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Abstract 
Cancer is one of the leading causes of death in the world. While there have been many studies 

investigating the development and progression of cancer in human tissues using host omics data or 

microbial data, there is a lack of research combining both types of data, even though both modalities 

have been shown to affect cancer morphology and aetiology. Studies which do combine these 

modalities often use simple methods or do not consider the relation between the two modalities 

and disease phenotypes. Such an integrated approach could offer additional insights and lead to the 

discovery of new disease biomarkers and better treatment strategies and therapies. 

In this paper, we investigated whether such a holo-genomic approach offers additional information 

compared to using the modalities separately, by comparing the performances of prediction models 

built using the individual and integrated modalities for various prediction endpoints. To do this, we 

used TCGA gene expression data for the host omics modality and bacterial genus abundance data 

from the TCGA-mined Cancer Microbiome Atlas (TCMA) for the microbiome modality. 

We found no improvement when integrating host gene expression with microbial abundance 

information compared to using the gene expression data individually, and the microbial data 

provided the least amount of diagnostic information. This is likely due to the information density of 

gene expression data, high variation of the microbiome, and the quantity, specificity and validation 

of the TCMA data. These results suggest that the holo-omics approach might not provide additional 

utility in certain contexts, that additional considerations have to be made when choosing microbial 

and host omic datasets for holo-omic integration, and provide an insight into the usability of the 

TCMA data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 
Cancer is among the leading causes of death worldwide, being responsible for millions of deaths 

every year. The aetiology, morphology and progression of different cancers depend on a complex 

interplay of various biological and environmental factors. Recently, it is becoming increasingly easy 

to investigate this complex interplay thanks to the development of more modern sequencing 

technologies and the availability of biological data. Such data availability has made it more accessible 

for researchers to use various omics data to perform various tasks for cancer diagnostics which 

relate to the analysis and integration of both host and microbial omics data. 

Host multi-omics integration 
The availability of host omics data of various data layers, such as gene expression (i.e. genomics), 

DNA methylation (i.e. epigenomics) or copy number variation has enabled researchers to derive 

useful insights into the aetiology and morphology of different cancers. While there are many such 

data sources that have been made available, one of the most impactful sources has been The Cancer 

Genome Atlas (TCGA), a repository of genomic profiles of over 30 types of cancer that can be used 

for cancer diagnostics 1. Using host omics data from this database, researchers have been able to 

derive insights such as finding biomarkers, determining differences in biological composition of 

tumor samples versus normal samples and examining genetic features related to survival. While 

using individual omics types has led to useful insights, an important development has been the 

usage of so-called multi-omics analysis methods, where data from multiple omics layers are 

integrated. This has been shown to lead to additional insights and model performance over single 

omics methods for cancer diagnostics 2,3, however, these methods deal with additional challenges 

owing to the heterogeneity, noise, high dimensionality and sparsity of the multi-omics data 4. To 

derive insights within these conditions, authors have combined multi-omics features with prediction 

models for varying prediction tasks such as cancer subtype detection 2,3, the classification of tissues 

as tumor or normal samples, and survival prediction 2 to diagnose cancers and allow for personalized 

treatments, and identify disease biomarkers that are predictive of the cancer state.  

Microbiome-based analysis 
Besides host omics data, a promising field of research relates to the analysis of microbial omics data. 

There are many microorganisms that live in communities on different human tissues, called the 

human microbiome. Namely, an ecosystem of 10 to 100 trillion microorganisms encompassing 500 

to 1000 unique species for each individual 5. Due to the aforementioned advances in sequencing 

technology, it is becoming increasingly easy to measure the identity, metabolic potential and 

expression of this microbiota. This is leading to various data sets on the human microbiome which 

can be exploited. 

Such data sets include MetaHIT 6 and iHMP 7, which contain microbial data from healthy and 

diseased patients. However, a problem with these data sets is that they often contain data from 

tissue swabs and stool samples, which are not necessarily representative of the microbiome of 

internal organs 5. Next-generation sequencing data sets, such as TCGA, contain, next to host 

sequencing data, microbial sequencing data. This aspect of TCGA is mostly unexplored yet can be 

mined to obtain data on, for example, viromes and bacteriomes of different cancers using different 

tissues, such as tumor tissues and blood.  However, the microbial reads in this data set are often a 

result of contamination 5,8 and thus extensive care needs to be taken to properly decontaminate the 

data.  There have been a number of studies that have managed to do this and obtain useful insights 

on the relation between the tumor microbiome and certain cancers 9,10, motivating the use of TCGA 

for microbial analyses. However, these data sets are often not readily available. A data set which 



attempts to combat this, is the Cancer Microbiome Atlas (TCMA), which contains batch-corrected 

and decontaminated microbial data mined from TCGA whole-genome sequencing (WGS) and whole-

exome sequencing (WXS) experiments 5. 

Using microbial datasets, various aspects of the human microbiome and its association with diseases 

have been studied through various means. Taxonomical data has frequently been used to investigate 

bacterial abundance differences between cancer and healthy samples using hypotheses tests 5,9,11,12 

or prediction models, such as linear regression 9,12. It has also been used to examine co-abundance 

of microbiota in certain tissues 5 and the association of microbiota with patient survival 5,13 or clinical 

factors such as gender and age 11–13. Besides taxonomical data, It is also possible to examine 

microbial differences between tissue types on the functional level through the use of 

metaproteomics or metagenomics 14. Both taxonomical and functional investigations have shown 

that the microbiome can be affected by many factors such as diet and environmental exposure 15 

and that it exhibits significant variation across individuals 16, cancer types 9,17,18, cancer subtypes 18, 

healthy and unhealthy individuals 18, tumor versus normal samples 19 and cancer patients with 

different survival rates 20.  

Furthermore, it has become clear that the microbiome is not only associated with human 

phenotypes but that composition and changes in the microbiome have a direct influence on 

oncogenesis 21–23 and tumor immunotherapy response 22,23, whether positive or negative. As an 

example of a mechanism through which the microbiome can affect a patient, certain bacteria can 

bind to and alter the function of immune system cells which infiltrate tumors, thereby affecting 

carcinogenesis and resistance to chemotherapy 15.  

The need for a holistic view  
It is clear that both host omics and microbial omics data can be used to obtain useful biological 

insights into the aetiology of different cancers. As shown, many studies use one or the other to 

understand different biological processes without considering their interplay 24. However, it has 

become clear that the host can alter the human microbiota and vice versa 25. Thus, the integration of 

host and microbial data could help to better understand the aetiology and physiology of different 

cancers and provide new insights 21. This field, where a holistic approach is taken to biological data, 

is known as hologenomics. It is based on the assumption underlying the hologenome theory, which 

posits that the host and microbial genome are biologically dependent and must be analyzed 

together in order to investigate the phenotype of an organism 26. 

As TCGA has seen much success in host (multi) omics analyses, the possibility of using TCGA-mined 

microbial data offers a valuable opportunity for matched host-microbe analyses. While limited in 

number, prior studies have exploited this by combining host omics features of tissues with the 

microbial information contained within these tissues. Chakladar et al. examined microbe-host 

interactions in pancreatic adenocarcinoma by investigating intra-pancreatic metastasis- and survival-

linked microbe abundance data mined from TCGA and correlating it to host gene expression 

patterns 13. Meanwhile, Greathouse et al. examined the interaction between the microbiome and 

TP53 in lung cancer by investigating the association between TP53 mutations and microbial 

abundance and diversity using statistical tests 11. Finally, Dohlman et al. used the TCMA dataset to 

correlate tumor-normal-linked co-abundant bacterial groups with gene expression patterns of 

certain genes for colorectal cancer 5.  

It is clear that TCGA-mined microbial datasets offer a unique opportunity and valuable data for a 

hologenomic approach. However, while current hologenomic studies examine host and microbial 

data, this is done using simple approaches such as statistical tests, which might not consider the 



interplay between the two types of features. Additionally, such studies often examine the relation 

between each modality and the disease phenotype separately, rather than investigating how the 

combined modalities interact to affect disease phenotype. Combining host omics and matched 

microbial data using powerful machine learning models provides a richer avenue for discovering how 

these modalities differ across diagnostic endpoints, such as tumor versus normal tissue 

classification, and affect tumor development and morphology.  

A hologenomic approach that properly considers the interactions between host and microbial data 

can help derive insights that could further elucidate how cancers develop, identify targets for 

vaccines or microbiome-altering therapies, improve immunotherapies, identify biomarkers and 

identify cancer stages for prognostic assessment and specialized treatments. 

Towards a holistic view 
In this paper, we aimed to investigate whether a holistic view provides additional insights for cancer 

diagnostics when compared to simply using each modality individually by integrating host genomic 

and microbiome data for cancer patients. Specifically, we aimed to investigate the question: 

Does integrating host and microbial omics data provide additional power over using the 

modalities individually? 

In this case, power refers to prediction performance, as prediction models have shown much 

effectiveness in dealing with the challenges present in such an integrated data set and identifying 

important features and relationships for both microbial 9 and gene expression 27 features. 

To this end, we leveraged the TCGA and TCMA data sets and integrated gene expression and 

microbial genus abundance data for tumor tissues and tumor-adjacent normal (NAT) tissues for 

colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), head and neck squamous carcinoma 

(HNSC) and stomach adenocarcinoma (STAD). We then investigated whether the integration of each 

modality provided additional prediction performance for the tumor versus normal prediction and 

tumor stage prediction endpoints compared to simply using the modalities separately. While we 

discuss our main findings on STAD due to the relative simplicity of the cancer and high quantity and 

class balance in the dataset used, much of the experiments have also been performed for the other 

three cancers and can reasonably be generalized to these cancers. 

We found that using the integrated modality did not provide additional performance over using the 

gene expression (GE) modality separately and that the prediction models that used the genus 

modality performed the worst. This is likely due to the high information density of the gene 

expression layer and the low amount of information conveyed by the genus layer. The low 

information of the genus layer is likely due to the high biological variability of microbial data, but 

also technical aspects related to the creation of the TCMA dataset. Thus, these results cannot 

reasonably be generalized to other microbial data sets. 

Materials and methods 

Data 
In order to explore the performance of a holo-omic approach for cancer diagnostics, we used gene 

expression features from TCGA, denoted as GE, and microbial genus relative abundance features 

from TCMA, which we denote as genus. We only kept samples in these data sets for which there was 

both microbial, as well as host omics data. The set containing both modalities is denoted as GE ∩ 

genus. Furthermore, while we validated certain aspects of the findings in this study using other 

cancers, we conducted the main experiments in the study using only stomach adenocarcinoma 



(STAD) data, as it had the most amount of samples and best class balance for the prediction 

endpoints among the cancers available. 

Microbial data 
For the microbial data, we used data from the Cancer Microbiome Atlas (TCMA). This is a microbial 

dataset, created by Dohlman et al., that was obtained by using a statistical model to isolate tissue-

embedded microbial species present in TCGA samples from contaminants, and was subsequently 

validated using 16S rRNA amplicon sequencing on the original TCGA tissue samples. The resulting 

TCMA database, accessible through the TCMA portal 1, contained tissue resident microbial relative 

abundance data for 3689 unique samples and 1772 patients across 21 anatomic sites and 5 TCGA 

projects (HNSC, ESCA, STAD, COAD and READ). The authors only released data for these 5 cancers, as 

they were the ones with the most microbial reads among the cancers investigated in the original 

paper. Thus, every tissue sample contained the relative amount of each genera in that sample, 

where this amount is a number between 0 and 1, and the total relative amounts of all genera in a 

sample add up to 1. Additionally, we omitted READ due to a lack of data on that cancer.  

The highest taxa specification contained within this data was the genus level. As the phylum level 

and other taxa levels above genus are less specific than the genus level, we decided to continue with 

only the genus taxonomical abundance data, which contained 221 taxa. For STAD, there were 52 

genera that did not have a relative abundance of 0 across all samples (Figure 1). In total, there were 

119 nonzero features among the overlapped samples for all cancers (Figure S1, Table S1).  

 

Figure 1: Relative abundances of the 52 nonzero genera in the TCMA data set for STAD samples. Note that this only includes 
TCMA samples for which there was also paired TCGA GE data available. 

Host omics data 
The host omics data consisted of a TCGA data set which was extracted and processed by a prior 

study 28. This data set consisted of level 3 RNA-seq gene expression data for 9732 tumors and 727 

tumor-adjacent normal samples encompassing 33 total different cancer types. The TCGA RNA-seq 

data was obtained using the UCSC Xena data browser on March 8, 2016. The expression values of 

these genes consisted of a pre-processed and batch-corrected GE x sample matrix with RSEM values 

normalized using a log2(FPKM + 1) transformation. The gene expression values of the 5000 genes 

with the highest variability were subsequently selected, as evaluated using Median Absolute 

Deviation (MAD). Finally, the expression values in the data set were min – max scaled. In further 

experiments involving the gene expression-only modality, we only used those samples for which 

 
1 https://tcma.pratt.duke.edu/ 

https://tcma.pratt.duke.edu/


both host omics, as well as microbial data, was available. Thus, we also only considered the cancers 

STAD, HNSC, ESCA and COAD. 

Clinical data 
The clinical data was accessed using the Snaptron web server by the same authors 28. We matched 

the clinical data with the corresponding patient samples in order to obtain details for the tumor and 

stage endpoints. To determine whether a sample was a tumor or NAT tissue, the sample type code 2 

was used, where codes in the range 01 – 09 are tumors and those in the range 10 – 19 are normal 

samples 3. Furthermore, the stage clinical data was used to determine the tumor stage of each 

sample. We grouped every substage together to obtain 5 total final stages. For example, samples 

that were classified as stage IIA and IIB were grouped together under the bin of stage II. Finally, we 

modeled the tumor-adjacent normal samples as stage 0. 

Overlapped data 
In order to investigate the effects of integrating microbial and host omics data on cancer diagnostics, 

we created an overlapped set of samples for which there was both host- and microbial omics data in 

the above-described data sets. In the first step, the TCGA gene expression data was joined with the 

clinical data. To do this, we used the TCGA barcode field of each row in the clinical data set, which 

contained the code for the project, the tissue source site (TSS), participant ID, sample type, vial, and 

portion id. This field was then stripped of the portion ID and vial information and the duplicate rows 

were dropped to remove samples with the same ID but different measuring technologies. Each row 

with clinical data was then joined with the samples in the GE data set by matching rows for which 

the TCGA barcode (excluding vial and portion id information) was equal. To join the data set with GE 

+ clinical data to the genus abundance dataset, we matched rows for each table based on the TCGA 

barcode, excluding vial and portion ID information. This led to a data set containing samples with GE, 

genus abundance and clinical information for STAD, HNSC, ESCA and COAD.  

Thus, this dataset contained information on whether each sample was a tumor or NAT tissue (Table 

1) and the stage of the sample (Table 2). As can be seen, there are less total samples per cancer with 

the stage endpoint than with the tumor versus normal categorization. This is due to the stage 

information for certain samples being absent. In the end, when building models for each modality, 

we only used those samples that were contained in the overlap set to allow for a fair comparison. 

Table 1: Number of tumor and normal adjacent tissue (NAT) samples in the overlap set for each cancer. 

Cancer Normal (NAT) Tumor  Total 

    
 STAD 9 113 122 

COAD  3 45 48 

ESCA 7 59 66 

HNSC 7 154 161 

    
 

 
2 https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes 

3 https://docs.gdc.cancer.gov/Encyclopedia/pages/images/TCGA-TCGAbarcode-080518-1750-4378.pdf 



Table 2: Number of samples for each tumor stage in the overlap set for each cancer. Stage 0 corresponds to normal 
adjacent tissue (NAT) samples. 

Cancer Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Total 

       
STAD 9 19 36 27 16 107 

COAD 3 12 15 11 6 47 

ESCA 7 8 30 15 2 62 

HNSC 7 10 23 23 71 134 

       

Complex modality integration  
For the complex modality integration, we concatenated the GE and genus data set and integrated 

the features using an autoencoder and nonnegative matrix factorization. We also extracted features 

from the GE and genus data sets separately by using these integration methods on the GE data and 

the genus data individually. In the end, we extracted 100 features from the 5221 features in the GE + 

genus concatenated set, 100 features from the 5000 features in the GE set, and 50 features from the 

221 in the genus set. 

Autoencoder 
For the integration using an autoencoder, we used PyTorch to define the autoencoder architecture 

and train the model, and used MSE as the loss function and Adam as the optimizer.  

For hyperparameter tuning, we used the Skorch package to wrap the Autoencoder module into a 

Scikit-learn compatible model. The scikit-learn GridSearchCV package was then used to perform 

hyperparameter tuning and determine the optimal architecture for the autoencoder. Each set of 

parameters was evaluated using 5-fold cross-validation. We used a grid search space that we defined 

based on the architecture of an autoencoder built by Chaudhary et al. 2, which was previously used 

to successfully integrate host multi-omics features. Specifically, we explored an architecture with 3 

hidden layers, with the options outer_hidden_layers_size : {100, 200} and  

extracted_features_amount (i.e. middle hidden layer) : {30, 50, 100}. We also evaluated an 

architecture with 5 hidden layers, with the same parameter space for the outer and middle hidden 

layers, and the added grid space of second_to_last_outer_layers_size : {50, 100}. For the Adam 

optimizer, we explored learning_rate : {1e-1, 1e-2, 1e-3, 1e-4}, and for the model training 

max_epochs : {10, 20, 30, 40, 80}. We ran the hyperparameter tuning pipeline on the GE, genus and 

GE ∩ genus datasets separately. The optimal architecture for the GE integration model and the GE ∩ 

genus model was an architecture with 3 hidden layers with an outer hidden layer size of 200, 

extracted features amount of 100 and trained for 80 epochs. For the genus model, the optimal 

architecture had 5 hidden layers, an outer and second to last outer hidden layer size of 100, 

extracted features amount of 50 and was trained using 80 epochs. After obtaining the optimal 

hyperparameters, we used each dataset to train a separate AE model per modality and then used 

these models to extract features from the datasets of each modality to create their AE-integrated 

counterpart.  

Nonnegative Matrix Factorization 
For the integration using nonnegative matrix factorization, the NMF function from the scikit-learn 

decomposition package was used. To compare results, we extracted the same amount of features 



from each modality as we did with the autoencoder. Additionally we selected the initialization to be 

random, and supplied a static random seed to allow for reproducibility between experiments. 

Finally, we created NMF-integrated counterparts of the data sets for each modality. 

Prediction pipeline 
We evaluated the usefulness of each data modality by evaluating the performance of a prediction 

model when using the modality to train the prediction model for a prediction task (Figure 2). For the 

stage prediction endpoint, the prediction of the different stages 0-4 was modeled as a regression 

problem and was performed using the scikit-learn random forest regressor model and the elastic net 

model, while the tumor versus normal prediction endpoint was modeled as a binary classification 

problem and was performed using the scikit-learn support vector machine model. All the prediction 

models were initialized with a random seed of 0. Each experiment was performed for each 

combination of cancers (i.e. STAD, COAD, ESCA and HNSC) and for each modality (i.e. gene 

expression, genus and the combination of gene expression and genus) separately. To train and 

evaluate the model, we used a random-sampling based approach (Figure 3). 

 

Figure 2: The general prediction pipeline. For each modality GE, genus and GE ∩ genus, we built separate prediction models 
for the targets tumor versus normal prediction, and tumor tissue stage prediction. We then evaluated the performance of 
the prediction models on each modality and compared the models in order to determine the utility of each modality. 

Baseline model 
To provide a reference to help interpret the performance of each prediction model, we also 

determined what the predictive performance would be for a model which always predicts the 

majority target value for each prediction task. For example, for STAD and the tumor versus normal 

classification endpoint, the baseline model is one which always predicts that a sample is a tumor 

sample and would have an F1 score of 0.96. For stage, the baseline model would be one which 

always predicts that a sample has a stage of II (i.e. a target value of 2), and would have an RMSE of 

1.168.  

Data splitting 
We used a random sampling approach to obtain an estimation of how a prediction model performed 

when used on each data modality separately, compared to how the model performed when using a 

combination of the modalities using various integration methods (Figure 3). This was done by 

performing a random stratified split of the relevant dataset into 80% training and 20% testing using 

the scikit-learn train_test_split function. This split was performed 200 times to obtain a reliable 



estimate of the model performance and each split iteration was assigned a custom seed based on 

the iteration count to ensure consistency between experiment runs.  

 

Figure 3: Data spitting and prediction pipeline. To evaluate the predictive power of each modality, we randomly split the 
data into a training set, consisting of 80% of the data, and a testing set, consisting of 20% of the data. On the training set, 
we performed feature selection using varying feature selection methods, performed hyperparameter tuning to determine 
the best set of parameters for the given prediction model, and then used the entire 80% of the data to train the prediction 
model. We then used the 20% testing data to evaluate the model performance using various prediction metrics. Ultimately, 
we repeated this 200 times to obtain 200 evaluation metrics for each experimental setup tested and evaluated the models 
based on these metrics. 

Feature selection 
Prior to generating a prediction model, we performed feature selection in order to reduce the effect 

of noisy variables and only include the most powerful predictors. 

Using 80% of the data, this data set portion was used to perform feature selection for various 

feature amounts (i.e. 6, 10, 26, 50, 100, 200), up to the maximum amount of features present within 

the modality. To do this, we first performed feature selection to create an ordered list of the top 200 

features, ranked according to the weights assigned by the relevant feature selection method. From 

this pool, we then ran the experiments using only the top 100, top 50, top 25, top 10 and top 6 

features. Thus, the sets of selected features for each feature selection amount are subsets of each 

other. For example, the top 6 features are contained within the top 10 features, which are in turn 

contained within the top 26 features etc. 

To perform the modality parity enforcement experiments, we performed feature selection using the 

GE and genus modality separately for each feature amount. For example, when selecting 200 

features, we first selected 100 features using only the GE modality separately, then selected 100 

from the genus modality, and then combined these together when training and evaluating the 

model.  

For the stage prediction endpoint, the feature selection was performed using the Pearson 

correlation coefficient, an elastic net model, and a random forest regressor model. The Pearson 

correlation coefficient-based feature selection was performed by using the scikit-learn SelectKBest 

function with the r_regression method as the scoring function, while the latter two methods were 

performed by using the ElasticNet and RandomForestRegressor packages, respectively. Both were 

initialized with a random seed of zero. For the latter two model-based feature selection methods, 



we also first performed hyperparameter tuning to find the best parameters for the model, and then 

trained the model on the 80% training set. For the elastic net-based feature selection, we obtained a 

feature ranking using the magnitude of the coefficients for each feature value after training the 

model while for the random forest regressor-based model, we used a feature ranking based on the 

mean decrease in variance among the target values after using a certain feature as a tree splitting 

node. Finally, for the tumor vs normal prediction endpoint, feature selection was performed using 

the ANOVA F-test, implemented with the scikit-learn SelectKBest function with the f_classif method 

as the scoring function. 

Model training 
For each feature selection amount, after performing feature selection, we used the selected features 

to perform hyperparameter tuning and then trained a prediction model using these hyper 

parameters with the 80% training portion of the current random sampling iteration. We also trained 

prediction models using all of the features for the relevant modality to examine model performance 

when there is no feature selection. 

Hyperparameter tuning 
When we used a prediction model for either feature selection or to evaluate the predictive 

performance of a modality, we first performed hyperparameter tuning to find the optimal 

parameters. This was done using randomized search with the scikit-learn RandomizedSearchCV 

package. We used a stratified 5-fold cross validation split to evaluate the performance of each 

hyperparameter set and evaluated 100 different randomly sampled hyperparameter sets. 

In terms of the searched hyperparameter space, for the elastic net we explored alpha : {1e-5, 1e-4 … 

1e, 1e2} ∪ {0} and l1_ratio : {0, 0.1, 0.2 … 0.9}. For the random forest regressor, we explored 

n_estimators : {5, 20, 50, 100, 200, 400}, max_features : {‘auto’, ‘sqrt’}, max_depth : {10, 30, 60, 

100}, min_samples_split : {2, 5, 10}, min_samples_leaf : {1, 2, 4} and bootstrap : {True, False}. For the 

support vector machine, we explored C : {1e-10, 1e-9 … 1e9, 1e10}, class_weight : { ‘balanced’, 

None}, kernel : {‘linear’, ‘rbf’} and gamma : {1e-10, 1e-9 … 1e9, 1e10} ∪ {‘scale’, ‘auto’}. 

The performance of each sampled hyperparameter set was evaluated using the root mean squared 

error as a scoring function for the stage prediction endpoint and balanced accuracy for the tumor 

versus normal endpoint. Finally, to ensure the reproducibility of the results, we also used a static 

random seed which only differed across random sampling iterations. 

Testing and evaluation 
After training a model, we then used the 20% testing set of the current random sampling iteration to 

evaluate the model. For the binary tumor versus normal prediction endpoint, we used the f1-score, 

while for the continuous stage prediction endpoint, we used the RMSE. For the latter, since the 

range of stage targets only spans the interval [0,4], we clamped the prediction values of the 

prediction model to always be within this range. 

As there are 200 random sampling iterations, the prediction pipeline thus generates 200 different 

sets of values for these evaluation metrics. For the evaluation, we considered the average of each 

metric across the 200 random sampling iterations, and the standard deviation. To analyze the 

statistical significance of the difference between model performances, we used the Mann-Whitney 

U test. This was implemented using the SciPy mannwhitneyu package. 



Results 

Characterization of data 
To investigate the effects of the host-omics approach, we used pre-processed gene expression (GE) 

samples from the Cancer Genome Atlas (TCGA), as gene expression data alone has been found to 

contain valuable information for multiple cancers 3. This set consisted of 5000 normalized gene 

expression features with the highest variability that were selected from a larger set of TCGA gene 

expression data. 

To investigate the effects of the microbial approach, we used bacterial genus relative abundance 

data from the Cancer Microbiome Atlas (TCMA), which contained 221 genus features. This is an 

openly available microbial database containing batch-corrected and decontaminated genus-level 

relative abundance data mined from TCGA for 5 cancers 5, which allows for microbial analyses using 

a common source of data.  

To evaluate the holo-omic approach, we used a dataset with the concatenated genus and gene 

expression features for each sample, which contained 5221 total features. To allow for a fair 

comparison of this integrated set with the separate gene expression and genus modalities, we 

ensured each modality had the same amount of tissue samples and thus only considered tissue 

samples in the gene expression and genus set for which there was both gene expression and genus 

abundance data available. Ultimately, there remained data for stomach adenocarcinoma (STAD), 

colorectal adenocarcinoma (COAD), esophageal squamous carcinoma (ESCA), head and neck 

squamous carcinoma (HNSC) and rectal adenocarcinoma (READ). 

Furthermore, we combined the patient samples with matched clinical information to determine 

whether the sample originated from a tumor or tumor-adjacent normal (NAT) tissue and determine 

the stage of the tumor tissue. For the tumor stage, the possible stages ranged from stage 0 to stage 

4, as we considered the stage of NAT tissues to be 0. 

Finally, we focused our analysis on the STAD data, as STAD had the most simple aetiology among the 

cancers in the data set and the highest amount of samples and balance between classes. However, 

the main experiments have also been run for COAD, ESCA and HNSC, with READ being omitted due 

to a lack of samples. The STAD dataset contained 122 samples for the tumor versus normal 

endpoint, of which 113 were from tumor tissues and 9 from NAT tissues (Table 1), and 107 samples 

that contained tumor stage information (Table 2). 

Holo-omic approach does not lead to improved prediction performance for either 

prediction target  
To investigate the possible benefits of a holistic view of omics integration, we used gene expression 

data and microbial abundance data of various cancers in a predictive model for the binary 

classification task of tumor versus normal prediction and the regression task of tumor stage 

prediction. To establish a baseline, we built prediction models on the gene expression data set 

(denoted as GE) and the microbial abundance data (denoted as genus) separately and evaluated the 

prediction performance. We then built prediction models on the concatenation of both of these data 

sets (denoted as GE ∩ genus) and compared it to the established baseline. An overview of the 

prediction pipeline can be found in Figure 2. Finally, we also compared the performance of all 

models to that of a model which always predicts the majority class. 

 



We used random sampling to perform 200 random stratified splits of each modality data set into 

80% training and 20% testing (Figure 3). In each random sampling iteration, we also used a feature 

selection method on the training set beforehand to select the most important features, as feature 

selection can have a significant impact on the performance and results of prediction models 29. 

These features were then used to train a model on this same training set and the performance of the 

model was then tested on the testing set for the available prediction endpoints. This was repeated 

for each cancer, modality and feature selection amount, including when performing no feature 

selection. After this procedure, we obtained 200 scores for each evaluation metric and plotted the 

mean and standard deviation of these scores. For tumor vs normal prediction, we used the f1-score, 

as it can handle imbalanced data sets, while for tumor stage prediction, we used the root-mean-

squared error (RMSE). As the distribution of these scores were nonnormal, we compared the 

collection of these scores for different models by using the nonparametric Mann-Whitney U test and 

a p-threshold of 0.01. 

For tumor versus normal prediction, we used a support vector machine (SVM) due to its ability to 

capture nonlinear relationships, deal with imbalanced data sets and previously demonstrated 

performance with biological datasets 2,30,31, and the ANOVA f-test for feature selection, which has 

seen some success in selecting genetic features 2. For stage prediction, we used an elastic net model 

as the predictor model due to its interpretability and previously demonstrated success in gene-based 

models 30,32 and also as the feature selector due to the demonstrated ability of penalized linear 

regression-based methods to select genetic features 20,29. 

The results indicate that integrating STAD gene expression with bacterial genus abundance data 

does not lead to a significant improvement in prediction performance (p = 0.0252) over using gene 

expression data alone for tumor versus normal prediction (Figure 4A). Furthermore, these results 

were consistent across all cancers investigated (Figure S6). This is partially due to the GE model 

alone already performing optimally, which does not leave much opportunity for a performance 

improvement with the integrated modality. This high performance of gene expression is likely 

because gene expression is among the most causative host-omic modalities for tumor development 

and thus contains the most informative features for the discrimination between tumor and normal 

samples. This discriminative power can also be seen after applying dimensionality reduction 

techniques on the GE data and visualizing the relatively large separation between tumor and normal 

samples in the lower dimensional space (Figure S2, Figure S3). Additionally, gene expression can be 

correlated with the presence of certain microbes, as it affects the tumor environment, which in turn 

cultivates different microbiota. Thus, GE might already contain much of the discriminatory 

information that the genus data contains. 



 

Figure 4: Predictive performance of prediction endpoints for STAD (stomach adenocarcinoma). The grey dotted line denotes 
the performance of a baseline model which simply predicts the majority class for the given prediction endpoint. A, f1-score 
for the tumor versus normal prediction endpoint using ANOVA feature selection and an SVM classifier. Each line contains 
the f1-score for a support vector machine trained and tested on a different modality, namely on the genus abundance data 
(genus), the gene expression data (GE) and the concatenated genus + gene expression data (GE ∩ genus). The endpoints of 
each horizontal line segment indicate the average f1-score across 200 random sampling iterations, while the vertical line 
segments indicates the standard deviation of the f1-score across these iterations. The right-most point of each line indicates 
the prediction performance when all the features of the relevant modality are included (i.e. when there is no feature 
selection). B, Root-mean-squared error (RMSE) for the stage prediction endpoint using an elastic net model for the stage 
prediction and feature selection. 

The genus layer seems to provide the worst performance and is even outperformed by the baseline 

model. This is partly due to the baseline model (f1-score = 0.96) already being able to perform quite 

well due to the heavy class imbalance of 113 tumor samples against 9 NAT tissue samples. The 

taxonomic genus data alone does not seem to allow the model to discriminate well between the 

sample types, indicating that it does not contain enough discriminatory information. Combined with 

a high class imbalance, this also leads to a higher standard deviation in performance for the genus 

modality. We believe that the lack of discriminatory ability of the genus abundance features might 

be due to the high microbial variation between individuals and similarity between sample types due 

to microbial transfer between the tumor and NAT tissues.  

We investigated whether a prediction endpoint with a better class balance might alter the results by 

performing the experiments for the stage prediction endpoint. Again, we observed no statistically 

significant difference (p = 0.1246) between the GE and GE ∩ genus model, and the genus layer 

performed the worst (Figure 4B). Furthermore, these results were consistent across all cancers 

(Figure S7). For stage prediction, the GE and GE ∩ genus models seem to perform worse than for the 

tumor vs normal prediction endpoint model, yet still perform better than the baseline. This is partly 

expected, as the prediction task is harder, with a larger range of target values. This, combined with 

the stage imbalance and lack of samples might also make it harder for the model to learn to 

discriminate between stages. This difficulty of the stage prediction task can be seen by the small 

amount of separation between samples with different stages when visualizing them in a lower 

dimensional space (Figure S4, Figure S5). 

Due to the more difficult prediction task, the baseline is also easier to beat, as the model that always 

predicts the majority class will deviate from the actual class more often than if there are only two 

classes. Because of this, the genus modality seems to perform more similarly to the baseline than for 

the tumor vs normal classification task, as it also defaults to simply predicting the majority class. The 

poor performance of the genus model is similar to other prediction models which have used genus 



data for stage prediction 9. Again, the high interpersonal variation of the microbiome and movement 

between tumor and NAT tissues might also play a role in the performance the genus model. Due to 

the higher class balance, we continued conducting the following experiments using only the stage 

prediction endpoint. 

To investigate whether the lack of improvement with the holo-omics approach for the stage 

prediction endpoint was due to the linear elastic net model not being able to properly capture the 

information contained within the individual and integrated modalities and the interaction between 

these modalities, we ran the prediction pipeline using a random forest regressor, which is able to 

capture nonlinear relationships between features and has seen some success in prediction models 

with gene-based features (Figure S9). Again, the holo-omic approach did not offer additional 

improvement over the individual gene expression layer, indicating that the lack of performance 

improvement with the holo-omics approach was not due to the model not being able to properly 

capture complex nonlinear relationships. 

Lack of holo-omic improvement is independent of feature selection method 
To investigate whether the lack of performance improvement with the holo-omic approach was due 

to the feature selection method, we ran the stage prediction pipeline with the Pearson correlation 

coefficient and random forest as feature selection methods. The Pearson correlation coefficient has 

previously successfully been used to find important genetic features and is prediction model 

agnostic, while random forest-based feature selection has also seen some success in gene-based 

models and can capture relationships between features.  

As can be seen, for neither the Pearson correlation coefficient (Figure 5A) nor the random forest 

feature selection (Figure 5B) is there any improvement when integrating the modalities for any of 

the feature selection amounts. These results were also consistent for the Pearson correlation 

coefficient selection both across different cancers (Figure S8) and when using a random forest 

regressor as the prediction model instead of the elastic net (Figure S10). It is worth noting that the 

performance of the genus model no longer changes beyond the features amount of 50, as there are 

only 52 nonzero features in the genus dataset for STAD, which could be informative.  

Furthermore, these results show that the lack of performance improvement with the holo-omic 

approach is likely not due to the feature selection method used being unable to deal with the 

different scaling methods used for the preprocessing of the GE and genus abundance data. Both the 

Pearson correlation coefficient and random forest regressor are scale invariant under linear 

transformations and thus can select features regardless of the different (linear) scaling methods of 

the GE and genus modality. Additionally, while the Pearson correlation coefficient does not consider 

interactions between features and only captures the linear dependence between a feature and the 

target, the random forest regressor model is able to model interdependencies between features and 

capture nonlinear relationships. This implies that the lack of improvement with the holo-omic 

approach is also not due to the inability of the feature selection method to capture nonlinear 

relationships between the modality features. Thus, we conclude that the lack of performance 

improvement with the holo-omics approach is likely not due to a deficient feature selection 

technique. 



 

Figure 5: Stage prediction root-mean-squared error (RMSE) for an elastic net model trained and tested on the GE, genus and 
GE ∩ genus modalities using different feature selection methods. The last point of each line indicates the prediction 
performance when all the features of the relevant modality are included (i.e. when there is no feature selection) A, 
Prediction performance when using the Pearson correlation coefficient to select features.  B, Prediction performance when 
using random forest regressor-based feature importances to select features. 

Feature selection is dominated by gene expression features 
To investigate to what degree the prediction models trained on the GE ∩ genus set were making use 

of both GE and genus features, we investigated what fraction of the features selected for different 

feature selection amounts consisted of GE features. To this end, we plotted the proportion of 

selected GE features for stage prediction for the three different feature selection methods used 

(elastic net, random forest and Pearson correlation-based feature selection) and displayed the 

fraction of GE features selected at different feature selection amounts (Figure 6A). 

It seems that when performing feature selection on the integrated dataset, almost all of the features 

selected originate from the GE set. Furthermore, when investigating the absolute amount of genus 

features selected, this corresponds to approximately 1 genus feature being selected across the 

random sampling iterations and selected feature amounts (Figure 6B). These results are consistent 

across all cancers for elastic net-based feature selection (Figure S17) and the Pearson correlation 

coefficient (Figure S18), as well as for the tumor versus normal prediction endpoint using ANOVA 

feature selection (Figure S16). 

This result is partly expected as there are roughly 25 times more GE features than genus features, 

with GE having 5000 features compared to 221 genus abundance features. If one assumes that both 

modalities are as predictive of the target, we would naturally expect 25x more GE features to be 

selected. Thus, for the top 6 and top 10 features, the amount of genus features selected is within 

expectations. However, for higher feature selection amounts, the genus features represent a 

disproportionately low fraction of the total selected feature set under this assumption. Furthermore, 

as we previously argued, the GE modality contains a higher amount of biologically relevant 

information than the genus modality, which is reflected in the disproportionately high number of GE 

features selected during the feature selection process. 

Finally, the difference in number of features selected is likely also influenced by the preprocessing of 

the GE data, and the lack of informative features in the genus data. As previously described, the GE 

features used were a collection of features selected from a larger pool of GE features from TCGA 

that had the largest variability, as measured by the mean absolute deviation. Thus, it is more likely 

that features from this data set would also contain more features which vary with the target class. 



Additionally, the genus data only contains 52 non-zero features for the shown STAD cancer, leading 

to the other 169 genus features not having any variability. This, combined with the previously seen 

lack of informative information in the genus features for the prediction endpoints likely leads to 

almost no genus features being selected when compared to the GE features. 

 

Figure 6: Features selected from each modality for STAD when performing stage prediction with the integrated genus and 
gene expression modality (GE ∩ genus). These features were selected out of 5221 total GE ∩ genus features using an elastic 
net model, the Pearson correlation coefficient and feature importances of a random forest regression model.  A, The 
fraction of GE features selected (vertical axis) from the total amount of features for each feature amount (horizontal axis). 
The endpoints of each horizontal line segment indicate the average fraction of GE features selected across the 200 random 
sampling iterations, while the error bars indicate the standard deviation across these iterations. B, The absolute amount of 
genus features (vertical axis) selected from the total feature set for each feature selection amount (horizontal axis). 

Enforcing modality parity during feature selection does not improve holo-omic model 

performance 
As the domination of gene expression features during the feature selection process could prevent 

the prediction model from properly capturing the information of both the gene expression and the 

genus data, we attempted to mitigate this by repeating the prediction experiments while enforcing 

parity in the number of features selected from each modality. To do this, we performed feature 

selection prior to integrating the modalities and ensured that for each feature selection amount, half 

of the features were from the GE modality, while the other half were from the genus set.  

As can be seen, the model trained with the modality parity-enforced integrated data, denoted as GE 

∩ genus (parity), has a similar performance to the regular GE ∩ genus model (Figure 7). Comparing 

the scores for each modality with a feature selection amount of 200 indicates that there is no 

statistically significant difference between the model trained with modality parity enforcement and 

the one trained without the modality parity enforcement (p-value = 0.4985). This was consistent for 

all cancers (Figure S12), when using Pearson correlation-based feature selection (Figure S13) and for 

the tumor versus normal prediction endpoint (Figure S11). This result is likely because the genus 

modality is not offering additional information over the GE features already in the feature selection 

set. Thus, even when enforcing parity and ensuring that there are genus features during the model 

training, it achieves similar performance to the GE model as the prediction model still assigns the 

most importance to the GE features and uses them to discriminate between the target values. This 

can be seen by the nearly identical performance between the two models.  



 

Figure 7: root-mean-squared error (RMSE) for the stage prediction endpoint for STAD with the use of an elastic net model 
for prediction and feature selection. Here, we compare the performance of the model when trained using concatenated 
genus and gene expression features with enforced parity during feature selection, denoted as GE ∩ genus (parity), with the 
performance of the model when trained using the regular (concatenated) integrated data (GE ∩ genus). The performance 
of the model with a features amount of 5221 denotes the model performance when using all features (i.e. when there is no 
feature selection) and is thus identical for the two models. 

Selected features are supported by research 
To investigate whether the lack of performance was due to the features selected having no 

biological basis, we investigated the top features selected by the elastic net model when using the 

GE ∩ genus modality for the STAD stage prediction endpoint. To do this, we determined the top 

features selected from each modality based on how frequently they appeared within the top 10 

features set across the 200 random sampling iterations. We then analyzed the top 5 features 

selected for each modality, showing only 2 genus features as only 2 distinct genera were contained 

among the top 10 features across all random sampling iterations. 

It seems that both the selected genus and gene expression features are sensible and are supported 

by previous research linking them to stomach cancer. The most commonly selected genus taxa was 

Helicobacter. This seems to be validated by previous studies linking STAD to Helicobacter pylori 33–35, 

which can induce gastritis, which can then lead to stomach adenocarcinoma. Furthermore, the 

genus Lactobacillus is also linked to stomach cancer and has a possible interaction with H. pylori 36,37. 

Namely, patients with stomach cancer have been found to have a higher abundance of Lactobacilli in 

their gastric microbiota. For gene expression features, the second most frequently selected genus 

feature was the HOXC10 gene, which has been found to be differentially expressed in stomach 

cancer tissues versus normal tissues and significantly promote tumor development 38. The third most 

selected feature was the PRSS21 gene, which was previously found to be among the most important 

biomarkers in a gene signature set for detecting metastasis in stomach cancer patients 27.  We did 

not find evidence of a link between TDRD9 and stomach cancer, suggesting that this gene might 

require further research. 

These results are also consistent for the features selected when performing feature selection on the 

individual GE and genus modalities. For the GE modality, the selected features are similar to the GE 

features selected within the GE ∩ genus modality (Table S2), while the same holds for the features 

within the genus modality (Table S3). For the latter, the additional genera Haemophilus, 

Fusobacterium and Streptococcus were also selected.  An abundance of Streptococcus has been 

linked to patients with cancer 37,39, Haemophilus has been linked to an increase in gastric cancer 



through the accumulation of nitrates 40, while Fusobacterium has been linked to worse prognosis in 

certain subtypes of gastric cancer 41. 

These results indicate that the feature selection step is selecting biologically relevant features and 

that the lack of additional performance of the GE ∩ genus model when compared to the GE model 

and the lack of performance of the genus model is likely not due to the feature selection process 

leading to biologically irrelevant features being selected.  

Table 3: Top GE and genus features selected when performing feature selection on the GE ∩ genus data set with an elastic 
net model and a feature selection number of 10. The table rows denote the name of the top selected GE and genus features, 
while the Frequency Selected column denotes the percentage of times the feature made it into the set with the top 10 most 
important features across 200 random sampling iterations. 

Rank Feature name Frequency selected Feature type 

1 TDRD9 84% GE 

2 HOXC10 83% GE 

3 PRSS21 78.5% GE 

4 HOXA13 67% GE 

5 HOXC9 62% GE 

6 Helicobacter 53% Genus 

136 Lactobacillus 0.5% Genus 

Using complex integration method does not improve performance of integrated set 
To determine whether the lack of performance improvement when integrating the two modalities 

was due to the simple concatenation-based integration method, we attempted to integrate the two 

modalities using a more advanced and proven integration method. Namely, an autoencoder (AE), 

which has successfully been used to integrate multi-omics host features 2,30, partially due to its 

ability to capture nonlinear relationships between features, and nonnegative matrix factorization 

(NMF), which has also successfully been used to integrate biological features 42. Both models can 

perform feature extraction by capturing important information within the feature set and 

condensing it to a smaller feature space. 

Figure 8: RMSE for the STAD stage prediction endpoint with the use of an elastic net model for the stage prediction and 
feature selection. A, Comparison of the prediction model built using the genus + gene expression features integrated with 
an autoencoder, denoted as GE ∩ genus (AE), with the performance of the model built using the regular GE ∩ genus 
dataset. As the GE ∩ genus (AE) set contained 100 features, the performance shown at the features amount of 100 for the 
model built with this modality indicates the prediction performance when all the extracted features were used. B, 
Comparison of the prediction models built using the GE ∩ genus (AE) data, the AE-integrated GE data, denoted as GE (AE), 
and the AE-integrated genus data, denoted as genus (AE). The line for the genus (AE) model ends at a features amount of 
50, as there were only 50 total features extracted for this modality. 



To evaluate the performance of the complex integration methods, we integrated the 5221 features 

in the GE ∩ genus set and obtained a new integrated feature set of 100 features. We then trained an 

elastic net prediction model on the integrated data. For the autoencoder, we based our model on a 

deep autoencoder architecture successfully used by Chaudhary et al. to integrate host multi-omics 

data for liver cancer 2, while for NMF, we selected the amount of extracted components to be equal 

to the AE model to allow for comparison between the methods.  

We found that there was no additional improvement with the holo-omics approach when using 

complex integration over the simple concatenation-based approach for either the AE (p-value = 

0.5057) model (Figure 8A) or the NMF (p-value = 0.3482) model (Figure 9A). Both models do 

converge to the optimal performance with far fewer features than the simple concatenation-based 

approach, indicating that these models can effectively capture a latent representation of the 

integrated features.  

To investigate whether the ability of these complex integration methods to obtain the same 

prediction performance as the GE ∩ genus model with far fewer features was dependent on 

integrating both the GE and genus modalities, or whether running the complex integration method 

on the modalities separately would achieve the same results, we built prediction models using 

extracted features by running the AE and NMF on each modality separately. We denote the AE and 

NMF-integrated GE modalities as GE (AE) and GE (NMF), respectively, and the integrated genus 

modalities as genus (AE) and genus (NMF). 

 

Figure 9: RMSE for the STAD stage prediction endpoint with the use of an elastic net model for the stage prediction and 
feature selection. A, Comparison of the prediction model built using the genus + gene expression features integrated using 
nonnegative matrix factorization, denoted as GE ∩ genus (NMF), with the performance of the model built using the regular 
GE ∩ genus dataset. B, Comparison of the prediction models built using the GE ∩ genus (NMF) data, the NMF integrated GE 
data, denoted as GE (NMF), and the NMF integrated genus data, denoted as genus (NMF).  

It appears that using complex integration on the GE modality alone is enough to obtain the same 

prediction performance as the GE ∩ genus model with far fewer features, which indicates that yet 

again, the GE data contains enough information for the prediction task and that the genus data does 

not add additional information. The performance of the prediction model trained using the AE-

integrated GE ∩ genus data performed significantly better than the one using AE-integrated GE data 

(p-value = 1.6*10 -18), which could have indicated that both the GE and genus modalities are 

necessary to obtain the optimal prediction performance with fewer features (Figure 8B). However, 

the GE ∩ genus (NMF) model performs as optimally as the GE ∩ genus (AE) one, while the GE (NMF) 



model does perform similarly to its GE ∩ genus (NMF) counterpart (Figure 9B). Thus, this suggests 

that the lower prediction performance of the GE (AE) model in comparison to the GE ∩ genus (AE) 

model is due to the autoencoder architecture not being able to capture the full information of the 

GE data, rather than the genus data inherently being necessary to achieve a competitive prediction 

performance with a smaller extracted features set. Ultimately, we conclude that the genus data is 

not necessary to obtain an informative extracted feature set and that the lack of improvement with 

the holo-omic approach is unlikely to be due to the integration method used. 

Discussion 
It seems that across prediction targets, prediction models, feature selection methods, integration 

methods and cancers, integrating the gene expression modality with the genus abundance modality 

does not offer additional predictive power over using the GE modality individually, and that the 

genus modality provides the least predictive power when used alone. This does not necessarily 

mean that the holo-omics approach never leads to an improvement in performance, but that it is 

not the case with the specific TCMA genus abundance and TCGA gene expression data set used. 

One of the major reasons for the lack of performance improvement with the holo-omics approach 

used when compared to the host omics approach is likely that gene expression data is information-

dense, being able to recapitulate much of the information of other host omics layers and possibly 

even intra-tumoral genus abundance data. Namely, gene expression data is known to recapitulate 

the information of more ‘upstream’ datatypes, such as gene mutation and methylation data 3,32. In 

models that integrate GE with other host omics features, GE features can end up dominating 

prediction models and providing most of the discriminatory information 32. Thus, using a less 

informative host omics datatype might have shown additional improvement when using the genus 

data. Additionally, gene expression can be correlated with and be affected by microbial abundance 

groups 5, which follows from the general fact that the interactions between cancer and the 

microbiome can be bidirectional, because cancer can lead to an environment that fosters certain 

microbiota, which in turn can affect the cancer 43,44. This can lead to gene expression data possibly 

recapitulating microbial abundance data information. 

Additionally, the microbiome might occasionally contain limited information on the development 

and properties of cancer tissues, as the interaction between cancer and the microbiome can also be 

unidirectional, with the cancer affecting the microbiome but not the other way around. While there 

is evidence of a causal link between the human microbiome and certain cancers (e.g. Helicobacter 

pylori causing gastric cancer and hepatitis B or C causing liver cancer 43), this causal link has only 

been proven for a limited amount of microbes and cancers. Especially for intratumoral bacteria, such 

as the TCGA-mined genus data used in this study, the presence of microbial communities might 

simply be due to an infection of existing tumors, rather than the tumor development actively being 

influenced by the microbes 11,43. This lack of (causal) link between the microbiome and cancer can 

make it difficult to determine whether cancer tissues are consistently associated with a specific 

microbial composition, especially as tumor tissue-resident microbial composition could be sporadic 

and defined by the transient and random movement of microbes 45.   

For the TCMA genus abundance data, the lack of informative value of the genus data in the 

integrated model might have been due to the removal of valuable information during the data 

collection process. As mentioned, this data was previously mined from existing TCGA whole genome 

sequencing data. This data had to be cleared of contaminants, especially for low biomass samples 

such as the human tumor microbiome, as contamination can arise during sample collection and due 

to laboratory environment 5,17. During this decontamination step, the creators of TCMA used a 



statistical technique that analyzed microbial abundance data within and across tissues and 

eliminated those that it found likely to result from contamination. While the authors validated their 

approach by comparing the mined microbial abundance distribution with that of the original 

matched TCGA samples, this was only done with 8 samples, and only with colorectal cancer samples. 

Even for these samples, differences remained between the mined tumor microbiome data and the 

microbiome of the original samples. In the end, the decontamination process could have removed 

valid and informative microbial information, which is a risk when mining TCGA data 8. Additionally, it 

is worth noting that we only considered TCMA genus samples for which we also found matching 

TCGA GE samples in this study. Thus, this excluded some TCMA samples, which could have further 

led to valuable information loss. 

Furthermore, the lack of samples combined with the high amount of variation in the microbiome can 

make it harder for a prediction model to properly capture the relevant variation between individuals 

that leads to differing disease states. The microbiome exhibits significant person-to-person variation 
16,46, and is variable across multiple axes such as age, geography, diet 46, gender 19 and time 44. It 

might be necessary to examine microbes on the functional level, as some of this variation, such as 

the person-to-person variation, might disappear when examining the function of expressed 

microbial genes 46.  Additionally, while this variation can complicate model learning as it is not 

directly relevant to the disease state, a lack of variation and specificity in certain aspects of the 

TCMA microbial data used could have also complicated the model learning. For example, examining 

microbes on the genus level might, in certain instances, not provide enough information for 

discriminating between disease states, as there is less variation between individuals on the genus 

level than the species and strain level 47. For tumor versus normal tissue differentiation, one genus 

could contain species that are correlated with tumor tissues, but also those correlated with normal 

tissues 5. Thus, species-level abundance data might be needed to capture the relevant abundance 

differences between disease states. Additionally, it might be necessary to also look at the active 

expression of microbial genes, as microbial data mined from TCGA cannot determine whether 

microbial reads were intra- or extracellular or from alive or dead bacteria 10.  

Thus, to separate microbial variation which is not relevant to the disease state from the truly 

discriminatory information, a higher quantity, but also more specific data might be needed. This 

includes clinical variables such as gender, geographical information, species- or strain level microbial 

data, microbial gene expression (functional) information, and possibly also repeated measurements 

of the microbiome at different times. Additionally, normal tissues from healthy patients rather than 

NAT tissues might be needed, as there can be similarities between tumor and NAT tissues 11, possibly 

due to the movement of microbes across these tissue types 17.  

To obtain more meaningful results and truly capture the predictive power of microbial abundance 

data and its relation to host omics data, it might be necessary to have more specific microbial 

information, such as species-level information, metagenomic or transcriptonomic (functional) data, 

which could give a more direct measure of microbial activity and function 45, data on the virome and 

mycobiome, which are also associated with cancer 45 and the location and organization in the tissue 

of the microbial data, which could also impact tumorigenesis 43. Finally, we would also require a 

validated decontamination pipeline that removes less valid microbial information, although it is 

unclear whether this is possible by mining TCGA data.  

 



Conclusion 
We investigated whether combining host omics and microbial information offered additional power 

compared to using the modalities individually. To this end, we combined TCMA tissue-resident genus 

abundance data with TCGA gene expression data and examined their utilities by comparing the 

performances of prediction models built using the individual and integrated modalities. This was 

done using data from STAD samples for the stage prediction and tumor versus normal prediction 

endpoints, and validated using ESCA, HNSC and COAD data. To our knowledge, this is the first study 

that used modern TCGA-mined (TCMA) microbial abundance data to examine the utility of 

integrating host omics and microbial information through the use of machine learning algorithms for 

multiple cancer diagnostic endpoints.  

It appears that the holo-omics approach does not outperform the single host-omic approach and 

that the microbiome-only approach performs the worst. Furthermore, it is unlikely that these results 

are due to the specific feature selection method and process used, the prediction model or the 

method of integration. In general, it is clear that the human microbiome has an effect on cancer 

aetiology, however, for certain data sets, the prediction performance of just gene expression alone 

might be enough to capture the underlying patterns relevant for cancer diagnostics. This is most 

likely due to gene expression data being information-dense and recapitulating microbial information, 

and the high variability and unestablished causality of the microbiome with respect to cancer. 

Finally, these results likely cannot be generalized to other holo-omic datasets, as the TCMA microbial 

dataset used was not well validated and contained a limited amount of data. The lower disease 

phenotype-related information density combined with high variation of the microbiome means that 

care should be taken to use an appropriate quantity and quality of microbial data to properly 

investigate a holo-omic approach. Thus, more specific data might be needed, such as of expressed 

microbial genes, species-level microbial information and other types of non-bacterial microbes. 

Additionally, it might be necessary to use non TCGA-mined microbial datasets, or TCGA-mined 

microbial datasets that use better validated decontamination methods. Future work could explore 

other diagnostic endpoints as well as performance differences when integrating microbial 

information with other host omics types. 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary material 
 

Supplementary tables 
 

Table S1: Non-zero and zero features for each cancer in the TCMA genus relative abundance data set. Zero features are 
defined as features for which the relative abundance was 0 across all samples. In other words, these are the genera which 
were not detected in any patients with the relevant cancer type. 

Cancer Nonzero   Zero Total 

    
STAD 52 169 221 

COAD 82 139 221 

ESCA 61 160 221 

HNSC 69 152 221 

    
Table S2: top gene expression features selected when performing feature selection on the individual GE data set with elastic 
net and a feature selection number of 10. The table rows denote the name of the top selected GE features, while the 
Frequency Selected column denotes the percentage of times the feature was selected across 200 random sampling 
iterations. 

Rank Feature name Frequency selected Feature type  

1 TDRD9 94% GE 

2 PRSS21 83.5% GE 

3 HOXC10 81.5% GE 

4 HOXA13 72.5% GE 

5 HOXC9 70.5% GE 

 

Table S3: top genus features selected when performing feature selection on the individual genus data set with elastic net 
and a feature selection number of 10. The table rows denote the name of the top selected genus features, while the 
Frequency Selected column denotes the percentage of times the feature was selected across 200 random sampling 
iterations. 

Rank Feature name Frequency selected Feature type  

1 Helicobacter 100% Genus 

2 Lactobacillus 94.5% Genus 

3 Haemophilus 79% Genus 

4 Fusobacterium 67% Genus 

5 Streptococcus 58.5% Genus 

 



Supplementary figures 

 

Figure S1: Summed relative abundances across all cancer samples in the TCMA dataset for the 52 genera for which the total 
relative abundance is larger than 0.01. Note that this only includes TCMA samples for which there were also paired TCGA 
GE data available. 

 

 

Figure S2: PCA of STAD (stomach adenocarcinoma) for all modalities for the tumor versus normal endpoint. The first graph 
contains the PCA for the genus abundance data (genus), the second graph for the gene expression data (GE) and the third 
graph for the concatenated genus + gene expression features (GE ∩ genus). The horizontal axis displays the first principal 
component, while the vertical axis displays the second principal component of the PCA. Finally, samples in red denote tumor 
samples while those in blue denote normal samples. 

 

Figure S3: t-SNE of STAD (stomach adenocarcinoma) for all modalities for the tumor versus normal endpoint. The first graph 
contains the PCA for the genus abundance data (genus), the second graph for the gene expression data (GE) and the third 
graph for the concatenated genus + gene expression features (GE ∩ genus). The horizontal axis displays the first t-SNE 



component, while the vertical axis displays the second t-SNE component. Finally, samples in red denote tumor samples 
while those in blue denote normal samples. 

 

Figure S4: PCA of STAD (stomach adenocarcinoma) for all modalities for the stage endpoint. The first graph contains the 
PCA for the genus abundance data (genus), the second graph for the gene expression data (GE) and the third graph for the 
concatenated genus + gene expression features (GE ∩ genus). The horizontal axis displays the first principal component, 
while the vertical axis displays the second principal component of the PCA. Finally, the different colored points represent the 
cancer stage of the different samples, with stage one being a normal non-tumor sample. 

 

Figure S5: t-SNE of STAD (stomach adenocarcinoma) for all modalities for the stage endpoint. The first graph contains the 
PCA for the genus abundance data (genus), the second graph for the gene expression data (GE) and the third graph for the 
concatenated genus + gene expression features (GE ∩ genus). The horizontal axis displays the first t-SNE component, while 
the vertical axis displays the second t-SNE component. Finally, samples in red denote tumor samples while those in blue 
denote normal samples. 

 

Figure S6: f1-score for the tumor versus normal prediction endpoint for COAD (colon adenocarcinoma), ESCA (esophageal 
carcinoma), HNSC (head and neck squamous carcinoma) and STAD (stomach adenocarcinoma), respectively. Each graph 
contains the f1-score for each modality (i.e. genus abundance data (genus), gene expression data (GE) and the 
concatenated genus + gene expression features (GE ∩ genus)). The endpoints of each horizontal line segment indicate the 



average f1-score across 200 random sampling iteration, while the vertical line segments indicate the standard deviation of 
the f1-score across these iterations. 

 

Figure S7: root-mean-squared-error (RMSE) for the stage prediction endpoint for COAD (colon adenocarcinoma), ESCA 
(esophageal carcinoma), HNSC (head and neck squamous carcinoma) and STAD (stomach adenocarcinoma), respectively. 
Each graph contains the root-mean-squared-error for each modality (i.e. genus abundance data (genus), gene expression 
data (GE) and the concatenated genus + gene expression features (GE ∩ genus)). The endpoints of each horizontal line 
segment indicate the average RMSE across 200 random sampling iterations, while the vertical line segments indicate the 
standard deviation of the RMSE across these iterations. 

 

Figure S8: root-mean-squared-error (RMSE) for the stage prediction endpoint for COAD, ESCA, HNSC and STAD, respectively. 
Each graph contains the root-mean-squared-error for the genus, GE and GE ∩ genus. The results are shown for each feature 
selection amount (horizontal axis) when using the Pearson correlation coefficient for feature selection and an elastic net 
model for the prediction. 



 

Figure S9: Predictive performance of stage prediction for STAD. The lines contain the RMSE for the random forest regressor 
models trained and tested on the genus, GE and GE ∩ genus sets. The results are shown for each feature selection amount 
(horizontal axis) using features selected by an elastic net model. 

 

Figure S10: Predictive performance of stage prediction for STAD. The lines contain the RMSE for the random forest regressor 
models trained and tested on the genus, GE and GE ∩ genus sets. The results are shown for each feature selection amount 
(horizontal axis) using features selected with the Pearson correlation coefficient. 

 

 

Figure S11: f1-score for the tumor versus normal prediction endpoint for COAD, ESCA, HNSC and STAD with the use of an 
support vector machine model for prediction and ANOVA for feature selection. Here, we compare the performance of the 
model when trained using concatenated genus and gene expression features with enforced parity during feature selection, 



denoted as GE ∩ genus (parity), with the performance of the model when trained using the regular (concatenated) 
integrated data (GE ∩ genus). The performance of the model with a features amount of 5221 denotes the model 
performance when using all features (i.e. when there is no feature selection) and is thus identical for the two models.  

 

Figure S12: RMSE for the stage prediction endpoint for COAD, ESCA, HNSC and STAD with the use of an elastic net model for 
prediction and feature selection. Here, we compare the performance of the model when trained using concatenated genus 
and gene expression features with enforced parity during feature selection, denoted as GE ∩ genus (parity), with the 
performance of the model when trained using the regular (concatenated) integrated data (GE ∩ genus).  

 

Figure S13: RMSE for the stage prediction endpoint for COAD, ESCA, HNSC and STAD with the use of an elastic net model for 
prediction and the Pearson correlation coefficient for feature selection. Here, we compare the performance of the model 
when trained using concatenated genus and gene expression features with enforced parity during feature selection, 
denoted as GE ∩ genus (parity), with the performance of the model when trained using the regular (concatenated) 
integrated data (GE ∩ genus).  

 



Figure S14: Predictive performance of stage prediction for STAD. The lines contain the RMSE for the random forest regressor 
models trained and tested on the GE ∩ genus and the feature set consisting of the AE-integrated GE ∩ genus features, 
denoted as GE ∩ genus (AE). The results are shown for each feature selection amount (horizontal axis) using features 
selected using an elastic net model. 

 

Figure S15: Predictive performance of stage prediction for STAD. The lines contain the RMSE for the random forest regressor 
models trained and tested on the GE ∩ genus and the feature set consisting of the AE-integrated GE ∩ genus features, 
denoted as GE ∩ genus (AE). The results are shown for each feature selection amount (horizontal axis) using features 
selected using the Pearson correlation coefficient. 

 

 

Figure S16: the fraction of GE features (vertical axis) selected with ANOVA from the total amount of features for each 
feature amount (horizontal axis) when performing tumor versus normal prediction with the genus + gene expression 
modality (GE ∩ genus).  Each line displays the results for a different cancer, namely COAD (colon adenocarcinoma), ESCA 
(esophageal carcinoma), HNSC (head and neck squamous carcinoma) and STAD (stomach adenocarcinoma).  

 

 

Figure S17: the fraction of GE features (vertical axis) selected using an elastic net from the total amount of features for each 
feature amount (horizontal axis) when performing stage prediction with the genus + gene expression modality (GE ∩ 
genus).   



 

 

Figure S18: the fraction of GE features (vertical axis) selected using the Pearson correlation coefficient from the total 
amount of features for each feature amount (horizontal axis) when performing stage prediction with the genus + gene 
expression modality (GE ∩ genus).   
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