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Abstract

This paper examines the dependence between Artificial Intelligence (AI) and eight energy-
focused sectors (including renewable energy and coal) across different market conditions and
investment horizons. This paper adopts both linear and non-linear models such as quantile
regressions and quantile cross-spectral coherency models. Evidence from the linear model sug-
gests that the performance of energy-focused corporations, especially those in the renewable
energy sector depends strongly on the performance of AI. Results from the non-linear model
indicate that dependence varies across both energy sectors, market conditions as well as invest-
ment horizons. By considering both negative and positive shocks on AI, we demonstrate that
the dependence of energy corporations on AI also varies according to the direction of shocks on
AI. Interestingly, negative and positive shocks on AI impact differently on the performance of
energy corporations across different sectors and market conditions. Besides, we found that the
dependence became stronger during the first wave of the COVID-19 pandemic. Our findings
hold profound implications for portfolio managers and investors, who may be interested in
holding the assets of AI and those of energy corporations.

Keywords: Tail dependence; Artificial intelligence; Energy corporations; Quantile-spectral
coherence
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1 Introduction
In this paper, we focus on the dependence structure between the stock returns of AI and those
of energy-focused firms. This paper particularly aims to provide empirical evidence (if any) on
the potential hedging and portfolio diversification opportunities AI assets may hold for those of
energy-focused sectors across different investment horizons and market conditions. Following the
seminal paper by Henriques and Sadorsky (2008), expansive literature examining the interde-
pendence and connectedness between technology stocks, oil price changes, clean energy stocks has
emerged. Among others, this literature has examined the market responses and volatility spillovers
among crude oil prices, clean energy and technology stocks across different times and market con-
ditions (Kumar et al., 2012; Sadorsky, 2012; Managi & Okimoto, 2013; Inchauspe et al., 2015;
Bondia et al., 2016; Ahmad, 2017; Ferrer et al., 2019; Maghyereh et al., 2019; Nasreen et al., 2020;
Niu, 2021). So far, results emerging from this literature show significant evidence of dependence,
causality, and spillovers among these variables, although the strength of the correlation and direc-
tional predictability varies across these studies.

For instance, Henriques and Sadorsky (2008) employed the Vector Autoregressive (VAR) model
and found that technology stock prices are influenced by changes in oil prices, while technology
shocks exact more significant impact on clean energy stock prices compared to oil price shocks.
Taking into account the time-dependent dynamics, Managi and Okimoto (2013) used a Markov-
switching VAR model and found that in the post-structural break period, oil prices and technology
stock prices impact positively on clean energy stock prices, whilst their pre-structural break pe-
riod results are consistent with Henriques and Sadorsky (2008). Inchauspe et al. (2015) used a
state-space multifactor model and found that the impact of oil prices on clean energy stock re-
turns increased since 2007. They also found evidence of stronger effects of technology stocks on
clean energy stocks compared to the effect of oil prices. Bondia et al. (2016) found that while
the stock prices of clean energy companies are impacted by technology stock and oil prices in the
short run, there is no causality running towards clean energy stock prices in the long-run. Ferrer
et al. (2019) found evidence of pairwise connectedness between clean energy and technology stock
prices, but mainly in the short-term. Ahmad (2017) found that there is a bilateral interdependency
between clean energy and technology stocks, while crude oil exhibits limited interdependence with
clean energy and technology. Maghyereh et al. (2019) used the wavelet and multivariate GARCH
(MGARCH) techniques and found significant bidirectional return and risk transfer from oil and
technology to the clean energy market. Results from the time-scale analysis further revealed that
risk transmissions are more pronounced at longer time horizons.

While the above studies provide important insights on the nature of the relationship between tech-
nology and energy stocks, due consideration of the type of technology in question has remained
unexplored in the literature. AI is one of the technologies that characterize modern technological
advancement. It is the main driver of emerging technologies like big data, blockchain technologies,
robotics, cloud computing, and the Internet of Things (IoT). Koroteev and Tekic (2021) note that
AI is the most important general-purpose technology of today. Although AI has diverse applica-
tions across different industries and spheres of human life, the dependence of energy-focused sectors
on AI has evolved with prominence (see Kalogirou, 2007; Zahraee, 2016; Hanga & Kovalchuk, 2019;
Li et al., 2021; Gupta & Shah, 2021; Koroteev & Tekic, 2021; Jha et al., 2017; Boza & Evgeniou,
2021). For instance, while the growing application of AI in energy is interlaced within the recent
concerns about fossil fuels depletion and climate change, Koroteev and Tekic (2021) note that the
first applications of AI in a sector such as in oil and gas were as far as in the 1970s. Further,
the overly reliance of clean energies on technological innovations as well as the entire energy sec-
tor’s innate characteristic of being quicker to adopt new technologies than to experiment with and
change their business models has strengthened this link in recent times.

Anecdotal evidence lends credence to the application of AI in both the production and distribution
of energy across different energy sectors, with Lyu and Liu (2021) arguing that AI is probably the
leading general-purpose technology adopted in the energy sector. As Lyu and Liu (2021) noted
further, the characteristic of AI has made it possible for it to be applied easily to energy demand
forecasting, generation and conservation, price forecasting, and the integration of more renew-
able energy, among others. Indeed, anecdotal evidence lends credence that AI has been widely
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applied in energy supply, trade, and consumption (Ahmad et al., 2021) and particularly in the
Oil and Gas industry to minimize the cost of lifting, and strengthen the modeling of reservoirs
and maintenance prevention (Rahmanifard & Plaksina, 2019; Gupta & Shah, 2021). It has also
been used for predictive maintenance in the clean energy sector (Shin et al., 2021), and moni-
toring and risk assessment in the coal industry (Kuang et al., 2001; Zhu & Zhu, 2012; You et
al., 2021). There is also available evidence suggesting that the application of AI in the energy
sector leads to improved performance of the sector (Ahn & Cho, 2017; Fathi et al., 2020; Lyu &
Liu, 2021; Zhang et al., 2021). However, whether AI as a tradable asset offers hedging and/or
portfolio diversification opportunities to those of energy-focused sectors has remained unexplored.
This is surprising given the well-established literature on the interdependence and connectedness
between the stock returns of technology-intensive firms and energy-focused firms, on the one hand,
and that AI is both the most important contemporary general-purpose technology and one of
the major technologies that characterize modern technological advancement in AI, on the other
hand. At best, the few extant studies that examined the hedging and portfolio diversification
opportunities of AI have only focused on carbon prices, conventional and alternative asset classes
such as bonds and cryptocurrencies (Huynh et al., 2020; Tiwari et al., 2021; Demiralay et al., 2021).

This study, therefore, advances the literature on the nexus between the stock returns of technology-
intensive and energy-focused sectors/firms by paying particular attention to AI. Our paper partic-
ularly examines the dependence structure between AI and different energy-focused sectors across
different market conditions and investment horizons. In an extended analysis, we also examine
how asymmetric positive and negative shocks on AI as well as the recent COVID-19 pandemic
affect the pattern of this relationship. Evidence from erstwhile literature on the nexus between
energy and technology stocks, indicate heterogeneous relationships with stock returns of technol-
ogy sectors/firms, with stronger positive co-movement and correlation with clean energy sector
than dirty energy sector. The popular explanation for this finding is that investors consider clean
energy stocks to be similar to those of technology as the success of clean energy companies depends
upon the successful breakthrough or adoption of specific technologies (Bondia et al., 2016). Hence,
technology stock prices would drive those of clean energy. Whereas this view cannot be entirely
discredited such that one may expect the dependence between AI and energy-focused sectors is
stronger for the clean energy sector, the application of AI across energy sectors in a bid to en-
sure environmental sustainability has become common. Hence, the strength and direction of the
dependence between AI and the different energy-focused sectors becomes a matter of empirical
question. One of the objective of our study is therefore to provide evidence on the structure of
this dependence.

To address our research objectives, we use daily data covering the period from December 18, 2017
to June 14, 2021. As an empirical measure of AI, we rely on the NASDAQ AI price index following
Huynh et al. (2020), Tiwari et al. (2021), and Demiralay et al. (2021). As noted by Huynh et
al. (2020), The NASDAQ AI index was established to track the performance of firms that are
active in AI and robotics, including technology, industrial, medical, and other economic sectors.
Hence, it sufficiently reflects the industry and market dynamics associated with AI. Regarding the
energy-focused sectors, on the other hand, we follow Corbet et al. (2020) that used eight energy-
focused sectors defined based on their related TRBC Sector Code in the Datastream international.
The eight sectors considered include Oil & Gas Exploration and Production, Oil & Gas Refining
and Marketing, Integrated Oil and Gas, Oil-related Services and Equipment, Oil and Gas Trans-
portation Services, Oil and Gas Drilling, Coal, and Renewable Energy. It suffices to note that by
focusing on these different energy-focused sectors, our analysis offers substantial information on
how the broad energy market dynamics are dependent on and predictable from the AI, thereby
providing crucial information for potential portfolio diversification across these energy sectors.

Regarding our methodology, we employ both linear and non-linear models including the Ordinary
Least Square (OLS), quantile regression (QR), and the quantile cross-spectral coherence (QCS)
models, respectively. As we show in the next section, the latter two approaches enable us capture
some interesting dynamics regarding the dependence between AI and each of the energy-focused
sectors. In particular, whereas the linear model (OLS) allows us to capture the average level of
dependence among these markets only, the flexible framework of the QR enables us to examine
how this dependence differs across different quantiles of these markets’ return distribution. These
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return quantiles are decomposed into bearish (i.e., left/lower tails), normal (i.e., shoulders of the
distribution) and bullish (i.e., right/upper tails) market conditions. While the QCS method as
developed by Barunik and Kley (2019) offers somewhat similar insights as the QR, it offers some
additional advantages that enable us to explore the dependence between return quantiles across
frequencies, which correspond to short, medium and long-term investment horizons. In line with
our research objectives, therefore, we employ these research approaches jointly, although our pre-
ferred method is the QCS due to a more comprehensive results it presents.

The rest of the paper is structured as follows. The next section presents the data and the methods
used for the empirical analysis. Section three presents and discusses the empirical results, while
section four concludes.

2 Data and empirical methods

2.1 Data
Our analysis relies on the NASDAQ AI price index as a measure of AI following two recent papers
including Huynh et al. (2020) and Tiwari et al. (2021). The dataset covers the period from
December 18, 2017 to June 14, 2021 and were retrieved from the Thomson International Datas-
tream. The data begins from December 18, 2017 mainly because the NASDAQ AI price index is
only available from this date. The NASDAQ AI index is established to track the performance of
firms that actively apply artificial intelligence and robotics across technology, industrial, medical,
and other economic sectors. Hence, the index captures the innovation level of the market as well
as the performance of artificial intelligence and robotics industry. Regarding the energy-focused
sectors, we follow Corbet et al. (2020) which used eight energy-focused sectors defined based on
their related TRBC Sector Code in the Datastream international. The eight sectors considered
include: (i) Oil & Gas Exploration and Production (OGEXP); (ii) Oil & Gas Refining and Mar-
keting (OGREF); (iii) Integrated Oil & Gas (INTOG); (iv) Oil-related Services and Equipment
(OGSEQ); (v) Oil & Gas Transportation Services (OGTRA); (vi) Oil & Gas Drilling (OGDRI);
(vii) Coal (COAL); and (viii) Renewable Energy (REN).

Figure 1, Panel a - i displays the evolution of the energy-focused sectors and AI price returns over
the sample period. Following past studies, we compute the daily returns as rt = 100 × (lnpt −
lnpt−1). As expected, the plots show that across all energy sectors and AI, there is notable level of
increased return volatility following the large drop in stock prices around the period of COVID-19
pandemic. Further, in Table 1, we provide the basic descriptive statistics for all the series. Table
1 shows that among the variables, renewable energy sector has the highest mean return while the
Oil & Gas Transport sector has the least. It also shows that Oil & Gas drilling sector is the most
volatile while AI is the least as implied from the standard deviation. Also, Table 1 indicates that
all the series depart from normality conditions, as shown by the significant Jarque-Bera test for
normality in the return distributions. Moreover, all the variables are negatively Skewed as shown
by the Skewness coefficients. Basically, negative skewness conforms to the presence of asymmetry
in return distributions. Additionally, all the return series exhibit excess Kurtosis, suggesting fatter
tails than those of normal distribution.

Lastly, as shown in Table 1, we examine the presence of unit roots using the Augmented Dickey-
Fully (ADF) test statistic. The ADF coefficients indicate that all the return series are stationary at
the first difference. The unit roots feature of the variables is particularly crucial given econometric
techniques adopted in this study. Specifically, prior to implementing the quantile spectral approach,
it is also necessary to test whether the energy sectors as well as AI exhibit nonlinear characteristics.
Following this, Table 2 shows the results of BDS test proposed by Brock et al. (1996) on the VAR
model’s filtered residuals for all the time series in different dimensions (m = 2, 3, ..., 6). For
all the variables, the null hypothesis of linearity is rejected, suggesting that the residual series of
the selected energy sectors and AI exhibit nonlinear features. Hence, nonlinear models are more
appropriate for examining the interactions between AI and energy-focused sectors.
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(a) Oil & Gas Transport Services (b) Oil & Gas Exploration and Production

(c) Oil & Gas Refining and marketing (d) Integrated Oil & Gas Services

(e) Oil-related Services and Equipment (f) Oil & Gas Drilling
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(g) Coal (h) Renewable

(i) Artificial intelligence

Figure 1: Plots of return series

Table 1: Descriptive statistics of AI and energy-sectors

Variable Mean Min. Med. Max. Std. Dev. Skew. Ex. Kurt. JB ADF
AI 0.074 -10.480 0.177 9.101 1.391 -0.985 10.194 3979.8*** -17.99***
OGDRI -0.113 -35.429 -0.075 14.498 2.989 -1.838 24.046 21845.3*** -25.90***
OGEXP -0.034 -35.144 -0.007 13.639 2.557 -2.909 43.439 70907.7*** -19.10***
OGREF -0.021 -14.512 0.006 12.857 1.755 -0.987 17.152 11004.5*** -18.95***
INTOG -0.025 -18.103 0.012 14.882 1.904 -1.354 23.159 20071.2*** -18.65***
OGSEQ -0.082 -30.650 -0.081 14.242 2.629 -1.756 24.599 22794.1*** -19.03***
OGTRA -0.001 -19.976 0.069 13.033 1.860 -2.696 36.636 50622.7*** -20.11***
COAL -0.033 -13.202 0.000 8.737 1.796 -0.661 5.639 1238.3*** -18.85***
REN 0.117 -12.129 0.156 11.412 2.043 -0.318 5.681 1206.4*** -17.61***

Note: Artificial Intelligence (AI); Oil & Gas Exploration and Production (OGEXP); Oil & Gas Refining
and Marketing (OGREF); Integrated Oil & Gas (INTOG); Oil-related Services and Equipment
(OGSEQ); Oil & Gas Transportation Services (OGTRA); Oil & Gas Drilling (OGDRI); Coal (COAL);
and Renewable Energy (REN)
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Table 2: BDS test for non-linearity from the vector autoregression (VAR) model filtered residuals.

Variable Dimension
m = 2 m = 3 m = 4 m = 5 m = 6

AI 0.0215*** 0.0456*** 0.0640*** 0.0761*** 0.0813***
(7.0618) (9.4545) (11.124) (12.686) (14.055)

OGDRI 0.0199*** 0.0353*** 0.0432*** 0.0467*** 0.0478***
(6.5544) (7.2882) (7.4906) (7.7617) (8.2188)

OGEXP 0.0166*** 0.0327*** 0.0422*** 0.0476*** 0.0493***
(5.3121) (6.5900) (7.1253) (7.7059) (8.2683)

OGREF 0.0325*** 0.0630*** 0.0843*** 0.0948*** 0.0978***
(9.9651) (12.159) (13.662) (14.737) (15.765)

OGTRA 0.0331*** 0.0642*** 0.0853*** 0.0992*** 0.1044***
(9.88411) (12.014) (13.404) (14.961) (16.331)

INTOG 0.0266*** 0.0490*** 0.0618*** 0.0676*** 0.0678***
(8.3151) (9.6178) (10.172) (10.676) (11.101)

OGSEQ 0.0204*** 0.0379*** 0.0484*** 0.0540*** 0.0566***
(6.4572) (7.5753) (8.1301) (8.7014) (9.4631)

COAL 0.0161*** 0.0277*** 0.0338*** 0.0362*** 0.0339***
(5.9319) (6.4252) (6.5992) (6.7948) (6.6321)

REN 0.0197*** 0.0444*** 0.0625*** 0.0731*** 0.0784***
(6.4927) (9.2054) (10.876) (12.215) (13.587)

Note: Artificial Intelligence (AI); Oil & Gas Exploration and Production (OGEXP); Oil & Gas Refining
and Marketing (OGREF); Integrated Oil & Gas (INTOG); Oil-related Services and Equipment
(OGSEQ); Oil & Gas Transportation Services (OGTRA); Oil & Gas Drilling (OGDRI); Coal (COAL);
and Renewable Energy (REN)

2.2 Empirical methods
2.2.1 Quantile regression model (QR)

The first phase of our empirical analysis focuses on the effects of AI performance on the returns of
different energy-focused sectors across different return distributions. To proceed with this objec-
tive, we adopt the QR analysis of Koenker and Bassett (1978). Although the QR follows a similar
structure to linear regression analysis, it permits us to explore the existence of non-uniform effects
of the independent variables on multiple quantiles of the outcome variable. Indeed, QR analy-
sis offers several advantages as highlighted in previous studies that have employed this approach.
Among others, Conyon and He (2017) argue that whereas the traditional OLS model predicts the
average or conditional mean association between an independent variable X and the explained
variable Y, the QR technique permits the prediction of specific parts of the distribution of the
explained variable, including the conditional median effect on Y of a change in the independent
variable X.

Beyond predicting the conditional median (50th percentile) effect, the QR can also be used to pre-
dict different quantiles of the distribution of the explained variable including both the right and left
tails of the distribution, which offers richer insights into the nature of effects during bullish (higher
quantiles) as well as bearish (lower quantiles) market conditions. Therefore, the QR offers a com-
prehensive characterization of the data by enabling the effects of covariates to evolve throughout
the entire distribution of the explained variable. For instance, using a simple case of one covariate,
β0.1 > 0 denotes that an increase on the independent variable has a positive effect on the 10th
percentile of the explained variable while β0.9 < 0 implies that the effect of the same increase be-
comes negative on the 90th percentile of the explained variable (Kaza, 2010). Further, as noted in
Gallego-Alvarez and Ortas (2017), unlike the classical OLS model that may be inefficient if errors
are non-normal, the QR approach is robust to non-normal errors and outliers. Besides, Baur (2013)
argue that QR analysis permits changes in the degree of dependence to be tested across different
quantiles of the distribution. Regarding the objectives of our study, the QR approach enables us
to uncover potential non-monotonic effects of AI on the returns of energy-focused sectors across
its different return quantiles.

Our QR model evolves from a baseline OLS specification as follows:

rt = β0 + β1rt−1 + β2γt + ψDt + νt (1)
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where rt is the return of each energy sector at time t while rt−1 is the return at time t−1. γt is the
return of AI at time t while Dt represents a crisis dummy associated with the period of the first
wave of the COVID-19. Specifically, the dummy variable is defined as Dt = 1 if the observation t
falls within December 1, 2019 to July 1, 2020 and Dt = 0 if otherwise. νt is a random error term.

In Eq. 1, we assume that the relationship between the performance of AI and the energy-focused
sectors are linear and that both increasing and declining changes in the performance of AI have
symmetric effects on the performance of energy-focused sectors. However, there are several rea-
sons to assume that this relationship may exhibit asymmetric/nonlinear tendency. For instance,
increasing performance of AI is expected to lead to increasing application of AI in a wide range of
processes, including the development of alternative energy sources. This may have adverse effects
on the performance of corporations in the fossil energy industry if the adoption of AI improves the
efficiency of alternative energy sources.

To accommodate possible asymmetries in the relationship between the performance of AI and the
considered energy-focused sectors, γt is decomposed into positive γ+t and negative γ−t changes,
where γ+t = max(γt, 0) and γ−t = min(γt, 0). Thus, Eq. 1 becomes:

rt = β0 + β1rt−1 + β+γ+t + β−γ−t + ψDt + νt (2)

Eqs. 1 and 2 permit us to examine the extent to which the performance of AI may influence
the returns of each energy sector. It also reveals whether positive and/or negative shocks on the
performance of AI influence the performance of each energy sector differently. However, these
models do not reveal whether this influence varies across different market conditions. That is,
these models do not reveal whether the influence of the performance of AI on the energy sector
is different during low market returns (bearish market) than during high market returns (bullish
market). The models also do not show whether positive and negative shocks on the performance
of AI impact differently on energy sector depending on whether market returns are low or high.
The QR is very useful in determining whether the influence of a variable on another changes across
different market conditions.

The QR technique expresses the conditional τth quantile of the dependent variable for some value
of τ ∈ (0, 1). Thus, the conditional quantile model for qt, given xt, may be expressed as:

Qqt(τ/xt) = ατ + x′tβ
τ (3)

where Qqt(τ/xt) denotes the conditional τth quantile of the dependent variable qt; ατ represents
the intercept, which is set to depend on τ . Also, βτ is the vector of coefficients associated with τth
quantile while x’ is a vector of explanatory variables (which includes: one period lag of returns of
the concerned energy-focused sector, AI, and the COVID-19 dummy). As noted in Koenker and
Basset (1978) and Nusair and Olson (2019), the coefficients of the τth quantile of the conditional
distribution are expressed as a solution to the minimization problem below:

min

β̂ ∈ <k
[ ∑

τ |qt − ατ − x′tβ̂τ | +
∑

(1− τ)|qt − ατ − x′tβ̂τ |
t : qt ≥ ατ + x′tβ̂

τ t : qt < ατ + x′tβ̂
τ

]
(4)

This may be re-written as a minimization of the weighted deviations from the conditional quantile
as follows:

min

β̂ ∈ <k
∑
t

ρτ (qt − ατ − x′tβ̂τ ) (5)

where ρτ represents a weighting factor known as a check function, expressed for any τ ∈ (0, 1) as:

ρτ (ξt) =

{
τξt, if ξt ≥ 0
(τ − 1)ξt, if ξt < 0

(6)

where ξt = qt − ατ − x′tβ
τ . Hence, as noted by past studies, quantile regression represents a

weighted regression with different weights assigned to data points, depending on whether the
points fall above or below the line of best fit (e.g. Binder & Coad, 2011; Nusair & Olson, 2019).
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Put differently, quantile regression technique minimizes the sum of residuals, given that the weight
of τ is assigned to positive residuals while the weight of 1− τ is assigned to negative residuals.

To examine the effects of the performance of AI on the returns of energy-focused sectors using the
QR approach, we specify the following models, inspired by the standard OLS framework:

Qqt(τ/xt) = ατ0 + ατ1rt−1 + ατ2γt + ατ3Dt (7)

Qqt(τ/xt) = βτ0 + βτ1 rt−1 + βτ+γ+t + βτ−γ−t + βτ2Dt (8)

We estimate the QR models in Eqs. 7 and 8 following past studies by specifying nine quantiles
(e.g. Tiwari et al., 2018; Nusair & Olson, 2019; Qin et al., 2020). The nine quantiles are (τ = 0.10,
0.20,..., 0.90), which enables us to capture three market regimes, including low (τ = 0.10, 0.20,
0.30), which corresponds to bearish market state; medium (τ = 0.40, 0.50, 0.60), which is associated
with normal market state; and high (τ = 0.70, 0.80, 0.90), which corresponds to bullish market
state. In this paper, bearish(bullish) market regime denotes periods of rapid decline(increase) in
the performance of firms that are into AI, as implied by decrease(increase) in their stock prices.

2.2.2 Quantile cross-spectral (coherency) approach

In addition to determining the dependence between AI and energy-focused sectors across market
conditions, an important aspect of our study is to determine the dependence structure across dif-
ferent investment horizons. To this end, the second phase of our analysis involves the quantile
cross-spectral dependence technique proposed by Barunik and Kley (2019). This method permits
us to examine the dependence structure of the quantile in the tails of the joint distribution and
across frequencies. As posited by Maghyereh and Abdoh (2021), this technique captures the ex-
istence of dependence at different market conditions (e.g. lower quantiles, intermediate quantiles
and upper quantiles) and across various investment horizons such as the short and long-term.
Therefore, this methodology is a novel approach to measure the dynamic interdependence under
different market conditions and varying investment horizons.

As in Barunik and Kley (2019), suppose that (Rt)t∈Z denotes a set of variables that are two strictly
stationary process, with components Rt = (Rt,j1, Rt,j2), the quantile coherency between these two
processes denoted as (Rj1j2) may be represented as follows:

<j1j2(ω; τ1, τ2) :=
f j1j2(ω; τ1, τ2)

(f j1j1(ω; τ1, τ1)f j2j2(ω; τ2, τ2))1/2
(9)

where ω is the time-frequency corresponding to ωξ2π1/5; 1/22; 1/250 respectively. Indeed, the
coherency (co-dependence) across these three frequencies correspond to the short-run (one week),
the intermediate run (one month) and the long run (one year). π denotes the periodic intervals
of ωξ(−π < ω < π); τ1 and τ2 are the τth quantiles of Rt,j1 and Rt,j2 (i.e. 0.5, 0.05 or 0.95),
consecutively, where (τ1, τ2) ∈ [0, 1], f j1j2 , f j1j1 and f j2j2 represent the quantile cross-spectral
density and the quantile spectral densities of processes Rt,j1 and Rt,j2 , respectively generated from
the Fourier transform of the matrix of quantile cross-covariance kernels denoted by Γ(τ1, τ2) :=
(fω; τ1τ2)j1j2 , where

γj1j2 := Cov
(
I{Xt+k,j1 ≤ qj1(τ1)}, I{Xt+k,j2 ≤ qj2(τ2)}

)
(10)

For j1, j2 ∈ {1, · · · , d}, k ∈ Z, τ1, τ2 ∈ [0, 1], and I{A} denote the indicator function of event A. To
generate information about serial and cross-sectional dependence, we vary K while restricting j1 6=
j2. Further, the matrix of quantile cross-spectral density kernels f(ω; τ1, τ2) := (f(ω; τ1, τ2))j1j2 ,
is realized from the frequency domain where:

f j1j2(ω; τ1, τ2) := (2π)−1
∞∑

k=−∞

γj1,j2k (τ1, τ2)e−ikω (11)

Quantile coherency is estimated by the smoothed quantile cross-periodogram as expressed below:
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Ĝj1,j2n,R (ω; τ1, τ2) :=
2π

n

n−1∑
s=1

Wn

{
ω − 2πs

n

}
Ij1,j2n,R

{
2πs

n
, τ1, τ2

}
(12)

where Ij1,j2n,R represents the matrix of rank-based copula cross periodograms (CCR-periodograms)
while Wn is a sequence of weigth functions. Then, the estimator for the quantile coherency may
be expressed as:

<j1j2n,R (ω; τ1, τ2) :=
Ĝj1,j2n,R (ω; τ1, τ2){

Ĝj1,j1n,R (ω; τ1, τ1)Ĝj2,j2n,R (ω; τ2, τ2)
} 1

2

(13)

Following past studies including Maghyereh et al. (2019) and Maghyereh and Abdoh (2021),
we examine the coherence matrices for three quantiles (0.05, 0.5 and 0.95) which correspond to
lower, intermediate and upper quantiles respectively. We also consider the combinations of quantile
levels of the joint distribution (0.05|0.05, 0.5|0.5, 0.95|0.95), which enable us to explore dependence
under the left, intermediate and right tails of the distributions, respectively. Lastly, as detailed
in Barunik and Kley (2019), the quantile cross-spectral density kernels {f j1j2(ω; τ1, τ2)} in Eq. 9
may be decomposed into real and imaginary parts. As noted in Maghyereh and Abdoh (2021),
the real part represents the co-spectrum of the following processes: (I{Rt,j1 ≤ qj1(τ1)})t∈Z and
(I{Rt,j2 ≤ qj2(τ2)})t∈Z , while the imaginary part corresponds to the quadrature spectrum that
circumvents several sources of noise coherence. To improve readability and clarity in presentation,
we follow past studies including Barunik and Kley (2019), Maghyereh et al. (2019) and Maghyereh
and Abdoh (2021) by presenting only the real part of the quantile coherence estimates.

3 Results and discussion

3.1 Quantile regression results
3.1.1 The linear model

The discussion of our empirical results begins with the linear model as presented in Table 3 and
Figure 2. Table 3 displays the estimated coefficients from the baseline model. Following Nusair and
Olson (2019), we first estimated both the standard OLS model as represented by Eq. 1 and QR
model as represented by Eq. 7. We follow past studies that have adopted this empirical model in
the interpretation of the estimated coefficients (see e.g., Mensi et al., 2014; Nusair & Olson, 2019).
With the exception of Coal, results from the standard OLS model show that AI has statistically
significant positive effect on all the energy-focused sectors. This suggests a positive co-movement
between AI and energy-focused sectors. The results indicate that co-movement is weakest with
Integrated Oil and Gas sector while it is strongest with renewable energy. This suggests that the
dependence between AI and energy corporations is strongest with those in renewable energy sec-
tor. This result is in line with erstwhile literature that document stronger dependence between the
returns of technology and clean energy firms (see e.g., Henriques & Sadorsky, 2008; Kumar et al.,
2012; Sadorsky, 2012). As noted in the introduction, this is expected since technology is a crucial
input in renewable energy generation and deployment. Further, evidence in the result also shows
significant and negative effects of the past COVID-19 crisis on the performance of conventional
energy sectors including Oil and Gas Drilling, Oil and Gas Refining, Integrated Oil and Gas as
well as Oil and Gas Servicing and Equipment. However, this effect is statistically insignificant for
both coal and renewable energy sectors.

We proceed to examine the level of co-movement across the nine conditional quantiles for each
energy sector using the QR model as described in Eq. 7. Fig. 2 plots the QR coefficient estimates
for AI with 95% confidence interval along with the OLS estimates. The OLS estimates of the
conditional mean effect, given by the blue solid line with 95% confidence interval (dashed lines),
does not vary. As for the estimates of quantile coefficients, for each energy sector, we plot the
nine QR estimates for τ = 0.1, ..., 0.9 as the solid black curve with 95% confidence interval (shaded
area). The QR model provides a quite different picture from the OLS model. This enables us
to explore possible changes in dependence across the bearish, normal and bullish market condi-
tions. Results from the QR model shows some interesting patterns of co-movement across the
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three market states. Particularly, results show that when the market is bearish, the effects of AI
on the coal sector become significant but insignificant across all the quantiles with Oil and Gas
Transport services. Also notable is the fact that dependence remains strongest with the renewable
energy sector but least with Oil and Gas Refining. The strength of dependence with renewable
energy sector, however, declines as we increase the quantiles. This suggests that during financial
market downturns, the co-movement between the performance of AI stocks and those of energy
corporations becomes stronger, especially those into renewable energy generation and deployment.
The positive co-movement also suggests an absence of potential for diversification benefits from
the inclusion of AI stocks with those of the energy sectors considered. However, the non significant
co-movement with Oil and Gas Transport services suggests a likelihood that AI stocks may offer
some diversification benefits for Oil and Gas Transport services stocks.

Furthermore, dependence under the normal and bullish market conditions appears to be weaker
compared to the bearish market. In particular, the results show that AI has a statistically signifi-
cant positive effects on Integrated Oil and Gas across all quantiles, but only the first quantile (Q0.4)
for renewable energy sector under the normal market state. In contrast, for Oil and Gas Services
and Equipment, this effect is negative for the Q0.4 but statistically insignificant for the remaining
energy sectors across all quantiles under the normal market condition. These results imply that
during calm market periods, there is positive co-movement between AI and Integrated Oil and Gas
as well as renewable energy while the dependence is negative with Oil and Gas Services and Equip-
ment. The absence of significant co-movement suggests some evidence of diversification benefits
from the inclusion of AI stocks with energy stocks, except Integrated Oil and Gas stocks during
normal market periods. The negative and significant co-movement with Oil and Gas Services and
Equipment suggest that AI stocks has the potential of acting as safe-haven for Oil and Gas Ser-
vices and Equipment during normal market times. Similarly, under the bullish market period,
co-movement is positive and significant with Oil and Gas Transport services only. Similarly, this
suggests that AI stocks may offer diversification benefits to the concerned energy sectors, except
Oil and Gas Transport services when market condition become very bullish.

3.1.2 The asymmetric model

To allow for asymmetric co-movement between AI and the sampled energy-focused sectors, we de-
compose AI shocks into positive (γ+) and negative (γ−) changes. Then, the standard OLS model
as represented in Eq. 2 and QR model as represented in Eq. 8 are estimated. Table 4 displays the
estimated results from both models, while Figure 3 presents the graphs of asymmetric QR coeffi-
cients along with the OLS estimates with 95% confidence intervals. As with the previous results,
the OLS estimates of the conditional mean effect, given by the blue solid line with 95% confidence
interval(dashed lines), do not vary. As for quantile coefficient estimates, for each energy sector,
we plot the nine QR estimates for τ = 0.1, ..., 0.9 as the solid black curve with 95% confidence
interval(shaded area). Indeed, introducing asymmetry in our analysis by differentiating between
positive (γ+) and negative (γ−) shocks on AI provides slightly different results.

Specifically, the effects of negative shocks on AI (γ−) is positive and statistically significant for all
the energy-focused sectors while the effects of positive shocks on AI is not statistically significant
across all the sectors. The effects are strongest on the renewable energy sector but weakest for
the coal sector. Taken together, these results suggest that on average, there is significant positive
co-movement between negative shocks on AI and the sampled energy-focused sectors. This im-
plies that negative shocks on AI performance entail significant implications for the performance
of investments in the energy sectors, especially investment in renewable energy. Regarding the
results from the QR model, some interesting patterns evolve. First, across the three quantiles that
depict the bearish market condition, both positive (γ+) and negative (γ−) shocks on AI exhibit
significant effects on the energy-focused sectors, except for the coal, where the effect of positive
shocks on AI is not significant. In particular, positive (γ+) and negative (γ−) shocks on AI have
negative and positive effects across the energy-focused sectors. This implies that positive shocks on
AI performance exhibit negative co-movement with the performance of energy investments while
negative shocks on AI performance is associated with positive co-movement with the performance
of energy investments when the financial market is bearish. However, the negative dependence
between positive shocks on AI performance and those of renewable energy and Integrated Oil and
Gas investment is only significant at the lowest quantile (Q0.1).
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Regarding the normal market condition, generally, the level of dependence is weaker relative to
those of lower and upper tails of the distribution. Here, it is interesting to note that there are
changes in the direction of dependence, positive and negative shocks on AI exhibit positive and
negative effects on Oil and Gas Exploration as well as Oil and Gas Refining. This suggests that
during normal market periods, the performance of investments in these two energy sectors may
move in the same direction, showing no potential for diversification benefits. However, for Oil
and Gas Drilling, Integrated Oil and Gas and the alternative energy sectors (coal and renewable
energy), negative shocks on AI performance exhibit positive co-movement with their performance,
suggesting a potential for diversification benefits. Lastly, both positive and negative shocks on AI
performance have no significant effects on Oil-related Services and Equipment while positive AI
shock has significant negative effects on coal at the median quantile (Q0.5).

More so, when the market condition is bullish, results for the associated quantiles show that de-
pendence strengthens significantly relative to those of normal market quantiles. For the renewable
energy sector, both positive and negative shocks on AI performance have no significant effects while
for coal, the negative effect of negative shocks on the performance of AI is only significant at the
highest quantile. For the remaining energy sectors, positive and negative shocks on the performance
of AI have positive and negative effects on their performance, respectively. This suggests that when
market conditions are bullish, there is positive(negative) co-movement between positive(negative)
shocks on AI performance, suggesting no potential for diversification benefits from the inclusion
of AI stocks in the portfolio of these conventional energy stocks. In contrast, non significant co-
movement with the renewable energy sector across all the relevant quantiles is an indication that
AI stocks has the potential of offering some diversification benefits to portfolios of renewable en-
ergy stocks, when market condition is very bullish. Similar conclusion could be reached for the
coal sector, however, this is only possible at the 70th and 80th percentiles of the return distribution.

It is also interesting to note that when we consider asymmetries in the interactions between AI
and these energy sector, the dummy variable associated with the COVID-19 crisis period becomes
insignificant in the standard OLS model but becomes significant across different quantiles under
the asymmetric model. In particular, for all the considered energy-focused sectors, the effect of
the crisis is negative and strongest during the bearish market, except for the renewable energy
sector, where the effect is not significant for under bearish market condition. Lastly, following past
studies such as Nusair and Olson (2019), Table 5 Panel A - B displays the critical values obtained
from the F-test for quantile slope equality. The null hypothesis is that slope parameters are equal
across the various quantiles. Thus, the rejection of the null hypothesis suggests that associated
slope parameters are significantly different across quantiles. Also, we tested the slope equality of
the decomposed positive and negative AI shocks (γ+ = γ−) across all the quantiles as shown in
Table 5 Panel B. The tests are repeated for every two quantiles (e.g., Q0.1 = Q0.2) and for lower
quantile against the median (Q0.1 = Q0.5) and higher quantile against the median (Q0.5 = Q0.9).
Generally, results mostly favour the rejection of the null hypothesis of slope equality across the
different quantiles for all the energy sectors. The results confirm that the estimated coefficients
are not constant but vary across the chosen quantiles.
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(a) Oil & Gas Transport Services (b) Oil & Gas Exploration and Production

(c) Oil & Gas Refining and marketing (d) Integrated Oil & Gas Services

(e) Oil-related Services and Equipment (f) Oil & Gas Drilling
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(g) Coal (h) Renewable

Figure 2: Quantile regression coefficient estimates for AI returns in the linear model. Estimates
for τ = 0.1, . . . , 0.9 are given by the solid black curve with 95% confidence intervals (shaded area)
for the effects of AI returns on returns of energy sectors. The OLS estimates of the conditional
mean effect are given by the blue solid line with 95% confidence interval (dashed lines). Vertical
axis displays the coefficient estimates of AI return changes over energy sectors’ return distribution
while horizontal axis shows the quantiles of the concerned energy sector (the dependent variable)
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(a) Oil & Gas Exploration and Production

(b) Oil & Gas Drilling

(c) Oil-related Services and Equipment
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(d) Integrated Oil & Gas

(e) Oil & Gas Transport Services

(f) Oil & Gas Refining and marketing
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(g) Coal

(h) Renewable energy

Figure 3: Quantile regression coefficient estimates for γ+ and γ− returns in the asymmetric model.
Estimates for τ = 0.1, . . . , 0.9 are given by the solid black curve with 95% confidence intervals
(shaded area) for the effects of AI returns on returns of energy sectors. The OLS estimates of
the conditional mean effect are given by the blue solid line with 95% confidence interval (dashed
lines). Vertical axis displays the coefficient estimates of positive and negative AI return changes
over energy sectors’ return distribution while horizontal axis shows the quantiles of the concerned
energy sector (the dependent variable)
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3.2 Quantile coherency results
In Figures 4 - 6, we present the estimates of quantile coherency realized from the quantile cross-
spectral. Following past studies such as Maghyereh and Abdoh (2021) and Maghyereh et al. (2019),
horizontal axis displays the daily cycles over the interval while the measures of co-dependence of
AI and the return of each of the energy sector is presented on the vertical axis. The weekly (W),
monthly (M) and yearly (Y) frequency cycles in the upper label of the horizontal axis show how
each pair of the return series are dependent across quantiles of the joint distribution. For instance,
a sample frequency of 0.2 implies that there is 0.2 cycles per day, corresponding to a 5 days period.
First, we present and discuss results for the full sample before proceeding with results for the
COVID-19 sub-sample.

3.2.1 Quantile coherency for the full sample

In Figure 4 panel a - i, for all pairs of co-dependence between AI and each of the energy sectors,
we use plots in (i), (ii) and (iii) to display the 0.05|0.05; 0.5|0.5 and 0.95|0.95 quantiles of the joint
distribution, respectively. Figure 5 presents the dependence between the 0.05|0.95 quantiles of joint
distribution for the full sample. As may be seen in Figure 4 panel a - i, results generally indicate
that the level of coherency between AI and the energy sectors varies across both return quantiles
and time scales. Basically, this suggests that dependence varies according to market situations
and investment horizons. Particularly, during normal market condition as shown by the 0.5|0.5
return quantile in plot (ii), results indicate that dependence is mostly negative and strongest with
renewable energy sector, but weakest with Oil and Gas Exploration and Production sector in the
weekly horizon. However, dependence with Integrated Oil and Gas is mainly positive under this
horizon. These results suggest that portfolios consisting of AI and the assets of the sampled energy
sectors exhibit negative dependence, with high probability of short-term diversification benefits,
except for Integrated oil and gas sector during normal market condition. Moreover, dependence
is generally positive across monthly and yearly frequency cycles; strongest with renewable energy
sector in the monthly cycle but with Oil and Gas Drilling in the yearly cycle. However, dependence
is negative in the yearly cycle only with Oil and Gas exploration and production. These positive
co-movements between AI and energy sectors generally suggest the absence or reduced potential
for portfolio diversification opportunities in the mid- and long-term investment horizons.

Furthermore, notable differences may be seen across the left and right tails of the return distri-
butions as shown by the 0.05|0.05 in plots (i) and the 0.95|0.95 in plots (iii). Specifically, results
for the left tail (0.05|0.05) suggest that when market condition is bearish, similar to the normal
market condition, dependence between AI and Coal, Oil and Gas Drilling, Integrated Oil and
Gas, Oil-related Services and Equipment as well as Oil and Gas Transportation Services is mainly
negative while dependence varies from positive to negative for the remaining energy sectors in the
weekly cycle. In particular, towards the end of the weekly cycle, dependence becomes negative and
strongest between AI and Oil and Gas Drilling, followed by the renewable energy sector. However,
while dependence is generally positive and strongest with Oil and Gas Refining and Marketing in
the yearly frequency cycle, in the monthly frequency cycle, results are mixed. For instance, depen-
dence with Coal, Oil and Gas Exploration and Production, Integrated Oil and Gas, Oil and Gas
Refining and Marketing and Oil and Gas Related Services are mostly positive while dependence
with Oil and Gas Drilling, Renewable Energy and Oil and Gas Transport Services switches from
positive to negative.

Regarding the upper tail of the return distribution as shown by the 0.95|0.95 in plots (iii), results
indicate that when the market condition is bullish, in the weekly frequency cycle, the dependence
between AI and Oil and Gas Refining and Marketing is positive while it is negative with Coal, Oil
and Gas Exploration and Production as well as Oil and Gas Transportation Services. Besides, there
are periods of positive and negative dependence between AI and the remaining energy-focused sec-
tors across this cycle. Results for the monthly frequency cycle suggest that dependence is positive
with Oil and Gas Drilling, Oil and Gas Exploration and Production, Renewable energy as well as
Oil and Gas Transportation Services. However, dependence between AI and the remaining energy
sectors switched from positive to negative under this frequency cycle. Concerning the yearly cycle,
dependence between AI and all the considered energy-focused sectors is positive and strongest with
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Renewable energy, followed by Oil and Gas Drilling. However, dependence is weakest between AI
and Oil-related Services and Equipment.

Figure 5 presents the quantile coherency for the 0.05|0.95 quantiles of the joint distribution be-
tween AI and each of the energy-focused sectors. Indeed, this enables us to examine the evolution
of dependence assuming that either AI or each of the eight energy-focused sectors is in a bearish
market state while the other is in a bullish condition. Specifically, we study the dependence be-
tween a negative return (0.05 quantile) of AI and a high positive return (0.95 quantile) of each
of the energy-focused sectors across the three frequency cycles. Results in Figure 5 indicate that
during the weekly cycle, extreme dependence (0.05 for AI and 0.95 for energy sectors) is strongest
with Coal. In terms of direction, dependence is mostly positive with Coal and Integrated Oil and
Gas while it is negative with Oil-related Services and Equipment. However, for the remaining
energy-focused sectors, extreme dependence switches from positive to negative.

Moreover, as the time frequency increases to monthly, extreme dependence becomes weaker between
AI and Oil-related Services and Equipment, Oil and Gas Exploration and Production as well as
Oil and Gas Drilling. However, dependence becomes positive with Oil and Gas Drilling and Oil-
related Services and Equipment; negative with Renewable energy and Oil and Gas Exploration
and Production while it changes between positive and negative for the remaining energy-focused
sectors. When the time frequency is further increased to the yearly cycle, extreme dependence
becomes strongest with renewable energy. However, extreme dependence at this time frequency
is mostly negative, indicating that there is a likelihood of high positive returns for most energy-
focused sectors following a negative return on AI. Particularly, dependence is negative between AI
and Coal, Oil and Gas Refining and Marketing, Renewable energy, Oil and Gas Explorations and
Production as well as Oil-related Services and Equipment. However, dependence is positive with
Oil and Gas Drilling as well as Integrated Oil and Gas Services while it switches from negative to
positive with Oil and Gas Transportation services.

3.2.2 Quantile coherency during the COVID-19 pandemic

In this subsection, we are concerned with examining the changes in the strength and direction of
dependence between AI and the energy-focused sectors due to changes in the global financial mar-
ket during the COVID-19 pandemic. The results are shown in Figure 6 panel a - i. To save space,
in each panel, plot (i) contains the evolution of dependence across the weekly, monthly and yearly
time frequency cycles while plot (ii) displays the dependence for the extreme quantiles (0.05 for AI
and 0.95 for energy sectors). As may be seen, results indicate that across all the return quantiles
joint distributions, dependence between AI and energy-focused sectors became generally stronger
during the peak of the pandemic, especially during the weekly and monthly time frequencies. This
suggests a stronger short-term and mid-term dependence between AI and energy-focused sectors.
In particular, under normal market condition, dependence between AI and energy-focused sectors
is mostly negative with most sectors while it changes from negative to positive with only three
sectors including Coal, Oil and Gas Transportation Services as well as Renewable energy in the
weekly time frequency. With regards to diversification benefits, the observed increase in negative
dependence suggests that during a health-induced financial market crisis, the inclusion of AI stocks
in a portfolio of energy stocks may offer some portfolio risk reduction, especially in the short- and
mid-terms.

However, for the monthly time frequency, dependence becomes positive with Oil and Gas Trans-
portation Services, Renewable energy as well as Oil and Gas Refining and Marketing. For the
remaining sectors, it switches from negative at the beginning of the cycle to become positive to-
wards the yearly cycle. Besides, at the monthly cycle, dependence is strongest with the renewable
energy sector. Similarly, when time frequency is further increased to the yearly cycle, results in-
dicate that dependence remains positive and strongest with renewable energy. Dependence is also
positive with Coal, Oil and Gas Transportation Services, Oil and Gas Drilling as well as Oil and
Gas Exploration and Production. Hence, for portfolio optimization, the inclusion of AI stocks in
portfolios of some energy sectors such as Oil and Gas Transportation Services, Renewable energy
and Oil and Gas Refining and Marketing may lead to medium-term increase in portfolio risk and
market losses during crisis periods such as the COVID-19 pandemic due to increase in positive
dependence. This situation may also hold for the remaining energy sectors in our sample, but only
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for longer-term investment positions. However, dependence becomes negative with Oil-related
Services and Equipment while it changes from positive to negative with Integrated Oil and Gas
Services towards the end of the yearly cycle. In sum, these results underscore the short-term effects
of the COVID-19 pandemic on the dependence between AI and energy sectors. Results posit a
similar pattern in the direction of dependence, with AI exhibiting the strongest dependence with
the renewable energy sector. Also, there is a general increase in the level of short-term dependence
with all the energy sectors under the normal market condition.

Regarding the level of dependence under the bearish market condition (0.05 quantiles), the de-
pendence between AI and more energy sectors become negative. For instance, dependence with
Oil and Gas Transportation Services sector becomes also negative while only the dependence with
Renewable energy and Coal sectors change from negative to positive towards the end of the weekly
cycle. However, as the time frequency increases towards the monthly cycle, the dependence be-
tween AI and renewable energy, Oil and Gas Transportation Services and Coal becomes positive
while dependence with the remaining sectors changes from negative to positive towards the end of
the monthly cycle. Furthermore, as the time frequency increases to the yearly cycle, unlike in sim-
ilar time frequency under the normal market condition, dependence remains positive but becomes
strongest between AI and the Oil and Gas Exploration and Production sector. These results sug-
gest that although AI exhibited negative short-term dependence with most energy-focused sectors
during the high volatile and low return market condition at the peak of the COVID-19 pandemic,
dependence changed to positive from the intermediate-term towards the long-term. This corrobo-
rates our earlier findings in support of short-term diversification benefits of AI stocks in portfolios
of energy stocks and suggests that this benefit may be higher during a high volatile and low return
market situation created by a health crisis.

However, these results change when we consider the upper tail of the joint distribution (0.95 quan-
tile). Specifically, at the weekly time frequency, dependence with AI mainly changed from negative
to become positive before the end of the cycle, except the dependence with Oil and Gas Explo-
ration and Production sector which is negative. As the time frequency is increased to the monthly
cycle, dependence becomes positive with the renewable energy, Integrated Oil and Gas Services
as well as Oil and Gas Transportation Services while it changed mainly from negative to positive
with the remaining sectors towards the end of the cycle. Besides, as the time frequency is further
increased to the yearly cycle, dependence between AI and all the energy sectors becomes posi-
tive and strongest with renewable energy sector, except with Oil-related Services and Equipment
which changes from positive to become negative at the end of the cycle. In sum, these results
show that across all the time frequencies and market conditions, the dependence between AI and
energy-focused sectors increased substantially during the peak of the COVID-19 pandemic and
was mainly positive, especially in the intermediate- and long-terms. Also, while dependence was
positive and strongest with renewable energy sector, both during the normal and bullish market
conditions, it was positive and strongest with Oil and Gas Exploration and Production during the
bearish market condition.

Similar to the full sample, we also examined the extreme dependence between AI and energy sectors
using 0.05|0.95 quantiles of the joint distribution. Results in plots (ii) of panels a - i in Figure
5 suggest that extreme dependence is positive between AI and renewable energy, Integrated Oil
and Gas as well as Coal while it changes from negative to positive with the remaining sectors in
the weekly cycle. However, under the monthly cycle, only the dependence between AI and Oil-
related Services is negative while dependence with other sectors changed from negative to positive
before the end of the cycle. Besides, when the time frequency is increased to the yearly cycle,
results become mixed. In particular, dependence between AI and Oil and Gas Exploration and
Production, Oil and Gas Drilling, Oil and Gas Transportation Services becomes positive. However,
dependence is negative with renewable energy and Oil-related Services but changes from positive
to negative with the remaining sectors. Generally, the strongest extreme dependence is exhibited
by AI and renewable energy under the yearly cycle, followed by Integrated Oil and Gas Services in
the monthly cycle. In the weekly cycle, this may be found between AI and the renewable energy
sector.
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(i) 0.05|0.05 (ii) 0.5|0.5 (iii) 0.95|0.95

(a) AI vs Coal

(i) 0.05|0.05 (ii) 0.5|0.5 (iii) 0.95|0.95

(b) AI vs Oil & Gas Drilling

(i) 0.05|0.05 (ii) 0.5|0.5 (iii) 0.95|0.95

(c) AI vs Oil & Gas Exploration and Production
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(i) 0.05|0.05 (ii) 0.5|0.5 (iii) 0.95|0.95

(d) AI vs Integrated Oil & Gas

(i) 0.05|0.05 (ii) 0.5|0.5 (iii) 0.95|0.95

(e) AI vs Oil & Gas Refining and Marketing

(i) 0.05|0.05 (ii) 0.5|0.5 (iii) 0.95|0.95

(f) AI vs Renewable energy
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(i) 0.05|0.05 (ii) 0.5|0.5 (iii) 0.95|0.95

(g) AI vs Oil-related Services and Equipment

(i) 0.05|0.05 (ii) 0.5|0.5 (iii) 0.95|0.95

(i) AI vs Oil & Gas Transportation Services

Figure 4: Quantile coherency estimates for the 0.05|0.05, 0.5|0.5 and 0.95|0.95 of the joint distri-
bution across the different frequencies for the full sample

Note: Plots of the real part of the quantile coherency estimates of Baruník and Kley (2019) for 0.05, 0.5,
and 0.95 quantiles together with 95% confidence intervals. W, M, and Y denote weekly, monthly, and
yearly periods, respectively. The , and line corresponds to the 0.5, 0.05 and 0.95
quantiles, respectively.
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3.2.3 Dependence between the 0.05/0.95 joint distributions

(i) AI vs Coal (ii) AI vs Oil & Gas Drilling

(i) AI vs Oil & Gas Exploration and Production (ii) AI vs Integrated Oil & Gas Services

(i) AI vs Oil & Gas Refining and Marketing (ii) AI vs Renewable energy
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(i) AI vs Oil-related Services and Equipment (ii) AI vs Oil & Gas Transportation Services

Figure 5: Dependence between the 0.05|0.95 quantiles of joint distribution for full sample

Note: Plots of the real part of the quantile coherency estimates of Baruník and Kley (2019) for the
0.05|0.95 quantiles together with 95% confidence intervals. W, M, and Y denote weekly, monthly, and
yearly periods, respectively. The line corresponds to the 0.05|0.95 quantiles of the joint
distribution.
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(i) 0.05|0.05; 0.5|0.5; 0.95|0.95 (ii) 0.05|0.95

(a)AI vs Oil & Gas Exploration and Production

(i) 0.05|0.05; 0.5|0.5; 0.95|0.95 (ii) 0.05|0.95

(b)AI vs Oil & Gas Drilling

(i) 0.05|0.05; 0.5|0.5; 0.95|0.95 (ii) 0.05|0.95

(c)AI vs Oil & Gas Refining and Marketing
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(i) 0.05|0.05; 0.5|0.5; 0.95|0.95 (ii) 0.05|0.95

(e)AI vs Renewable energy

(i) 0.05|0.05; 0.5|0.5; 0.95|0.95 (ii) 0.05|0.95

(f)AI vs Integrated Oil & Gas services

(i) 0.05|0.05; 0.5|0.5; 0.95|0.95 (ii) 0.05|0.95

(g)AI vs Oil & Gas Transportation Services

30



(i) 0.05|0.05; 0.5|0.5; 0.95|0.95 (ii) 0.05|0.95

(h)AI vs Oil-related Services and Equipment

(i) 0.05|0.05; 0.5|0.5; 0.95|0.95 (ii) 0.05|0.95

(i)AI vs Coal

Figure 6: Quantile coherency estimates for the 0.05|0.05, 0.5|0.5, 0.95|0.95 and the 0.05|0.95 of the
joint distribution across the different frequencies for the COVID-19 period

Note: Plots of the real part of the quantile coherency estimates of Baruník and Kley (2019) for 0.05, 0.5,
and 0.95 quantiles together with 95% confidence intervals. W, M, and Y denote weekly, monthly, and
yearly periods, respectively. The , and line corresponds to the 0.5, 0.05 and 0.95
quantiles, respectively.
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4 Conclusion
This paper relies on both linear and non-linear (including the OLS, quantile regression and quantile
cross-spectral coherency) models to examine the dependence of eight energy-focused sectors on the
performance of AI across different market conditions and investment horizons. The energy-focused
sectors include: Oil and Gas Exploration and Productio; Oil and Gas Refining and Marketing;
Integrated Oil and Gas; Oil-related Services and Equipment; Oil and Gas Transportation Services;
Oil and Gas Drilling; Coal and Renewable energy. Overall, the linear model estimates show that
the market returns of energy-focused sectors, especially those of renewable energy, depend strongly
on the performance of AI. On the other hand, estimates from non-linear models indicate that the
nature of this relationship varies across energy-focused sectors, market conditions and investment
horizons. Further analysis also shows that the dependence of energy-focused sectors on AI became
stronger during the COVID-19. Dependence also varies depending on whether there are positive
or negative shocks on AI. In particular, when we do not consider negative or positive shocks on
AI, results from the quantile regression model indicate that under a bearish market state, AI has
a significant positive effect across the considered energy-focused sectors except for the Oil and Gas
Transport sector. Regarding the bullish market condition, AI has a significant effect on only Inte-
grated Oil and Gas and Oil and Gas Transport sectors. Besides, the effects on the former is negative
while it is positive on the latter. When the market is in a normal state, AI has a positive effect on
Renewable and the Integrated Oil and Gas sectors. For other sectors, it has a non-significant effect.

However, when we account for asymmetric positive and negative shocks on AI, we find that under a
normal market condition, positive and negative shocks on AI exert significant negative and positive
effects, respectively, on the stock returns of the Coal sector. Whereas we obtain opposite results for
the Oil and Gas Exploration and Production as well as Oil and Gas Refining and Marketing, our
results on the Oil and Gas Drilling, Integrated Oil and Gas, and Renewable energy sectors show
that only negative shocks on AI exert significant (positive) effect on their returns. For Oil-related
Services and Equipment sector, neither positive nor negative shocks exert any significant effect
on their performance. Under the bullish market condition, we find that except for the Coal and
Renewable energy sectors, positive and negative shocks on AI exert statistically significant positive
and negative effects, respectively, across the considered energy-focused sectors. For Coal, only neg-
ative shocks on AI exert a significant (negative) effect on the returns of the sector whilst neither
positive nor negative shocks on AI have any significant effect on the returns of Renewable energy
sector. Under the bearish market condition, positive and negative shocks on AI have significant
negative and positive effects, respectively, on the returns of the considered energy-focused sectors.
As an exception, for the Coal sector, negative effects of positive shocks on AI are not significant.

Regarding the results from the quantile cross-spectral analysis, during normal market condition,
we document evidence of negative dependence between AI and all energy-focused sectors in the
weekly frequency, except for the Integrated Oil and Gas sector, which exhibit a positive depen-
dence in this frequency. The negative dependence is strongest with the renewable energy sector
but weakest with Oil and Gas Exploration and Production sector. However, under the monthly
and yearly frequencies, except for the Oil and Gas exploration and production sector that shows
negative dependence in the yearly frequency, other sectors show positive dependence across both
time scales. Under bearish market condition, there is negative dependence in the weekly frequency,
except for renewable energy, Oil and Gas Exploration and Production, and the Oil and Gas Refin-
ing and Marketing sectors. In the yearly frequency, however, dependence is generally positive while
in the monthly frequency, results are mixed. As for the bullish market condition, we find that in
the weekly frequency, dependence is positive for Oil and Gas Refining and Marketing sector; neg-
ative for Coal, Oil and Gas Exploration and Production, and Oil and Gas Transportation Services
sectors but switches between positive and negative dependence for the remaining sectors. Results
for the monthly frequency indicate that dependence is positive for the Oil and Gas Drilling, Oil and
Gas Exploration and Production, Renewable energy, and the Oil and Gas Transportation Services
sectors, while those of the remaining sectors switches from positive to negative. Concerning the
yearly frequency, dependence is generally, positive.

Our findings hold profound and diverse implications for investors and portfolio managers. For
instance, focusing on the quantile cross-spectral analysis, where weekly, monthly and yearly time
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scales approximated to short, medium and long-term investment horizons, our findings indicate
that in the short-term under normal market condition, AI offers short-term diversification bene-
fits to assets of the sampled energy-focused sectors, excluding those of the Integrated oil and gas
sector. However, during the intermediate- and long-term, these benefits accrue only to Oil and
Gas Exploration and Production. In the short-term, under bearish market condition, AI only
offers diversification benefits to Coal, Oil and Gas Drilling, Integrated Oil and Gas, Oil-related
Services and Equipment, and Oil and Gas Transportation Services. In the intermediate- and long-
term, under bearish market condition, such diversification benefits hardly exist. During bullish
market condition, our findings indicate that AI only offers diversification benefits to Coal, Oil
and Gas Exploration and Production as well as Oil and Gas Transportation Services in the short
term, while such diversification benefits hardly accrue across the energy-focused sectors both in
the intermediate- and long-term. From a portfolio manager perspective, therefore, our findings
imply that while AI may play a diversification role to the assets of energy-focused sectors, hedging
decisions by portfolio managers should be sector as well as market condition specific.

Regarding investors, our findings also hold specific implications for traders and speculators that
are more concerned with the short- and intermediate-term investment horizons, and institutional
investors that are more concerned with the long-term investment horizon. For instance, our findings
would imply that the diversification role of AI to energy-focused sectors only materializes during
normal market condition, and is only beneficial to institutional investors who are interested in
holding the assets of Oil and Gas Exploration and Production sector. Intuitively, our results
also hold profound implications for the managers of portfolios containing stocks of AI and energy
corporations during similar future financial market crisis periods like the situation created by the
COVID-19 pandemic. In particular, our results show that dependence with AI stocks varies across
energy sectors and investment horizons, suggesting the use of dynamic portfolio design during
similar future health-induced crisis periods. Finally, our study opens up different avenues for
further studies. For instance, whilst we focused on the dependence structure between the returns
of AI and energy-focused sectors, future studies can focus on measuring and managing their cross-
market risk transmission. Future studies could also examine the volatility dependence structure of
the studied assets, which should be a direct extension of the current study while holding different
implications, especially in the areas of portfolio risk monitoring and managing. Last but not the
least, as indices for other types of technologies such as blockchain and Internet of Things (IoT)
become available, it may also be interesting to see their dependence structure with the energy-
focused sectors and compare how they vary with AI.
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