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Abstract
This paper investigates the performance of the
A* algorithm in the field of automated machine
learning using program synthesis. We designed a
context-free grammar to create machine learning
pipelines and came up with a cost function for A*.
Two different experiments were done, the first one
to tune the parameters of our algorithm and the sec-
ond one to compare the efficiency of A* with other
search algorithms. The results indicate that for the
selected datasets, A* did not have better perfor-
mance, but rather had similar results with the other
search algorithms. Nevertheless, more research in
this field is needed to find concrete results.

1 Introduction
When trying to solve a problem with machine learning there
are a lot of choices that need to be made. These include de-
termining preprocessing steps that should be applied, in what
order, or if they are necessary at all. Next, the choice of a
machine learning model and the value of its hyperparame-
ters is also needed, this increases the complexity of creating
a machine learning pipeline. The amount of possible pre-
processing functions, classifiers, and hyperparameters, which
can be joined in various ways, opens up a complex and convo-
luted search space. Consequently, creating machine learning
pipelines is a complex task that consumes lots of time, and
requires advanced knowledge.

One approach is using autoML[6], the process of automat-
ing the tasks of applying machine learning to real-world prob-
lems. This is used in the TPOT[10] and AutoSklearn[3] pa-
per. This field is still recent and has numerous potential im-
provements. Consequently, this paper uses autoML to create
ML pipelines, in combination with Program synthesis.

Program synthesis[5] is the task of automatically finding
a program that satisfies certain specifications. Most of the
time its input is a list of input-output examples and it searches
for a program that satisfies those requirements. However, in
our case, we do not have input-output examples, our goal is
to find the optimal pipeline. For this reason, the program
outputted will be the best-performing pipeline found. This
approach has already been developed in the papers: ”Ex-
ploring Context-Free Languages via Planning: The Case for
Automating Machine Learning” [7] and ”Searching for Ma-
chine Learning Pipelines Using a Context-Free Grammar”
[8]. But, one question still has not been answered: How do
other search algorithms perform on autoML and how do they
compare? Answering this question could improve the effi-
ciency and accuracy of program synthesis to create pipelines.

Therefore, in this paper, we investigate whether A* im-
proves the accuracy and efficiency of autoML using program
synthesis. The following process will be applied to answer
this question: select datasets to evaluate efficiency, design a
context-free grammar that generates pipelines, choose a spe-
cific metric to assess pipelines, define a cost function for A*,
and compare the efficiency of A* with other search algo-
rithms.

This paper is divided into the following chapters: Chap-
ter 2 is about methodology, it explains the process done to
answer the question and explain the different choices. Chap-
ter 3 describes the experimental setup and shows the results.
Chapter 4 discusses the results and tries to draw conclusions
from it. Chapter 5 is about responsible research. Chapter 6
concludes this paper and Chapter 7 discuss future works.

2 Methodology
This section discusses the methodology used to create our
program. The first section talks about the datasets used to
test and evaluate. The Second section introduces the gram-
mar used to create pipelines. The third section explains which
unit was to chosen to evaluate pipelines. Finally, the fourth
section addresses the search function used and explain its un-
derlying mechanism.

2.1 Datasets
To check the validity and effectiveness of pipelines, ensure
the absence of errors, and reduce bugs, datasets are needed.
They allow us to evaluate the performance of the synthesized
pipelines and that our program is functioning correctly. A
multitude of different datasets1 is required to allow us to test
the performance under different conditions, they are divided
into three distinct groups1.

Simple datasets Adv. datasets Papers’ datasets
Iris gas-drift glass
Seeds musk car-evaluation
Blood transfusion madelon WDBC
Monks-problem gisette wine-quality-red
Diabetes har spambase
Ilpd wine-quality-white
Qsar-biodeg
Tic-tac-toe

Table 1: The 3 distinct groups of datasets used in this paper

The first category is simple datasets. These are chosen for
their simplicity: a limited number of features (5-11), a small
number of target classes (2 - 3), and a small size (150 - 768).
These datasets are used to do basic tests, they are used to
verify that the program runs without crashing our bugging.
And more importantly, if the program manages to create near-
optimal pipelines when working with simple datasets.

Next, once the program showed no issue with handling
simple datasets, we designed a list of more complex datasets.
They were selected to test the performance of the program
under more complex scenarios. They possess a high number
of features (26 - 1000), a broad range of classes (2 - 90), and a
larger size (418 - 1.47m). The goal is to see how the program
adapts to the datasets and performs when they become more
complex.

1Source: OpenML website - https://www.openml.org

https://www.openml.org


Lastly, we incorporated a list of datasets referenced in other
autoML research papers[2][9]. This is done to provide us
with a comparative platform. The goal is to compare our re-
sults with those found in other papers to see if our approach
showed improvement and thus could be useful in the advance-
ment of autoML.

2.2 Grammar
To be able to create machine learning pipelines, a Context-
Free-Grammar was created. This grammar can create ML
pipelines and is heavily inspired by the paper Exploring
Context-Free Languages via Planning: The Case for Au-
tomating Machine Learning[7].

Figure 1: Grammar from the paper ”Exploring Context-Free Lan-
guages via Planning: The Case for Automating Machine Learning”
[7]

The main difference between both grammars is the removal
of NoOp() (No Operator), which is done because it is not
needed and adds complexity to the grammar.

START =
CLASSIF |
s e q u e n c e ( PRE , CLASSIF )

PRE =
PREPROC |
FSELECT |
s e q u e n c e ( PRE , PRE ) |
p a r a l l e l (BRANCH, BRANCH)

BRANCH =
PRE |
CLASSIF |
s e q u e n c e ( PRE , CLASSIF )

Figure 2: First iteration of our grammar

Figure 2 creates a grammar that can generate ML pipelines.
This grammar enables pipelines to be in sequence but also to
have different branches with multiple preprocessing steps and
classifiers. Furthermore, the pipeline creation begins from the
final step, ensuring that a classifier is always the last step.

The decision to maintain a simple grammar is motivated
by several factors. Primarily, as the grammar grows expo-
nentially, searching for long pipelines can be time-consuming
since each of them needs to be evaluated. Furthermore, it
facilitates easier implementation and debugging, an impor-
tant consideration given our time limitations. Lastly, it en-
hances comprehensibility, making it easier to interpret and
draw meaningful conclusions from it.

In our second iteration of the grammar, depicted in Fig-
ure 3, we solved several issues observed in the initial version.

Depth Size
1 0
2 5
3 65
4 910
5 193515

Table 2: Relation between the depth and size of our first grammar

The revised grammar now generates a scikit-learn pipeline di-
rectly applicable for dataset evaluation, consequently enhanc-
ing usability. Moreover, a few modifications were made to the
list of classifiers. Initially, XGBoost was included, but due to
its incompatibility with the scikit-learn pipeline, we replaced
it with the GradientBoostingClassifier from the same library.
Furthermore, the SelectKBest function, which was previously
set to select by default the top 10 features, was modified
to select four instead. This adjustment was necessary since
datasets with fewer than 10 features were incompatible with
the original setting. By addressing these issues, we improved
our grammar’s utility, reducing crashes and bugs.

START =
P i p e l i n e ( [ CLASSIF ] ) |
P i p e l i n e ( [ PRE , CLASSIF ] )

PRE =
PREPROC |
FSELECT |
( ” seq ” , P i p e l i n e ( [ PRE , PRE ] ) ) |
( ” p a r ” , F e a t u r e U n i o n ( [BRANCH, BRANCH] ) )

BRANCH =
PRE |
CLASSIF |
( ” seq ” , P i p e l i n e ( [ PRE , CLASSIF ] ) )

Figure 3: Second iteration of our grammar

2.3 Evaluation
The metric employed to evaluate the effectiveness of
pipelines is accuracy, it is chosen for its simplicity and inter-
pretability. Accuracy allows us to have a high-level overview
of the model’s performance. Additionally, it can be easily
implemented and is also a default measure in many machine
learning frameworks. Moreover, it allows for an easy calcu-
lation of cost, defined as 1 - accuracy, a useful input for the
A* algorithm. Nevertheless, we understand that accuracy can
be misleading in scenarios with imbalanced datasets, for this
reason, we ensured that all datasets used for experiments were
balanced.

When running our different experiments, we divide each
dataset into three distinct groups: training, validation, and
testing. First, the training set is used to fit pipelines, then,
the validation set assesses the performance of these trained
pipelines and ranks them based on their effectiveness. This
process prevents the program to overfit during the pipeline
selection phase. Once, the best pipeline is found, it is eval-
uated a final time using the test set. Although this dataset



segmentation helps reduce overfitting and promotes general-
ization it doesn’t guarantee immunity from potential biases
related to sample distribution within the datasets.

In order to mitigate the potential issues related to sample
distribution within datasets, we employ random shuffling of
each dataset. To maintain consistency across all shuffling pro-
cedures, a specific seed has been selected, to guarantee uni-
formity in the shuffling process. Furthermore, we conduct
an evaluation of each dataset ten times, thereby diluting the
impact of any potential unfavorable shuffling. Hence, data
splitting and shuffling cooperate to ensure the reliability and
generalizability of our findings.

2.4 Search
Searching for the best pipeline is normally done by enumerat-
ing the grammar, evaluating each possible pipeline, and tak-
ing the pipeline that is performing the best. But doing that
is time-consuming and requires a lot of calculating power.
Could this be solved using another search function? This is
what we aim to explore with the A* algorithm. To imple-
ment A*, a cost function and a heuristic function need to be
defined.

For the cost function, the first idea was to use the length
of the pipeline, however, this is not representative of the cal-
culation power needed, as a short pipeline can be more de-
manding than a long one. Therefore the cost function chosen
measures the time taken in milliseconds for a pipeline to eval-
uate a given dataset.

The heuristic function is intuitively defined by how well
a pipeline performs. However, unless a pipeline achieves a
perfect score (which is rare), it is hard to know when to stop
the search. Since, if we evaluate all pipelines this leads us
back to our original search algorithm. For this reason, only a
subset of the grammar is evaluated.

Finally both the cost and heuristic need to be joined, given
that the performance of the pipeline is more important than
the time it takes, the following formula was designed:

(1− acc) + 0.001 ∗ (1 + log10(T )) (1)

Here, acc denotes accuracy, which when subtracted from
1, gives an inaccuracy value. The algorithm aims to mini-
mize this, thereby pushing towards higher accuracy solutions.
The cost function T (ms) is modified by a logarithm to ensure
gradual growth, then scaled by a factor of 0.001. This for-
mula ensures that the algorithm will favor pipelines that have
both higher accuracy and lower evaluation time.

3 Experimental Setup and Results
This section explains the setup and results of both experi-
ments. These experiments were also completed on other al-
gorithms such as Breadth-First Search (BFS), Genetic Algo-
rithm (GA)[1], Metropolis-Hastings (MH)[11], Monte Carlo
(MC)[4], and Very Large Neighborhood Search (VLNS)[12],
which allows for a comparison of their performance. It aims
not only at making the experiments reproducible but also at
showing the results and describing them.

3.1 Tuning the parameters
The goal of this experiment is to tune the parameters of the
various search algorithms and observe their effect on perfor-
mance. In the context of A*, the only parameter that was
adjusted is the maximum depth of the pipelines.

The maximum depth of the pipelines was tuned among
three different values: 3, 4, and 5. We chose to not include
depth 2, as it solely returns classifiers and any depth exceed-
ing 5 was omitted due to being too time-consuming. Un-
fortunately, due to the inability to access TUDelft supercom-
puter (DelftBlue), we limited the number of samples pipelines
were trained on, the number of pipelines evaluated, and the
pipelines could only be evaluated on simple datasets, dia-
betes2, and spambase3.

To reproduce this experiment, the file experiment setup.jl4
was run with the following parameters:

• train on n samples = 300
• n runs = 10
• max pipelines = 100
• dataset ids = [37, 44]
• search alg name = ”astar”
• values = [3, 4, 5]

The outcome of this experiment is depicted in Figure 4.
Focusing on the Diabetes dataset represented in subfigure 4a,
it shows that depth 5 performed the best, closely followed
by both depth 4 and 3, although the differences in accuracy
between them are minimal. Observing the Spambase dataset
from subfigure 4b, it is seen that all depths perform similarly.
Thus, upon examining these two datasets, we can conclude
that the depth value has an almost negligible influence on per-
formance.

2https://www.openml.org/search?type=data&sort=runs&status=
active&id=37

3https://www.openml.org/search?type=data&sort=runs&status=
active&id=44

4https://github.com/MButenaerts/research project/blob/main/
experiment setup.jl

https://www.openml.org/search?type=data&sort=runs&status=active&id=37
https://www.openml.org/search?type=data&sort=runs&status=active&id=37
https://www.openml.org/search?type=data&sort=runs&status=active&id=44
https://www.openml.org/search?type=data&sort=runs&status=active&id=44
https://github.com/MButenaerts/research_project/blob/main/experiment_setup.jl
https://github.com/MButenaerts/research_project/blob/main/experiment_setup.jl
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(a) Diabetes dataset
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(b) Spambase dataset

Figure 4: Results of tuning the maximum depth of the pipelines

3.2 Assessing the performance of A*
This experiment is created to compare the different search
algorithms and determine whether the use of one, particularly
A* in my case, had any advantages over the default search
method (BFS).

For consistency, the various algorithms were executed on
identical datasets. Owing to our inability to access Delft-
Blue, this experiment was conducted solely on three diverse
datasets: a simple one named ’seeds’5, a complex one referred
to as ’har’6, and a third known as ’wdbc’7 derived from a pa-
per. Furthermore, on the outcome of our prior experiment, we
set the maximum depth of the pipelines at 5, as this parameter
proved to deliver the most favorable results.

To reproduce this experiment, the file experiment setup.jl8
was run with the following parameters:

• train on n samples = 300

• n runs = 10

• max pipelines = 100

• dataset ids = [1499, 1510, 1478]

• search alg name = ”astar”

• values = 5

Figure 5 shows the accuracy of the different algorithms
across the three different datasets. For subfigure 5a, Breadth-
First-Search with depth 2 (BFS2) has the highest performance
while Genetic Algorithm (GA) records the lowest, A* is
closely trailing BFS2. Then, in the context of subfigure 5b,
BFS4 outperforms all the other algorithms, GA is again per-
forming the worst, and A* nearly matches the top performer.

5https://www.openml.org/search?type=data&status=active&id=
1499

6https://www.openml.org/search?type=data&status=active&id=
1478

7https://www.openml.org/search?type=data&status=active&id=
1510

8https://github.com/MButenaerts/research project/blob/main/
experiment setup.jl

Additionally, subfigure 5c, displays a similar pattern to sub-
figure 5a with BFS2 leading, GA lagging, and A* closely
following the leader. Overall, while BFS2 emerges as the su-
perior choice on average, other algorithms like A* display
performance close to the leading results.
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(a) WDBC dataset
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(b) HAR dataset
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(c) Seeds dataset

Figure 5: Results of the different algorithms

Figure 6 represents the cost value of pipelines using For-
mula 1 (1 − acc) + 0.001 ∗ (1 + log10(T )) .These values
are charted in the output order of the priority queue. Ad-
ditionally, pipelines that failed to fit or evaluate the dataset
were removed, which explains that the line does not extend
to a hundred - the maximum pipeline value. Given our lim-
itation of a hundred evaluations, not all pipelines have been
evaluated. The three different graphs follow a similar pattern,
where a majority of the evaluated pipelines exhibit low cost,
with only the final 10-20% showing a high cost.

Figure 7 follows the same principles as Figure 6 but repre-
sents the time value of pipelines using the following formula:
0.001 ∗ (1+ log10(T )), where T is measured in milliseconds.
Again, the three different graphs reflect a comparable pattern,
with most, if not all, pipelines displaying similar time values.

https://www.openml.org/search?type=data&status=active&id=1499
https://www.openml.org/search?type=data&status=active&id=1499
https://www.openml.org/search?type=data&status=active&id=1478
https://www.openml.org/search?type=data&status=active&id=1478
https://www.openml.org/search?type=data&status=active&id=1510
https://www.openml.org/search?type=data&status=active&id=1510
https://github.com/MButenaerts/research_project/blob/main/experiment_setup.jl
https://github.com/MButenaerts/research_project/blob/main/experiment_setup.jl
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Figure 6: Cost value of pipelines, ordered by output order of the
priority queue
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Figure 7: Time value of pipelines, ordered by output order of the
priority queue. The time is computed with the following formula:
.001 ∗ (1 + log10(T )), where T is measured in milliseconds

4 Discussion
4.1 Tuning the parameters
From the results of the first experiment displayed in Figure
4, the conclusion can be drawn that the maximum depth of
the pipelines has a negligible impact on performance. This
suggests that preprocessing steps do not improve the perfor-
mance of pipelines for the datasets used. This could be caused
by the simplicity of these datasets.

4.2 Assessing the performance of A*
The results of the second experiment shown in Figure 5 can
lead to the conclusion that A* doesn’t outperform BFS, but
has similar performance for the selected datasets. However,
it’s important to recognize that this observation cannot be
generalized given that only three datasets underwent evalu-
ation. The constant high performance of BFS2, which gen-
erates standalone classifiers without any preprocessing steps,
suggests that there was no pressing requirement for prepro-
cessing in these datasets.

Furthermore, both Figure 6 and Figure 7, indicate that
both the cost and time values remain fairly consistent across
the majority of the pipelines. This implies most pipelines
evaluated by A* would likely yield positive results. How-
ever, this might be attributed to the fact that only a hundred
pipelines were evaluated. A* started evaluating the neigh-
boring pipelines of a well-performing pipeline and halted due
to the imposed pipeline limit. As a result, it didn’t have the
opportunity to explore the breadth of the search space, con-
centrating mostly on the neighbors of an effective pipeline.

5 Responsible Research
5.1 Datasets
The datasets used in this paper are obtained via OpenML9,
which is a reputed website that provides datasets and other
machine-learning tools. They were not manually verified, but
are well-known and used by many other computer scientists.

5.2 Reproducibility
The code used is available on Github10 and is open source.
It will not be modified after the submission of this paper.
Nonetheless, the code is using the Herb.jl11 library, we cannot
ensure that the library will stay compatible with our code in
the sure.

5.3 Credibility
The results shown for the specific datasets can be considered
credible. However, there is no proof that these results would
extend to other datasets and the conclusion drawn from them
might also not extend to other datasets, more experiment and
testing is necessary to assess that.

6 Conclusion
The goal of this research paper was to investigate where A*
improves the accuracy and efficiency of autoML using pro-
gram synthesis. To achieve this, a series of steps were taken:
datasets were selected to evaluate the efficiency, a context-
free grammar was designed to generate machine learning
pipelines, a metric was chosen to assess pipelines, and a cost
formula was designed for A*. After this, two experiments
were done, one to tune the parameters and a second to answer
the research question by comparing the performance of A*
with other search algorithms.

9https://openml.org
10https://github.com/M-Butenaerts/research project
11https://github.com/Herb-AI/Herb.jl

https://openml.org
https://github.com/M-Butenaerts/research_project
https://github.com/Herb-AI/Herb.jl


From the last experiment, it can be concluded that A* does
not necessarily improve accuracy and efficiency. However,
it is important to note that these results are preliminary and
further research is required.

7 Future Work
7.1 Datasets
This research was conducted with a limited number of
datasets, doing more research with other datasets that have
a higher complexity and require more preprocessing could
be interesting. It would allow us to understand if the results
found in this paper can be generalized more broadly.

7.2 A*
As discussed before, A* seems to get stuck in a specific
branch and therefore does not have the opportunity to explore
the breadth of the search space. Future research could design
an adaptive version of A* to allow that, which could lead to
an improvement in the efficiency of the algorithm.

7.3 Constraints
Two constraints were put in place to speed up the evaluation
of the algorithms, train on n samples, and max pipelines.
Future work could consider lifting these constraints, allow-
ing pipelines to have a bigger training set, and evaluating
more pipelines. A* performances should improve from these
changes but it will also lead to an increase in the program’s
run time.
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