [41]. This constraint becomes evident when considering the beam spread
equation (4.1), where θmax represents the maximum steering angle of a single element,
λ denotes the wavelength, and e corresponds to the element width. The larger the
pitch-to-wavelength ratio, the smaller the steering angle.

sin θmax = 0.514
λ

e
(4.1)

To further assess the focusing ability, experiments were conducted using the L22-14v
probe configuration as can be seen in Figure 4.9. The probe transmitted a 5 MHz pulse
and focused at three distinct points within the imaging area: left, middle, and right
sections. The objective was to compare the focusing capability of this configuration
with a 15 MHz excitation signal. The results clearly indicate that when the wave-
length increases while maintaining the same element width, both the beam steering
and focusing ability improve.
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Figure 4.9: Beam steering and focusing ability demonstration for different frequency excitation
pulse. (a) shows the pressure field for a 5 MHz excitation pulse when focusing at a point on
the left, middle, and right side of the imaging area respectively from left to right. (b) shows
the results for a 15 MHz excitation pulse.
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The proposed encoding matrix optimization method aims to enhance the informa-
tion retrieval from the focusing area and achieve a transmit beam that optimally covers
the entire imaging area. However, the physical limitations imposed by the large array
size and corresponding element pitch present challenges in achieving a focused beam
that covers the focused area effectively. Consequently, for arrays operating below the
Nyquist sampling frequency, a planewave transmit beam pattern is more suitable.

By employing a planewave transmit beam pattern, the limitations imposed by the
physical constraints of the array can be mitigated. This beam pattern allows for uni-
form coverage of the imaging area, compensating for the challenges posed by the large
element pitch. Therefore, in the case of arrays operating at sub-Nyquist frequencies,
the planewave configuration becomes a preferable choice to ensure better image quality
and adequate beam steering capabilities.

4.3 Clinical Transducer Results

As the optimized encoding matrix exhibits limited efficacy for large linear arrays that
operate at the sub-Nyquist sampling frequency, our focus shifts toward assessing the
performance of the optimized code through the utilization of an alternative clinical
transducer. This section seeks to broaden the scope of evaluation and glean insights
into the adaptability and effectiveness of the optimized encoding matrix across diverse
transducer configurations. The M5Sc-D phased array transducer manufactured by Gen-
eral Electric (GE) presents an appealing option, with its 80× 3 elements and a pitch of
0.27 mm. Operating at a center frequency of 2.8 MHz with wavelength λ = 0.55 mm,
this transducer complies with the Nyquist sampling requirement. It is worth noting
that for this thesis, we only consider using the middle row elements, resulting in a total
of 80 active elements.

4.3.1 B-mode results

Simulations are conducted using point scatters placed equidistantly within the imaging
area. The encoding matrix C was optimized with dimensions 80 × 5 and an image
subset between 50 mm to 90 mm area was chosen for optimization. Ten optimized
encoding matrices are shown in Figure 4.10. Its performance was compared to 5-bit
Barker code, single pulse planewave, and 5-bit random code. The imaging region spans
from 5 mm to 90 mm. Figure 4.11 displays the results obtained from 10 transmissions
compounding with the same level of additive white Gaussian noise (SNR = 10 dB).

Observing the results, it becomes evident that in the deeper area (starting from
55 mm), the optimized code outperforms the Barker code and planewave in terms of
detectability. The 5-bit Barker code exhibits a slight deterioration in axial resolution
compared to planewave, leading to visible sidelobes at point targets. This is due to
the fact that the Barker code does not possess perfect sidelobe cancellation after pulse
compression, resulting in sidelobe energy at approximately 1/5 of the mainlobe energy
[16]. On the other hand, the random code exhibits good axial resolution compared to
the other methods, particularly in the near-field area, as reported in [27]. However, the
contrast-to-noise ratio of the random code is significantly lower than other methods.
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Figure 4.10: The ten encoding matrices of the M5Sc-D phased array transducer. The encoding
matrices have a size of 80 × 3. The y-axis indicates the channels and the x-axis indicates the
bit length. The color map shows the amplitude and bi-phase encoding value of the code.

One of the trade-offs of using the optimized code is that the axial resolution is de-
graded, as also observed in Figure 4.5. This is attributed to the fact that the proposed
optimization method did not consider the autocorrelation property of the codes, which
is detailed in section 4.1. The optimization problem (3.11) focuses on optimizing the
information within the Region of Interest (ROI) but does not guarantee the image reso-
lution. In contrast, Barker codes are specifically designed to have good autocorrelation
properties, allowing for retrieval of axial resolution comparable to that of single short
pulses after matched filtering, as discussed in section 1.4.

Another tradeoff of using the optimized code is that it results in a narrower field of
view compared to other methods. As evident from the first plot in Figure 4.11, the top
left and right point scatters are not detectable. The reason behind this is that when
optimizing for the encoding matrix using the suboptimal formulation (3.11), a focusing
area was chosen between 50 to 90 mm in the imaging area. Since the near field is not
taken into account when optimizing for the encoding matrix, there might exist some
information loss in the near field area.

The results are quantitatively analyzed by computing the SNR of each point scatter
in the four scenarios and comparing the performance. The calculation is as followed,

SNR =
PW p

PW b

, (4.2)

where PW p and PW b are the mean energy value of the point scatter and the background
noise, respectively. The box plots of the SNR data from each method are shown in
Figure 4.12. In each box, the bottom and top edges of the box represent the 25th and
75th percentiles in the data, and the red line inside the box marks the median. The
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Figure 4.11: Imaging results comparisons between optimized transmissions, Barker codes
transmissions, planewave transmissions, and random transmissions (On the figure from left
to right) in GE probe setting. The same level of noise where SNR = 10dB is added to each
scenario.

whiskers represent the highest and lowest values in the data. The numerical results
are corresponding with the imaging results. The optimized code has an overall higher
SNR compared to other methods. Single pulse planewave has the highest variation. If
we look at the median SNR value, the optimized code has a GSNR = 4.4 dB while the
Barker code has a GSNR = 2.5 dB compared to the single short pulse. Compared to
single pulse and random code, the optimized code and Barker code maintain a more
consistent SNR performance.

In this thesis, the performance of different bit-length optimized codes (3-bit, 5-bit,
and 10-bit) is investigated and compared. The results are illustrated in Figure 4.13 and
4.15.

As the bit-length increases, the SNR also increases. This is expected because longer
codes have higher mainlobe levels after pulse compression, resulting in a stronger signal
relative to the noise. In the deeper areas of the image, the longer codes exhibit higher
resilience to noise. The increased bit length enables better detection of weaker signals
from deeper structures, as these signals are less likely to be obscured by noise.

However, the use of longer codes also involves a trade-off. The 10-bit code, being the
longest among the tested options, demonstrate certain disadvantages. Specifically, it
exhibits lower resolution for point scatters compared to the 3-bit and 5-bit codes. This
observed disadvantage of the 10-bit codes has been previously discussed in the thesis
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Figure 4.12: The SNR boxplot analysis for point scatters images with (From left to right)
optimized codes, barker codes, single pulse planewave, and random codes. In each box, the
bottom and top edges of the box represent the 25th and 75th percentiles in the data, and
the red line inside the box marks the median. The whiskers represent the highest and lowest
values in the data.

and is attributed to the characteristics of the optimization algorithm itself, which is
that the autocorrelation property of the code is not considered. As can be seen from
the autocorrelation function of 3-bit, 5-bit, and 10-bit optimized codes in Figure 4.14
and table 4.2, 10-bit code has the highest mainlobe amplitude but the lowest mainlobe
to sidelobe ratio which is only 1.19. 3-bit code has the lowest mainlobe level but has a
mainlobe to sidelobe ratio of 5, which is equal to the 5-bit Barker code.

Table 4.2: Autocorrelation function analysis for 3-bit, 5-bit, and 10-bit optimized code.

Code Mainlobe amplitude Sidelobe amplitude Mainlobe to Sidelobe ratio

3-bit code 0.37 0.31 1.19

5-bit code 0.23 0.13 1.77

10-bit code 0.05 0.01 5.00

4.3.1.1 LSQR Imaging

In order to improve the resolution of the optimized code results, an iterative imaging
technique named LSQR is employed instead of matched filtering [42]. This method
iteratively updates and refines the solution of the signal model (2.9) based on a residual
vector r = y−G(C)x. In each iteration, it computes the QR factorization ofG(C)H and
solves for a triangular system to update the image vector x. The algorithm converges
when the residual errors reach the predefined threshold or the maximum number of
iterations is reached. This approach is particularly useful for large and ill-conditioned
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Figure 4.13: Imaging results from 3-bit, 5-bit, and 10-bit (from left to right) optimized codes.
As the bit-length increases, the SNR of the image, especially in the deeper area is increased.
The trade-off is a worsened resolution.
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Figure 4.15: The SNR boxplot analysis for point scatters images with (From left to right)
3-bit, 5-bit, and 10-bit optimized codes. In each box, the bottom and top edges of the box
represent the 25th and 75th percentiles in the data, and the red line inside the box marks the
median. The whiskers represent the highest and lowest values in the data.

systems, which is the case in our study. A pseudo-code for the LSQR algorithm is
presented in Algorithm 1.

Algorithm 1 LSQR Algorithm for Ultrasound Imaging

Data: Matrix G(C), Vector y, Initial Guess x0, Maximum Iterations imax, Convergence
Threshold ϵ

Result: Reconstructed Image Vector x
1 x← x0

r← y −G(C)x
G(C)H ← Hermition of G(C)
k ← 0

2 while k < imax and ||r|| > ϵ do
3 Q,R← QR Factorization of G(C)Hr

b← Solve Rb = QHr for b
x← x+G(C) · b
r← y −G(C) · x
k ← k + 1

4 end

In order to assess the impact of increasing the number of iterations in LSQR imaging,
experiments where we varied the number of iterations from 1 to 40 are conducted.
Figure 4.16 displays images obtained at different iteration steps with a gap of 3. The
results clearly show that as the number of iterations increases, the image resolution
improves. However, after around 10 iterations, the image starts to overfit with the
noise, leading to a decrease in the SNR in the deeper area. Interestingly, with the
addition of more iterations, the point scatters at two sides at the top of the image
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Figure 4.16: Optimized code imaging results using LSQR algorithm. Here we show the images
after 1 to 40 iterations.

become detectable.
We also compared the LSQR results from the optimized code with those from the

Barker code, as shown in Figure 4.18. The results indicate that LSQR does not signifi-
cantly improve the image quality for the Barker code. Although the resolution improves
slightly with an increase in the number of iterations, the near-field area starts to overfit
with the noise after 4 iterations. Analyzing the normalized residual curve for these two
coded excitation schemes reveals that the residual does not decrease significantly for
Barker codes compared to optimized codes with the addition of more iterations (Figure
4.17).

In a direct comparison of the best performance image using LSQR between these two
transmission schemes (e.g., the 10th iteration for optimized codes and the 4th iteration
for Barker codes), the optimized codes still outperform Barker codes in terms of SNR
in deeper areas while achieving nearly the same resolution. This can be visualized
by looking at the image contrast, where a line from the image where the scatters are
positioned is taken and plotted. If there is scatter in the position, a peak can be seen
from the signal. Figure 4.19 shows the contrast signal for a vertical line located at
position 0.24 mm in the image. Two methods both show clear peaks before 60 mm,
with a comparable mainlobe-to-sidelobe ratio. The Barker code starts to fail in the
deeper than 60 mm area where the peak got blocked by the noise, while the optimized
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Figure 4.17: Normalized residual curves for Barker code and optimized code when adding
iteration in LSQR.

code still maintains a good contrast.
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Figure 4.18: Barker code imaging results using LSQR algorithm. Here we show the images
after 1 to 40 iterations.

In summary, LSQR imaging with optimized code shows notable improvements in
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Figure 4.19: Image contrast to noise comparison between optimized code after 10 iterations
and Barker code after 4 iterations. A vertical line from the image located at 0.24 mm is taken
and plotted.

image quality as the number of iterations increases, leading to enhanced resolution and
improved visibility of point scatters. However, the performance improvement plateaus
after around 10 iterations due to noise overfitting. In contrast, LSQR does not provide
significant improvements for Barker code, where the resolution slightly improves but the
near-field area becomes more susceptible to noise overfitting. As a result, optimized
code with LSQR imaging technique demonstrates superior image quality and SNR
compared to Barker code under similar conditions.

4.3.2 Doppler Flow Simulations

In this section, blood flow imaging simulation is done in K-Wave using MATLAB. The
clinical transducer setting described in section 4.3 is used here. A flow phantom with
a size of 90 × 20 mm is generated with a 9 mm diameter parabolic blood vessel that is
placed 55 mm away and angled at 25◦ from the transducer surface. The flow velocity
is set to 9 cm/s and the blood-to-tissue level is -67 dB.

The imaging performance of 5-bit optimized code and 5-bit Barker code is compared.
Still used 10 transmissions to get one compounded ultrasound image. For optimized
code, the 10 leading eigenvectors are transmitted, and for Barker code, it is transmitted
with 10 different angles ranging from −12◦ to 12◦. The ensemble size is Ne = 30. The
matched filter is used for beamforming and after compounding, an SVD filter is applied
to all the temporal compounded images to gain the final power Doppler image.

Different levels of white Gaussian noise at the noise-to-blood level of -30, -15, and 0
dB are added to the measurement data. The results are shown in Figure 4.20, 4.21, and
4.22. The SNR and the Contrast-to-Noise ratio (CNR) are calculated for each image,
where SNR is calculated using (4.2) and CNR is calculated as follows,

CNR =
PW vessel − PW tissue

std(PWtissue)
, (4.3)
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Figure 4.20: Numerical analysis of the performance of Barker code and optimized code. (a)
shows the bar graph of the signal-to-noise ratio between Barker code and optimized code and
(b) shows the bar graph of the contrast-to-noise ratio between Barker code and optimized
code. They are calculated using the ROI shown in Figure 4.22, where the black rectangular
indicated the blood vessel region and the white rectangular indicated the background region.

where the blood vessel area and the tissue area are indicated by the black and white
rectangular in Figure 4.22 respectively.
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Figure 4.21: B-Mode images of the blood vessel from the optimized code and the Barker code.

The B-mode images are shown in Figure 4.21, where the blood vessels are completely
masked by the tissue and noise. After SVD filtering, the PDI results of 0 and -15 dB
noise level show that the blood vessel images from the optimized code have smoother
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edges and stronger intensity compared to the ones from the Barker code (Figure 4.22).
In the deeper area (below 80 mm), the optimized code exhibits darker background
compared to the Barker code. For a high noise level (-30 dB), optimized code exhibits
a clear advantage over the Barker code. The numerical results show that optimized
code has consistent and higher SNR and CNR across different noise levels. For noise
levels 0, -15, and -30 dB, the optimized code has SNR gains of 3.6, 4.84, and 7.81 dB
compared to the Barker code. The optimized code is more robust to high level noise.

The blood flow simulation result demonstrates the ability of the proposed optimized
code in improving the SNR of the Doppler images in deep areas. The resolution prob-
lems exhibited by the optimized code in the previous sections are not evident in the
Doppler flow simulation.
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Barker code Doppler Flow Simulation
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Optimized code Doppler Flow Simulation

(b)

Figure 4.22: (a) shows the Power Doppler images from 5-bit Barker code with noise-to-blood
levels at 0, -15, and -30 dB (from left to right). (b) is the Power Doppler images from the
optimized code. All the images are shown with the same colormap spectrum from 0 to -40
dB.
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Discussions and Future Work 5
In Doppler ultrasound imaging of cerebral blood flow, the visualization of small blood
vessels in deep brain regions is often challenging due to the low SNR and a large
dynamic range in the received signals. Coded excitation techniques have shown promise
in enhancing SNR, particularly in deeper brain regions, as demonstrated in Figure 1.6.
This thesis focuses on optimized code design for Doppler ultrasound imaging to improve
on conventional coded excitation schemes, such as Barker codes, while using the same
number of transmissions and bit-length. To design the optimized code is generalized
and quantified into designing an encoding matrix C, which is then incorporated into a
linear measurement model described by equation (2.9). This linear signal model can be
solved using efficient imaging techniques, such as matched filtering and least squares,
especially when dealing with large systems. Amplitude encoding and bi-phase encoding
are considered in this thesis, which constrain the encoding matrix C to be real.

To find the optimized encoding matrix for a specific imaging area, a trace constraint
optimization problem based on minimizing the Mean Squared Error (MSE) is proposed.
Some relaxations are imposed on the original problem (3.5), which is non-convex, to
ensure a feasible solution. While the optimization problem (3.8) yields the best estima-
tor in the Minimum Mean Squared Error (MMSE) sense, it poses a memory challenge
for large imaging areas. To address this, a suboptimal formulation (3.11) is proposed,
which maximizes the trace of the Fisher Information Matrix instead of minimizing the
MSE. The solution involves finding the eigenvector corresponding to the largest eigen-
value of matrix Re[Atr] as the optimized encoding matrix. Only the real part of the
matrix Atr is considered since we consider amplitude encoding and bi-phase encod-
ing. Despite being suboptimal, this method is more efficient and can provide freedom
to focus on a subset of the imaging area for encoding matrix optimization, reducing
computational time and increasing flexibility. We determine the focus area through
trial and error to find a subset that gives a good imaging result for the overall region.
We find out that focusing on the far field area results in a better overall image than
focusing on the near field area. The process of selecting a subset of the imaging area is
however not discussed and analyzed in detail in this thesis due to time limit.

Additionally, since the thesis focuses on enhancing the image quality of Doppler
ultrasound imaging, the case of multiple transmissions to obtain a high-resolution and
high-contrast compounded image is considered. A leading eigenvectors transmission
scheme is proposed based on the suboptimal formulation. This scheme capitalizes on
the fact that matrix Re[Atr] in (3.11) has multiple leading eigenvalues that are close to
each other which means there might exist multiple optimal solutions. Simulation results
also showed that transmitting only the largest eigenvector does not yield satisfactory
compounded image quality.

The proposed optimized code transmission scheme is validated through simulations
in K-Wave and compared the imaging performance between the optimized code, Barker
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code, single short pulse, and random code. Note that the comparisons between different
encoding methods are done after normalizing the transmitting energy of all codes so
that they have the same average energy. Simulations are done in both small and large
array settings. These two settings represent an above-Nyquist sampling frequency array
and a sub-Nyquist sampling frequency array, respectively. For the small array where the
element pitch-to-wavelength ratio is less than 0.5, the optimized code demonstrates im-
proved SNR in the deeper regions compared to the Barker code, single pulse planewave
transmission, and random code, with the same average transmit energy. However, the
trade-off is a degradation in axial resolution. This is due to the limitation in the op-
timization function (3.11), where no constraint of the autocorrelation property of the
code is imposed. Conversely, for the large array where the element pitch-to-wavelength
ratio is close to 1, the proposed method is not suitable due to limitations in beam
steering mobility, making focusing on a specific image area challenging. In this set-
ting, a planewave beam pattern is more appropriate, providing uniform coverage of the
imaging area. Simulations in these two settings demonstrate that the optimized code
is applicable to the array operating at Nyquist sampling frequency and can outperform
other conventional coded excitation schemes considered in this thesis.

Furthermore, the proposed optimized encoding matrix is tested on the clinical M5Sc-
D phased array transducer in section 4.3, which operates at the Nyquist sampling
frequency. The simulation results align with the small array setting, showing SNR
improvements in deeper imaging areas. The optimized code has an SNR gain of 4.4
dB compared to the single short pulse. However, similar trade-offs of reduced axial
resolution and a smaller field of view in the near field are observed. The decrease in
resolution arises from the limitation of the optimization algorithm, which focuses on
maximizing information in the Region of Interest (ROI) but does not account for the
autocorrelation property of the code itself. The field of view reduction is attributed
to the focused nature of the optimized code since we chose a subset from 50 to 90
mm imaging area to focus on. To address the resolution issue, the iterative least-
square technique called LSQR is employed. Results showed that LSQR can drastically
improve the resolution of the optimized code with a slight decrease in SNR.

In this thesis, for most cases, we designed an optimized code with a bit-length of
5 due to computational complexity. Theoretically, under the FDA safety limit, the
longer the bit-length, the more SNR gain can be expected. A performance comparison
between 3-bit, 5-bit, and 10-bit optimized code is conducted and the results show that
as bit-length increases, the SNR also increases. The 10-bit code has a GSNR = 3
dB compared to the 3-bit code. However, the resolution decreases as the bit-length
increases.

Finally, blood flow simulations are done in the clinical M5Sc-D phased array trans-
ducer setting, and the performance between the optimized code and the Barker code is
compared. The Doppler imaging results with different additive white Gaussian noise
levels, ranging from 0 to -30 dB are shown. Visually, optimized code gives smoother
edges on the blood vessels and has a higher intensity in the blood vessel compared to
Barker code. Qualitatively, the optimized code exhibits consistent and higher SNR and
CNR throughout different noise levels.
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5.1 Future Work

Despite the detailed modeling and simulations given in this report, there are still some
aspects and possibilities not covered in this thesis. Here, some future work and potential
improvements are presented.

1. This thesis has proposed an optimization formulation that is optimal in the MMSE
sense. However, its computational complexity poses a challenge for implementa-
tion. Future work should focus on developing more efficient algorithms to decrease
the computational complexity of the optimization problem (3.8). The solution
yielded from (3.8) should expect more improvement in imaging qualities com-
pared to the suboptimal solution implemented in this thesis.

2. Another computational complexity problem arises from the beamforming process
of optimized code transmission. Since the transmit pulse from each element dif-
fers from each other, the fast DAS beamforming technique cannot be applied to
the received ultrasound data y to form an image. In this thesis, model-based
beamforming in the Fourier domain is used, and the construction of model ma-
trix G(C) is of high complexity. One way to address this problem is to design a
decoding matrix based on the optimized encoding matrix. The decoding matrix
can then be used to decode the received data y and geometric focusing, such as
DAS can then be applied to form an image. However, the complexity of designing
the decoding matrix should also be considered. A similar discussion can be found
in the paper [43].

Another way to address this problem is by utilizing compressive sensing tech-
niques, which can significantly reduce computational complexity.

3. In addition to the complexity reduction, future research should also take multi-
phase encoding into account. In this thesis, only the bi-phase encoding is con-
sidered out of simplicity. Incorporating multi-phase should be able to enhance
the performance of the proposed optimized code. Another consideration can be
adding phase delays to each phase code in the encoding matrix C. With phase
delays, we can better capture the characteristics of transmitting waveform, for
example, a focused beam or a planewave with an angle. This additional consider-
ation will improve the focusing and steering ability of the optimized transmission,
leading to further improvements in imaging quality.

4. In this thesis, amplitude encoding is also considered. However, the benefit of
amplitude encoding in Doppler ultrasound imaging is not yet clear and needs fur-
ther investigation. Future work can include dropping the amplitude encoding but
only considering the bi-phase encoding, and comparing the performance between
amplitude and bi-phase encoding with only bi-phase encoding to see which one
yields a better result. A binary constraint then needs to be added to the original
optimization function,

min f(C)

s.t. c ∈ {−1, 1}NK .
(5.1)
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To solve this problem, more sophisticated relaxation techniques should be applied.

Another advantage of designing only bi-phase encoding matrices is that when
testing and implementing the optimized encoding matrix in the Verasonics system,
it will be much easier and more direct since the Verasoncs system only supports
tri-level transmission. For the amplitude and bi-phase encoding matrix designed
in this thesis, before we test it on the Verasonics system, an approximation of its
tri-level sequence needs to be done first, which might introduce some errors to the
system.

5. The trade-off between SNR improvement and resolution degradation observed
for the optimized code in this thesis suggests the need for a more comprehen-
sive trade-off analysis. Future work could investigate optimization strategies to
achieve a balanced enhancement of image quality across different imaging param-
eters. For example, adding an autocorrelation property constraint to the existing
optimization function (3.8) and (3.11) to improve the resolution.

6. Conduct Phantom and in vivo experiments on the Verasonic system to test the
proposed optimized code on real Doppler data. In this thesis, due to the time
limitation, only simulation experiments were conducted. Further experiments on
flow phantom using the Verasonic system are important to validate the proposed
method and test its applicability.
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Conclusions 6
This research has addressed the challenges encountered in Doppler ultrasound imaging
of cerebral blood flow, particularly related to a low SNR and a broad dynamic range in
the received signal. It investigated and designed optimized transmit codes for Doppler
ultrasound imaging, focusing on increasing SNR. By addressing this problem, this study
improved conventional coded excitation schemes and contributed to the gap in opti-
mized code design in ultrasound studies. The proposed novel coded excitation scheme,
represented by an encoding matrix, demonstrated significant promise in outperforming
established methods like Barker code while utilizing the same number of transmissions
and bit-length.

The research commenced with the formulation of a linear signal model incorporat-
ing the encoding matrix, followed by the exploration of various imaging techniques to
effectively solve this model. A trace-constraint optimization formulation based on max-
imizing the Fisher information matrix was introduced to find the optimized encoding
matrix. Additionally, for scenarios involving multiple transmissions, a leading eigenvec-
tors transmission scheme was proposed and evaluated through extensive simulations,
encompassing both small and large array settings.

The simulation results showed that the optimized code exhibited superior SNR in
deeper brain regions within the small array setting, compared to conventional methods.
However, it was noted that this improvement came with a trade-off in reduced axial
resolution, which stems from the limitation in the optimization algorithm. Nevertheless,
the application of the iterative imaging technique LSQR proved effective in mitigating
the resolution degradation, offering a practical approach to improve image quality.

Finally, a blood flow simulation is done with a clinical M5Sc-D probe setting and
the results showed that the optimized code has consistently higher SNR and CNR
compared to the Barker code over different noise levels.

The outcomes of this research hold considerable promise for advancing Doppler
ultrasound imaging in cerebral blood flow assessment. By enhancing SNR in deeper
image regions, the proposed optimized encoding matrix may enable more accurate and
informative clinical assessments.

51



52



Bibliography

[1] P. Kruizinga, P. van der Meulen, A. Fedjajevs, F. Mastik, G. Springeling,
N. de Jong, J. G. Bosch, and G. Leus, “Compressive 3d ultrasound imaging using
a single sensor,” Science Advances, vol. 3, no. 12, p. e1701423, 2017.

[2] E. Mace, G. Montaldo, B.-F. Osmanski, I. Cohen, M. Fink, and M. Tanter, “Func-
tional ultrasound imaging of the brain: theory and basic principles,” IEEE trans-
actions on ultrasonics, ferroelectrics, and frequency control, vol. 60, no. 3, pp. 492–
506, 2013.

[3] R. Aaslid, T.-M. Markwalder, and H. Nornes, “Noninvasive transcranial doppler
ultrasound recording of flow velocity in basal cerebral arteries,” Journal of neuro-
surgery, vol. 57, no. 6, pp. 769–774, 1982.

[4] A. A. M. sivgoulis, G., “Advances in transcranial doppler ultrasonography,” Cur-
rent Neurology and Neuroscience Reports, vol. 9, pp. 46–54, 2009.

[5] A. A. Sloan MA, “Assessment: transcranial doppler ultrasonography: report of the
therapeutics and technology assessment subcommittee of the american academy
of neurology,” Neurology, vol. 62, no. 9, pp. 1468–1481, 2004.

[6] S. Golemati, A. Gastounioti, and K. S. Nikita, “Toward novel noninvasive and low-
cost markers for predicting strokes in asymptomatic carotid atherosclerosis: The
role of ultrasound image analysis,” IEEE Transactions on Biomedical Engineering,
vol. 60, no. 3, pp. 652–658, 2013.

[7] B. P. Cox B, “Imaging techniques: Super-resolution ultrasound,” Nature, vol. 527,
pp. 451–452, 2015.

[8] E. Tiran, T. Deffieux, M. Correia, D. Maresca, B.-F. Osmanski, L.-A. Sieu,
A. Bergel, I. Cohen, M. Pernot, and M. Tanter, “Multiplane wave imaging in-
creases signal-to-noise ratio in ultrafast ultrasound imaging,” Physics in medicine
and biology, vol. 60, pp. 8549–8566, 10 2015.

[9] T. Misaridis and J. A. Jensen, “Use of modulated excitation signals in medical
ultrasound. part I: Basic concepts and expected benefits,” IEEE transactions on
ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 2, pp. 177–191, 2005.

[10] T. Misaridis and J. A. Jensen, “Use of modulated excitation signals in medical
ultrasound. part II: Design and performance for medical imaging applications,”
IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52,
no. 2, pp. 192–207, 2005.

[11] T. Misaridis and J. A. Jensen, “Use of modulated excitation signals in medical
ultrasound. part III: High frame rate imaging,” IEEE transactions on ultrasonics,
ferroelectrics, and frequency control, vol. 52, no. 2, pp. 208–219, 2005.

53



[12] H. Zhao, L. Y. L. Mo, and S. Gao, “Barker-coded ultrasound color flow imaging:
theoretical and practical design considerations,” IEEE Transactions on Ultrason-
ics, Ferroelectrics, and Frequency Control, vol. 54, no. 2, pp. 319–331, 2007.

[13] Food, D. Administration, et al., “Guidance for industry and fda staff information
for manufacturers seeking marketing clearance of diagnostic ultrasound systems
and transducers,” Rockville, MD: FDA, 2008.

[14] Z. Fan, J. Rudlin, G. Asfis, and H. Meng, “Convolution of barker and golay codes
for low voltage ultrasonic testing,” Technologies, vol. 7, no. 4, p. 72, 2019.

[15] Y. M. Benane, D. Bujoreanu, C. Cachard, B. Nicolas, and O. Basset, “An enhanced
chirp modulated golay code for ultrasound diverging wave compounding,” in 2018
26th European Signal Processing Conference (EUSIPCO), pp. 81–85, IEEE, 2018.

[16] E. P. Vienneau and B. C. Byram, “A coded excitation framework for increased
signal-to-noise ratio of in vivo ultrasound power doppler imaging,” Proceedings Vol-
ume 11602, Medical Imaging 2021: Ultrasonic Imaging and Tomography; 116020P
(2021).

[17] E. Grossi, M. Lops, L. Venturino, and A. M. Tulino, “Robust waveform design
for mimo radars,” in 2010 IEEE International Symposium on Information Theory,
pp. 1633–1637, 2010.

[18] H. Xu, J. Zhang, W. Liu, S. Wang, and C. Li, “High-resolution radar waveform de-
sign based on target information maximization,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 56, no. 5, pp. 3577–3587, 2020.

[19] J. Rubin and R. Adler, “Power doppler expands standard color capability.,” Diag-
nostic imaging, vol. 15, no. 12, pp. 66–69, 1993.

[20] J. Bercoff, G. Montaldo, T. Loupas, D. Savery, F. Mézière, M. Fink, and M. Tanter,
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