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A B S T R A C T

In this study, we explore the mechanisms underlying the exceptional intrinsic strength of face-centered cubic 
(FCC) Multi-Principal Element Alloys (MPEAs) using a multifaceted approach. Our methods integrate atomistic 
simulations, informed by both embedded-atom model and neural network potentials, with first-principles cal-
culations, stochastic Peierls-Nabarro (PN) modeling, and symbolic machine learning. We identify a consistent, 
robust linear correlation between the strength of MPEAs and the standard deviation of the maximum stacking- 
fault restoring force (τmax,sd) across various potentials. This finding is substantiated by comparing the experi-
mental strengths of Cantor alloys’ subsystems and Ni62.5V37.5 against τmax,sd values from high-throughput first- 
principle calculations. Our theoretical insights are derived from integrating the stochastic Peierls-Nabarro model 
with a shearable precipitation hardening framework, demonstrating that lattice distortion alone does not directly 
enhance intrinsic strength. Instead, τmax,sd emerges as a critical determinant, capable of boosting the strength of 
MPEAs by up to tenfold. Our analysis reveals the critical role of the exponential form of the PN model in 
achieving substantial strength improvement by transforming the Gaussian-like distribution of τmax into an 
exponential-like distribution of local Peierls stress. Additionally, using an advanced symbolic machine learning 
technique, the sure independence screening and sparsifying operator (SISSO) method, we derive interpretable 
relationships between MPEA strength, elastic properties, and τmax statistics, offering new insights into the design 
and optimization of advanced MPEAs. These findings highlight that the nonlinear physics and atomic fluctua-
tions characterizing MPEAs not only underpin their unconventional intrinsic strength but also contribute to other 
complex properties such as sluggish diffusion and cocktail effect.

1. Introduction

Multi-Principal Element Alloys (MPEAs), encompassing high- 
entropy alloys (HEAs) and medium-entropy alloys (MEAs), constitute 
an innovative class of materials renowned for their superior strength 
[1–4], ductility [5,6], fatigue resistance [7], corrosion resistance [8,9], 
hydrogen embrittlement resistance [10–12], and radiation resistance 
[13,14]. In particular, MPEAs exhibit remarkable potential for 
strengthening while retaining exceptional ductility and fracture tough-
ness [15–17], even in extreme low-temperature environments [18]. One 
of the most intriguing deformation behaviors observed in MPEAs is 
characterized by wavy dislocation profiles and jerky motion within the 
slip planes [19,20]. Examining the mechanistic origin of these unique 
deformation mechanisms and their role in the exceptional strength of 
MPEAs are crucial for advancing our understanding of these intricate 

systems.
Most of existing strength models for MPEAs are based on the prin-

ciples of solute solution strengthening (SSS), originating from the clas-
sical Labusch model [21]. This model predicts strength as σc ∼ f4/3c2/3, 
where c represents the concentration of solute atoms and f signifies the 
interaction force between a solute atom and a dislocation. However, this 
model proves inadequate for MPEAs due to the challenge of dis-
tinguishing between solute and solvent atoms in MPEAs. Following at-
tempts by Toda- Caraballo et al. [22], Varvenne et al. successfully 
extended the SSS theory to MPEAs by explicitly considering the inter-
action between solute and dislocation in an effective medium [23–25]. 
This theoretical framework has further been extended to consider twin 
strengthening in face-centered cubic (FCC) MPEAs [26], as well as edge 
and screw dislocation strengthening in body-centered cubic (BCC) 
MPEAs [27,28], along with solute strengthening of basal slip in Mg 
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alloys [29]. More recently, the strengthening effect due to short-range 
order (SRO) has been incorporated based on this theory [30]. The 
pivotal parameter in this theory, solute-dislocation interaction energies, 
is typically derived using an average-atom (A-atom) interatomic po-
tential [31,32], which is not easily accessible through experiments or 
first principle calculations based on density functional theory (DFT). 
Utilizing elasticity simplification, their models yield a Labusch-type 

expression for strength, i.e., σc ∼
[∑

r,nf2
n (r)cn

]2/3
, where n is the 

element index, and r is the position of a solute atom in the effective 
matrix relative to a dislocation. In these simplified theories, only elastic 
moduli, lattice constants, and solute misfit volumes are required [24]. 
While the Varvenne model has shown good agreement with experi-
mental data for several MPEAs [24], recent findings have revealed a 
significant underestimation of the strength of equimolar CrCoNi when 
compared with simulations based on embedded-atom model (EAM) 
potential [33]. This discrepancy may arise from the absence of sol-
ute–solute interactions in the original Varvenne model as revealed by 
another recent simulation work [34]. Furthermore, Pei et al. proposed a 
theoretical model for accounting for the additional strengthening effect 
due to stacking fault energy fluctuation, which is simply linearly pro-
portional to the standard deviation of stacking fault energy [35]. The 
resulting strength enhancement however is very small comparing 
existing simulation results (~40 MPa vs. ~400 MPa) [33,36], indicating 
that stacking fault energy fluctuation has minor effect on the strength 
enhancement of MPEAs.

Empirically, lattice distortion (LD) has conventionally served as a 
reliable indicator of the intrinsic strength of MPEAs [37–42]. Specif-
ically, LD exhibits a linear relationship with the strength of MPEAs, 
represented as σc ~ LD. Moreover, a recent study proposes a more ac-
curate empirical relationship [37], σc ≈ αμγUSF × LD, where α is a con-
stant coefficient, μ is the isotropic shear modulus, γUSF is the average 
unstable stacking fault (USF) energy of the {110} plane of alloys. 
Remarkably, this model demonstrates reasonably accurate predictions 
for both yield strength and Vickers hardness across an experimental 
dataset comprising 83 yield strength and 28 hardness data points for 
BCC refractory MPEAs [37]. It is noteworthy that the rationale behind 
the LD-based prediction should align with the SSS model, as there are 
intrinsic connections between LD and misfit volume [43]. Additionally, 
LD has been observed to positively correlate with tensile fracture strain 
[44], but negatively correlate with compressive ductility in BCC re-
fractory MPEAs [45]. One drawback of relying solely on LD is its failure 
to offer a comprehensive physical understanding that distinguishes 
MPEAs from traditional metals or alloys.

A novel approach developed to comprehend the behavior of MPEAs 
is the stochastic Peierls-Nabarro (SPN) model introduced by Zhang et al. 
[46]. Unlike the SSS model, the SPN model treats a long dislocation line 
in MPEAs as short segments with random properties. It then employs the 
classical PN model to examine each dislocation segment with random 
dislocation cores, which are disturbed due to complex atomic environ-
ments. Statistically, the intrinsic strength of MPEAs arises from the 
collective lattice friction of numerous short segments. Subsequent 
studies have provided rigorous mathematical proofs of the statistical 
distribution of elastic energy and misfit energy in the classical PN model 
[47], further considering the effect of SRO. While the existing SPN 
model lays down a foundational framework for deepening the under-
standing of the effects of randomness emerging from the atomic scale on 
the strength of MPEAs, it does not consistently align with the results of 
atomistic simulations [48,49]. This discrepancy may be attributed to the 
utilization of an oversimplified PN equation with dislocation width as 
the primary input. Consequently, the existing SPN method is not prac-
tical for predicting strength across the vast compositional space of 
MPEAs using readily calculable properties.

Alternatively, machine learning (ML) has recently been emerged as a 
powerful tool for investigating MPEAs by analyzing both experimental 
and computational data [50–52]. For example, various ML techniques 

such as Random Forest (RF) and Artificial Neural Networks (ANN) have 
been employed to predict the solid solution forming ability [53,54]. 
Furthermore, more comprehensive ML techniques including RF, ANN, 
Kernel Ridge Regression, Gaussian Process, and Support Vector 
Regression have been utilized to predict the hardness [55] and solid 
solution strengthening [56,57]. To address the black-box nature of 
conventional ML frameworks, symbolic machine learning, especially the 
Sure Independence Screening and Sparsifying Operator (SISSO) method, 
has been adopted to develop interpretable ML models for predicting 
properties such as elastic constants [58], stacking fault energies [59], 
and phase formation in MPEAs [60]. The successful application of SISSO 
in developing analytical models for these properties inspires confidence 
that similar approaches could predict the intrinsic strength of MPEAs 
based on the easy-to-compute inputs obtained by DFT calculations.

In this study, we propose utilizing the standard deviation of the 
maximum restoring force, τmax,sd, as a robust indictor of MPEAs’ 
strength. Our study confirms the general validity of the linear relation-
ship between τmax,sd and MPEAs’ strength across various atomistic 
simulations employing rule-of-mixing (ROM)-based EAM, DFT-fitted 
EAM, and neural network potential (NNP), as well as through compar-
isons with high-throughput DFT calculations and experimental data. 
Furthermore, we enhance the SPN model by incorporating a τmax- 
dependent PN equation and a shearable precipitate model. This modi-
fication elucidates the pronounced nonlinearity of the PN model and the 
highly fluctuated τmax as the mechanistic origin of the exceptional 
strength observed in MPEAs. Finally, we utilize SISSO to derive inter-
pretable strengthening models for MPEAs based on the modified SPN 
model and extensive Monte Carlo simulations across a broad range of 
parameters. We utilize the comparison between the SSS and SPN models, 
along with a discussion of ROM in MPEAs and beyond, as a concluding 
remark for the paper.

2. Methods

2.1. Intrinsic strength determination by molecular statics simulations

We employ the periodic array of dislocation (PAD) model [61] to 
determine the intrinsic strength of MPEAs by capturing the critical shear 
stress required to initiate the motion of an edge dislocation, as depicted 
in Fig. 1. The crystallographic directions are x-[110], y-[111] and z-[112], 
corresponding to the directions of dislocation glide, slip plane and 
dislocation line, respectively. The model has dimensions of around 30 ×
20 × 20 nm3, containing around 1 million atoms. Periodic boundary 
conditions are adopted in x-z plane and free boundary conditions are 
adopted in the y-direction. An edge dislocation is introduced into the 
middle slip plane of the model using Atomsk [62]. Five bottom layer 
atoms are fixed, while the atoms in the top five layers are displaced 
along the positive x-dislocation direction to induce shear strain on the 
model. The shear strain is incrementally applied to the system to alter 
the energy landscape of the dislocation movement. After each loading 
increment, the system’s energy is minimized by the conjugate gradient 
(CG) method and the fast inertial relaxation engine (FIRE) method 
[63–65], and the resulting stress-displacement curves are documented 
to determine the intrinsic strength of MPEAs. This model has been 
extensively employed in prior studies for similar purposes [66–68]. The 
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 
package is used for all simulations [69]. OVITO is utilized for visualizing 
atomic configurations and post-processing results, such as extracting 
dislocation structures [70,71].

2.2. Interatomic potentials

Selecting appropriate interatomic potentials is crucial for ensuring 
reliable atomistic simulations, particularly for intricate MPEA systems 
[72]. Most previous studies have utilized the EAM database tool in 
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LAMMPS to generate toy EAM potentials based on pure metals, wherein 
the interactions between different elements are derived through ROM. 
Particularly, the EAM potential parameters developed by Zhou et al. [73,
74] have been extensively employed to simulate various FCC and BCC 
MPEAs [27,28,75–79]. Two representative EAM potentials have been 
developed specifically for FCC quinary FeCoCrNiCu and FeCoCrNiAl 
MPEAs [80,81]. Additionally, several alloy potentials have been devel-
oped for MPEAs by fitting basic properties of pure metals and alloys 
obtained from DFT. These include EAM potentials for FeNiCr [82] and 
CrCoNi [33] systems, as well as modified embedded atom method 
(MEAM) potentials for FeMnCrCoNi systems [83]. Recently, machine 
learning has emerged as a powerful tool for describing interatomic in-
teractions without relying on specific functional forms in MPEAs [84,
85]. A notable example is the NNP developed to model the general 
deformation behavior of CrCoNi systems [86,87]. Although the training 
and prediction errors may be larger compared to other machine learning 
interatomic potentials (MLIPs) [88], this NNP stands as the sole existing 
potential capable of simulating the plastic deformation of CrCoNi. In this 
paper, we employ all three types of potentials—ROM-based EAM, 
DFT-fitted EAM, and NNP—to investigate the strengthening mecha-
nisms of FCC MPEAs. The elements involved include Fe, Ni, Cr, Co, Cu, 
Al, Pd, and V. Table 1 provides a comprehensive list of the FCC MPEAs of 
interest and their corresponding potentials. These studies are particu-
larly significant for elucidating the effects of interatomic potentials 
when exploring the deformation mechanisms of MPEAs, given that 
many previous works have relied on ROM-based EAM, which are 
considered as toy models and may not consistently align with DFT 
results.

2.3. First principle calculations

We utilize Vienna Ab initio Simulation Package (VASP) [89] to 
perform first principle calculations of unstable stacking fault energy 

(USFE) and maximum restoring force (τmax) for 11 FCC MPEAs, 
including CoNi, FeNi, Ni62.5V37.5, FeCoNi, MnFeNi, MnCoNi, CrCoNi, 
VCoNi, MnFeCoNi, CrFeCoNi and CrMnCoNi. All systems are equimolar 
unless specified (e.g., Ni62.5V37.5). These alloys have been extensively 
studied in previous experiments, with intrinsic strength data readily 
available [41,90]. A gradient corrected functional in the 
Perdew-Burke-Ernzerhof (PBE) form is used to describe the exchange 
and correlation interactions [91]. Electron-ion interactions are treated 
within the projector-augmented-wave PAW method [92]. Standard PAW 
pseudopotentials distributed with VASP are adopted. The energy 
convergence is set to be 10− 6 eV for electronic self-consistency calcu-
lations. All calculations are conducted without spin-polarization to 
facilitate high-throughput calculations.

Following the similar approach in Ref [93], a 72-atom supercell with 
9 {111} layers are used for the calculations of USFE and τmax as shown in 
Fig 2. Periodic boundary conditions are adopted for all three directions. 
A single stacking fault is introduced into the system by shearing the cell 
vector with a magnitude of [112]a/24 and [112]a/12 (a is the lattice 
constant), while keeping the atomic positions fixed. Three energies 
corresponding to configurations before shearing (E0), after shearing 
[112]a/24 (E1) and [112]a/12 (E2) are computed. E2 therefore repre-
sents the unstable stacking fault energy (USFE). τmax is estimated by (E1- 
E0)/d, where d = [112]a/24. In order to obtain the reliable mean and 
standard deviation of τmax, 50 random configurations are repeated for 
each system. It should be noted that lattice distortion is not considered 
here. Consequently, only single-point calculations are needed to obtain 
E0. For E1 and E2, shearing the box decreases the distance between two 
adjacent two layers near the interface, such that it is necessary to release 
the stress along the z direction. To reduce the computational cost, we 
calculate five energies of E1 and E2 by gradually stretching the box (0, 
0.167%, 0.333%, 0.500%, 0.667%) along the z direction for each 
configuration. E1 and E2 are obtained by finding the minimum value 
after spline interpolation of five energies. In total, we conduct 6050 
single-point calculations to obtain reliable USFEave, USFEsd, τmax,ave and 
τmax,sd for all 11 FCC MPEAs.

3. Correlation between atomic pining point strength and 
intrinsic strength in MPEAs

We first present the results of atomic pinning point strength, as 
depicted in Fig. 3. The simulation process remains consistent with pre-
vious work [19], with the inclusion of more general potentials discussed 
in Section 2.2. To be specific, all calculations are performed on a large, 
thin plate with dimensions of 25 × 25 × 5 nm3 for different potentials, 
where the upper part is rigidly shifted to scan the {111} plane, as 
depicted in Fig. 3(a). The entire system is relaxed using CG, during 
which atoms exhibit no relative motion either within the upper or lower 
part. Fig. 3(b) showcases an example of the GSFE surface obtained for 
the configuration-averaged and for an individual atom in CrCoNi based 
on CrCoNi-Li. It is observed that, the overall GSFE surface appears 
smooth and uniform; however, at the atomic level, it exhibits significant 
fluctuation. The bottom panels of Fig. 3(b) depict the energy change 

Fig. 1. The PAD model used to determine the intrinsic strength of FCC MPEAs under simple shear loading.

Table 1 
Interatomic potentials used for atomistic simulations of 16 FCC MPEAs.

Systems Potential files Type

1 VNi-Zhou VNi-Zhou.eam.alloy ROM-EAM
2 VCoNi-Zhou VCoNi-Zhou.alloy ROM-EAM
3 FeCoNi-Zhou FeCoNi-Zhou.alloy ROM-EAM
4 FeCoNiCu-Zhou FeCoNiCu-Zhou.alloy ROM-EAM
5 FeCoNiCuAl-Zhou FeCoNiCuAl-Zhou.alloy ROM-EAM
6 FeCoNiCuPd-Zhou FeCoNiCuPd-Zhou.alloy ROM-EAM
7 FeCrCoNi-Farkas FeNiCrCoAl-heaweight.setfl ROM-EAM
8 FeCrNi-Farkas FeNiCrCoAl-heaweight.setfl ROM-EAM
9 FeCoNi-Farkas FeNiCrCoAl-heaweight.setfl ROM-EAM
10 FeNiCrCoAl-Farkas FeNiCrCoAl-heaweight.setfl ROM-EAM
11 FeNiCrCoCu-Farkas FeNiCrCoCu-heafixed.setfl ROM-EAM
12 FeCrNi-Bonny FeNiCr.eam.alloy DFT fitted
13 CrCoNi-Li NiCoCr.lammps.eam DFT fitted
14 CrCoNi-NNP HDNNP MLIP
15 CoNi-NNP HDNNP MLIP
16 CrCo-NNP HDNNP MLIP
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along the dislocation glide path indicated by the yellow lines in the top 
panels. It is noteworthy that the energy landscape along these paths is 
highly distorted at the atomic scale. In accordance with the classical PN 
model [94], the critical factor influencing the lattice friction of metals is 
the maximum gradient of the GSFE curve, i.e., the maximum restoring 
force (τmax). Following the convention in Ref [19], we refer to this 
atomic property as the atomic pining point strength (FP) here. To visu-
alize the distribution of FP, we calculate the maximum FP for four GSFE 
curve segments (right bottom panel in Fig. 3(b)) and map the corre-
sponding values to each atom in CrCoNi-Li and FeCoNiCuPd-Zhou, as 
depicted in Fig. 3(c, d). Both of them exhibit a random distribution of FP 
within the slip plane as seen in the left panels. The right panels display 
the statistical distribution of the FP for each element. All distributions 
exhibit a resemblance to Gaussian distributions. Interestingly, as two 
common elements in these materials, Ni and Co display different FP 
values in the right panels of Fig. 3(c, d), suggesting that FP is a 
potential-dependent property.

We proceed to utilize the PAD model (Fig. 1) to determine the 
intrinsic strength of all MPEAs listed in Table 1. In Fig. 4(a), the stress- 
strain curves of two representative systems, CrCoNi-Li and FeCoNi- 
Zhou, are presented. The strength of MPEAs are defined as the 
maximum shear stress during deformation. CrCoNi-Li exhibits signifi-
cantly higher strength than FeCoNi-Zhou. The dislocation structures at 
critical points are depicted in Fig. 4(b, c). CrCoNi-Li exhibits more jerky 
dislocation motion at high shear stresses, whereas FeCoNi-Zhou dem-
onstrates relatively smooth dislocation motion at much lower stresses. 
Previous studies have unveiled a strong correlation between strength 
and the 95 percent of the atomic pinning point strength, denoted as FP,95 
[19]. We observe a similar trend in Fig. 4(d), but employing a broader 
range of potentials. Interestingly, we further identify an improved cor-
relation between strength and the standard deviation of FP (FP,sd), as 
depicted in Fig. 4(e). Conversely, the plot of strength with respect to the 
average of FP exhibits a weaker correlation. These results demonstrate 
that FP,sd serves as a more effective descriptor for representing the 

Fig. 2. (a) Simulation setup used to determine the maximum restoring force (τmax) and USFE by DFT. (b) Schematic representation of GSFE curve.

Fig. 3. (a) Schematic of atomic pining point strength calculation. (b) Configuration-averaged and atomic GSFE surface, as well as energy landscape along dislocation 
glide direction. Triangle symbols in the right bottom panel denote the maximum gradient of the curves. Random distribution of atomic pining strength in one {111} 
slip plane (left panel) and elemental distribution (right panel) in (c) CrCoNi-Li and (d) FeCoNiCuPd-Zhou.

F. Shuang et al.                                                                                                                                                                                                                                  Acta Materialia 282 (2025) 120508 

4 



Fig. 4. (a) Shear stress vs. displacement curve for CrCoNi-Li and FeCoNi-Zhou. (b, c) Dislocation profiles at different deformation stages in these two systems. 
Correlations between strength with (d) 95th percentile, (e) standard deviation and (f) average of atomic pining point strength (FP).

Fig. 5. (a) Correlation between strength and standard deviation of atomic pining point strength (FP,sd) for all EAM-based simulations and NNP-based simulations. (b) 
Probability distribution of atomic pining point strength (FP) for individual elements. (c) Random distribution of atomic pining strength in one {111} slip plane. (d) 
Edge dislocation profile in CrCoNi-NNP.
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strength of MPEAs using different types of EAM potentials.
The atomic descriptor FP,sd, however, is not applicable for CrCoNi 

systems using NNP. Fig. 5(a) illustrates that CrCo-NNP, CoNi-NNP, and 
CrCoNi-NNP do not conform to the trend observed with EAM potentials, 
suggesting that this relationship is not universal. Fig. 5(b) illustrates that 
the distributions of three elements, especially Cr, are markedly different 
from CrCoNi-Li in Fig. 3(c). Fig. 5(c) demonstrates that CrCoNi-NNP 
exhibits high atomic pinning point strength with a large standard de-
viation. The dislocation profile and the width of the stacking fault in 
Fig. 5(d) are also notably distinct from CrCoNi-Li in Fig. 4(b). Overall, 
these results highlight the distinctions between EAM potentials and NNP 
in modeling MPEAs.

4. Correlation between local-region pinning strength and 
intrinsic strength in MPEAs

To address the limitations of the atomic descriptor FP,sd, we propose a 
new local-region pinning strength by calculating the maximum restoring 
force (τmax) for a small supercell. This approach is particularly valuable 
for DFT calculations since DFT typically manages around 100 atoms. As 
an example, Fig. 6(a) illustrates one configuration with 240 atoms used 
for the calculation of CrCoNi-Li. Previous studies have employed this 
model to calculate GSFE curves for various FCC and BCC metals and 
MPEAs [93,95]. In the calculation of GSFE curve, the upper part is 
gradually displaced along the x-direction ([112]), followed by a con-
strained relaxation after each displacement. The calculation closely 
follows the procedure depicted in Fig. 3(a), but it is repeated for 10,000 
random configurations. Observing the GSFE curves in Fig. 6(b), one can 
discern significant fluctuations around the average one (yellow curve). 
The statistical distribution of maximum restoring force (τmax) is shown 
in Fig. 6(c). It is evident from the results that τmax exhibits a Gaussian 
distribution but with left or negative skewness (− 0.6), which indicates 
the presence of configurations with very low or nearly zero τmax. It is 
interesting to note that the standard deviation in maximum restoring 
force (τmax,sd) for these small-scale configurations exhibits a strong 
correlation with the strength of MPEAs across all potentials, particularly 
including CrCoNi systems using NNP, as depicted in Fig. 6(d-f). 

Increasing the cross-sectional area of supercells (A) used for GSFE cal-
culations results in a reduction of τmax,sd, yet the linear trend between 
strength and τmax-sd persists. These results suggest that the local-region 
pinning strength, τmax-sd, serves as a more effective indictor to repre-
sent the strength of MPEAs.

To further validate the correlation between MPEAs’ strength and 
τmax,sd, we repeat similar calculations for 155 stable FCC CrCoNi alloys 
based on EAM-Li. Fig. 7(a) illustrates that the strength is lower when 
MPEAs contain a higher proportion of Ni elements, while Fig. 7(b) in-
dicates that the strength is primarily influenced by the concentration of 
Cr. Next, we explore the correlation between strength and various ma-
terial properties. Fig. 7(c) shows that strength exhibits weak dependence 
on lattice distortion (LD). Furthermore, we find no correlation between 
strength and the standard deviation of intrinsic stacking fault energy 
(ISFE), as depicted in Fig. 7(d). This parameter has been proposed to 
account for the stacking fault strengthening of MPEAs in recent studies 
[35,48,96]. Finally, we unveil a strong linear correlation between 
strength and USFEsd and τmax-sd, as illustrated in Fig. 7(e, f). Note that 
strength ~ USFEsd is expected because τmax is approximately propor-
tional to USFE if GSFE curve has a sine function form (Fig. 2(b)). Overall, 
the universal existence of strength ~ τmax,sd in the entire stable 
compositional space of CrCoNi systems in Fig. 7(f), as well as for MPEAs 
using different potentials in Fig. 6(d-f), demonstrates τmax,sd as a reliable 
parameter for strength prediction in MPEAs.

One interesting observation is that the strengths of MPEAs exhibit a 
stronger correlation with EAM-based FP,sd in Fig. 4(e) than local-region 
pining strength τmax,sd in Fig. 6(d-f) and Fig. 7(f). From the perspective of 
calculation process, FP,sd is the energy change of individual atoms, while 
τmax,sd mirrors the energy variation of several atoms near the slip plane. 
Therefore, FP,sd has the higher resolution to capture the atomic details of 
strength of MPEAs than τmax,sd, resulting in the stronger correlation in 
Fig. 4(e). However, it is essential to note that this relationship holds true 
solely within the framework of the embedded atom model [97]. Fig. 5(a) 
illustrates that three subsystems of CrCoNi MPEAs employing NNP 
deviate from the trend of EAM. Specifically, CrCoNi-NNP exhibits a 
higher FP,sd compared to CrCo-NNP but displays a lower strength than 
CrCo-NNP. This suggests that FP,sd and τmax,sd are not correlated factors 

Fig. 6. (a) Configurations used to calculate local-region maximum restoring force (τmax) for CrCoNi-Li. (b) Wide fluctuations of 10,000 GSFE curves. (c) Probability 
distribution τmax. Correlation between strength and τmax-sd for 16 FCC MPEAs using different cross-section area (d) A = 11.0 Å2, (e) A = 43.4 Å2 and (f) A = 348 Å2.
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for NNP. In fact, it is very challenging to determine potential energy for 
each atom from DFT because energy contribution from electrons is 
indistinguishable for different atoms. As a result, the potential energy 
change as well as FP,sd values for each atom obtained from NNP are 
merely products of mathematical fitting and lack physical interpreta-
tion. On the contrary, here τmax,sd represents the energy change of the 
entire supercell in Fig. 6(a), which holds significance in DFT calcula-
tions. Therefore, we can conclude that τmax,sd is the more practical and 
reliable indicator for predicting the strength of MPEA.

5. Validation by DFT calculations and experiments

In this section, we conduct high-throughput DFT calculations to 
determine USFEave, USFEsd, τmax,ave and τmax,sd for 11 MPEAs (CoNi, 
FeNi, Ni62.5V37.5, FeCoNi, MnFeNi, MnCoNi, CrCoNi, VCoNi, MnFeCoNi, 
CrFeCoNi and CrMnCoNi) and subsequently compare them with the 
experimentally measured strengths. The experimental data are obtained 
from Ref [41] at room temperature and Ref [98] at 0 K, which have been 
utilized to unveil the critical roles of lattice distortion [41] and atomic 
pressure [98] in the strength of MPEAs. It should be noted that the 
experimental strengths referenced are the intrinsic strengths of MPEAs, 

Fig. 7. (a) Strength of all stable CrxCoyNiz alloys. Relationship between strength and (b) Cr concentration, (c) lattice distortion (LD), (d) standard deviation of ISFE 
(ISFEsd), (e) standard deviation of USFE (USFEsd), (f) standard deviation of maximum restoring force (τmax,sd).

Fig. 8. Relationship between strength of 11 FCC MPEAs from (a-d) experiment data 1 [90,98] at 0 K and (e-h) experiment data 2 at room temperature [41] with 
respect to USFEave, USFEsd, τmax-ave, and τmax-sd. Experiment 1 involves data from 11 MPEAs, while experiment 2 includes data from 9 MPEAs.
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derived from fitting the Hall-Petch equation to the tensile stress-strain 
curves of polycrystal samples [41,98], and explicitly exclude contribu-
tions from grain boundaries, precipitates, and phase transformations. 
This ensures a valid comparison with our DFT results. In Figs. 8(a, c, e, 
g), we observe weak correlations (R2 = 0.38~0.65) between USFEave 
and τmax,ave with respect to strength obtained from both experiments. On 
the contrary, we observe strong correlations (R2 = 0.75~0.83) between 
USFEsd and τmax,sd with strengths obtained from both experiments, as 
shown in Fig. 8(b, d, f, h). USFE is closely related to τmax as shown in 
Fig. 2(b), which explains the similar response of these two fundamental 
properties to strength. Overall, the comparison between experimental 
measurements and our DFT calculations aligns with our interatomic 
potential-based simulations in Section 4, both suggesting that USFEsd 
and τmax,sd are effective indicators of intrinsic strength of MPEAs at 0 K 
and room temperature.

Another significant implication of our findings in Fig. 8 is that 
USFEave and τmax,ave are poorly correlated with the strength of MPEAs. 
On the contrary, the negative slopes in Fig. 8(a, c, e, g) imply that MPEAs 
featuring lower USFEave or τmax,ave tend to exhibit higher strength. This 
contradiction to the classical PN model for pure metals suggests that the 
PN model is not suitable for predicting the intrinsic strength of MPEAs. 
Despite previous attempts to predict strength using the average prop-
erties of MPEAs and the classical PN model [99–102], our findings 
suggest the inadequacy of this approach. We will employ the simulation 
results of A-atom potential to further validate this statement in the 
following section.

6. Stochastic Peierls-Nabarro model

In this section, we delve into the mechanistic origin of the observed 
strength ~ τmax,sd by improving the existing SPN model. This is achieved 
by introducing randomness at the atomic scale into the fundamental 
properties of the original PN model and integrating it with shearable 
precipitate model.

6.1. Peierls-Nabarro model in pure systems

First, we discuss the theoretical framework of original PN model and 
examine its applicability for metals with different material properties. 
Conceptually, dislocation in crystalline materials can be described by 
the integro-differential equation, commonly referred to as the PN 
equation [103]: 

K
∫+∞

− ∞

1
x − xʹ

dδ(xʹ)
dxʹ dxʹ = Fb(δ(x)) (1) 

where δ(x) = u(x,0+) − u(x, 0− ) is the slip distribution function (u(x) is 
the displacement vector at position x in the glide plane), K is the elastic 
constant which depends on the dislocation type, and Fb is the restoring 
force defined by GSF surface or curve. The left-hand side of Eq. (1)
represents the elastic energy stored within the two elastic half-spaces, 
whereas the right-hand side quantifies the energy penalty incurred 
due to misfit across the glide plane. Solving Eq. (1) entails the minimi-
zation of the total energy of the dislocation system, encompassing con-
tributions from both elasticity and plasticity. For situations involving 
wide dislocations, which are commonly encountered in metals, an 
analytical formula has been provided as follows [94]: 

σP = K
b
aʹ exp

(

−
b
aʹ

K
2τmax

)

(2) 

where σP is the Peierls stress (or lattice friction), a’ is the spacing of 
atomic planes along the line direction when the dislocation is absent, 
and b is the magnitude of Burgers vector. In FCC metals, 1

2 〈110〉 edge 
dislocation usually experience dissociation by the following process: 

1
2
〈110〉→

1
6
〈112〉 +

1
6
〈211〉 + SF (3) 

Assume a is the lattice constant, then the magnitude of the total 
Burgers vector is bt = a

̅̅̅
2

√
/2. Consequently, the magnitude of the 

Burgers vector (b) in Eq. (2) should be bp = bt
̅̅̅
3

√
/3 = a

̅̅̅
6

√
/6 for the 

leading and trailing partial dislocations. Note that aʹ =
̅̅
2

√

4 a for edge 
dislocation, we have bp/aʹ = 2

̅̅̅
3

√
/3. Although we are working on the 

edge dislocation with the Burgers vector of 12 [110], the partials have both 
edge and screw components after dissociation. As a result, the elastic 
constant is obtained by 

K = Kscos2φ + Kesin2φ (4) 

where Ks = μ and Ke = μ/(1 − ν) represent the elastic constants for pure 
screw and edge dislocations respectively, μ and ν are the isotropic shear 
modulus and Poisson ratio respectively, and φ = 60◦ for the edge 
dislocation. Using this simplified PN model, the Peierls stress of pure Ni 
is estimated as 4.7 MPa, which is close to the result obtained by mo-
lecular static simulation [104].

Subsequently, we utilize simulations based on A-atom potentials to 
investigate the validity of Eq. (2). We generate A-atom potentials for 155 
stable compositions of CrxCoyNiz based on the approach from Ref [31], 
from which we select 61 compositions characterized by a positive 
stacking fault energy (SFE). Compositions with a negative SFE, such as 
equimolar CrCoNi, are excluded due to the instability of edge disloca-
tions and the consequent presence of infinitely long stacking faults. 
These 61 Aatom potentials represent 61 FCC pure metals with distinct 
properties, thereby affording us the opportunity to rigorously examine 
the applicability of Eq. (2) across this diverse dataset. Fig. 9(a) illustrates 
that the predictions derived from Eq. (2) and the outcomes obtained 
from A-atom-based atomistic simulations exhibit comparable magni-
tudes and consistent trend. This observation suggests the potential 
applicability of Eq. (2). Furthermore, we conduct a comparison between 
the strength of MPEAs and the strength predicted by A-atom potentials 
for these 61 compositions, as depicted in Fig. 9(b). Remarkably, the 
strength of MPEAs is notably higher than that anticipated by A-atom 
potentials, and no discernible correlation between the two is observed. 
These findings provide additional evidence indicating that the strength 
of MPEAs is not solely dictated by the average of their constituent 
properties, and consequently, the mean-field PN model may not be 
suitable for accurately predicting the strength of MPEAs.

6.2. Stochastic dislocation mechanics

In MPEAs, the presence of random chemical environments at the 
atomic scale introduces variability into all fundamental properties. As a 
consequence, all variables on the right-hand side of Eq. (2) are subjected 
to spatial fluctuations. In the case of a long dislocation, as illustrated in 
Fig. 10(a), it can be segmented into shorter segments, each experiencing 
a distinct atomic environment. Consequently, while the classical PN 
model remains valid, it is applicable only for each individual short 
segment. Therefore, Eq. (2) is subjected to randomization and acquires 
the form: 

σPi = K
bi

aiʹ
exp

(

−
bi

aiʹ
K

2τmax,i

)

(5) 

where the subscription i denotes the ith segment. The elastic constant K is 
not subjected to randomization, as the integration on the left side of Eq. 
(1) spans the entire x dimension, resulting in the influence of only the 
average K. Eq. (5) suggests that each short segment experiences random 
local Peierls stress (σPi) due to random lattice constant (a) and maximum 
restoring force (τmax).

In order to determine the overall intrinsic strength of MPEAs, we first 
follow similar strategy as in Ref [46] to incorporate the Orowan 
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precipitate model which defines the critical stress for a dislocation to 
bypass a set of “pinning sites”: 

σc =
μbp

L
(6) 

where L is the average spacing between the pinning sites and σc is the 
critical applied stress. Geometrically, the probability of encountering 
strong pinning sites satisfying σPi > σc should be equal to the ratio of 
these strong pinning sites to all sites, i.e., 

P(σPi > σc) = l/L (7) 

where l =
̅̅̅
6

√
a/2 represents the dislocation length corresponding to the 

smallest periodicity along the direction of the dislocation line. By 
combining Eq. (6) and Eq. (7), we can derive an implicit expression for 
determining the strength of MPEAs (σc1). 

P(σPi > σc1) = 3
σc1

μ (8) 

While Eq. (8) represents a straightforward model, it utilizes the 
Orowan precipitate model which assume an impenetrable precipitate. 
However, dislocation loops due to dislocation bypassing impenetrable 
precipitates were not observed in previous experiments [19] and 
atomistic simulations [19,33]. In fact, overcoming random local Peierls 
barriers during dislocation movement in MPEAs is more akin to cutting 
through shearable precipitates. As a result, we employ the shearable 
precipitate hardening model to predict the intrinsic strength of MPEAs 

[105]: 

σsh
c =

σPiD
L

(9) 

where D is precipitate size, and σPi indicates the average of local Peierls 
stress of strong pining sites i at the given applied stress σ. The intrinsic 
strength of MPEA (σc2) in this case can be obtained by: 

σc2 =
σPjD
Lj

(10) 

In Eq. (10), σPj is the local Peierls stress satisfying σPj ≥ σc2, which 
serves as strong pining sites.to block the movement of the long dislo-
cation. The dislocation segments corresponding to the sites satisfying 
σPi∕=j < σc2 are free to bow out. Fig. 10(b) illustrates an exemplary pro-
cedure for determining σc2. When the applied external stress (σ) is small, 
the majority of pinning points persist as obstacles hindering the motion 
of the extended dislocation line. The average spacing between these 
remaining pinning points is very compact, such that σ < σPjD/Lj and the 
dislocation cannot move. As σ progressively increases, a greater number 
of pinning points become ineffective, resulting in fewer obstacles to 
impede the dislocation’s motion. The critical σ is determined when 
satisfying σ = σPjD/Lj. Therefore, it is evident that the strength of MPEAs 
is not determined solely by either the strongest or average pinning 
strength, but rather, the entire distribution of pinning strengths exerts an 
influence.

Fig. 9. Scatter plots depicting (a) the strength predicted by Eq. (2) and (b) MPEAs’ strength obtained from simulations of CrCoNi-Li, in relation to the simulation 
results derived from A-atom potential simulations.

Fig. 10. (a) SPN model by combining random local PN model and line tension model. (b) Schematic representation of dislocation bow out with random local Peierls 
stress. The dashed red line represents the applied shear stress (σ).
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7. Solving SPN models using Monte Carlo and symbolic machine 
learning

7.1. Monte Carlo simulations

Analytically solving SPN models presents significant challenges 
owing to the incorporation of probability functions for unknown dis-
tributions. Consequently, in practical terms, we resort to high- 
throughput Monte Carlo (MC) simulations. First, we investigate the 
random distribution of fundamental properties inherent in MPEAs. The 
statistical distribution of τmax has been investigated in Section 4. 
Drawing from our simulation outcomes involving 16 MPEAs listed in 
Table 1 and 155 stable compositions of CrxCoyNiz, it is reasonable to 
assume that τmax follows a Gaussian distribution, solely characterized by 
its average (τmax,ave) and standard deviation (τmax,sd). Furthermore, it is 
important to note that τmax,sd is dependent on the stacking fault area, as 
demonstrated in Fig. 6(d-f). We use τmax,sd calculated based on the 
minimum stacking fault area (

̅̅̅
3

√
/2a2) due to indications from Figs. 3 

and 5, which suggest that the pinning sites exhibit comparable small 
scales. Similarly, we approximate the precipitate size as D = l for the 
same reason.

Next, we use the atomic displacement (d) of relaxed atoms from their 
ideal positions in the undistorted crystal lattice to examine the 
randomness of lattice constant. Fig. 11 (a-c) presents an example anal-
ysis of atomic displacement across three dimensions—dx, dy, and dz for 
CrCoNi-Li—each demonstrating similar Gaussian distribution patterns. 
We utilize the standard deviation of dx to characterize the randomness of 
the lattice constant (asd), as Eq. (1) solely pertains to one dimension. On 
the other hand, asd can be related to LD in MPEAs [37]: 

LD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i

[(
xi − xʹ

i
)2

+
(
yi − yʹ

i
)2

+
(
zi − źi

)2]

√
√
√
√ (11) 

Considering dx = xi − xʹ
i, dy = yi − yʹ

i, dz = zi − źi, we have Var(dx) =

1
N
∑N

i
(
xi − xʹ

i
)2, Var

(
dy
)
= 1

N
∑N

i
(
yi − yʹ

i
)2, and Var(dz) =

1
N
∑N

i
(
zi − źi

)2. Since Var(dx) = Var(dy) = Var(dz) from Fig. 11 (a-c), we 
can obtain LD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3Var(dx)

√
=

̅̅̅
3

√
asd, indicating that LD is equivalent to 

the fluctuation of lattice constant.
We then conduct MC simulations, repeating them 105 times to solve 

for σc1 and σc2, which respectively satisfy Eqs. (8) and (10). We use 
CrCoNi-Li to illustrate this process. To isolate the individual strength-
ening effect resulting from lattice distortion, we first set τmax,sd = 0. As 
depicted in Fig. 12(a), the probability distribution of σPi noticeably 
broadens with increasing values of asd, yet retains close resemblance to a 
Gaussian distribution pattern. All values of σPi are within the same order 
of magnitude. For CrCoNi-Li, an asd value of 0.033 Å results in a minor 
enhancement in strength for σc1, while no improvement is observed for 
σc2, as depicted in Fig. 12(b). Fig. 12(c) reveals the linear relationship 
between σc1 and increasing asd values. Remarkably, despite a significant 

lattice distortion (asd = 0.025a), only a marginal enhancement (from 40 
MPa to 75 MPa) is observed for σc1, while no enhancement is noted for 
σc2. These results suggest that lattice distortion alone has a limited 
strengthening effect on MPEAs. Similarly, we set asd = 0 and investigate 
the strengthening effect of τmax,sd. In contrast to lattice constant, τmax 
exhibits significantly larger fluctuations, as depicted in Fig. 6, due to the 
combined effects of random chemical elements and lattice distortion, 
amplifying the inherent randomness. It is observed that different values 
of τmax,sd significantly alter the distribution pattern of σPi, transitioning it 
from a Gaussian-like distribution (α = τmax,sd/τmax,ave = 0.01) to an 
exponential-like distribution (α = τmax,sd/τmax,ave ≥ 0.1) as illustrated in 
Fig. 12(d). This is due to the combined effects of highly nonlinear 
exponential function in original PN equation and large τmax,sd. The 
consequence of the transition in the distribution pattern of σPi is the 
emergence of more weaker and stronger pinning sites for larger τmax,sd. 
When τmax,sd = 0.5τmax, there are large amount of strong pining sites 
with local σPi exceeding 1.0 GPa, which can significantly increase the 
strength of MPEAs. For CrCoNi-Li, τmax,sd = 3.02 GPa = 0.42τmax,ave 
leads to σc1 = 1.1 GPa and σc2 = 256.1 MPa as shown in Fig. 12(e). 
Comparing these results with our simulation findings for CrCoNi-Li in 
Fig. 4 (853.4 MPa), it becomes evident that σc1 overestimates the 
strength due to the utilization of impenetrable precipitates in the 
dislocation line tension model. Conversely, σc2 underestimates the 
strength, implying that other strengthening mechanisms, such as 
stacking-fault-energy fluctuation, also contribute to the strength. The 
underestimation of σc2 may also be attributed to inaccuracies in τmax,sd, 
which can be improved in the future work. Nevertheless, we calculate 
σc1 and σc2 using different τmax,sd and the resulting plot (Fig. 12(f)) 
demonstrates that both σc1 and σc2 show a linear relationship with τmax, 

sd, demonstrating the dominant role of τmax,sd in MPEAs’ strength. These 
findings thus align with our simulation results presented in Sections 4 
and 5.

7.2. Symbolic machine learning: SISSO

Finally, we utilize an advanced symbolic machine learning model, 
Sure Independence Screening and Sparsifying Operator (SISSO) [106], 
to derive interpretable and analytical models capable of predicting the 
intrinsic strength of MPEAs based on K, μ, τmax,ave and τmax,sd. These 
parameters are considered because they are the sole influencing factors 
in SPN models. SISSO facilitates the creation of extensive feature spaces 
by synthesizing primary features using designated operators. It employs 
Sure Independent Screening to identify optimal subsets of features 
[107], in conjunction with sparse operators like the Least-Absolute 
Shrinkage and Selection Operator (LASSO) and l0-norm regularized 
minimization techniques [108]. Consequently, SISSO enables the 
development of analytical models that may offer greater interpretability 
and transferability compared to conventional machine learning ap-
proaches. To prepare a comprehensive dataset for training, we employ 
MC simulations to calculate intrinsic strength (σc2) of MPEAs for a large 

Fig. 11. Statistical distribution of lattice constant in CrCoNi-Li at three directions.
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range of parameter set: K ∈ [60, 100] GPa, μ ∈ [45,75] GPa, τmax,ave ∈

[2, 10] GPa and τmax,sd ∈ [0,0.5]τmax,ave. Fig. 13(a-c) demonstrate that K 
exhibits no systematic influence on σc2, whereas σc2 increases with τmax, 

ave and τmax,sd. In SISSO, four material properties ([K, μ, τmax,ave, τmax,sd]) 
and four operators [×, /, ̂ 2, ̂ 3, exp(-)] are used to construct features. We 
obtain three SISSO models, each trained on the generated dataset but 
varying in complexity and accuracy as shown below: 

SISSO1 = 250τmax,sd

(τmax,ave

K

)3
(12) 

SISSO2 = 181.88τmax,sd

(τmax,ave

K

)3
+ 288.46τ2

max,sd

(τmax,ave

K

)4
(13) 

Fig. 12. Probability distribution of local Peierls stress (σPi) with different (a) lattice distortion (asd) and (d) τmax,sd. Intrinsic strength of CrCoNi-Ni due to (b) asd and 
(e) τmax,sd. The variation in intrinsic strength with respect to (c) asd and (f) τmax,sd. α = asd/a and α = τmax,sd /τmax,ave in (c) and (f).

Fig. 13. (a-c) Parametric study of MPEAs’ strength with respect to K, τmax,ave and τmax,sd. (d-f) Performance of the three SISSO models.
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SISSO3 =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

460.29τmax,sd

(τmax,ave

K

)3
− 19.8τmax,sd

(τmax,ave

K

)2

+ 13.07
τ6

max,sd

Kτ4
max,ave

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(14) 

It is important to note that during the SISSO training process, the 
shear modulus μ is disregarded, with only K, τmax,ave, and τmax,sd 
considered as the influencing factors. Fig. 13(d-f) illustrate that these 
models accurately predict the intrinsic strength of MPEAs. Moreover, all 
the three models indicate that the intrinsic strengths of MPEA are 
dominated by linear term of τmax,sd, which aligns with our simulations 
and comparison with the experiments. Interestingly, τmax,sd and τmax,ave

K 
serve as two fundamental units for constructing SISSO models. τmax,ave /K 
represents the effects of average properties which can be estimated by 
ROM, and the value is bounded by the constituent elements. As a result, 
τmax,ave/K has limited effects on MPEAs’ strength, while τmax,sd represents 
the random effect and dominates the strength of MPEAs.

The current SPN models demonstrate the ability to reproduce the 
linear relationship between τmax,sd and the intrinsic strength of MPEAs, 
indicating that the analytical model in Eq. (2) effectively captures the 
dominant physics governing the Peierls stress in materials. However, our 
simulation results in Fig. 9 reveal that this simplified PN model lacks 
accuracy. In fact, Eq. (2) is typically employed to estimate the order of 
magnitude of Peierls stress. The prevailing approach for predicting PN 
stress involves using more accurate PN models, such as the semidiscrete 
variational Peierls-Nabarro (SVPN) model [109], which incorporates the 
entire GSFE surface. This can be explored in our future work by 
substituting Eq. (5) with a random SVPN model. High-throughput MC 
simulations and symbolic machine learning can be then used to derive 
more accurate physical models to predict the strength of MPEAs. On the 
other hand, the current SPN model does not incorporate the effect of 
SRO, which is believed to significantly influence the intrinsic properties 
of MPEAs. However, our SPN model can be readily extended to include 
the SRO effect by considering the additional strengthening effect due to 
SRO in the precipitate hardening model. Finally, although BCC MPEAs 
with edge dislocations are not included in our approach, we expect their 
strengths to exhibit similar trends to those of FCC MPEAs, like the SSS 
model.

8. Discussion

In contrast to the solid solute-induced strength in the SSS model, we 
designate it as the effective lattice friction of MPEAs within the frame-
work of SPN. This terminology aligns with the notion of regular lattice 
friction defined in pure metals. It represents the intrinsic strength of the 
materials, excluding contributions from other microstructures such as 
vacancies, precipitates, and grain/phase boundaries [40,41]. Compared 
to the SSS model, the proposed SPN models offer several advantages. 
First, the SPN models explicitly consider the interaction between solute 
atoms and the dislocation core, a natural advantage inherent in the PN 
model. In contrast, SSS models only account for interactions between 
solute atoms and the dislocation based on elastic interactions associated 
with atomic size misfit and modulus misfit of the solute atom. Second, 
DFT calculations of elastic constants, GSFE or τmax have become com-
mon practice for MPEAs [95,110], requiring small configurations that 
capture fluctuations as comprehensively as possible. This facilitates the 
assessment of accurate SPN models with ease. Moreover, it is possible to 
employ ROM to estimate elastic constant, average and standard devia-
tion of τmax, enabling the fast screening of MPEAs’ strength with 
reasonable accuracy. For SSS models, however, the solute/dislocation 
interaction energies in the full model are prohibitive for DFT calcula-
tions, whereas misfit volume values in the simplified model are less 
common [23]. Third, the SPN model treats the intrinsic strength of 
MPEAs as effective lattice friction, a concept analogous to its counter-
part in pure metals. It is evident that MPEAs exhibit lattice friction one 

order of magnitude higher than their constituent elements, fundamen-
tally challenging the assumptions of the ROM approach. The SPN model 
provides a comprehensive explanation for this phenomenon, thereby 
enriching our understanding of MPEAs and addressing various related 
problems. Lastly, our SPN model is robustly designed to seamlessly 
incorporate the effects of SRO by accounting for variations in precipitate 
sizes dictated by SRO. Building on this framework, it is reasonable to 
postulate that the emergence of SRO mitigates the inherent randomness 
in MPEAs, thereby subtly attenuating their intrinsic strengthening 
mechanisms. Conversely, SRO manifests as disproportionately larger 
precipitates compared to the typical, randomly distributed pinning 
points in random solid solution MPEAs, which substantially augments 
precipitate hardening. This sophisticated dual influence of SRO on the 
intrinsic strength of MPEAs has been substantiated by sophisticated 
theoretical models [30] and detailed atomistic simulations [111], 
underscoring the comprehensive capability of our SPN model to predict 
and analyze these complex phenomena.

On the other hand, it is important to note that the current SPN model 
is limited to scenarios at 0 K, where effects of temperature and strain rate 
are not considered. Our model does not account for the critical quantity, 
the dislocation glide energy barrier. In contrast, the model proposed by 
Varvenne and Curtin [24] incorporates these factors. They provide an 
expression for the finite-temperature, finite-strain-rate yield stress as 
follows: 

σ(T, ε̇) = σc

[

1 −

(
kBT
ΔEb

ln
ε̇0

ε̇

)2/3
]

(15) 

where σc is the intrinsic strength at 0 K, T denotes temperature, ε̇ is the 
strain rate, ε̇0 is the reference strain rate, kB is the Boltzmann constant, 
and ΔEb is the dislocation glide energy barrier. To determine the 
intrinsic strength at finite temperatures, one can employ Eq. (15). 
Further details on determiningΔEb can be obtained from Ref [24]. The 
direct determination of ΔEb from fundamental properties, such as GSFE 
and elastic constants, will be the focus of our future work.

A crucial implication of this work is understanding the circumstances 
and reasons behind the failure of ROM in predicting the behavior of 
MPEAs. ROM has traditionally been utilized to predict a range of 
properties in alloys and MPEAs, including lattice constant [112,113], 
misfit volume [24], elastic properties [114], and thermal expansion 
[115]. Interestingly, we find that surface energy and unstable stacking 
fault energy in BCC MPEAs also adhere to ROM predictions using results 
of recent DFT calculations [93]. Although ROM may not accurately 
predict certain properties such as elastic properties [112,114], surface 
energy, and unstable stacking fault energy [93], the deviations from 
actual values are relatively small. This suggests that these fundamental 
properties of MPEAs are bounded by the properties of their constituent 
elements. On the other hand, A-atom potential model is an extension of 
ROM, but in this model, all properties are concentration-weighted at the 
potential level [31]. Consequently, A-atom potential can be utilized to 
predict the average properties of MPEAs with less effort, including 
elastic constants, surface energy, stacking fault energy, and even dislo-
cation width. However, A-atom potential cannot reproduce the correct 
critical stress for dislocation glide in MPEAs, which is also observed in 
our results (Fig. 9(a)) and discussed in Ref [24]. This suggests that the 
intrinsic strength of MPEAs is not bounded by the individual strength of 
their constituent elements, underscoring potential limitations of ROM 
and ROM-based or mean-field PN models in predicting these properties.

Our research elucidates the mechanistic origin underlying the 
breakdown of ROM in determining the strength of MPEAs. This is known 
as the widely recognized cocktail effect in MPEAs. This breakdown of 
ROM is attributed to the highly nonlinear exponential function within 
the PN model (Eq. (2)) and substantial fluctuations in GSFE or τmax. 
Specifically, the exponential function can significantly amplify τmax 
fluctuations, leading to a considerable increase in local Peierls stress 
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spanning several orders of magnitude (Fig. 12(d)). For the same reason, 
we anticipate that high-entropy covalent materials such as high-entropy 
ceramics will have insignificant strength improvement since the PN 
model takes form [116]: 

σP = 4
τ2

max
K

(16) 

where the square function does not significantly alter the probability 
distribution of σP away from the distribution of τmax. Overall, we 
conclude that although ROM applies to the fundamental properties of 
MPEAs, it fails to predict macroscopic behaviors that exhibit highly 
nonlinear relationships with these fundamental properties at the atomic 
scale. It is only under these conditions that the cocktail effect in MPEAs 
can emerge.

Another relevant example involves hydrogen or vacancy diffusion in 
MPEAs, where the exponential function also emerges in the basic 
Arrhenius equation for the local diffusion behavior: 

D = D0exp
(

−
ΔE
kBT

)

(17) 

where D0 is the characteristic diffusivity when temperature goes to 
infinite, ΔE is the diffusion barrier, kB is the Boltzmann constant, T is the 
temperature. Although this model aptly describes individual atomic 
movements, it fails to capture the more complex, collective diffusion 
behaviors observed on a macroscopic scale in MPEAs. The well- 
documented phenomenon of sluggish diffusion, extensively observed 
in prior studies, indicates that diffusion within MPEAs is not confined to 
the traditional behavior observed in individual elemental systems. In 
fact, diffusion in MPEAs is not merely a function of one or two migra-
tions barriers (ΔE) but is significantly influenced by the alloy’s hetero-
geneous composition [117–119]. This heterogeneity leads to a variation 
in local microenvironments, which in turn cause the fluctuations of ΔE 
at the atomic scale [120–122]. Consequently, we expect that the sta-
tistics of ΔE (such as ΔEave and ΔEsd) dominates the overall diffusion 
behavior in MPEAs. This aligns with a recent kinetic Monte Carlo study 
showing that in FCC CoNiFeCrMn, vacancy diffusivity is determined by 
the standard deviations of site energies and migration barriers [121].

Last but not least, this research underscores the critical implications 
of employing EAM potentials for researching MPEAs. Our findings 
reveal that although ROM-based and DFT-fitted EAM potentials may not 
capture the exact properties of real materials, they consistently exhibit 
internal coherence. This consistent behavior underscores the value of 
EAM potentials in deciphering the complex deformation mechanisms 
inherent in MPEAs. Crucially, we establish that the linear relationship 
identified between the strength of MPEAs and τmax,sd derived from EAM 
simulations is robust and transferable to materials synthesized experi-
mentally. This discovery not only enhances our understanding of MPEA 
mechanics but also sets a new benchmark for predictive materials 
modeling. In contrast, despite the widespread use of MLIPs in MPEA 
studies [67,84,123,124], their application demands careful scrutiny. 
MLIPs inherently lack a physical foundation [125], except for those that 
are physics-informed [126,127]. At its core, an MLIP represents a 
combination of optimized hyperparameters that have been fitted using 
DFT data. To ensure MLIPs are effective in specific applications, it is 
crucial that they are meticulously trained with relevant, high-quality 
DFT data. However, validating MLIPs for systems containing more 
than 1000 atoms presents a significant challenge, primarily due to the 
size limitations inherent in DFT calculations. This challenge necessitates 
a cautious approach to the interpretation and application of MLIPs, 
especially when dealing with large-scale complex behaviors. Our find-
ings presented in Fig. 5 exemplify such a case.

9. Conclusions

In conclusion, this work has employed a comprehensive approach, 

combining interatomic potential-based large-scale atomistic simula-
tions, high-throughput DFT calculations, the Stochastic Peierls-Nabarro 
(SPN) model, and symbolic machine learning, to explore the mecha-
nistic origin of the exceptional intrinsic strength of multi-principal 
element alloys (MPEAs). The main conclusions are: 

• The standard deviation of atomic pinning point strength effectively 
characterizes the intrinsic strength of MPEAs across all examined 
EAM potentials, except for NNP.

• The linear dependence of the standard deviation of maximum 
restoring force (τmax,sd) on the intrinsic strength of MPEAs is revealed 
across various interatomic potentials. This relationship is further 
highlighted through a comparison between DFT calculations and 
experimental data.

• SPN models are developed by incorporating both the τmax-dependent 
PN model and a shearable precipitate model, and subsequently 
solved using Monte Carlo simulations.

• It is revealed that the remarkable intrinsic strength of MPEAs stems 
from the presence of highly nonlinear exponential functions within 
the PN model, coupled with significant fluctuations in τmax.

• Analytical models for the intrinsic strength of MPEAs are formulated 
through symbolic machine learning techniques, demonstrating 
strong agreement with our simulation results.

• While EAM potentials may not accurately calculate the properties of 
real materials like DFT, their inherent coherence and remarkable 
computational efficiency make them a powerful tool for unraveling 
the intricate mechanisms within MPEAs.
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[31] C. Varvenne, A. Luque, W.G. Nöhring, W.A. Curtin, Average-atom interatomic 
potential for random alloys, Phys. Rev. B 93 (2016) 104201, https://doi.org/ 
10.1103/PhysRevB.93.104201.

[32] A. Ghafarollahi, F. Maresca, W. Curtin, Solute/screw dislocation interaction 
energy parameter for strengthening in bcc dilute to high entropy alloys, Model. 
Simul. Mat. Sci. Eng. 27 (2019) 085011, https://doi.org/10.1088/1361-651X/ 
ab4969.

[33] Q.-J. Li, H. Sheng, E. Ma, Strengthening in multi-principal element alloys with 
local-chemical-order roughened dislocation pathways, Nat. Commun. 10 (2019) 
3563, https://doi.org/10.1038/s41467-019-11464-7.

[34] K. Chu, E. Antillon, C. Stewart, K. Knipling, P. Callahan, S. Wu, D. Rowenhorst, D. 
L. McDowell, Investigation of chemical short range order strengthening in a 
model Fe–12Ni–18Cr (at. %) stainless steel alloy: a modeling and experimental 
study, Acta Mater. 261 (2023) 119385, https://doi.org/10.1016/j. 
actamat.2023.119385.

[35] Z. Pei, M. Eisenbach, P.K. Liaw, M. Chen, Nanoscale fluctuation of stacking fault 
energy strengthens multi-principal element alloys, J. Mater. Sci. Technol. 158 
(2023) 218–225, https://doi.org/10.1016/j.jmst.2023.01.042.

[36] G. Huang, X. Zhang, R. Zhang, W.-R. Jian, X. Zou, K. Wang, Z. Xie, X. Yao, The 
shear softening and dislocation glide competition due to the shear-induced short- 
range order degeneration in CoCrNi medium-entropy alloy, J. Mater. Sci. 
Technol. 192 (2024) 108–122, https://doi.org/10.1016/j.jmst.2023.12.024.

[37] C. Tandoc, Y.-J. Hu, L. Qi, P.K. Liaw, Mining of lattice distortion, strength, and 
intrinsic ductility of refractory high entropy alloys, NPJ. Comput. Mater. 9 (2023) 
53, https://doi.org/10.1038/s41524-023-00993-x.

[38] A. Roy, P. Sreeramagiri, T. Babuska, B. Krick, P.K. Ray, G. Balasubramanian, 
Lattice distortion as an estimator of solid solution strengthening in high-entropy 
alloys, Mater. Charact. 172 (2021) 110877, https://doi.org/10.1016/j. 
matchar.2021.110877.

[39] P. Thirathipviwat, S. Sato, G. Song, J. Bednarcik, K. Nielsch, J. Jung, J. Han, 
A role of atomic size misfit in lattice distortion and solid solution strengthening of 
TiNbHfTaZr high entropy alloy system, Scr. Mater. 210 (2022) 114470, https:// 
doi.org/10.1016/j.scriptamat.2021.114470.

[40] Y.Y. Zhao, Z.F. Lei, Z.P. Lu, J.C. Huang, T.G. Nieh, A simplified model connecting 
lattice distortion with friction stress of Nb-based equiatomic high-entropy alloys, 
Mater. Res. Lett. 7 (2019) 340–346, https://doi.org/10.1080/ 
21663831.2019.1610105.

[41] S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, 
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