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A B S T R A C T

Iterative learning control (ILC) techniques are capable of improving the tracking performance of control
systems that repeatedly perform similar tasks by utilizing data from past iterations. The aim of this paper is to
achieve both the task flexibility enabled by ILC with basis functions and the performance of frequency-domain
ILC, with an intuitive design procedure. The cost function of norm-optimal ILC is determined that recovers
frequency-domain ILC, and consequently, the feedforward signal is parameterized in terms of basis functions
and frequency-domain ILC. The resulting method has the performance and design procedure of frequency-
domain ILC and the task flexibility of basis functions ILC, and are complimentary to each other. Validation on
a benchmark example confirms the capabilities of the framework.
1. Introduction

The increasing requirements for precision mechatronics result in a
situation where both tracking performance and task flexibility, which
is the ability to have high performance for different references, are
important. Feedforward control is effective in compensating known dis-
turbances for systems, leading to improved performance. Feedforward
control is often based on models (Butterworth, Pao, & Abramovitch,
2012), which is generally achieved in industrial applications by means
of basis functions feedforward control. In basis functions feedforward
control, the feedforward signal is a linear combination of basis func-
tions that relate to physical quantities, such as acceleration feedforward
for the inertia (Boerlage, Tousain, & Steinbuch, 2004; Lambrechts,
Boerlage, & Steinbuch, 2005; Oomen, 2020). Due to modeling and
tuning inaccuracies, the increasing requirements for performance are
generally not achieved.

Iterative Learning Control (ILC) can improve tracking performance
with respect to model based feedforward control (Bristow, Tharayil,
Alleyne, Bristow, & Tharayil, 2006), and hence, can fulfill the increas-
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ing requirements for performance. ILC utilizes information from past
iterations to improve the tracking performance in the current iteration.
For ILC to be industrially applicable, it is required that ILC

(R1) is task flexible;
(R2) has high tracking performance; and
(R3) has an intuitive design procedure.

In this paper, two types of ILC are considered, and are referred to as
frequency-domain and norm-optimal ILC.

First, frequency-domain ILC uses infinite-time frequency-domain
system representations to iteratively update the feedforward signal
(Arimoto, Kawamura, & Miyazaki, 1984). Frequency-domain ILC has
the advantage that convergence can be verified and tuned using fre-
quency response functions (FRFs), that are accurate and inexpensive
to obtain (Pintelon & Schoukens, 2012). As a result, frequency-domain
ILC leads to an intuitive frequency-domain design procedure consisting
of manual loop shaping and has high tracking performance. Frequency-
domain ILC is typically implemented in finite-time, where convergence
https://doi.org/10.1016/j.ejcon.2024.101033
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can still be analyzed (Norrlöf & Gunnarsson, 2002). However, conven-
tional frequency-domain ILC is not directly capable of task flexibility,
and hence, does not satisfy requirement R1.

Second, norm-optimal ILC utilizes a finite-time cost function to
iteratively optimize the feedforward signal (Gunnarsson & Norrlöf,
2001). The main advantage of norm-optimal ILC is that the feedforward
signal can be parameterized into basis functions, that enables task
flexibility (van de Wijdeven & Bosgra, 2010; Phan & Frueh, 1996).
However, if the basis functions are not sufficiently rich to describe
the inverse system, the performance is significantly worse compared
to frequency-domain ILC, and therefore does not achieve requirement
R2.

Important developments have been made to combine the task flex-
ibility of ILC with basis functions and the performance of frequency-
domain ILC. In Boeren, Bareja, Kok, and Oomen (2016) and Mishra
and Tomizuka (2009), frequency-domain ILC is projected on basis func-
tions, resulting in task flexibility, but reducing tracking performance.
Furthermore, in Tsurumoto, Ohnishi, and Koseki (2023), frequency-
domain ILC is combined with ILC with basis functions using a sequen-
tial optimization problem, that results in the performance of frequency-
domain ILC and the task flexibility of ILC with basis functions. How-
ever, the approach results in an unintuitive design procedure, not
satisfying requirement R3.

Although ILC methods with high performance and task flexibility
are investigated, a method that achieves both high performance and
task flexibility, with an intuitive design procedure, is currently lacking.
In this paper, high performance (R2) is achieved by deliberately overpa-
rameterizing the feedforward signal in a low number of basis functions
to accomplish task flexibility (R1). Additionally, a complementary sig-
nal is optimized via an intuitive frequency-domain ILC design (R3). The
key contributions in this paper include the following.

(C1) Determining the equivalent norm-optimal finite-time represen-
tation of frequency-domain ILC by specific choice of weighting
matrices, that enables intuitive tuning in the frequency-domain
(R3) (Section 3.1).

(C2) Achieving both task flexibility (R1) and high performance (R2)
by exploiting an overparameterized feedforward signal, building
upon C1 (Section 3.2).

(C3) Validation of the framework on an example (Section 4).

Notation. Let (𝑧) denote a discrete-time, Linear Time-Invariant (LTI),
single-input, single-output system. The frequency response function of
(𝑧) is obtained by substituting 𝑧 = 𝑒𝑗𝜔 ∀𝜔 ∈ [0, 2𝜋), and is denoted by
(𝑒𝑗𝜔).

Signals are of length 𝑁 . Vectors are denoted as lowercase letters
nd matrices as uppercase letters, e.g., 𝑥 and 𝑋. The 𝑧-transform of
ignal 𝑥(𝑘) is (𝑧) =

∑∞
𝑘=0 𝑥(𝑘)𝑧

−1. Let ℎ(𝑘) ∀𝑘 ∈ Z be the impulse
esponse coefficients of (𝑧), with infinite impulse response 𝑦(𝑘) =
∞
𝜏=−∞ ℎ(𝜏)𝑢(𝑘 − 𝜏). Let 𝑢(𝑘) = 0 for 𝑘 < 0 and 𝑘 ≥ 𝑁 to obtain the

finite-time convolution
⎡

⎢

⎢

⎢

⎢

⎣

𝑦(0)
𝑦(1)
⋮

𝑦(𝑁 − 1)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑦

=

⎡

⎢

⎢

⎢

⎢

⎣

ℎ(0) ℎ(−1) ⋯ ℎ(−𝑁 + 1)
ℎ(1) ℎ(0) ⋯ ℎ(−𝑁 + 2)
⋮ ⋮ ⋱ ℎ(−1)

ℎ(𝑁 − 1) ℎ(𝑁 − 2) ⋯ ℎ(0)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐻

⎡

⎢

⎢

⎢

⎢

⎣

𝑢(0)
𝑢(1)
⋮

𝑢(𝑁 − 1)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑢

,

with 𝑦, 𝑢 ∈ R𝑁 and 𝐻 ∈ R𝑁×𝑁 is the finite-time convolution matrix
corresponding to (𝑧).

2. Problem formulation

In this section, the problem that is dealt with in this paper is formu-
lated. First, the problem setup is presented. Second, the different classes
of ILC considered in this paper are described. Finally, the problem that

is addressed in this paper is defined.

2 
Fig. 1. Control structure considered.

.1. Problem setup

The control structure is seen in Fig. 1. The LTI system 𝑃 is stabilized
y LTI feedback controller 𝐾. The finite-time reference signal 𝑟𝑗 ∈ R𝑁

an be trial varying. The goal is to reduce the reference induced error
ignal 𝑒𝑗 ∈ R𝑁 over multiple trials 𝑗 with the trial-varying feedforward
ignal 𝑓𝑗 ∈ R𝑁 .

.2. Classes of ILC

In this section, the three considered classes of ILC, that is norm-
ptimal ILC, ILC with basis functions and frequency-domain ILC, are
resented.

.2.1. Norm-optimal ILC
Norm-optimal ILC is a type of ILC that minimizes a finite-time cost

unction, typically

min
𝑓𝑁𝑂𝑗+1

‖

‖

‖

𝑒𝑗+1
‖

‖

‖

2

𝑊𝑒
+ ‖

‖

‖

𝑓𝑁𝑂𝑗+1
‖

‖

‖

2

𝑊𝑓
+ ‖

‖

‖

𝑓𝑁𝑂𝑗+1 − 𝑓𝑁𝑂𝑗
‖

‖

‖

2

𝑊𝛥𝑓
, (1)

where ‖𝑥‖2𝑊 = 𝑥⊤𝑊 𝑥, 𝑊𝑒, 𝑊𝑓 and 𝑊𝛥𝑓 are symmetric positive
(semi)definite weighting matrices (Gunnarsson & Norrlöf, 2001), 𝑒𝑗+1 =
𝑒𝑗 − 𝐽

(

𝑓𝑁𝑂𝑗+1 − 𝑓𝑁𝑂𝑗

)

, and finite-time convolution matrix 𝐽 = 𝑃
(

𝐼 +𝐾𝑃
)−1, with convolution matrix 𝑃 ∈ R𝑁×𝑁 representing model

̂ of system  , and identity matrix 𝐼 ∈ R𝑁×𝑁 . The cost function in
(1) is quadratic in the optimization variables 𝑓𝑁𝑂𝑗+1 , and hence, has a
minimizer that is analytically computed as

𝑓𝑁𝑂𝑗+1 = 𝑄𝑁𝑂𝑓𝑗 + 𝐿𝑁𝑂𝑒𝑗 , (2)

with norm-optimal ILC robustness and learning matrices 𝑄𝑁𝑂 and 𝐿𝑁𝑂.

2.2.2. ILC with basis functions
ILC with basis functions achieves reference flexibility by minimizing

a cost function and parameterizing the feedforward signal in basis
functions as

𝑓𝑗 = 𝜓𝜃𝑗 , (3)

with feedforward parameters 𝜃𝑗 ∈ R𝑛𝜃×1 and basis functions 𝜓 ∈ R𝑁×𝑛𝜃 .
For ILC with basis functions, the cost function

min
𝜃𝑗+1

‖

‖

‖

𝑒𝑗+1
‖

‖

‖

2

𝑊𝑒
+ ‖

‖

‖

𝑓𝑗+1
‖

‖

‖

2

𝑊𝑓
+ ‖

‖

‖

𝑓𝑗+1 − 𝑓𝑗
‖

‖

‖

2

𝑊𝛥𝑓
, (4)

is minimized. Similarly to norm-optimal ILC in (2), the optimal solution
to (4) is of the form

𝜃𝑗+1 = 𝑄𝐵𝐹 𝜃𝑗 + 𝐿𝐵𝐹 𝑒𝑗 , (5)

with basis functions robustness and learning matrices 𝑄𝐵𝐹 and 𝐿𝐵𝐹 .
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Fig. 2. System that is used for validation. The system is discretized with zero-order
hold, and has one sample delay.

2.2.3. Frequency-domain ILC
Frequency-domain ILC iteratively improves the tracking perfor-

mance by utilizing infinite-time frequency-domain representations.
Frequency-domain ILC is designed by the infinite-time update law

𝑓
𝑗+1(𝑧) = 𝑓 (𝑧)(𝑓

𝑗 (𝑧) + 𝛼
𝑓 (𝑧)𝑗 (𝑧)), (6)

with 𝑓 the robustness filter, that is used to enforce convergence and
filter out unwanted effects, 𝑓 the learning filter and 𝛼 the learning
gain. Frequency-domain ILC is implemented in finite-time as (Norrlöf
& Gunnarsson, 2002)

𝑓𝑓𝑗+1 = 𝑄𝑓 (𝑓𝑓𝑗 + 𝛼𝐿𝑓 𝑒𝑗 ), (7)

with finite-time convolution matrices 𝑄𝑓 and 𝐿𝑓 , corresponding to
𝑓 (𝑧) and 𝑓 (𝑧).

2.3. Problem definition

The aforementioned classes of ILC have several design problems and
limitations, and are as follows.

• For norm-optimal ILC, it is highly complex to robustly choose
the weighting matrices, see for example Gorinevsky (2002) and
Xu and Tan (2002), and 𝑊 = 𝑤𝐼 severely limits performance.
Furthermore, norm-optimal ILC does not have task flexibility.

• ILC with basis functions reduces performance if 𝜓 does not accu-
rately describe the inverse system 𝑃−1 (Boeren et al., 2016; van
Zundert, Bolder, & Oomen, 2016).

• Frequency-domain ILC does have an intuitive design procedure
consisting of manual loop-shaping (Boeren et al., 2016; Bristow
et al., 2006) and results in high performance, but conventionally
does not have task flexibility.

In Example 1, the limited performance of norm-optimal ILC with iden-
tity weighting matrices and model uncertainty is illustrated, since
robust monotonic convergence is difficult to achieve.

Example 1. A simulation study illustrates that frequency-domain ILC
performs better than norm-optimal ILC for an inaccurate model and
identity weighting matrices. The system is a mass–spring–damper as
seen in Fig. 2,where further elaboration is provided in Section 4. The
error 2-norm during 300 trials of norm-optimal and frequency-domain
ILC is shown in Fig. 3(a), and the maximum error 2-norm during these
trials and the steady state error 2-norm ‖𝑒∞‖2 are shown in Fig. 3(b).
The results in Fig. 3 illustrate that for norm-optimal ILC to reduce the
steady-state error ‖𝑒∞‖2 beyond frequency-domain ILC, it first increases
the maximum error 2-norm max𝑗

(

‖

‖

‖

𝑒𝑗
‖

‖

‖2

)

at least a factor 3 ⋅ 106 due

to non-monotonic convergence, which is unacceptable in industrial
applications.

Hence, the problem addressed in this paper is to develop an ILC
algorithm that simultaneously satisfies all three requirements for in-
dustrial applicability of ILC, that combines the advantages of current

ILC techniques. u

3 
Fig. 3. Illustration that norm-optimal ILC with 𝑊𝑒 = 𝐼 and 𝑊𝛥𝑓 = 0 converges slowly
and non-monotonically for inaccurate models.

3. Method

In this section, the developed method is presented. The overparam-
eterized feedforward signal

𝑓𝑗 = 𝛹𝛩𝑗 =
[

𝜓 𝐼𝑁
]

[

𝜃𝑗
𝑓𝑓𝑗

]

= 𝜓𝜃𝑗 + 𝑓
𝑓
𝑗 , (8)

that consists of basis functions and frequency-domain ILC, is exploited
to achieve both task flexibility and high performance, leading to (R1)
and (R2). Frequency-domain ILC is used since it has better performance
than norm-optimal ILC for inaccurate models, as shown in Section 2,
and due to its intuitive design procedure (R3).

First, the norm-optimal description of frequency-domain ILC is de-
termined, such that second, the overparameterized feedforward signal
in (8) consisting of frequency-domain and ILC with basis functions can
be jointly optimized. Finally, a procedure summarizes the developed
method.

3.1. Norm-optimal representation of frequency-domain ILC

In this section, it is shown that the finite-time implementation of
frequency-domain ILC in (7) is equivalent to (1) for a very specific
choice of weighting matrices 𝑊𝑒, 𝑊𝑓 and 𝑊𝛥𝑓 . First, the finite-time
requency-domain ILC update is written using the cost function

in
𝑓𝑓𝑗+1

‖

‖

‖

𝑒𝑗+1
‖

‖

‖

2

𝑊 𝑓
𝑒
+ ‖

‖

‖

𝑓𝑓𝑗+1
‖

‖

‖

2

𝑊 𝑓
𝑓
+ ‖

‖

‖

𝑓𝑓𝑗+1 − 𝑓
𝑓
𝑗
‖

‖

‖

2

𝑊 𝑓
𝛥𝑓
, (9)

that is minimized by

𝑓𝑓𝑗+1 =(𝐽
⊤𝑊 𝑓

𝑒 𝐽 +𝑊 𝑓
𝑓 +𝑊 𝑓

𝛥𝑓 )
−1

(

𝐽⊤𝑊 𝑓
𝑒 𝐽 +𝑊 𝑓

𝛥𝑓

)

𝑓𝑓𝑗

+(𝐽⊤𝑊 𝑓
𝑒 𝐽 +𝑊 𝑓

𝑓 +𝑊 𝑓
𝛥𝑓 )

−1𝐽⊤𝑊 𝑓
𝑒 𝑒𝑗

=𝑄𝑓 (𝑓𝑓𝑗 + 𝛼𝐿𝑓 𝑒𝑗 ),

(10)

here the last identity is found by substituting 𝑓𝑓𝑗+1 from the finite-time
𝑓
pdate law of frequency-domain ILC in (7). The contributions of 𝑓𝑗 and
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𝑒𝑗 in (10) are separated to achieve

𝑄𝑓 = (𝐽⊤𝑊 𝑓
𝑒 𝐽 +𝑊 𝑓

𝑓 +𝑊 𝑓
𝛥𝑓 )

−1
(

𝐽⊤𝑊 𝑓
𝑒 𝐽 +𝑊 𝑓

𝛥𝑓

)

, (11)

𝑄𝑓𝐿𝑓 = (𝐽⊤𝑊 𝑓
𝑒 𝐽 +𝑊 𝑓

𝑓 +𝑊 𝑓
𝛥𝑓 )

−1𝐽⊤𝑊 𝑓
𝑒 . (12)

rom (11), 𝑊 𝑓
𝑓 is derived as

𝑓
𝑓 =

(

𝐽⊤𝑊 𝑓
𝑒 𝐽 +𝑊 𝑓

𝛥𝑓

)(

(

𝑄𝑓
)−1 − 𝐼

)

. (13)

ecause 𝑊 𝑓
𝑓 must be symmetric and positive semidefinite, but the prod-

ct of two symmetric matrices is not necessarily symmetric,
𝐽⊤𝑊 𝑓

𝑒 𝐽 +𝑊 𝑓
𝛥𝑓

)

in (13) is chosen
(

𝐽⊤𝑊 𝑓
𝑒 𝐽 +𝑊 𝑓

𝛥𝑓

)

= 𝐼. (14)

y substituting (14) and 𝑊 𝑓
𝑓 from (13) into (12), the following identity

s found

𝑄𝑓𝐿𝑓 = 𝑄𝑓𝐽⊤𝑊 𝑓
𝑒 , (15)

eading to the main result in this section in Theorem 1.

heorem 1. Let 𝐽 be invertible and 𝐿𝑓 = 𝐽−1, then the minimizer of the
ost function in (9) with
𝑓
𝑒 = 𝛼𝐽−⊤𝐿𝑓 , (16a)
𝑓
𝑓 =

(

𝑄𝑓
)−1 − 𝐼, (16b)

𝑓
𝛥𝑓 = (1 − 𝛼)𝐼, (16c)

s equal to finite-time frequency-domain ILC in (7).

roof. Straightforward manipulation of (15) lead to 𝑊𝑒 in (16a).
ubstituting (14) into (13) leads to 𝑊𝑓 in (16b). Finally, the resulting
𝑒 in (16a) is substituted into (14) to result in 𝑊𝛥𝑓 in (16c). ■

emark 1. The conditions that 𝐽 is invertible and 𝐿𝑓 = 𝐽−1 in
heorem 1 are not restrictive, since the weighting matrix 𝑊 𝑓

𝑒 can be
pproximated as the symmetric matrix

𝑓
𝑒 = 𝛼𝐿𝑓 ⊤𝐿𝑓 , (17)

ince 𝐿𝑓 is similar to 𝐽−1, and is shown in Section 4.1.

ssumption 1. To ensure that 𝑊 𝑓
𝑓 in (16b) is symmetric, there

s assumed that the robustness filter is designed with zero-phase,
.e., 𝑓 (𝑧) = 𝑓1 (

1
𝑧 )

𝑓
1 (𝑧) (Gunnarsson & Norrlöf, 2001).

To summarize, finite-time frequency-domain ILC in (7) is recov-
red by specifically choosing the weighting matrices (16a), (16b) and
16c) and optimizing (9), resulting in an intuitive frequency-domain
esign procedure (R3) for norm-optimal ILC. In the next section, the
orm-optimal description of frequency-domain ILC is used when over-
arameterizing the feedforward signal.

.2. Inclusion of basis-function in frequency-domain ILC

In this section, both task flexibility and high performance are
chieved by deliberately overparameterizing the feedforward in terms
f basis functions and frequency-domain ILC by utilizing the norm-
ptimal representation of finite-time frequency-domain ILC. The cost
unction in (9) is adjusted by utilizing the overparameterized feed-
orward signal in (8) and preserving the weighting 𝑊 𝑓

𝑓 and 𝑊 𝑓
𝛥𝑓

xclusively on the frequency-domain component as

min
𝑗+1
𝑉 (𝛩𝑗+1) = min

𝛩𝑗+1

‖

‖

‖

𝑒𝑗+1
‖

‖

‖

2

𝑊 𝑓
𝑒
+ ‖

‖

‖

𝛩𝑗+1
‖

‖

‖

2

𝑊𝜃,𝑓
+ ‖

‖

‖

𝛩𝑗+1 − 𝛩𝑗
‖

‖

‖

2

𝑊𝛥
(18)

with

𝑊𝜃,𝑓 =

[

𝑊𝜃 0
0 𝑊 𝑓

]

, 𝑊𝛥 =

[

𝑊𝛥𝜃 0
0 𝑊 𝑓

]

, (19)

𝑓 𝛥𝑓

4 
here 𝑊𝜃 ,𝑊𝛥𝜃 ∈ R𝑛𝜃×𝑛𝜃 are the weighting matrices on the feedforward
parameters 𝜃, that are typically chosen as 𝑊𝜃 = 𝑤𝜃𝜓⊤𝜓 and 𝑊𝛥𝜃 =
𝑤𝛥𝜃𝜓⊤𝜓 , resulting in equivalent weighting as conventional ILC with
asis functions. The minimizer of (18) is given by

𝑗+1 =
(

𝛹⊤𝐽⊤𝑊 𝑓
𝑒 𝐽𝛹 +𝑊𝜃,𝑓 +𝑊𝛥

)−1

⋅
((

𝛹⊤𝐽⊤𝑊 𝑓
𝑒 𝐽𝛹 +𝑊𝛥

)

𝛩𝑗 + 𝛹⊤𝐽⊤𝑊 𝑓
𝑒 𝑒𝑗

)

.
(20)

emark 2. If the weighting on 𝜃 is chosen sufficiently small 𝑊𝜃 ≪
𝑓
𝑓 , the parameterization (8) consisting of frequency-domain and ILC
ith basis functions is naturally complimentary and the parameteri-

ation will assign as much information in the basis functions feedfor-
ard signal as possible. Additionally, a targeted regularization on the

requency-domain component can be done by using the image of 𝜓 ,
imilarly to Kon et al. (2023),

min
𝑗+1
𝑉 (𝛩𝑗+1) + 𝜆

‖

‖

‖

[

0 𝑈1
]

𝛩𝑗+1
‖

‖

‖

2

2
,

ith singular value decomposition

=
[

𝑈1 𝑈2
]

[

𝛴 0
0 0

] [

𝑉 ⊤
1
𝑉 ⊤
2

]

.

.3. Procedure

In this section, the developed method for achieving task flexibil-
ty, high performance and an intuitive design procedure by combin-
ng frequency-domain ILC with basis function ILC is summarized in
rocedure 1.

Procedure 1. (Norm-optimal frequency-domain ILC with basis functions)

(1) Design learning filter 𝑓 (𝑧), 𝛼, and zero-phase robustness filter
𝑓 (𝑧) as in frequency-domain ILC.

(2) Derive 𝐿𝑓 and 𝑄𝑓 , that are the finite-time convolution matrices
of 𝑓 (𝑧) and 𝑓 (𝑧).

(3) Choose the basis functions 𝜓 in (8).
(4) Compute equivalent norm-optimal weighting matrices 𝑊 𝑓

𝑒 , 𝑊 𝑓
𝑓

and 𝑊 𝑓
𝛥𝑓 using (16a), (16b) and (16c).

(a) If 𝑊𝑒 is non-symmetrical, follow Remark 1.

(5) Initialize 𝛩1, e.g., as 𝛩1 = 0.
(6) For 𝑗 ∈ {1, 2, 3,… , 𝑁𝑡𝑟𝑖𝑎𝑙𝑠}.

(a) Calculate 𝑓𝑗 = 𝛹𝛩𝑗 in (8).
(b) Apply 𝑓𝑗 to closed-loop system and record 𝑒𝑗 .
(c) Calculate 𝛩𝑗+1 using (20).

4. Simulation example

In this section, the developed method is validated and compared
with frequency-domain and ILC with basis functions. First, the val-
idation setup is shown, including the system and model, the refer-
ence signals and the ILC designs. Second, the norm-optimal equivalent
description of frequency-domain ILC is validated. Finally, the devel-
oped method with basis functions is validated and compared for a

trial-varying reference signal.
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Table 1
Parameters used for the system seen in Fig. 2 for the true system and model.

Parameter True Model Unit

𝑚1 0.072 0.09 [kg]
𝑚2 0.01 0.006 [kg]
𝑘 1000 1800 [N/m]
𝑑2 0.031 0 [N s/m]
𝑑12 1 0.915 [N s/m]

Fig. 4. FRF of the system (𝑒𝑗𝜔) ( ) and of the model available for ILC ̂(𝑒𝑗𝜔) ( ).

4.1. Simulation setup and approach

A two–mass–spring–damper system with one sample delay and a
sampling time of 1 ms, with inaccurate model, is simulated to val-
idate the developed ILC technique. The mass–spring–damper system
represents the dominant dynamics of mechatronic systems (Lambrechts
et al., 2005; Oomen, 2020), and is for example an actuator with a
flexible coupling and mass attached. The system is seen in Fig. 2, and
the parameters of the true system (𝑧) and the model ̂(𝑧) are seen in
Table 1, and are given by

(𝑧) = 10−7 ⋅ 2.80𝑧−2 + 12.4𝑧−3 − 0.65𝑧−4 − 1.58𝑧−5

1 − 3.78𝑧−1 + 5.46𝑧−2 − 3.56𝑧−3 + 0.89𝑧−4
,

̂(𝑧) = 10−7 ⋅ 4.00𝑧−2 + 21.4𝑧−3 + 5.85𝑧−4 − 1.25𝑧−5

1 − 3.56𝑧−1 + 4.98𝑧−2 − 3.26𝑧−3 + 0.85𝑧−4
.

(21)

The FRFs of (𝑒𝑗𝜔) and ̂(𝑒𝑗𝜔) are seen in Fig. 4. Additionally, the FRF
of the true system (𝑒𝑗𝜔) is available for stability analysis, but not for
the design of learning filters. The feedback controller is a lead filter
and a first-order low-pass filter, that achieves a closed-loop bandwidth
of 10 Hz with sufficient robustness margins, and is given by

(𝑧) = 108.6 + 112.9𝑧−1 − 100𝑧−2 − 104.3𝑧−3

1 − 0.65𝑧−1 − 0.95𝑧−2 + 0.70𝑧−3
. (22)

The learning filter 𝑓 (𝑧) is designed by approximating the inverse
process sensitivity using ZPETC (Tomizuka, 1987). The robustness filter
𝑓 (𝑧) is a zero-phase second order Butterworth lowpass filter with
a cutoff frequency of 40 Hz, that was manually tuned to achieve
convergence according to
|

|

|

𝑓 (𝑒𝑗𝜔)(1 − 𝛼 (𝑒𝑗𝜔)𝑓 (𝑒𝑗𝜔))||
|

< 1, ∀𝜔 ∈ [0, 2𝜋]. (23)

Two fourth-order polynomial reference signals are designed using the
approach in Lambrechts et al. (2005) with 𝑁 = 229 samples and are
seen in Fig. 5. Following 10 consecutive trials with the first reference
signal, it is then switched to the second reference signal for another 10
consecutive trials.

4.1.0.1. Basis function design. The basis functions 𝜓 are based on the
inverse model of ̂(𝑧) and are chosen as

𝜓 =
[

𝑟̈ 𝑟⃜
]

, (24)

where the derivatives of the reference signal are readily available by
design of the reference signal. 𝑊𝜃 and 𝑊𝛥𝜃 in (19) are chosen as 0,
since no additional robustness is necessary.
5 
Fig. 5. The first ( ) and second ( ) reference signals that are used during
validation.

Fig. 6. Surface plot of the weighting matrix 𝑊 𝑓
𝑓 ( ), with cross section of the

central values ( ), that if used in the norm-optimal cost function (1) results in the
requency-domain ILC update.

ig. 7. Tracking performance after 5 trials of ILC for frequency-domain ILC ( ) and
norm-optimal equivalent ( ) and after 10 trials for frequency-domain ILC ( ) and
norm-optimal equivalent ( ) using the first reference signal, showing the same error
signal.

4.1.0.2. Recovering norm-optimal formulation of frequency-domain ILC.
𝑊 𝑓
𝑓 and 𝑊 𝑓

𝛥𝑓 are calculated using respectively (16b) and (16c), result-
ing in 𝑊 𝑓

𝛥𝑓 = 0 since 𝛼 = 1. 𝑊 𝑓
𝑒 is computed using (17), since 𝐿𝑓 ≠ 𝐽−1

due to the use of ZPETC, as indicated in Remark 1. A surface plot of
the weighting matrix 𝑊 𝑓

𝑓 is seen in Fig. 6. Frequency-domain ILC and
its norm-optimal equivalent achieve the same tracking error for every
trial, where the error signal during trial 5 and 10 are shown in Fig. 7,
validating their equivalence.

4.2. Validation results

The error 2-norm and signal for 20 trials of ILC are seen in Figs. 8
and 9. The plant estimate using the basis function feedforward filter is
seen in Fig. 10. The following observations are made.

• Fig. 8 shows frequency-domain ILC is converged at trials 10 and
20. However, its error 2-norm significantly increases at trial 11,
showing that it lacks task flexibility.
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Fig. 8. Error 2-norm for 20 trials of frequency-domain ILC ( ), basis function ILC
) and developed combined frequency-domain and basis function ILC ( ). At trial

1, the reference signal is changed ( ).

Fig. 9. Tracking error after 20 trials 𝑒20 of frequency-domain ILC ( ), basis function
ILC ( ) and developed combined frequency-domain and basis function ILC ( ).

• Though ILC with basis functions enables reference flexibility as
seen in Fig. 8, its higher error 2-norm compared to the other
methods stems from lacking 𝑟̇ in its basis function 𝜓 to compen-
sate the viscous friction 𝑑2.

• The error 2-norm in Fig. 8 and the time-domain error signal for
trial 20 in Fig. 9 demonstrate the developed approach’s superior
performance against both basis function and frequency-domain
ILC. It surpasses basis functions ILC by compensating damping
𝑑2 with the frequency-domain component, which is lacking in the
basis function 𝜓 . The developed approach outperforms frequency-
domain ILC by capturing high-frequency effects with 𝜓 , that for
frequency-domain ILC is filtered out by robustness filter 𝑓 (𝑧).

• Similar error 2-norm to ILC with basis functions under reference
change illustrates the method’s task flexibility.

• From Fig. 10 it becomes clear that the basis functions feedforward
parameters 𝜃𝑗 are estimated consistently with the inverse model,
which is enabled since 𝑊𝜃 = 0≪ 𝑊 𝑓

𝑓 as described in Remark 2.

5. Conclusions

In this paper, both task flexibility and performance are achieved
through the use of an overparameterized feedforward signal consisting
of frequency-domain and basis functions ILC. The finite-time norm-
optimal representation of frequency-domain ILC is derived, that is
consequently used in overparameterizing the feedforward signal. The
basis functions and frequency-domain ILC components are complimen-
tary by appropriately regularizing the frequency-domain component.
An example validates the equivalent norm-optimal representation, and
by exploiting the overparameterized feedforward signal, the perfor-
mance is significantly increased. Hence, the developed method is a key

enabler for improving performance and task flexibility in control.

6 
Fig. 10. FRFs of system (𝑒𝑗𝜔) ( ) and of estimate using the inverse basis function
feedforward filter −1

𝐵𝐹 (𝑒
𝑗𝜔 , 𝜃𝑗 ) ( ), with finite-time representation 𝐹𝐵𝐹 (𝜃𝑗 )𝑟 = 𝜓𝜃𝑗 .

Ongoing research focuses on rigorously validating the method
through experimental testing on a real-world setup, in addition to
computationally efficient implementations and validating robustness of
the developed approach.
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