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Preface & Abstract

1-1 Preface

This thesis was not possible without the help and support of many. However, there are a few
that must be mentioned. First of all, I would like to thank my supervisors for their support
and patience. They have helped me over a long period of time. Secondly, I would like to thank
my brother for providing the research proposal, endless support and positive feedback. He has
introduced me to Machine Learning and convinced me to take the educated leap of faith.

1-2 Abstract

Overfitting is a common problem when learning models from noisy observational data. This
problem is especially present in very flexible models, such as Neural Networks, which can easily
fit to spurious patterns in the data that are not indicative of true underlying patterns. One
technique that conquers the problem of overfitting is Bagging, an ensemble method. However,
Bagging can be a slow technique, since its computational cost scales linearly with the size of
the ensemble. We propose a Dropout-inspired method, BagDrop, as a solution to the problem
of computationally high cost of Bagging. We conduct experiments on a regression problem
with fully-connected Neural Networks. Our results show that BagDrop does well in terms of
generalization performance and computational cost. Our encouraging results provide a proof-
of-concept that indicates a promising direction for future research.
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Introduction

2-1 Introduction

In the field of machine learning we want to obtain new knowledge, so that we can use this knowl-
edge to create software or hardware that can learn theirselves. Specifically, machine learning
explores the study and construction of algorithms that can learn from and make predictions
on data. Such algorithms overcome following strictly static program instructions by making
data-driven predictions or decisions through building a model from the data available.

In case of supervised learning, we typically aim to learn a conditional model: to make predictions,
given the value of some other variable. We train this model by some observed, hopefully
representational, samples. An optimal scenario will allow for the obtained predictor to always
correctly determine the value, given some other value. This requires the learning algorithm to
generalize from the observed sample to future situations in a "reasonable" way. Otherwise, we
will get false predictions.

One problem is that of image classification: given some image, could the algorithm tell us what
is seen on the image? Through the yearly ImageNet competition (Russakovsky et al., 2015), it
has become clear that Neural Networks (Goodfellow et al., 2016), given a very large amount of
labeled images, are extraordinarily good at solving this image classification task.

2-2 Problem Description & Research Questions

However, when we want to challenge the problem of supervised learning, we are restricted by
our observed sample. This observed sample is usually not fully representative to future data,
due to the presence of undesirable noise. This noise may be unique for every observed sample.
Therefore, when fitting a model to obtain a predictor, we do not want the model to adapt to
the data too much. Especially when using Neural Networks, which are very flexible models, we
could capture every sample’s unique noise. This way, the obtained predictor would only predict
reasonable values when fed with the observed sample and generalize very poorly on future
samples. The problem of adaptation of supervised learning models to noise in the observed
sample is called overfitting.

Luckily, there are many techniques that conquer the problem of overfitting. Many researchers
have investigated the technique of combining the predictions of multiple predictors to produce
a single final predictor (Breiman, 1996) (Clemen, 1989) (Perrone, 1993) (Wolpert, 1992). One
technique to create and combine multiple predictors is Bagging (Breiman, 1996). Bagging is
based on resampling from the observed sample to obtain bootstrap samples (Efron and Tibshi-
rani, 1994), and using this bootstrap samples to train the model. The resulting predictors are
averaged to obtain an aggregated predictor. However, Bagging could be a very slow technique,
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2-2 Problem Description & Research Questions 6

especially when using Neural Networks. A more recent technique that creates and combines
multiple Neural Network architectures is Dropout (Srivastava et al., 2014). The created archi-
tectures are called Dropout masks. Dropout uses the special architecture of a Neural Network
in a very fast and clever way. That brings us to the first research question:

How can we apply Bagging in a Dropout way, such that
we retain the speed of Dropout, while still having similar
generalization properties as Bagging?

Research Question 1

We propose BagDrop as answer to this research question. In BagDrop, every Dropout mask
is trained by its own bootstrap sample and combined as Dropout prescribes. But how does the
BagDrop procedure perform? Ideally, the generalization performance of BagDrop is similar to
Bagging. This brings us to the second research question:

How does the BagDrop procedure perform in comparison
to Bagging, in terms of generalization performance?

Research Question 2

Furthermore, the computational cost of BagDrop must be more or less the same as Dropout.
This brings us to the third and last research question:

How does the BagDrop procedure perform in comparison
to Dropout, in terms of computational cost?

Research Question 3

To get a good understanding of how BagDrop works, why BagDrop could perform well in terms
of generalization performance and computational cost and how BagDrop is used in Neural
Networks, we will give a very comprehensive introduction to probabilistic models, supervised
learning, the underlying theory of Neural Networks, how to use Neural Networks, overfitting in
Neural Networks, what Bagging is, how to apply Bagging, why Bagging could perform well in
terms of generalization performance, what Dropout is, how to apply Dropout and why Dropout
is favorable to solve the computational cost problem of Bagging.

To answer the first research question, we will give a understanding of how BagDrop works and
argue why it could perform similar to Bagging in terms of generalization performance and to
Dropout in terms of computational cost. Afterwards, we will carry out a proof-of-concept to
answer the second and third research question. We will investigate the performance of BagDrop
empirically with a simulated toy-dataset. We show that BagDrop does have better generalization
performance than Bagging and more or less the same computational cost as Dropout in this
setting. Finally, we will draw conclusions and start a discussion.

In the following section, a short summary of every chapter and section is given. Moreover, there
is a summary of the chapter at the beginning of every chapter.

BagDrop



2-3 Thesis Outline 7

2-3 Thesis Outline

Chapter (3), (4) and (5) are meant to equip the reader with the background information that
is necessary to understand BagDrop and the rest of the thesis.

In chapter (3) we will give a detailed explanation of probabilistic models and how to interpret
them. Afterwards, we will introduce the concepts classification and regression. Then, some
simple linear models are introduced, linear regression and logistic regression. At the end of
chapter (3) we will introduce Neural Networks. Finally, we will give a detailed example of a
Neural Network.

In chapter (4) we will explain how to train/fit models on observed data. We will introduce
the squared error loss function and introduce the principle of maximum likelihood estimation.
Afterwards, the likelihood based loss function for neural networks is given and how to optimize
the parameters of the model. Stochastic gradient descent and the Adam optimizer are also
introduced.

Chapter (5) has two parts. The first part introduces the concept of overfitting and the second
part will explain techniques to prevent overfitting. First we will define generalization (per-
formance) and the bias-variance trade-off. Afterwards, overfitting with Neural Networks is
explained and why Neural Networks are sensitive to overfitting. We will define regularization
and give regularization techniques that are important for our thesis: Bagging and Dropout.

Chapter (6) introduces BagDrop as answer to the first research question. In chapter (7) we will
give answer to the second and third research question.

In chapter (8) we will draw conclusions and start a discussion.

2-4 Notation

Given a data matrix x ∈ RN×P in which each row xi with i ∈ {1, .., N} defines a vector of
observed features (also called inputs).

x =


x1
x2
.
.

xN

 =


x1,1 x1,2 · · · x1,P
x2,1 x2,2 · · · x2,P
...

... . . . ...
xN,1 xN,2 · · · xN,P

 (2-1)

Each feature vector xi is assigned to an observed target variable yi, where yi ∈ Rd in the case
of regression and yi ∈ {0, 1, ...,K − 1} in the case of classification with K classes. We define an
observed training set D as a set of observations of both inputs and outputs D = {(xi, yi)} with
i ∈ {1, ..., N}, and an observed test sample T and observed validations sample O are analogously
defined. We will denote a random training sample with S and a random validation sample with
V .
We use uppercase letters such as X and Y when referring to random variables. If X is a vector,
its components are denoted by subscripts Xj . We will denote the distribution of X with Pr(X),
the joint distribution of X and Y with Pr(X,Y ) and the conditional distribution of Y given X
with Pr(Y |X). Furthermore, we will denote the chance of X taking on value x or Y taking on
value y with Pr(X = x) and Pr(Y = y) respectively.
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2-5 Literature Used

This thesis is heavily based on the following books

• Pattern Recognition and Machine Learning (Bishop, 2006)

• The Elements of Statistical Learning (Friedman et al., 2001)

• Applied Predictive Modelling (Kuhn and Johnson, 2013)

• Deep Learning (Goodfellow et al., 2016)

• Mathematical Statistics and Data Analysis (Rice, 2006)
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Model

This chapter we will give a detailed explanation of probabilistic models and how to interpret
them. Afterwards, we will introduce the concepts classification and regression. Then, some
simple linear models are introduced: linear regression and logistic regression. This knowledge
is needed to understand Neural Networks. At the end of chapter we will introduce Neural
Networks. Finally, we will give a detailed example of a Neural Network.

3-1 Probabilistic Models

We are interested to learn probabilistic models of high-dimensional data. Perhaps the most
complete probabilistic model is the joint distribution Pr(X,Y ) over the random variables X
and Y . Since we are just interested in the target variables, we can restrict ourselves to research-
ing Y given some X. Note that we often do not know how Y |X is really distributed. Therefore,
we will denote the unknown underlying process that produces Y |X as Pr∗(Y |X).
We attempt to approximate this underlying process with a chosen model Prθ(Y |X) with pa-
rameters θ. In this context, learning is the process of finding the parameters θ such that the
probability distribution function given by the model, Prθ(Y |X), approximates the true distri-
bution function of the data Pr∗(Y |X). Such that for any observed (x, y)

Prθ(Y = y|X = x) ≈ Pr∗(Y = y|X = x) (3-1)

We will explain two types target variables Y . Namely, the continuous type and the categorical
type. In case we have to deal with categorical Y , we want to know which Y = y belongs to an
observed feature vector X = x. This is known as classification. We are often not particularly
interested in the value of Y given some X = x, but we will focus on the chance of Y = y given
some X = x. Therefore, we can model Pr∗(Y |X) directly. However, when we have to deal with
a continuous target variable Y , we are more interested in Y given some X. In particular, we
are interested in E∗(Y |X). Therefore, we will model this expectation.

With modelling and learning, we have to keep three things in mind.

1. We wish to have our model be sufficiently flexible to be able to adapt to the data, such
that we have a chance of obtaining a sufficiently accurate model.

2. At the same time, our model is restricted by our dataset, which is often not fully repre-
sentative to future data. So we do not want to adapt to the data too much, otherwise our
model will not be approximately representative to the underlying process.

3. Moreover, ideally, taking (1) and (2) into account must not slow down our learning process.

BagDrop



3-2 Simple Linear Models 10

3-2 Simple Linear Models

3-2-1 Regression

Let X ∈ RP be a feature vector and let Y ∈ Rd be the corresponding target variable. Suppose
that our data arose from a statistical model

Y = µθ(X) + ε (3-2)

where the random noise ε is independent and identically distributed (i.i.d.) and E(ε) = 0.
Note that for this model, µ(X) = Eθ(Y |X), and in fact the conditional distribution Prθ(Y |X)
depends on X through the conditional mean µθ(x). If, for once, we assume that the random
noise is normally distributed ε ∼ N(0, σ2), then

Y |X ∼ N(µθ(X), σ2) (3-3)

The simplest linear model for regression is one that involves a linear combination of the features

µθ(X) = 〈X, θ〉 (3-4)

where X ∈ RP+1, X = (X0, ..., XP )T , θ = (W0, ...,WP )T and X0 = 1. This is simply known as
linear regression. The model is linear in the parameters. This imposes significant limitations
on the model. We therefore extend the class of models by considering linear combinations of
fixed (nonlinear) basis functions of the features φ.

µθ(X) = 〈φ(X), θ〉 (3-5)

The vector θ is called the parameter vector of our model. By using nonlinear basis functions we
allow the model qθ(X) to be a nonlinear function of the feature vector X. Models of the form
(3-5) are called linear models, because this model is linear in the parameters.

3-2-2 Classification

So far we have concentrated on the continuous target variable Y ∈ Rd. In the case of classifi-
cation Pr∗(Y |X) is modelled directly. For example, for two-class data, it reasonable that the
data arise from independent binary trials, with the probability of one particular outcome being
qθ(X), and the other 1− qθ(X). Then the conditional distribution becomes

Y |X ∼ Bern(qθ(X)) (3-6)

For classification problems, we wish to predict discrete class labels. More generally we wish to
model probabilities that lie in the range [0, 1]. To achieve this, we consider a generalization of
(3-4) in which we transform the linear function of W using a nonlinear function so that

qθ(X) = f(〈X,W 〉) (3-7)
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3-3 Neural Networks 11

In the statistics literature f−1(·) is known as the link function, whereas its inverse f(·) is called
a activation function in the machine learning literature. We could use the sigmoid function for
f(·) as activation function, which has the form

σ : R→ [0, 1]

σ(α) = 1
1 + exp(−α)

(3-8)

Now, we turn to the case of a two-class target variable Y ∈ {1, 2}. The conditional probability
of one of the two classes can be written as a sigmoid function acting on a linear function of the
basis functions φ so that (3-7) becomes

Prθ(Y = 1|X) = σ(〈φ(X), θ〉) (3-9)

This is simply known as logistic regression. If we turn to a K-class target variable Y ∈
{1, 2, ...,K}. We want probabilities for the K classes that sum to one and at the same time
remain in [0, 1]. Then we get the following model

Prθ(Y = k|X) =
exp

(
〈σ(X),Wk〉

)
∑K
l=1 exp

(
〈σ(X),Wl〉

) (3-10)

where k ∈ {1, 2, ...,K − 1} and Wk = {Wk0, ...,WkP }T .

3-3 Neural Networks

In order to get more flexible models than described by (3-4) and (3-9), it is an option to adapt
the basis functions to the data. An approach is to fix the number of basis functions in advance
but allow them to be adaptive, in other words to use parametric forms for the basis functions in
which the parameters are adapted during training. One model of this type is the feed-forward
neural network, also known as the multilayer perceptron.
Generally, the linear model for regression and classification are based on a linear combination
of fixed nonlinear basis function φ as described by

µθ(X) = 〈φ(X), θ〉
qθ(X) = σ(〈φ(X), θ〉)

(3-11)

We will denote a neural network function with parameters θ with

NeuralNetθ(X) = f(〈φ(X), θ〉), (3-12)

where f(·) is a nonlinear activation function in the case of classification and the identity in the
case of regression. In the context of neural networks, we define the activation function f(·) as
the final activation function.
The goal is to extend (3-11) by making the basis function φ(X) depend on parameters and
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3-3 Neural Networks 12

then make these parameters adjustable. The basis functions will be adjustable along with the
parameters θ, during training. The parameters are called weights in the context of neural
networks. In neural networks the basis functions follow the same form as (3-11).
For example, we shall construct a two stage neural network. First, derived features {Zm}Mm=1
are created from linear combinations of the input features {Xp}Pp=1.

Z1 = σ
(
〈X,W (1)

1 〉
)

Z2 = σ
(
〈X,W (1)

2 〉
)

...

ZM = σ
(
〈X,W (1)

M 〉
)

(3-13)

where W (1)
m = {W (1)

m0 , ...,W
(1)
mP }, m ∈ {1, ...,M} and σ(·) some activation function. Then,

final derived features {NeuralNetk(X)}Kk=1 are created from linear combinations of the features
{Zm}Mm=1.

NeuralNet1(X) = f1
(
〈Z,W (2)

1 〉
)

NeuralNet2(X) = f2
(
〈Z,W (2)

2 〉
)

...

NeuralNetK(X) = fK
(
〈Z,W (2)

K 〉
)

(3-14)

where W (2)
k = {W (2)

k0 , ...,W
(2)
kM}, k ∈ {1, ...,K}, Z = (Z0, ..., ZM )T , Z0 = 1 and f(·) some final

activation function. The activation function σ(·) is usually chosen to be the sigmoid (3-8). But
we could also use the so called exponential linear unit (ELU) or the rectified linear unit (ReLU)
as activation functions, which are respectively

ELU(α) =
{

exp(α)− 1 if x < 0
α if x ≥ 0

ReLU(α) =
{

0 if x < 0
α if x ≥ 0

(3-15)

The final activation function allows a final transformation of the 〈Z,W (2)
k 〉. For regression we

typically choose K = 1 and the identity function as final activation function

NeuralNet(X) = f
(
〈Z,W (2)〉

)
= 〈Z,W (2)〉. (3-16)

However, neural networks can handle K continuous target variables. For K-class classification
we can choose the softmax function as the final activation function

NeuralNetk(X) = fk
(
〈Z,W (2)

k 〉
)

=
exp

(
〈Z,W (2)

k 〉
)

∑K
l=1 exp

(
〈Z,W (2)

k 〉
) . (3-17)
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3-3 Neural Networks 13

A simple calculation shows that this is exactly the transformation used in logistic regression
(3-10), and produces positive estimates that sum to one.

The units in the middle of the network, computing the derived features Zm, are called hidden
units because the values Zm are not directly observed. The features are called input units and
the last units NeuralNetk are called the output units. We will define the hidden units and the
output units as layers, so this model will be a 2 layer neural network. Picture 5-3 shows a
diagram of the constructed neural network, but in general there can be more than one hidden
layer.

Figure 3-1: Diagram of a 2 layer neural network

...

...
...

X1

X2

X3

XP

Z1

ZM

NeuralNet1

NeuralNetK

input units hidden layer output layer

3-3-1 Notation of Neural Networks, Regression and Classification

In the following parts of the thesis, we will often talk about regression and classification without
taking into account the underlying model, such as neural networks. In that case, we will
denote regression with µθ(X) and classification with qθ(X). Besides, we will also talk about
neural networks, regardless which problem we want to solve (classification or regression). We
will denote neural networks with NeuralNetθ(X). If NeuralNetθ(X) is a vector of outputs, its
components are denoted by NeuralNetθ,k(X). Furthermore, we will denoteMθ(X) when we talk
about an arbitrary model, regardless the problem we want to solve (classification or regression)
and regardless the underlying model.
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Training

This chapter we will explain how to train/fit (Neural Network) models on training data. We
will introduce the squared error loss function and introduce the principle of maximum likelihood
estimation. Afterwards, the likelihood based loss function for neural networks is given and how
to optimize the parameters of the model. Stochastic gradient descent and the Adam optimizer
are also introduced.

4-1 Training

The neural network model has unknown parameters, often called weights, and we seek values
for them that make the model fit the training data well. We will discuss a more general case of
a neural network in which we have L layers. We denote the complete set of weights by θ, which
consists of

W (1)
m = {W (1)

m0 , ...,W
(1)
mP },m ∈ {1, ...,M}

...

W
(L)
k = {W (L)

k0 , ...,W
(L)
kM}, k ∈ {1, ...,K}

(4-1)

A simple approach to the problem of determining the network parameters is to minimize a
sum-of-squares loss function. Given a training set of feature vectors xi where i ∈ {1, ..., N},
together with a corresponding set of target variables yi, we minimize the loss function

L(θ) = 1
2

N∑
i=1

(NeuralNetθ(xi)− yi)2 (4-2)

where q(·) is our model and θ = {W (1), ...,W (L)} a set weights.
A more general principle for estimation is maximum likelihood estimation. We will see that in
a certain setting the maximum likelihood loss function is actually the same as a sum-of-squares
loss function. Suppose we have a random sample Y with observed value yi with i ∈ {1, ..., N}
from a distribution Prθ(Y ) indexed by some parameters θ. The log-probability of the observed
sample is

L(θ) =
N∑
i=1

logPrθ(Y = yi) (4-3)

The principle of maximum likelihood assumes that the most reasonable values for θ are those
for which the probability of the observed sample is largest.
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4-1-1 Regression

We consider the case K = 1. Suppose, again, that our data arose from the statistical model
Y = µθ(X) + ε, with ε ∼ N(0, σ2), then we get the following conditional likelihood

Y |X ∼ N(µθ(X), σ2) (4-4)

The log-likelihood of the data is

L(θ) = −N2 log(2π)−N logσ − 1
2σ2

N∑
i=1

(yi − µθ(xi))2 (4-5)

Although the additional assumption of normality seems restrictive, the results are the same as
sum-of-squares. The only term in (7-10) involving θ is the last, which is the sum-of-squares
(4-2) up to a scalar negative multiplier.

4-1-2 Classification

Models for classification problems can also be fit by maximum likelihood estimation, using
conditional likelihood of Y given X. We denote qθ,k(xi) = Pr(Y = k|X = xi). Since Pr(Y |X)
completely specifies the conditional distribution, the multinomial distribution is appropriate.
We first consider the general case of K classes, where k ∈ {0, ..,K−1}. The log-likelihood (also
called cross-entropy) of the data is

L(θ) = −
N∑
i=1

K∑
k=1

yik log qθ,k(xi) (4-6)

Now, we turn to the case of K = 2. It is convenient code the two class k via a 0/1 target
variable Y . Let Pr(Y = 1|X = x) = qθ,1(x) and Pr(Y = 0|X = x) = 1− qθ,1(x). Now the loss
function becomes

L(θ) = −
N∑
i=1

yi1logqθ,1(xi)− (1− yi1)log(1− qθ,1(xi)) (4-7)

4-1-3 Log-likelihood for Neural Networks

The log-likelihood based loss is standard for Neural Networks (Goodfellow et al., 2016). There-
fore, we shall construct the log-likelihood for a Neural Network with 1 hidden layer. We consider
the case K = 1. Suppose, again, that our data arose from the statistical model Y = µθ(X) + ε,
with ε ∼ N(0, σ2). In this case the Neural Networks model is used

µθ(X) = NeuralNetθ(X) (4-8)

The 1 hidden layer Neural Network is visualized in (4-1) and has the following form

NeuralNetθ(X) =
M∑
j=1

W
(2)
j σ

( P∑
i=1

W
(1)
ij Xi

)
(4-9)
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Therefore, the log-likelihood will for this Neural Network has the form

L(θ) = −N2 log(2π)−N logσ − 1
2σ2

N∑
i=1

(
yi −

M∑
j=1

W
(2)
j σ

( P∑
i=1

W
(1)
ij xi

))2

(4-10)

Figure 4-1: Diagram of a 1 hidden layer Neural Network with 1 output
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4-2 Parameter Optimization

The non-linearity function of the network function NeuralNetθ(X) causes the loss function L(θ)
to be non-convex. So we turn next to the task of finding a weight vector θ which minimizes the
loss function. Our goal is to find a vector θ such that L(θ) takes its smallest value. However,
because the network function is non-linear, we cannot always simply solve ∇L(θ) = 0 analyt-
ically to find a stationary point. Because the loss function has a highly nonlinear dependence
on the weights and bias parameters, there will be many points in weight space at which the
gradient (almost) vanishes. So it will be necessary to compare several local minima to get a
good result. We clearly cannot find an analytical solution of ∇L(θ) = 0, therefore we call upon
iterative numerical algorithms.

These algorithms are all based on the following update rule for the weight vector θ

θ(τ+1) = θ(τ) + λ∆θ(τ) (4-11)

where we choose some initial value θ(0), τ label the iteration step, λ is the learning rate, discussed
below and the weight vector update ∆θ(τ) depends on the chosen algorithm. An example of
determining the weight vector update is the use of gradient information.

4-2-1 Gradient Descent

The simplest approach to using gradient information is to use a so-called batch method, in
which we use the whole data set at once, where we take a step in the direction of the negative
gradient, such that

θτ+1 = θτ − λ∇L(θ(τ)) (4-12)

where the parameter λ > 0 is known as the learning rate. At each step the weight vector is
moved in the direction of the greatest rate of decrease of the loss function. This method is
known as gradient descent. We can also make an update to the weight vector based on a sample
(or a mini-batch of samples) from the training sample at the time. This is known as stochastic
gradient descent. The derivation of stochastic gradient descent can be found in appendix (D-1).
The approximation of the gradient of the loss is denoted by θ(τ+1), so that

θ(τ+1) = θ(τ) − λ∇θ L̂(θ) (4-13)

A training epoch refers to one sweep through the entire training set. The learning rate λ for
batch methods is usually taken to be a constant but can also be linearly annealed over the
training epochs. This means that with every epoch, the learning rate is decreased by a certain
value.
Furthermore, there exist many variations to Stochastic Gradient Descent, one of which is Adam
(Adaptive Moment Estimation) (Kingma and Ba, 2015). The authors show empirically that
Adam works well in practice and compares favorably to other Stochastic Gradient Descent based
algorithms.
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Generalization Performance &
Overfitting

This chapter has two parts. The first part introduces the concept of overfitting and the sec-
ond part will explain techniques that prevent overfitting. First we will define generalization
(performance) and the bias-variance trade-off. Afterwards, overfitting with Neural Networks is
explained and why Neural Networks are sensitive to overfitting. We will define regularization
and why we should use regularization techniques in Neural Networks. Afterwards, we will give
regularization techniques that are important for our thesis: Bagging and Dropout.

5-1 Generalization

Generalization is a measure of how accurately an algorithm is able to predict outcomes for
future unseen data. Because learning algorithms are evaluated on finite samples, the evaluation
of a learning algorithm may be sensitive to sampling error. Overfitting occurs when the learned
function becomes too sensitive to the noise in the sample. As a result, the learned function
Mθ(·) performs well on the training data but does not perform well on unseen data. Thus to
avoid bad generalization performance, we have to reduce overfitting.

Before we jump into overfitting, we have to define generalization more explicitly. First, consider
we have a target variable Y and a vector of inputs X. We fit the model Mθ(X) with a training
sample S and obtain our predictorMθ|S(X). For neural networks in particular, this is explained
in the previous sections. We also defined the loss function L(θ) and we showed how to minimize
it by optimizing the parameters θ. In the following, we will look at the loss L(Y,Mθ|S(X)), where
we focus on the measure of the difference between Y and Mθ|S(X) instead of the parameters θ
being optimized. The test error, also referred to as the generalization error, is the prediction
error over an independent test sample (X,Y ), where X and Y are drawn randomly from their
joint distribution Pr∗(X,Y ), and not from the training sample S. The generalization error of
some input point X is

ErrS(X) = E
(
L(Y,Mθ|S(X)

)
(5-1)

More about the generalization error can be found in appendix (D-2).
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5-2 Overfitting of Neural Networks

A neural network model has the advantage of being very flexible. The flexibility strongly
relies on the number of hidden layers L or hidden units M . This way it can learn the general
patterns of the data very well. One big disadvantage of a neural network model is that it
may also learn the characteristics of each sample’s unique noise. The neural networks model
is generally overparametrized, and the optimization problem is nonconvex and unstable unless
certain guidelines are followed. Regularization is the usage of methods that prevent overfitting.

Furthermore, we might expect that in a maximum likelihood setting there will be an optimum
value of M that gives the best generalization performance, corresponding to the optimum bal-
ance between under-fitting and over-fitting. This can be seen in an example. Consider a
regression problem in which we want to predict a sine-function from a training sample. The
simulation of the training- and test-data is as follows

(X,Y ) ∼ (R, sin
(2πR

4

)
+ ε)

R ∼ Uniform(0, 4)
ε ∼ N(0, 0.05)

(5-2)

We sampled 10 times to obtain the training-data and 400 times to obtain the test-data. We used
a Neural Network with an architecture of 3 hidden layers and number of hidden units per layer
ranging from 1 to 15. The used training epochs were 5000, 10000, 20000. The log-likelihood
with respect to the test-data on these models are displayed in figure (5-1).

As the figure indicates, there is a trade-off between the model complexities. The optimal number
of hidden units per layer is between 5 and 7. This means that the optimal model holds between
60 and 121 weights that need to be optimized. A lower number of hidden units M can result
in bad log-likelihoods, but increasing the number of hidden units too much can result in worse
log-likelihoods. The goal of getting a model that is sufficiently flexible to capture the particular
characteristics of the data is at odds with the goal of finding a function that does not overfit.
This is known as the bias-variance trade-off. The bias-variance decomposition can be found
in appendix (D-3). The generalization error, however, is not a simple function of M due to
the presence of local minima in the loss function. Furthermore, finding the optimal number of
hidden units is a very time consuming task. So it is most common to put down a reasonably
large number of units and train them with regularization. A standard regularization method
is stopping the optimization algorithm when there is improvement for some amount of time.
This is called early stopping and a description can be found in appendix (D-4). However, we
are researching Bagging and Dropout as regularization methods. These are explained in the
following sections.
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Figure 5-1: First row of graphs: example of the loglikelihoods of 3 hidden layer Neural Networks
trained on 10 data points drawn from a sinusoidal data set (described by equation (5-2)). The
log-likelihoods are with respect the test data. The test data was drawn from the same sinusoidal
data set. The number of hidden units per layer of the models range from 1 to 15. The graphs show
the log-likelihoods versus the number of hidden units per layer, for 5000 epochs (left), 10000 epochs
(middle) and 20000 epochs (right). Between 5 and 7 hidden units per layer holds the optimal model
for this problem. We can see a trade-off between the model complexities. Second row of graphs:
example of the obtained predictors, trained with 5000 epochs (left), 10000 epochs (middle) and
20000 epochs (right). The obtained Neural Networks hold the optimal number of hidden units per
layer for this problem, which is 7 (left), 7 (middle) and 5 (right) respectively. We can clearly see
the predictor improve to an acceptable sine-function as the number of epochs increase. However,
searching for the optimal number of hidden units is a time consuming task.
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5-3 Bagging

An approach to prevent overfitting is via bootstrap aggregation, which averages the predictions
of multiple networks which are trained by randomly perturbed versions of the training data.
Bagging creates and combines all these multiple networks.

5-3-1 What is Bagging and how do we apply it?

If we want to know how Bagging works, we first have to know how we create bootstrap samples.
We will first describe bootstrap sampling and afterwards we will explain what Bagging is and
how to apply Bagging.

The Bootstrap

Bootstrapping (Efron and Tibshirani, 1994) is a general approach to statistical inference based
on building a sampling distribution for a statistic by resampling from the data at hand. In the
context of neural networks, the deterministic algorithm of obtaining weights from a training
sample S can be seen as a statistic.
The combination of a feature vector X along with a corresponding target value Y is called
an observed tuple (X,Y ). Now consider a random training sample S = {(Xi, Yi)} with i ∈
{1, ..., N} as independent random variables with joint distribution Pr∗(X,Y ).
Now suppose that we are interested in some statistic T = t(S) as an estimate of the correspond-
ing population parameter γ. It is important to keep in mind that S is random, therefore t(S)
is random, hence t(S) has a (sampling) distribution. The sampling distribution is determined
by N and Pr∗(X,Y ). We would like to know this sampling distribution, but we are faced with
two problems:

1. We don’t know Pr∗(X,Y ).

2. Even if we knew Pr∗(X,Y ), finding the distribution of T explicitly would exceed our
analytic capabilities.

We will first look at the second problem. If we now suppose that we knew Pr∗(X,Y ). We
can skip the part where we have to go through incredibly complicated analytic calculations and
approximate the probability distribution of T through simulation. We generate many samples,
say B, of size N from Pr∗(X,Y ), and with each sample we calculate the value of T . Now, the
empirical distribution of the resulting T (1), .., T (B) is an approximation to the distribution of T .
If we take B larger, these approximations will be more accurate.
This is all possible under the condition that we know Pr∗(X,Y ), but we don’t. So what do we do
next? The essential idea of nonparametric bootstrap is as follows. We denote Pr∗N (X,Y ) as the
empirical distribution created by the elements of S. We view Pr∗N (X,Y ) as an approximation to
Pr∗(X,Y ). That is, Pr∗N (X,Y ) would be used in place of Pr∗(X,Y ) in the previous paragraph.
How do we go about sampling from Pr∗N (X,Y )? Pr∗N (X,Y ) is a discrete probability distribution
that gives probability 1/N to each element of S. We proceed to draw a sample of size N from
the elements in S. Call the resulting bootstrap sample S(1) = {(Xi, Yi)(1)} with i ∈ {1, ..., N}.
It is necessary to sample with replacement, because we would otherwise simply reproduce the
original sample S. Now we can select B bootstrap samples and we denote the b-th bootstrap
sample with S(b) = {(Xi, Yi)(b)}. Next, we compute the statistic T for each of the bootstrap
samples; that is T (b) = t(S(b)) for all b ∈ {1, ..., B}. The whole process of bootstrap sampling is
visualized in figure 5-2.
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Figure 5-2: A schematic illustration of bootstrap sampling. Suppose that our training sample is
sampled from a population. A bootstrap sample is obtained by sampling from the training sample.
We repeat bootstrap sampling until we get B bootstrap samples. Every dot represents a single
datapoint (X,Y ). The first row of dots represent the population and the second row represent the
training sample. The third to seventh row represent the bootstrap samples.

Bagging

Bagging (Breiman, 1996) is short for "Bootstrap AGGregatING". With making predictions
from the data, we fit one single model to the data. In Bagging, instead of making predictions
from a single fit of the data, we take bootstrap samples of the data and fit the model to each
sample. Afterwards, the predictions are averaged over all the fitted models to get the bagged
prediction.

Neural networks are very flexible models and predictions of neural networks typically have low
bias but high variance. How do we reduce the variance of predictions? Suppose again that we
have a training sample S = {(Xi, Yi)} with i ∈ {1, ..., N} as independent random variables with
joint distribution Pr∗(X,Y ). Suppose that the statistic is in fact

t(S) = NeuralNetθ|S(x) (5-3)

where θ|S denotes the weights optimized based on training sample S and x a fixed observed
value.

The bootstrap aggregation procedure is as follows. Take B repeated bootstrap samples {S(b)}
with b ∈ {1, .., B} from the training sample S and form the learned function from this bootstrap
samples NeuralNetθ|S(b)(x). The bootstrap samples are drawn from the empirical distribution
Pr∗N (X,Y ), which gives probability 1/N to each element of S. The bagged estimate is defined
by

NeuralNetθ(x) = 1
B

B∑
b=1

NeuralNetθ|S(b)(x) (5-4)

This expression is a Monte Carlo estimate of the true Bagging estimate, approaching it as
B →∞.
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5-3-2 Why could Bagging work?

Bagging can reduce the variance of unstable procedures (Bauer and Kohavi, 1999) leading to
improved prediction. A simple argument shows why Bagging helps under squared-error loss.
Assume that we have a regression problem with continuous target variable Y. Furthermore,
assume that

Y |X ∼ N(µθ(X), σ2) (5-5)

Consider the ideal aggregate estimator

µθ|S(x) = E(µθ|S(x)) (5-6)

where S = {(Xi, Yi)} with i ∈ {1, .., N} is a random sample from the joint distribution
Pr∗(X,Y ) and x a fixed observed value. Note that µθ|S(x) is a Bagging estimate, drawing
bootstrap samples from the actual population rather than the training sample.
Take a y, just like x, to be a fixed observed output value. Then

E(y − µθ|S(x))2 = y2 − 2yE(µθ|S(x)) + E(µθ|S(x)2)
≥ y2 − 2yE(µθ|S(x)) + E(µθ|S(x))2

= y2 − 2y µθ|S(x) + µθ|S(x)2

= (y − µθ|S(x))2

(5-7)

where the inequality E(X) ≥ (E(X))2 is used. Therefore, true population aggregation never
increases mean squared error. How much depends on the difference

E(µθ|S(x))2 − E(µθ|S(x)2) (5-8)

The more more µθ|S(x) varies with sample S, the more improvement aggregation may produce.
Therefore, Bagging can only give improvement to unstable procedures, like neural networks.

Furthermore, more recent empirical evidence (Grandvalet, 2004) suggests that Bagging equalizes
training points (X,Y ) ∈ S in such a way that highly influential points are down-weighted.
Leverage points are isolated in the feature space. Leverage points can be part of the undesirable
noise in the training data we talked about in section 5-1. In much procedures, such as neural
networks, leverage points are badly influential. Neural Networks have the potential to overfit
on these points.

Since in bootstrap sampling all the elements of the training sample have the same probability
1/N to be selected, it seems paradoxical that Bagging has the ability of reducing the influence
of specific training points. The following explanation gives an intuitive insight. Leverage points
are isolated in the feature space while others are located in more dense regions of the input
space. To remove the influence of a leverage point it is enough to just remove that specific point
from the training sample. But when we want to remove the influence of a training point located
in a more dense region in the feature space, we must in general remove a group of training
points. The probability that a group of training points {(X1, Y1), .., (Xk, Yk)} ∈ S is ignored by
a bootstrap sample S(b) is

Pr({(X1, Y1), .., (Xk, Yk)} 6∈ S(b)) = (1− k/N)N (5-9)
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where N is the size of the training sample S. This probability decays with increasing group size
k. Therefore, the probability that influence of isolated training points is removed is larger than
the probability that influence of a large group of training points is removed.

There is also a paper (Poggio et al., 2002) that tries to derive certain stability statements about
Bagging when using special resampling schemes. Poggio et al. studied the relationship between
stability and Bagging. They showed that there is a Bagging scheme, where each expert is trained
on a disjoint subset of the training data, providing strong stability to ensembles of non-strongly
stable experts, and therefore providing the same order of convergence for the generalization
error as Tikhonov regularization. Thus, at least asymptotically, Bagging strongly stable experts
would not improve generalization ability of the individual member, since regularization would
provide the exact same effect.
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5-4 Dropout

Dropout (Srivastava et al., 2014) is a relatively new tool that prevents overfitting and provides
a way of combining many different neural network architectures. The technique describes a
way of dropping out hidden units during training, hence the name "Dropout". In this context,
dropping out means temporarily removing units from the network, along with the incoming and
outgoing connections. To understand why Dropout could be favorable to solve the problem of
computational cost of Bagging, we need to know what Dropout is and how to apply it.

5-4-1 What is Dropout?

The procedure is as follows. The units have a probability p of being dropped out and p is called
the Dropout rate. Srivastava et al. investigate the choice of the Dropout rate and come to the
conclusion that a Dropout rate of p = 0.5 is empirically the best choice in their experiments.
However, this does not necessarily apply to all supervised learning problems with a Neural
Network as model. But, the choice of p = 0.5 seems to be an intuitive choice when we think in
terms of the Dropout masks p = 0.5 produces. When we have to deal with a relatively small
amount of features, choosing the Dropout rate too small will possibly result in removing all the
feature variables. Moreover, if we drop out the output units, we will lose the output.

Figure 5-3: Neural Network where the layers are fully connected
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Figure 5-4: After applying Dropout
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Assume that our network consists of a total of H hidden units. We now interpret the neural
network as a collection of 2H possible "thinned networks", called droput masks. In stochastic
gradient descent, we choose a mini-batch of training data, then randomly choose one mask and
take a step in the direction of the negative gradient with respect to the chosen mask. Then
training a neural network with Dropout can be seen as training a collection of 2H networks with
extensive weight sharing, where each network in the collection gets trained very rarely, if at all.
At test time however, the idea of Srivastava et al. is to use a single neural network without
Dropout. The weights of this single network are scaled-down versions of the trained weights. If
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an unit has a probability of p to be dropped out during training, the outgoing weights of that
unit are multiplied by p if testing the neural network on a test set. This ensures that for any
hidden unit the expected outpout is the same as the actual output at test time. If we apply
this scaling, it is possible to get one single network out of the 2H networks with shared weights.

5-4-2 How do we apply Dropout?

The formal description of Dropout on a neural network is as follows. Consider a neural network
with L layers. Now let l ∈ {0, ..., L − 1}. Let a(l) be the vector of inputs into layers into layer
l, z(l) denote the vector of outputs from layer l. Then z(0) = x denotes the feature vector.
Furthermore, W (l) denotes the weights and biases at layer l. Now, the standard neural network
model description is

al+1
i = 〈θ(l+1)

i , z(l)〉

z
(l+1)
i = h

(
a

(l+1)
i

) (5-10)

where h(·) is the activation function, l ∈ {0, ..., L−1} and hidden units indexed by i. Now with
Dropout, the description is as follows

rlj ∼ Bernoulli(p)
ẑ(l) = 〈r(l), z(l)〉

a
(l+1)
i = 〈θ(l+1)

i , ẑl〉

y
(l+1)
i = h

(
a

(l+1)
i

) (5-11)

For any layer l, r(l) is a vector of independent Bernoulli random variables each of which has
probability p of being 1.
Now we can train Dropout neural networks using stochastic gradient descent. We can use
Dropout in several ways. Srivastava et al. describes a way in which mini-batches are used.
For every training case in the mini-batch, he creates a Dropout mask by dropping out units.
Forward and backpropagation for that training case are done only on this Dropout mask. The
gradients for each parameter are accumulated over the training cases in each mini-batch. Any
training case which does not use a parameter contributes a gradient zero for that parameter.

5-4-3 Why could Dropout help to solve our problem?

Dropout gives a very simple way of combining a collection of models. Combining several models
is most helpful when the individual models are different from each other and in order to make
neural networks different, they should either have different architectures or be trained on differ-
ent data. We described the latter in sections (5-3-1) and (5-3-1). But we came to the conclusion
that training several models is very time consuming. Dropout can solve that problem.
Moreover, Dropout also addresses the issue of training several different architectures jointly. If
we want to use different architectures for every bootstrap sample in Bagging, we have to find
to optimal learning rate, batch size, training epochs etc. for every architecture, which is very
time consuming. Therefore, the clever way of training different architectures in Dropout can be
seen as an additional advantage.
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Research Question 1: BagDrop

This chapter describes a possible answer to the first research question. We propose the new
BagDrop procedure and argue why it could solve the computational cost problem of Bagging.

6-1 BagDrop

Bagging is a very simple technique that can reduce variance in predictions in Neural Networks.
However, Bagging has the major disadvantage of computational cost. This cost is linear in the
number of models used, and the results get better when we use more models. The compu-
tational cost may stop people from using it in practice when using Neural Networks as base
model. Furthermore, Dropout is a relatively new tool that combines several Neural Network
architectures in a very fast and clever way. This brings us back to the first research question:

How can we apply Bagging in a Dropout way, such that
we retain the speed of Dropout, while still having similar
generalization properties as Bagging?

Research Question 1

We have to come up with a better idea than traditional Bagging. What should we do next? We
propose BagDrop as answer to the first research question. Bagdrop provides a way of combining
the methods of Bagging and Dropout, that hopefully has similar generalization performance as
Bagging and more or less the same computational cost as Dropout. In BagDrop, we sample a
Dropout mask for every bootstrap sample. Every Dropout mask is trained by its own bootstrap
sample and combined as Dropout prescribes. But how do we apply BagDrop? This is explained
in the following section.

6-1-1 How do we apply BagDrop?

The BagDrop procedure is as follows. Assume that we have a training sample S = {Zi} with
i ∈ {1, ..., N} as independent random variables and Zi = (Xi, Yi). Take B repeated bootstrap
samples {S(b)} with b ∈ {1, .., B} from the training sample S. Now, for every bootstrap sample,
sample a Dropout mask M (b) for the hidden units. We call the combination of one Dropout
mask and one bootstrap sample a model tuple and denote it by (S(b),M (b)).

Now, we have to derive a way to apply stochastic gradient descent. We have to minimize the
expected loss on all data and all Dropout masks. To approximate the gradient of the expected
loss we can use Monte Carlo methods. Assume that there exists some sort of distribution
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underlying X,Y,M . If we want to take K independent samples from this distribution we
have to keep in mind that the training samples are dependent on the Dropout masks X,Y |M .
Therefore, first sample a Dropout mask m ∼ M from the ensemble and afterwards, we sample
a training sample x, y ∼ X,Y |M from the corresponding bootstrap sample. Then we get a set
of samples {x(k), y(k),m(k)} with k ∈ {1, ...,K}. We can approximate the gradient of the loss
with

∇θ L̂(θ) = 1
K

K∑
k=1
∇θ L(θ,x(k), y(k),m(k)) (6-1)

Once we have above value, we can take a step towards the negative gradient

θ(τ+1) = θ(τ) − λ∇θ L̂(θ) (6-2)

Repeat this process until one reaches a certain desirable value of the weights θ.

6-1-2 Why could BagDrop solve our problem?

Just as in the procedure of Dropout, every mask defines a certain "thinned network". Every
training step, a batch of masks is trained jointly, with each mask having it’s own corresponding
bootstrap sample. This way, it is possible to combine several neural network architectures
(or "thinned networks") and train them jointly. From a Bagging perspective, with BagDrop,
we can apply a special case of Bagging in a much faster way than traditional Bagging. The
computational cost of BagDrop stays approximately the same with the amount of bootstrap
samples. In comparison, the computational cost of traditional Bagging grows linear with the
amount of bootstrap samples.
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Research Question 2 & 3:
Generalization Performance &

Computational Cost

In this chapter we will investigate the second and third research question. To answer the
second and third research question, we will conduct an empirical research. The research consists
of two elements. First, we will conduct a proof-of-concept of BagDrop with a toy-dataset.
The explanation of the method, experiments and analysis of the proof-of-concept are very
comprehensive. We do this to give the reader an elaborate understanding of the experiments
conducted.

7-1 Proof-of-Concept

7-1-1 Method

Before we start experimentation, we need to have a good idea what it is we are studying, how
the data is collected, and how we plan to analyze it. We will look at a problem in which
overfitting occurs. We described Bagging in chapter 5 as possible regularization technique.
However, Bagging has the major disadvantage of computational cost. We described BagDrop
in chapter (6) as possible candidate to solve this problem. But, does Bagdrop perform similar
as Bagging in terms of generalization performance? And how does BagDrop perform in terms
of computational cost? This brings us back to the second and third research question:

How does the BagDrop procedure perform in comparison
to Bagging, in terms of generalization performance?

Research Question 2

How does the BagDrop procedure perform in comparison
to Dropout, in terms of computational cost?

Research Question 3

How do we answer these research questions? We need to construct a measure of generalization
performance and a measure of computational cost. But, before we do that, we have to explain
how the data is collected and how our model is defined. We will explain the data and our
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model. One may notice that we used the same data and model as in the example in section
(5-2) and figure (5-1). However, we made two small adjustments; number of epochs and size
of the network. The data, model and adjustments are clarified in the following two sections.
Afterwards, we explain our measures of generalization performance and computational cost.
Finally, we will give our experimental design and explain how we will analyze the results of the
experiments.

Data: Toy-dataset

With limited computational capability, it was initially unpractical to look at classification and
regression problems from large datasets. So we began with simulating sine data to form a very
small dataset. The following is the same dataset we used in the example in section (5-2). We
sampled from

(X,Y ) ∼ (R, sin
(2πR

4

)
+ ε)

R ∼ Uniform(0, 4)
ε ∼ N(0, 0.05)

(7-1)

to obtain the observed training sample D = {(x1, y1), .., (x10, y10)}. Larger datasets would be
unpractical due to the computational cost of Bagging. Then, we sampled a test sample of size
400 from the same distribution to obtain T = {(x1, y1), .., (x400, y400)}. This resulted in the
following graph (figure (7-1)) of the observed training and test data.
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Figure 7-1: Observed test data (left) and observed training data (right) drawn from sinusoidal data
described by the equation (7-1).

Model & Hyperparameters

We will use a full probabilistic setting. Suppose that our data arose from the statistical model

Y |X ∼ N(µθ(X), σ2) (7-2)

We are specifically interested in the mean µθ(X) and the variance σ2. We will use a neural
network as described in (3-3) to predict the mean
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µθ(X) = NeuralNetθ(X) (7-3)

The log likelihood of the data is

L(θ, σ2) = −N2 log(2π)−N logσ − 1
2σ2

N∑
i=1

(yi −NeuralNetθ(xi))2 (7-4)

We want to maximize this log-likelihood in order to get the best fit of our parameters to
the data. Therefore, log-likelihood (7-4) is defined as our loss fucntion. Note that, besides the
network weights θ, the standard deviation σ is also modelled as an optimization parameter. The
standard-deviation must satisfy σ ≥ 0 and can therefore be represented in terms of exponentials
during training.

σ = exp(α) (7-5)

We will use stochastic gradient descent as optimization algorithm as described in section (4-2-1).
Particularly, we will use Adam (Kingma and Ba, 2015). We shortly mentioned early stopping
as standard regularization technique in section (5-2). However, we first want to investigate
BagDrop isolated from other regularization methods. Therefore, we will be researching BagDrop
without early stopping. But, because early stopping is standard for Neural Networks, the results
and analysis of the experiments with early stopping can be found in appendix (B-2) and (C-2-3)
respectively.
Until now, all the properties of our model were not dependent upon the training data. With
our training data, we wish to fit the parameters of our model. However, there is another
kind of parameters that cannot be directly learned from the regular training process. These
parameters express “higher-level” properties of our model complexity or how fast it should
learn. They are called hyperparameters. Hyperparameters are determined and fixed before
the actual training process begins. In our case, the hyperparameters, with corresponding section
containing background theory, are

• Number of hidden layers (section (3-3))

• Number of hidden units per layer (section (3-3))

• The activation function (section (3-3))

• The final activation function (section (3-3))

• The learning rate (section (4-2-1))

• Number of training epochs (section (4-2-1))

• Batch size (section (4-2-1))

How do we choose our hyperparameters? Choosing the final activation function is straightfor-
ward. We are considering a regression problem with 1 output, so the final activation function
is the identity.
Furthermore, we are investigating regularization techniques, so we put down a reasonably large
number of hidden units as we explained in (5-2). We chose a network with 3 hidden layers and
50 hidden units per layer. Furthermore, we used a linearly annealed learning rate as described
in (4-2-1). After repeatedly re-configurating the activation function and the learning rates we
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came to a learning rate that starts at λstart = 0.002 and ends at λend = 0.00001 and the ELU
activation function as described in section (3-3). Finally, we chose a batch size of 10 and 50000
training epochs to make sure we do not underfit.

The hyperparameters clearly produce an overfitted predictor. the hyperparameters are summa-
rized in table (7-1) and the predictions are displayed in figure (7-2).

Table 7-1: Hyperparameters

Hyperparameter Selected

Hidden layers (L) 3
Hidden units per layer 50
Activation function ELU
Learning rate start (λstart) 0.002
Learning rate end (λend) 0.00001
Training epochs 50000
Batch size 10
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−0.5
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Baseline predictor
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Figure 7-2: Predictions of overfitted predictor based on the hyperparameters described in table
(7-1)

Research Question 1: Measure of generalization performance

How do we measure generalization performance? This can be done in different ways. After
training, we obtain trained parameters θ̂ and σ̂2. The log-likelihood of the trained parameters
with respect to the test data is a measure of generalization performance

L(θ, σ2) = −N2 log(2π)−N logσ̂ − 1
2σ̂2

N∑
i=1

(yi −NeuralNetθ̂(xi))
2 (7-6)
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We also want a measure of the generalization performance of an ensemble of predictions. There-
fore, assume an ensemble ({NeuralNetθ̂1

(X), σ̂2
1), .., ({NeuralNetθ̂B

(X), σ̂2
B)} of B predicted

means and variances. Every ensemble component b ∈ {1, .., B} produces its own normal den-
sity function N(NeuralNetθ̂1

(X), σ̂2
1). The average of the B density functions forms a Gaussian

mixture density function

1
B

B∑
b=1

N(NeuralNetθ̂b
(X), σ̂2

b ) (7-7)

If P is a random variable with this underlying Gaussian mixture density function, the mean
and variance are

E(P |X) = 1
B

B∑
b=1

NeuralNetθ̂b
(X)

Var(P |X) = 1
B

B∑
b=1

(
(E(P |X)−NeuralNetθ̂b

)2
+ σ̂2

b

(7-8)

Note that the log-likelihood of the Gaussian mixture density with respect to the training data
is

L(θ, σ2) = − 1
B

B∑
b=1

N∑
i=1

log
(
N(NeuralNetθ̂b

(X), σ̂2
b )
)

(7-9)

The actual maximizer of the log-likelihood occurs when we put a spike of infinite height at any
one data point, that is, NeuralNetθ̂b

(xi) = yi for some i and σ2
b = 0. This gives infinite likelihood,

but is not a very useful solution. Therefore, we could assume that the Gaussian mixture
density is approximately a normal density with mean 1

B

∑B
b=1 NeuralNetθ̂b

(X) and variance
1
B

∑B
b=1

(
(E(P |X)−NeuralNetθ̂b

)2
+ σ̂2

b . Then, the log-likelihood of the trained parameters
with respect to the test data is

L(θ, σ2) = −N2 log(2π)−N log
√

Var(P |X = x)− 1
2Var(P |X = x)

N∑
i=1

(yi−E(P |X = x))2 (7-10)

This will be our measure of generalization performance of an ensemble of size B.

Research Question 2: Measure of computational cost

How do we measure computational cost? Compared to Dropout, BagDrop requires some extra
calculations througout the whole algorithm. The question is whether this will be a problem in
practice. Therefore, we will have two measures; run-time of one experiment and run-time of
one epoch (in the same experiment). This way we can differentiate between the time BagDrop
needs in one epoch and the run-time of one whole experiment.
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Experimental Design

We are comparing algorithms, therefore, the learning algorithm is the factor of interest. We
have a dataset (described in section (7-1-1)) and model (described in section (7-1-1)) in which
overfitting emerges as problem. We will call this problem the baseline. This will be our starting
point. We will run the baseline, without additional technques, in the first set of experiments.
Afterwards, we run the baseline with the additional regularization techniques Bagging, Dropout
and BagDrop in the second, third and fourth sets of experiments respectively. Every algorithm
also has its own hyperparameters. In the following list, the algorithms and hyperparameters
are stated with corresponding background theory section.

• Bagging: We will apply the Bagging procedure as described in section (5-3-1). We will
use an ensemble size of 20. Bigger ensemble sizes were unpractical due to computational
limitations.

• Dropout: We will apply the traditional dropout procedure as described in section (5-4).
We will use a Dropout rate of p = 0.5.

• BagDrop: We will apply the BagDrop procedure as described in section (6-1-1). We will
use an ensemble size of 100 and a Dropout rate of p = 0.5

However, these algorithms may not be the only factors of interest. There is one algorithm that
could have the same results in terms of generalization performance and computational cost
as BagDrop. Namely, the BagDrop algorithm without a bootstrap sample for every Dropout
mask. We will call this special version of the BagDrop algorithm Quasi-Dropout. We will run
Quasi-Dropout in the fifth set of experiments. Furthermore, we also want to know whether a
non-sophisticated combination of Bagging and Dropout has more or less the same generalization
performance as BagDrop. This means that we apply Bagging and train the bootstrap samples
one-by-one such as Bagging prescribes. Then, for every bootstrap sample, apply Dropout.
Because we basically use Quasi-Dropout in BagDrop, we will use Bagging + Quasi-Dropout
(instead of traditional Dropout) in the sixth set of experiments to get a good comparison.
In the following list, the two additional algorithms are stated with corresponding background
theory section.

• Quasi-Dropout: We will apply the Quasi-Dropout procedure as described in appendix
(D-5). This procedure has the potential to have the nearly same effect as BagDrop. So it
is important that the ensemble used in Quasi-Dropout is of the same size as in BagDrop.
That is, an ensemble size of 100 and a Dropout rate of p = 0.5.

• Bagging + Quasi-Dropout: We will apply the Bagging procedure as described in sec-
tion (5-3-1), and with every bootstrap sample, we will apply Quasi-Dropout as described
in appendix (D-5). This gives a good comparison to the new procedure BagDrop. We
used an ensemble size of 20 for Bagging and 100 for Quasi-Dropout. We used a Dropout
rate of p = 0.5.

If we denote the log-likelihood of a method with cmethod, then ideally, the log-likelihoods will
be ordered in the following way

cbaseline < cQuasi−Dropout < cBagging ≈ cBagging+Dropout ≈ cBagDrop (7-11)

If we denote the run-time of each experiment and each epoch with tmethod, then ideally, the
run-times will follow the following equality
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tDropout ≈ tQuasi−Dropout ≈ tBagDrop (7-12)

For every method, we will replicate 20 experiments. Every experiment produces a log-likelihood
as a measure of generalization performance. We derive a mean and standard-deviation of
every experiment to get a summarized idea of the performance. Furthermore, every experiment
produces a run-time of that particular experiment and a mean run-time of all epochs.

To determine whether the log-likelihoods of the algorithms are significantly different we will
have to do some statistical analysis of the results. In the following section, we will explain how
we will do this.

Analysis: Kruskal-Wallis Test and more

First, we will make a boxplot of the log-likelihood results and analyze this. Afterwards we will do
a more sophisticated test. We are using a repeated-measures experimental design, so we can use
the non-parametric Kruskal-Wallis test (Kruskal and Wallis, 1952) to compare the resulting log-
likelihoods. The reason why we will not use other more common tests like the t-test (Student,
1908) is that these make very strong assumptions regadering the underlying distribution of the
data. The Kruskal-Wallis test relies on ranks and is less demanding with respect to the implied
data distribution conditions.

A full description of the Kruskal-Wallis test can be found in appendix (D-6). The Kruskal-
Wallis test produces a p-value. The null hypothesis is denoted by H0. In our analysis, we will
reject H0 with significance level α = 0.05. This means, we will reject the hypothesis that the
algorithms are the same if the p-value drops below α = 0.05

When H0 is rejected, we know that the log-likelihoods of the algorithms are significantly dif-
ferent. However, we still do not know which algorithm is better. Therefore, we should do a
so called post-hoc test for comparing all pairs of algorithms. One of the possible tests is the
Nemenyi test (Nemenyi, 1962). In the Nemenyi test, two algorithms differ significantly from
eachother if the corresponding ranks differ at least

cd = qa

√
k(k + 1

6E (7-13)

where the critical values qa are based on the Studentized range statistic divided by
√

2 and can
be found in look-up tables (Nemenyi, 1962).

However, it may happen that the Kruskal-Wallis test results in the rejection of H0, but the post-
hoc test fails to find any significant pairwise difference. Then we can only make the general
statement that there is a difference between some algorithms.

Finally, we will compare the results of the run-times without a significance test and state some
striking features.
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7-1-2 Experiments

The results of the generalization performance of the experiments can be found in apendix (B-1)
and the computational cost in appendix (B-3) but are summarized in this section. Table (7-
2) summarizes the results of the measure of generalization performance. For every technique,
we have taken the mean and standard deviation of the log-likelihoods of the 20 experiments.
Furthermore, table (7-3) summarizes the results of the measure of computational cost of the
techniques. For every technique for every experiment we measure a mean epoch run-time.
These epoch mean run-times are averaged. The results of the averaged epoch mean run-times
can be found in the second column. For every technique for every experiment we measure the
total run-time of one experiment. The average experiment run-times can be found in the third
column. Finally, examples of the obtained predictors are displayed in figure (7-3).

Table 7-2: Results of the generalization performance of the techniques tested. For every method,
we replicated 20 experiments. The generalization performance is measured in terms of log-likelihood
regarding the test set. The mean and standard deviation of the log-likelihoods of the experiments
can be found in the second and third column respectively.

Mean Standard deviation

Baseline -197.102 65.149
Bagging 0.366 0.478
Dropout 0.016 0.254
BagDrop 0.804 0.038
Quasi-Dropout 0.205 0.254
Bagging + Quasi-Dropout 0.298 0.146

Table 7-3: Results of the computational cost of the techniques tested. For every method, we
replicated 20 experiments. The computational cost is measured in terms of run-time. The mean of
the run-times of the experiments can be found in the second column. The average of the means of
the run-times of the epochs can be found in the second column. Notation: ms = milliseconds and
sec = seconds

Epochs average Experiments average

Baseline 1.044 ms 61.227 sec
Bagging 1.168 ms 1190.940 sec
Dropout 1.246 ms 71.997 sec
BagDrop 1.501 ms 88.726 sec
Quasi-Dropout 1.497 ms 87.767 sec
Bagging + Quasi-Dropout 1.168 ms 1191.480 sec
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Figure 7-3: Examples of the obtained predictors using the different regularization techniques. The
blue dots represent the observed test data. The red dots represent the observed training data.
The lines represent the predictions of the obtained predictors and the grey surface represents the
obtained variance of predictions. In case of the baseline and Dropout, we do not have an ensemble
of predictions. Therefore, the obtained (mean of a) prediction is the obtained network function
NeuralNetθ̂(xi) and the obtained variance of a prediction is σ̂2. In case of Bagging, BagDrop, Quasi-
Dropout and Bagging + Quasi-Dropout we had to deal with an ensemble of predictions. Therefore,
the obtained (mean of a) prediction is 1

B

∑B
b=1 NeuralNetθ̂b

(X) and the obtained variance of a

predictions is 1
B

∑B
b=1

(
(E(P |X)− NeuralNetθ̂b

)2
+ σ̂2

b .
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7-1-3 Analysis

Generalization Performance

The results of the experiments are visualized in a boxplot in figure 7-4.
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Figure 7-4: Boxplot of the generalization performance of the experiments. We can find the log-
likelihood with respect to the test data on the vertical axis and the methods on the horizontal
axis.

From visual inspection we can see that the baseline experiment has clearly significantly different
log-likelihood compared to the baseline with additional techniques. Therefore, it would be
meaningful to analyze the results without the baseline. However, to conduct a complete analysis
we will start with analyzing the results including the baseline experiment.
As the Kruskal-Wallis test indicates significance (χ2

5 = 94.431, p = 2.2e − 16 < 0.05) for the
experiments, it is meaningful to conduct multiple comparisons in order to identify differences
between the procedures. The Nemenyi test p-values can be found in table (7-4).

Table 7-4: Nemenyi test pairwise p-value table for experiments without Early Stopping

Baseline Dropout Quasi-Dropout Bagging Bagging + QD

Dropout 0.04674 - - - -
Quasi-Dropout 0.00142 0.91341 - - -
Bagging 8.2e-08 0.03657 0.37525 - -
Bagging + QD 0.00024 0.70448 0.99829 0.65049 -
BagDrop 5.9e-14 3.6e-07 7.4e-05 0.09242 0.00049

According to the Nemenyi post-hoc test for multiple joint samples without the baseline exper-
iment, BagDrop log-likelihood differs highly significant (p < 0.01) from the baseline, Dropout,
Quasi-Dropout and Bagging+Quasi-Dropout and BagDrop differs not significantly (p > 0.05)
from Bagging. Please refer to appendix (C-2-1) for The results of the Kruskal-Wallis test and
Nemenyi test.
The results of the experiments excluding the baseline are visualized in figure (7-5).
From visual inspection we can see that the BagDrop procedure differs significantly from the other
methods. The Kruskal-Wallis test also indicates significance (χ2

4 = 64.469, p = 3.329e − 13 <
0.05). Therefore, it is meaningful to conduct multiple comparisons in order to identify differences
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Figure 7-5: Boxplot of the generalization performance of the experiments without the baseline
experiment. We can find the log-likelihood with respect to the test data on the vertical axis and
the methods on the horizontal axis.

between the procedures without the baseline. The Nemenyi test p-values can be found in table
(7-5).

Table 7-5: Nemenyi test pairwise p-value table for experiments without Early Stopping and without
the baseline

Dropout Quasi-Dropout Bagging Bagging + QD

Quasi-Dropout 0.7514 - - -
Bagging 0.0042 0.1448 - -
Bagging + QD 0.4339 0.9874 0.3735 -
BagDrop 4.1e-10 6.6e-07 0.0166 9.5e-06

According to the Nemenyi post-hoc test for multiple joint samples without the baseline experi-
ment, BagDrop log-likelihood differs highly significant (p < 0.01) from Dropout, Quasi-Dropout
and Bagging+Quasi-Dropout and BagDrop differs significantly (p < 0.05) from Bagging.
To conclude, in the experimental design, section (7-1-1), we described the ideal situation

cbaseline < cQuasi−Dropout < cBagging ≈ cBagging+Dropout ≈ cBagDrop (7-14)

where cmethod indicates the log-likelihood of a method. If we look at the results, we can say
that this (in)equality in fact does hold regarding this particular problem. Quasi-Dropout does
perform better than the baseline experiment and the methods Bagging, Bagging + Quasi-
Dropout and BagDrop perform better than Quasi-Dropout. Therefore, our hypothesis is right.
We can see good improvement of generalization performance using the BagDrop procedure. In
fact, BagDrop is even performing better than the other methods; the mean log-likelihood is
higher and the standard deviation is much smaller. Thus, if we look back at the second research
question:

How does the BagDrop procedure perform in comparison
to Bagging, in terms of generalization performance?

Research Question 2
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we can answer this question with: the BagDrop procedure does perform better in com-
parison to Bagging, in terms of generalization performance. Nonetheless, we have to
keep in mind that the described and tested setting remains a proof-of-concept. Before we
can (more) generally state that BagDrop performs well in terms of generalization performance,
we have to either test it on a large collection of different real-life supervised learning problems,
or mathematically proof it.

Computational Cost

Looking at the results of the run-time experiments in table (7-3), we can clearly see that
BagDrop improves on Bagging with a factor of 14 regarding experiment run-time. It must be
noted that BagDrop has a slightly higher experiment run-time than Dropout, due the additional
operations that has to be done in BagDrop. Part of which is due to the additional operations in
the optimization algorithm. We can see the increase in operations in the optimization algorithm
by comparing the epoch run-time of BagDrop and Dropout, which differ by 0.255 ms. This
means that, on average, more operations have to be done during one epoch. This is not surprising
if we look at the script in appendix (A). Still, the experiment and epoch run-time only slightly
differ from Dropout. Therefore, we can state that the run-time of BagDrop is more ore less the
same as Dropout.

However, which method has the optimal computational cost? The baseline experiment clearly
has the lowest epoch and experiment run-time, which is not very surprising if we look at the
script in appendix (A). We could argue that the baseline must be used in practice, without
additional regularization techniques, when it comes to computational cost. However, we must
not forget that finding the optimal hidden layers and/or hidden units per layer is a very time
consuming task. We would prefer setting out a reasonably large number of hidden units and/or
layers and use regularization as we described in section (5-2).

To conclude, in the experimental design, section (7-1-1), we described the ideal situation for
the computational cost tmethod of a method:

tDropout ≈ tQuasi−Dropout ≈ tBagDrop (7-15)

where tmethod indicates the run-time of a method. If we look at the results, we can say that this
equality does hold regarding this particular problem. Dropout, Quasi-Dropout and BagDrop
all perform more or less the same, in terms of the run-time. Therefore, our hypothesis is right.
Moreover, BagDrop performs much better compared to Bagging and Bagging + Quasi-Dropout.
Thus, if we look back at the third and last research question:

How does the BagDrop procedure perform in comparison
to Dropout, in terms of computational cost?

Research Question 3

we can answer this question with: the BagDrop procedure does perform similar in
comparison to Dropout, in terms of computational cost. Again, we have to keep in
mind that the described and tested setting remains a proof-of-concept.
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Conclusion & Discussion

8-1 Conclusion

Neural Networks are very flexible models but can be sensitive to noise in the training data.
When certain guidelines are not followed, overfitting may occur. Bagging is a regularization
technique that helps prevent overfitting. However, Bagging has the disadvantage of compu-
tational cost. We showed how to apply Bagging in a Dropout-inspired way to obtain a new
method called BagDrop to conquer the computational cost problem. As a proof-of-concept,
we compared BagDrop to Dropout, Bagging and derived techniques in a simple experimental
set-up. BagDrop does well with respect to generalization performance, relative to Bagging and
alternatives. Furthermore, the computational cost of BagDrop is much lower than Bagging.
These observations together may be interesting for future research.

8-2 Discussion

8-2-1 Scaling up to Real-life Problems

We have to keep in mind that the described and tested setting remains a proof-of-concept.
Before we can (more) generally state that BagDrop performs well in terms of generalization
performance, we have to either test it on a large collection of different real-life supervised
learning problems, or mathematically proof it. There exist many big datasets that can be used
to test BagDrop. One of them is MNIST, which is a popular handwritten digits database.
MNIST can be used to test BagDrop on high dimensional data. Figure (8-1) shows a random
sample from the MNIST database.

8-2-2 Bagging

In contrast to what many people think, it is not mathematically proven that Bagging reduces
variance of predictions. Quite the reverse; papers suggest situations in which Bagging only
makes performance worse. In the paper of Breiman (Breiman, 1996) he already suggests that
Bagging increases variance when "stable" models, like linear regression, are used. The paper of
Grandvalet (Grandvalet, 2004) suggest more situations. Therefore, we have to be very careful
when using Bagging.

8-2-3 Dependence of Dropout masks

The BagDrop procedure combines several neural network architectures that all share param-
eters. Parameter sharing, however, breaks the assumption behind Bagging that the ensemble
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Figure 8-1: Random sample from the MNIST database

components are independent. The predictions of models in the ensemble may be more similar to
eachother compared to regular Bagging, resulting in lower variance in the ensemble. One possi-
ble fix is to sample the bootstrap samples in a different way. We could also use the (Bayesian)
Bootstrap, which will be shortly explained in the following section.

8-2-4 The Bayesian Bootstrap

We could use the Bayesian Bootstrap (Rubin et al., 1981). If we compare the Bayesian Bootstrap
with the Bootstrap (5-3-1), a bootstrap sample is obtained by sampling with replacement from
the training set D. Now define a Bayesian Bootstrap sample Db with b ∈ {1, .., B} with N
categories. The Bayesian Bootstrap can be expressed as sampling the category proportions
from a multinomial distribution.

pd̂∗ ∼ Mult(p, d̂) (8-1)

The probability that an observed sample (x, y) ∈ D falls in category j is dj . The prior for
d = {d1, .., dN} is a symmetric Dirichlet distribution with parameter α = (α1, .., αN ). One
possible fix to increase the difference between the dropout masks in the ensemble is by modifying
d to a concentrated distribution. Ideas for d are:

1. Using d = Dir(α1 = α2 = .. = αN = α), with α < 1, increasing its contractedness to
smaller number of datapoints, compared to α = 1 (used in the regular Bayesian Bootstrap)

2. Assigning each datapoint at random to a single model. This corresponds to a fairly
concentrated d. When used in combination with Dropout rate 1/2, this has the effect of
assigning half the dataset (at random) to each hidden unit. This makes intuitive sense
since if you squint a little, this can be interpreted as a form of bootstrap at the neuron
level. Perhaps this intuition can be translated into something rigorous.
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Appendix A: Experiments (in Python
with Tensorflow)

A-1 Appendix A.1: Simulation Dataset Proof-of-Concept

1 '''
2 Created on 4 mei 2017
3
4 @author : Friso Kingma
5 '''
6
7 from __future__ import absolute_import
8 from __future__ import division
9 from __future__ import print_function

10
11 import tensorflow as tf
12 from tensorflow . contrib import learn
13
14 from matplotlib import pyplot as pl
15 import numpy as np
16 import math as mth
17 import sys
18 import os
19 import progressbar
20 from matplotlib . delaunay . testfuncs import saddle
21 import csv
22
23 def sine(x, period = 4):
24 return mth.sin (((2* np.pi)/ period )*(x))
25
26 def polynomial (x):
27 return (np.power(x ,3) +3* np.power(x ,2) -6*x -8) /4
28
29 def block(x):
30 if x > 1:
31 return 10
32 else:
33 return -10
34
35 #Set train data
36 sin_x_data = []
37 sin_y_data = []
38 values = 10
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39 starting_point = 0
40 end_point = 4.0
41
42 sample_interval = np. random . uniform ( starting_point ,end_point , values )
43
44 step_size = abs( starting_point - end_point )/ values
45 for i in range( values ):
46 point = starting_point + i* step_size
47 sin_x_data . append ([0, sample_interval [i]])
48 sin_y_data . append (sine( sample_interval [i]))
49
50
51 # Add some NOISE
52 sin_y_data += np. random . normal (0 ,0.05 , values )
53
54 # reshape training data for plot
55 sin_x_data_plot = []
56 for i in range(np.shape( sin_x_data )[0]):
57 sin_x_data_plot . append ( sin_x_data [i][1])
58 sin_x_data_plot = np.array( sin_x_data_plot )
59
60 #plot distribution of ensemble
61 pl. figure ()
62 pl. scatter ( sin_x_data_plot , sin_y_data , c=" darkorange ", label =" data ")
63 pl.show ()
64
65 print( sin_y_data )
66 with open('data.csv ', 'w') as csvfile :
67 writer = csv. writer (csvfile , delimiter =' ', quotechar ='|', ...

quoting =csv. QUOTE_MINIMAL )
68 for i in range( values ):
69 writer . writerow ([ sin_x_data [i][1] , sin_y_data [i]])
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A-2 Appendix A.1: Experiments Proof-of-Concept

1 '''
2 Created on 4 mei 2017
3
4 @author : Friso Kingma
5 '''
6
7 from __future__ import absolute_import
8 from __future__ import division
9 from __future__ import print_function

10
11 import tensorflow as tf
12 from tensorflow . contrib import learn
13
14 from matplotlib import pyplot as pl
15 import numpy as np
16 import math as mth
17 import sys
18 import os
19 import progressbar
20 from matplotlib . delaunay . testfuncs import saddle
21 import csv
22 import argparse , json
23 import time
24
25 from matplotlib import rc
26
27 rc('text ', usetex =True)
28
29 pgf_with_pdflatex = {
30 "pgf. texsystem ": " pdflatex ",
31 "pgf. preamble ": [
32 r"\ usepackage [utf8 ]{ inputenc }",
33 r"\ usepackage [T1]{ fontenc }",
34 r"\ usepackage { cmbright }",
35 r"\ usepackage { amsmath }"
36 ],
37 }
38 pl. rcParams . update ( pgf_with_pdflatex )
39
40 #command -line arguments
41 parser = argparse . ArgumentParser ()
42 parser . add_argument ('--alpha0 ', type=float , default =0.002 , ...

help=' learning rate start ')
43 parser . add_argument ('--alpha1 ', type=float , default =0.00001 , ...

help=' learning rate stop ')
44 parser . add_argument ('--beta1 ', type=float , default =0, help='beta1 ...

(adam parameter ) ')
45 parser . add_argument ('--epochs ', type=int , default =50000 , ...

help=' number of training epochs ')
46 parser . add_argument ('--batch_size ', type=int , default =10, ...

help='batch size ')
47
48 # must be equal to num_masks , or at least one of them should be 1
49 parser . add_argument ('--models ', type=int , default =1, help=' number ...
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of bootstrap_samples for new method . ')
50 parser . add_argument ('--num_masks ', type=int , default =1, ...

help=' number of dropout masks , for new method . If only applying ...

dropout .')
51
52 parser . add_argument ('--keep_prob ', type=float , default =1.0 , ...

help='keep probability of dropout ')
53 parser . add_argument ('--units ', type=int , default =50, help=' number ...

of units per hidden layer ')
54 parser . add_argument ('--num_layers ', type=int , default =3, ...

help=' number of hidden layers ') # should be at least 3 layers
55 parser . add_argument ('-- nonlinearity ', type=str , default ='elu ', ...

help='relu / elu / sigmoid ') #all work , but elu works best
56
57 parser . add_argument ('--min_std ', type=float , default =0.001 , ...

help=' minimum value of standard deviation ')
58
59 #only bagging hyperparameters
60 parser . add_argument ('-- bagging_models ', type=int , default =20, ...

help='Total number of neural networks trained , for bagging , ...

this should be more than 1')
61
62 # Number of experiments
63 parser . add_argument ('-- experiments ', type=int , default =1, ...

help='Total experiments ')
64
65 # Plotting options
66 parser . add_argument ('-- plot_default_mask ', type=int , default =0, ...

help=' Whether to plot heuristic prediction with default mask ')
67
68 # Early stopping options
69 parser . add_argument ('-- early_stopping ', type=int , default =1, ...

help=' Whether to do early stopping ')
70 parser . add_argument ('-- early_stopping_default_mask ', type=int , ...

default =1, help=' Whether to calculate log - likelihood of default ...

mask at early stopping ')
71
72 # Training set and validation set options
73 parser . add_argument ('-- datafile_train ', type=str , ...

default =' data1.csv ', help='Which data file to load ')
74 parser . add_argument ('-- datafile_validate ', type=str , ...

default =' data3.csv ', help='Which data file to load ')
75
76 args = parser . parse_args ()
77 print('input args :\n', json.dumps(vars(args), indent =4, ...

separators =(',', ':'))) # pretty print args
78
79
80
81 def sine(x, period = 4):
82 return mth.sin (((2* np.pi)/ period )*(x))
83
84 def polynomial (x):
85 return (np.power(x ,3) +3* np.power(x ,2) -6*x -8) /4
86
87 def block(x):
88 if x > 1:
89 return 10
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90 else:
91 return -10
92
93 #Set train data
94 sin_x_data = []
95 sin_y_data = []
96 with open(args. datafile_train , 'r ') as csvfile :
97 reader = csv. reader (csvfile , delimiter =' ', quotechar ='|')
98 for row in reader :
99 if row:

100 sin_x_data . append ([0, float(row [0]) ])
101 sin_y_data . append (float(row [1]))
102
103 #Set validation data
104 sin_x_validate = []
105 sin_y_validate = []
106 with open(args. datafile_validate , 'r') as csvfile :
107 reader = csv. reader (csvfile , delimiter =' ', quotechar ='|')
108 for row in reader :
109 if row:
110 sin_x_validate . append ([0, float(row [0]) ])
111 sin_y_validate . append (float(row [1]))
112
113 #Set test data
114 sin_x_test = []
115 sin_y_test = []
116 values = 400
117 starting_point = 0
118 end_point = 4.0
119
120 step_size = abs( starting_point - end_point )/ values
121 for i in range( values ):
122 point = starting_point + i* step_size
123 sin_x_test . append ([0, point ])
124 sin_y_test . append (sine(point))
125
126 # Add some NOISE
127 sin_y_test += np. random . normal (0 ,0.05 , values )
128
129 X_test , Y_test = np.array( sin_x_test ), np.array( sin_y_test )
130 X_train , Y_train = np.array( sin_x_data ), np.array( sin_y_data )
131 X_validate , Y_validate = np.array( sin_x_validate ), ...

np.array( sin_y_validate )
132
133 total_len = X_train .shape [0]
134 input_features = X_train .shape [1]
135
136 # Use GPU?
137 GPU = 0
138
139 # Hyperparameters
140
141 network_structure = [ input_features ] + ...

[args.units ]* args. num_layers + [1]
142 nonlinearity = {'sigmoid ':tf.nn.sigmoid , 'relu ':tf.nn.relu , ...

'elu ':tf.nn.elu }[ args. nonlinearity ]
143
144 # Set -up device for processing
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145 with tf. device ('/ cpu :0' if GPU == 0 else '/gpu :0'):
146
147 # tf Graph input
148 x = tf. placeholder (" float", [None , input_features ])
149 y = tf. placeholder (" float", [None ])
150 mask = tf. placeholder (" float", None)
151 learning_rate = tf. placeholder (" float", None)
152
153 # Create model
154 def multilayer_perceptron (layer , network_structure , weights , ...

biases , mask):
155 layer -= 2. # since data is centered at 2.
156 for i in range(len( network_structure ))[: -1]:
157 layer = tf.add(tf. matmul (layer , weights [i]), biases [i])
158 if i != range(len( network_structure ))[ -2]:
159 layer = nonlinearity (layer)
160 layer = layer * mask[i]
161 return layer
162
163 # Store layers weight & bias
164 weights = []
165 biases = []
166 for i in range(len( network_structure ))[: -1]:
167 weights . append (tf. Variable (tf. random_normal ([ network_structure [i], ...

network_structure [i+1]] , 0, 0.1)))
168 biases . append (tf. Variable (tf. random_normal ([ network_structure [i+1]] , ...

0, 0.1)))
169
170 # Store standard deviation
171 std = args. min_std + tf.exp(tf. Variable (0.0))
172
173 # Store bootstrap samples
174 samples_x = []
175 samples_y = []
176
177 if(args. bagging_models > 1):
178 if(args. bagging_models == args. models ):
179 print (" Number of bagging models can not be the same as ...

number of BagDrop models ")
180 sys.exit ()
181 else:
182 bootstrap_samples = args. bagging_models
183 else:
184 bootstrap_samples = args. models
185
186 # Store bootstrapped training sets
187 for m in range( bootstrap_samples ):
188 # initialize bootstrap sample vector
189 X_train_bootstrap = []
190 Y_train_bootstrap = []
191
192 # create bootstrap sample
193 for i in range( total_len ):
194 rand_int = np. random . randint ( total_len )
195 X_train_bootstrap . append ( X_train [ rand_int ]. tolist ())
196 Y_train_bootstrap . append ( Y_train [ rand_int ]. tolist ())
197 samples_x . append ( X_train_bootstrap )
198 samples_y . append ( Y_train_bootstrap )
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199 samples_x = np.array( samples_x )
200 samples_y = np.array( samples_y )
201
202 # Store masks
203 masks = []
204 default_mask = []
205 # Create default mask for test time
206 for layer in range(len( network_structure ))[: -2]:
207 ones_tensor = np.full ([ network_structure [layer +1]] , ...

1.0). tolist ()
208 default_mask . append ( ones_tensor )
209
210 # Create masks of the models
211 for m in range(args. num_masks ):
212 masks_layer = []
213 for layer in range(len( network_structure ))[: -2]:
214 random_tensor = args. keep_prob
215 random_tensor += ...

np. random . uniform (0,1,[ network_structure [layer +1]])
216 binary_tensor = np.floor( random_tensor )
217 new_tensor = (np. divide (1.0 , args. keep_prob ) * ...

binary_tensor ). tolist ()
218 masks_layer . append ( new_tensor )
219 masks. append ( masks_layer )
220 masks = np.array(masks)
221
222 # Construct model
223 pred = multilayer_perceptron (x, network_structure , weights , ...

biases , mask)
224 pred = tf. transpose (pred)
225
226 # Define loss and optimizer
227 # Log - likelihood of normal distribution , not entirely right.
228 cost = tf.div(tf. reduce_mean (tf. square (pred -y)), ...

tf. square (std))+tf.div(tf. constant (1.0) ,tf. constant (2.0))*tf.log(tf. square (std))+tf.div(tf. constant (1.0) ,tf. constant (2.0))*tf.log(tf. constant (2.0*3.14159265359) )
229 optimizer = ...

tf.train. AdamOptimizer ( learning_rate = learning_rate ,beta1=args.beta1). minimize (cost)
230
231 bar_experiments = progressbar . ProgressBar ()
232 log_likelihood_array = []
233 for _ in bar_experiments (range(args. experiments )):
234
235 # Add ops to save and restore all the variables .
236 saver = tf.train.Saver ()
237
238
239 # Launch the graph
240 with tf. Session () as sess:
241
242 bar_bagging = progressbar . ProgressBar ()
243
244 all_pred_means = []
245 all_pred_stds = []
246 # Setting up progress bar
247 for _ in range(args. bagging_models ):
248 sess.run(tf. global_variables_initializer ())
249
250 if(args. bagging_models > 1):
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251 random_sample = np. random . randint ( bootstrap_samples )
252 X_train , Y_train = samples_x [ random_sample ], ...

samples_y [ random_sample ]
253
254 # Initialize log - likelihood comparison
255 log_likelihood_comparison = -1000000.0
256
257 # Training cycle with progress bar logging
258 bar_epochs = progressbar . ProgressBar ()
259 for epoch in range(args. epochs ):
260
261 avg_cost = 0.
262
263 # compute learning rate for this epoch
264 progress = (1.* epoch)/args. epochs
265 learning_rate_epoch = (1- progress )*args. alpha0 + ...

progress *args. alpha1
266
267 # total_batch = int ((1.0* total_len )/args. batch_size )
268 assert total_len %args. batch_size == 0
269 num_iterations_per_epoch = ...

int( total_len /args. batch_size )
270
271 # print( total_batch )
272 for i in range( num_iterations_per_epoch ):
273
274 # Set up arguments
275 batch_x = []
276 batch_y = []
277 mask_batch = []
278
279 # Fill arguments
280 for i in range(args. batch_size ):
281 #get random model and random data point
282 random_model = ...

np. random . randint (args. num_masks )
283 random_point = np. random . randint ( total_len )
284
285 # append datapoint to batch
286 # if more than 1 model , apply 'bagging '
287 if args. models > 1:
288 batch_x . append ( samples_x [ random_model ][ random_point ]. tolist ())
289 batch_y . append ( samples_y [ random_model ][ random_point ]. tolist ())
290 # if 1 model , use just the original ...

training set
291 else:
292 batch_x . append ( X_train [ random_point ]. tolist ())
293 batch_y . append ( Y_train [ random_point ]. tolist ())
294
295 #for every layer , add an random mask
296 for layer in ...

range(len( network_structure ))[: -2]:
297 if(i == 0):
298 #if its the first one , append
299 mask_batch . append (masks[ random_model ][ layer ]. tolist ())
300 else:
301 #if its the second one , extend . ...

Later it will be converted to ...
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the form that can be processed ...

by the algorithm .
302 mask_batch [layer ]. extend (masks[ random_model ][ layer ]. tolist ())
303
304 # convert data batches to numpy batches
305 batch_x = np.array( batch_x )
306 batch_y = np.array( batch_y )
307
308 # convert mask_batch to appropriate form
309 mask_batch = np.array( mask_batch )
310 mask_batch = np. reshape (mask_batch , ...

(len( network_structure ) -2, args.batch_size , ...

args.units))
311
312 # Run optimization op ( backprop ) and cost op ...

(to get loss value)
313 _, c, p = sess.run ([ optimizer , cost , pred], ...

feed_dict ={x: batch_x , y: batch_y , mask: ...

mask_batch , learning_rate : ...

learning_rate_epoch })
314
315 # Compute average loss
316 avg_cost += c / num_iterations_per_epoch
317
318 # Compute validation set log - likelihoods . If these ...

are better , store the parameters .
319 if(args. early_stopping == 1):
320 if(epoch %1000 == 0):
321 if(args. early_stopping_default_mask == 1):
322 pred_mean_current = sess.run(pred , ...

feed_dict ={x: X_validate , mask: ...

default_mask })
323 pred_std_current = sess.run(std)
324
325 # Calculate log - likelihood of default ...

mask given test data
326 pred_variance_current = ...

np. square ( pred_std_current )
327 log_likelihood_current = ...

-(1.0/2.0)*np.mean(np. square ( pred_mean_current - Y_validate )/ pred_variance_current ...

+ np.log( pred_variance_current ) + ...

np.log (2* np.pi))
328 else:
329 all_pred_means_step = []
330 all_pred_stds_step = []
331 for m in range(args. num_masks ):
332 all_pred_means_step . append (sess.run(pred , ...

feed_dict ={x: X_validate , mask: ...

masks[m]}))
333 all_pred_stds_step . append (sess.run(std))
334
335 # calculate mean over predictions
336 all_pred_means_step = ...

np.array( all_pred_means_step )
337
338 #mean and standard deviation of ensemble
339 bagged_pred_mean_step = ...

np.mean( all_pred_means_step , axis =0)
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340 bagged_pred_variance_step = ...

np. square (np.std( all_pred_means_step , ...

axis = 0))+ ...

np.mean(np. square ( all_pred_stds_step ), ...

axis = 0)
341 bagged_pred_std_step = ...

np.sqrt( bagged_pred_variance_step )
342
343 # Calculate log - likelihood of model ...

given test data
344 log_likelihood_current = ...

-(1.0/2.0)*np.mean(np. square ( bagged_pred_mean_step [0]- Y_validate )/ bagged_pred_variance_step [0] ...

+ ...

np.log( bagged_pred_variance_step [0]) ...

+ np.log (2* np.pi))
345
346 # Compare current log_likelihood on ...

validation -set to past log - likelihood
347 if( log_likelihood_current ≥ ...

log_likelihood_comparison ):
348 # Store parameters
349 print (epoch , ": ", log_likelihood_current )
350 save_path = saver.save(sess , ...

"tmp\model.ckpt ")
351 log_likelihood_comparison = ...

log_likelihood_current
352
353 # Restore checkpoint with highest
354 if(args. early_stopping == 1):
355 saver. restore (sess , "tmp\model.ckpt ")
356
357 # calculate error and predicted values
358 pred_mean = sess.run(pred , feed_dict ={x: X_test , mask: ...

default_mask })
359 pred_std = sess.run(std)
360
361 # Save current model prediction and standard deviation ...

if we have more than 1 bagging model
362 if(args. bagging_models > 1):
363 all_pred_means . append ( pred_mean )
364 all_pred_stds . append ( pred_std )
365
366 # Save all the predictions and standard deviations if we ...

have 1 model
367 if (args. bagging_models == 1):
368 for m in range(args. num_masks ):
369 all_pred_means . append (sess.run(pred , feed_dict ={x: ...

X_test , mask: masks[m]}))
370 all_pred_stds . append (sess.run(std))
371
372 # Cast mean to numpy array
373 all_pred_means = np.array( all_pred_means )
374
375 #mean and standard deviation of ensemble
376 bagged_pred_mean = np.mean( all_pred_means , axis =0)
377 bagged_pred_variance = np. square (np.std( all_pred_means , axis = ...

0))+ np.mean(np. square ( all_pred_stds ), axis = 0)
378 bagged_pred_std = np.sqrt( bagged_pred_variance )
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379
380 # Calculate log - likelihood of model given test data
381 log_likelihood = ...

-(1.0/2.0)*np.mean(np. square ( bagged_pred_mean [0]- Y_test )/ bagged_pred_variance [0] ...

+ np.log( bagged_pred_variance [0]) + np.log (2* np.pi))
382
383 # Calculate log - likelihood of default mask given test data
384 pred_variance = np. square ( pred_std )
385 log_likelihood_default = ...

-(1.0/2.0)*np.mean(np. square (pred_mean - Y_test )/ pred_variance ...

+ np.log( pred_variance ) + np.log (2* np.pi))
386
387 #log
388 print (" Bagged model has log likelihood : ", log_likelihood )
389 print (" Default mask has log likelihood : ", log_likelihood_default )
390
391 # reshape test data for plot
392 sin_x_test_plot = []
393 for i in range(len( bagged_pred_mean [0])):
394 sin_x_test_plot . append ( sin_x_test [i][1])
395 sin_x_test_plot = np.array( sin_x_test_plot )
396
397 # reshape training data for plot
398 sin_x_data_plot = []
399 for i in range(np.shape( sin_x_data )[0]):
400 sin_x_data_plot . append ( sin_x_data [i][1])
401 sin_x_data_plot = np.array( sin_x_data_plot )
402
403 #plot distribution of ensemble
404 pl. figure ()
405 pl.plot( sin_x_test_plot , sin_y_test , c=" blue", ...

label=r" Observed test data ")
406 if args. plot_default_mask :
407 pl.plot( sin_x_test_plot , pred_mean [0], 'k-', ...

label=r" Dropout ", c='green ')
408 pl. fill_between ( sin_x_test_plot , pred_mean [0] - pred_std , ...

pred_mean [0] + pred_std , facecolor ="0.75" , edgecolor ="0.5")
409 else:
410 pl.plot( sin_x_test_plot , bagged_pred_mean [0], 'k-', ...

c=" black", label=r" Bagging + Quasi - Dropout ")
411 pl. fill_between ( sin_x_test_plot , bagged_pred_mean [0] - ...

bagged_pred_std [0], bagged_pred_mean [0] + ...

bagged_pred_std [0], facecolor ="0.75" , edgecolor ="0.5")
412 pl. scatter ( sin_x_data_plot , sin_y_data , c=" red", ...

label=r" Observed training data ")
413 pl. legend ()
414 pl.show ()
415
416 # Save log_likelihood value
417 log_likelihood_array . append ( log_likelihood_default )
418 #log
419 print (" Finished one experiment !")
420
421 log_likelihood_array = np.array( log_likelihood_array )
422
423 for e in range(args. experiments ):
424 print (" Experiment ", e+1, " has log_likelihood : ", ...

log_likelihood_array [e])
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425
426 print (" Mean of log_likelihoods : ", np.mean( log_likelihood_array , ...

axis =0))
427 print (" Standard deviation of log_likelihoods : ", ...

np.std( log_likelihood_array , axis =0))
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Appendix B: Results of Experiments

B-1 Appendix B.1: Generalization Performance Proof-of-Concept

Table B-1: Results of experiments Proof-of-Concept

Baseline Dropout Quasi-Dropout Bagging Bagging + QD BagDrop
1 -114.17389 -0.18595 -0.19365 0.49831 0.33037 0.79048
2 -160.27664 0.25434 0.15758 0.56219 0.45119 0.70552
3 -223.35540 0.33489 0.38168 -1.63772 0.07428 0.76931
4 -140.61131 0.32580 0.53243 0.49657 0.27808 0.80479
5 -289.07741 -0.18241 0.62623 0.55718 0.51265 0.78029
6 -183.65925 -0.14817 0.64782 0.51523 0.02871 0.84985
7 -161.94323 -0.15181 0.11675 0.42051 0.28928 0.78379
8 -229.42208 -0.16389 -0.19859 0.49543 0.11423 0.83259
9 -321.88875 -0.16608 0.20976 0.58313 0.35073 0.79066
10 -117.62754 -0.16189 0.08816 0.46935 0.35301 0.82440
11 -324.08235 -0.16150 0.09147 0.51429 0.25871 0.84745
12 -197.98399 -0.17738 0.35142 0.52532 0.19323 0.85397
13 -156.77452 0.31411 0.66467 0.39723 0.27967 0.77195
14 -242.50213 -0.16331 -0.20440 0.46073 0.37298 0.82159
15 -124.98405 -0.17355 0.15113 0.42687 0.07478 0.80842
16 -246.15205 0.38029 0.05779 0.44378 0.48238 0.81325
17 -227.62060 0.41406 0.13025 0.21809 0.29728 0.78045
18 -131.70400 0.42435 0.38430 0.44698 0.24949 0.84454
19 -142.20302 -0.12820 0.03156 0.52819 0.48360 0.84914
20 -205.99849 -0.16002 0.07794 0.39224 0.47777 0.76077
Mean: -197.10203 0.01618 0.20522 0.36569 0.29762 0.80416
STD: 65.14880 0.25365 0.26943 0.47831 0.14593 0.03804
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B-2 Appendix B.2: Generalization Performance Proof-of-Concept
with Early Stopping

Table B-2: Results of experiments Proof-of-Concept with Early Stopping

Baseline Dropout Quasi-Dropout Bagging Bagging + QD BagDrop
1 0.970 0.361 0.981 0.358 -0.130 0.904
2 1.012 0.397 1.051 -0.144 0.602 0.901
3 1.032 -0.054 1.061 0.413 0.051 0.872
4 1.074 -0.175 1.007 0.502 -0.168 0.822
5 0.749 -0.044 1.104 0.032 0.679 0.852
6 0.873 -0.150 1.022 0.399 0.576 0.872
7 1.102 -0.152 1.028 -0.012 0.132 0.821
8 1.045 -0.176 1.082 0.323 0.534 0.834
9 1.015 0.370 1.054 -0.001 0.094 0.823
10 0.872 0.270 1.006 0.381 -0.276 0.883
11 0.981 -0.185 1.002 0.472 0.089 0.928
12 0.944 0.325 1.075 0.058 0.456 0.801
13 0.999 -0.209 1.165 0.392 -0.017 0.835
14 1.094 -0.073 1.057 0.410 0.044 0.887
15 0.997 0.027 1.062 0.465 0.037 0.873
16 0.982 -0.159 1.141 0.383 0.127 0.871
17 0.978 -0.180 1.134 0.411 0.510 0.851
18 0.817 -0.005 1.092 -0.138 0.008 0.885
19 1.062 0.360 1.145 0.418 0.652 0.903
20 1.101 0.320 1.098 0.057 0.118 0.829
Mean 0.985 0.043 1.068 0.259 0.206 0.862
STD: 0.095 0.235 0.052 0.220 0.297 0.035
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B-3 Appendix B.2: Computational Cost Proof-of-Concept

B-3-1 Appendix B.2.1: Epochs run-time

Baseline Bagging Dropout Bagdrop Quasi-Dropout Bagging + QD
1 1.014 1.123 1.188 1.048 1.411 1.033
2 1.006 1.203 1.192 1.092 1.410 1.071
3 1.010 1.219 1.205 1.216 1.490 1.079
4 1.011 1.253 1.247 1.241 1.612 1.198
5 1.016 1.228 1.238 1.432 1.657 1.237
6 1.023 1.170 1.262 1.423 1.735 1.285
7 1.019 1.176 1.241 1.585 1.584 1.217
8 1.035 1.177 1.252 1.689 1.591 1.219
9 1.036 1.149 1.246 1.659 1.622 1.140
10 1.044 1.133 1.245 1.707 1.643 1.187
11 1.049 1.140 1.244 1.579 1.557 1.169
12 1.058 1.141 1.261 1.640 1.629 1.145
13 1.064 1.142 1.284 1.689 1.681 1.135
14 1.055 1.161 1.243 1.646 1.554 1.158
15 1.067 1.188 1.267 1.653 1.520 1.184
16 1.080 1.133 1.259 1.686 1.437 1.164
17 1.073 1.129 1.265 1.575 1.429 1.182
18 1.069 1.193 1.270 1.541 1.157 1.182
19 1.072 1.144 1.258 1.467 1.108 1.183
20 1.081 1.158 1.260 1.451 1.118 1.189
Mean: 1.044 1.168 1.246 1.501 1.497 1.168
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B-3-2 Appendix: B.2.2: Experiments run-time

Table B-3: Results of Experiments regarding Experiment Run-time

Baseline Bagging Dropout BagDrop Quasi-Dropout Bagging + QD
1 52.369 s 18.775 m 61.253 s 54.382 s 74.038 s 17.272 m
2 51.864 s 20.118 m 61.376 s 56.391 s 73.005 s 17.900 m
3 52.582 s 20.410 m 62.593 s 63.272 s 77.721 s 18.061 m
4 53.277 s 20.996 m 65.401 s 65.139 s 85.753 s 20.064 m
5 54.154 s 20.605 m 65.767 s 76.784 s 88.292 s 20.763 m
6 55.054 s 19.669 m 67.681 s 77.036 s 93.883 s 21.597 m
7 55.737 s 19.783 m 67.252 s 86.270 s 88.273 s 20.509 m
8 57.377 s 19.841 m 68.819 s 93.901 s 88.712 s 20.572 m
9 58.313 s 19.405 m 69.193 s 92.869 s 92.013 s 19.272 m
10 59.780 s 19.175 m 70.211 s 99.964 s 94.565 s 20.087 m
11 60.976 s 19.342 m 71.780 s 93.506 s 94.517 s 19.842 m
12 62.533 s 19.402 m 73.464 s 99.109 s 95.829 s 19.496 m
13 63.647 s 19.474 m 75.826 s 101.259 s 98.472 s 19.362 m
14 64.596 s 19.851 m 74.944 s 102.517 s 94.741 s 19.805 m
15 66.405 s 20.385 m 77.293 s 102.721 s 94.634 s 20.295 m
16 68.398 s 19.497 m 78.110 s 104.869 s 91.376 s 20.026 m
17 69.743 s 19.490 m 79.931 s 101.506 s 94.636 s 20.412 m
18 70.218 s 20.654 m 81.719 s 101.292 s 81.987 s 20.483 m
19 72.564 s 19.897 m 82.806 s 99.267 s 74.756 s 20.577 m
20 74.953 s 20.222 m 84.528 s 102.457 s 78.126 s 20.776 m
Average: 61.227 s 19.850 m 71.997 s 88.725 s 87.766 s 19.859 m
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Appendix C: Statistical Analysis of
Experiments (in R)

C-1 Appendix C.1: Script

1 require(stats)
2 library(PMCMR)
3

4 log_likelihood = ...
as.matrix(read.csv("experiments_stopping.csv",sep=";",header=TRUE))

5 print(log_likelihood)
6 boxplot(log_likelihood, ylab="Log−likelihood")
7 friedman.test(log_likelihood)
8 posthoc.friedman.nemenyi.test(log_likelihood)

C-2 Appendix C.2: Results

C-2-1 Appendix C.2.A: Without Early Stopping
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Listing C.1: R output
1 > require(stats)
2 > library(PMCMR)
3 >
4 > log_likelihood = ...

as.matrix(read.csv("experiments_no_stopping_no_baseline.csv",sep=";",header=TRUE))
5 > boxplot(log_likelihood, ylab="Log−likelihood")
6 > friedman.test(log_likelihood)
7

8 Friedman rank sum test
9

10 data: log_likelihood
11 Friedman chi−squared = 80.486, df = 5, p−value = 6.641e−16
12

13 > posthoc.friedman.nemenyi.test(log_likelihood)
14

15 Pairwise comparisons using Nemenyi multiple comparison test
16 with q approximation for unreplicated blocked data
17

18 data: log_likelihood
19

20 Baseline Dropout Quasi.Dropout Bagging B.QD
21 Dropout 0.04674 − − − −
22 Quasi.Dropout 0.00142 0.91341 − − −
23 Bagging 8.2e−08 0.03657 0.37525 − −
24 B.QD 0.00024 0.70448 0.99829 0.65049 −
25 BagDrop 5.9e−14 3.6e−07 7.4e−05 0.09242 0.00049
26

27 P value adjustment method: none

C-2-2 Appendix C.2.B: Without Early Stopping without Baseline
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Listing C.2: R output
1 > require(stats)
2 > library(PMCMR)
3 >
4 > log_likelihood = ...

as.matrix(read.csv("experiments_no_stopping_no_baseline.csv",sep=";",header=TRUE))
5 > boxplot(log_likelihood, ylab="Log−likelihood")
6 > friedman.test(log_likelihood)
7

8 Friedman rank sum test
9

10 data: log_likelihood
11 Friedman chi−squared = 52.68, df = 4, p−value = 9.942e−11
12

13 > posthoc.friedman.nemenyi.test(log_likelihood)
14

15 Pairwise comparisons using Nemenyi multiple comparison test
16 with q approximation for unreplicated blocked data
17

18 data: log_likelihood
19

20 Dropout Quasi.Dropout Bagging B.QD
21 Quasi.Dropout 0.7514 − − −
22 Bagging 0.0042 0.1448 − −
23 B.QD 0.4339 0.9874 0.3735 −
24 BagDrop 4.1e−10 6.6e−07 0.0166 9.5e−06
25

26 P value adjustment method: none

C-2-3 Appendix C.2.C: With Early Stopping

The results of the experiments are visualized in figure (C-1).

From visual inspection we can see that the BagDrop procedure has no better results than the
baseline and the Quasi-Dropout procedure. However, BagDrop still differs significantly from the
other methods. As the Kruskal-Wallis test indicates significance (χ2

5 = 100.86, p = 2.2e− 16 <
0.05) for the experiments with Early Stopping, it is meaningful to conduct multiple comparisons
in order to identify differences between the procedures. The Nemenyi test p-values can be found
in table (C-1).

Table C-1: Nemenyi test pairwise p-value table for experiments with Early Stopping

Baseline Dropout Quasi-Dropout Bagging Bagging + QD

Dropout 2.9e-08 - - - -
Quasi-Dropout 0.80269 5.5e-12 - - -
Bagging 1.4e-05 0.88210 1.0e-08 - -
Bagging + QD 7.4e-05 0.70448 8.2e-08 0.99942 -
BagDrop 0.65049 0.00011 0.05919 0.00944 0.02837

According to the Nemenyi post-hoc test for multiple joint samples without the baseline exper-
iment, BagDrop log-likelihood differs highly significant (p < 0.01) from Dropout, Bagging and
Bagging+QD. But as we have seen in the boxplot, the baseline and Quasi-Dropout have way
better mean log-likelihoods than BagDrop.

In short, early stopping is one of the standards when using Neural Networks. We tuned the
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Listing C.3: R output
1 > require(stats)
2 > library(PMCMR)
3 >
4 > log_likelihood = ...

as.matrix(read.csv("experiments_stopping.csv",sep=";",header=TRUE))
5 > boxplot(log_likelihood, ylab="Log−likelihood")
6 > friedman.test(log_likelihood)
7

8 Friedman rank sum test
9

10 data: log_likelihood
11 Friedman chi−squared = 87.2, df = 5, p−value < 2.2e−16
12

13 > posthoc.friedman.nemenyi.test(log_likelihood)
14

15 Pairwise comparisons using Nemenyi multiple comparison test
16 with q approximation for unreplicated blocked data
17

18 data: log_likelihood
19

20 Baseline Dropout Quasi.Dropout Bagging ...
Bagging.Quasi.Dropout

21 Dropout 2.9e−08 − − − −
22 Quasi.Dropout 0.80269 5.5e−12 − − −
23 Bagging 1.4e−05 0.88210 1.0e−08 − −
24 Bagging.Quasi.Dropout 7.4e−05 0.70448 8.2e−08 0.99942 −
25 BagDrop 0.65049 0.00011 0.05919 0.00944 0.02837
26

27 P value adjustment method: none

hyperparameters in such a way that the baseline model overfits on the training data. But
when we add an early stopping rule to the algorithm, the baseline experiment will not overfit
anymore. It looks like the additional procedures we proposed are only makes the algorithm
worse. But still, the BagDrop procedure has much better generalization performance compared
to the procedures Dropout, Bagging and Bagging + Quasi-Dropout.

BagDrop



C-2 Appendix C.2: Results 66

●

Baseline Dropout QD Bagging BQD BagDrop

0.
0

0.
5

1.
0

Lo
g−

lik
el

ih
oo

d

Figure C-1: Boxplot of Experiments with Early Stopping
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Appendix D: Background Theory

D-1 Appendix D.1: Stochastic Gradient Descent

The updates of on-line gradient descent, also known as stochastic gradient descent, makes use
of the fact that loss functions are based on maximum likelihood for a set of independent obser-
vations comprise a sum of terms, one for each data point

L(θ) =
N∑
n=1

Ln(θ) (D-1)

We often minimize the loss function on the training data mentioned above. However, we should
really minimize the expected loss on all data.

E (L(θ)) =
∫
Pr∗(X = x, Y = y)L(θ) d(x, y) (D-2)

Now if we take the gradient

∇θ E (L(θ)) = E (∇θ L(θ)) (D-3)

To approximate this gradient, we can use Monte Carlo methods. If we take S independent
samples x, y ∼ X,Y and we get a set of samples {x(s), y(s)} with s ∈ {1, ..., S}, then we can
approximate the gradient of the loss with

∇θ L̂(θ) = 1
S

S∑
s=1
∇θ L(θ,x(s), y(s)) (D-4)

The samples taken from the distribution are in this case the training samples in the training
set. Now in case we want an exact update rule for the weights, we should take a step in the
direction of the negative gradient of the expected loss. However, we just showed that we can
approximate this by Monte Carlo methods. Instead of using a whole set of training samples, we
can just use one sample (or a mini-batch of samples) at the time. The size of such a mini-batch
is called the batch size and is usually fixed. Now we can make an update to the weight vector
based on sample (or a mini-batch of samples) at the time, so that

θ(τ+1) = θ(τ) − λ∇θ L̂(θ) (D-5)
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D-2 Appendix D.2: Generalization Error

The test error, also referred to as the generalization error, is the prediction error over an inde-
pendent test sample (X,Y ), where X and Y are drawn randomly from their joint distribution
Pr∗(X,Y ), and not from the training sample S. The generalization error of some input point
X is

ErrS(X) = E
(
L(Y,Mθ|S(X)

)
(D-6)

Note that the test error refers to the error for this specific training set S. We also want to
incorporate the fact that the training set could be random. So a more interesting measure is
the expected test error of some input point X

Err(X) = E
(
L(Y,Mθ|S(X))

)
= E

(
ErrS(X)

)
(D-7)

This expectation averages also over the training set S that produced Mθ(·). Besides the gener-
alization error, we have the training error, which is defined as

ErrS(X) = E
(
L(Ytrain,Mθ|S(Xtrain))

)
(D-8)

where (Ytrain, Xtrain) are random samples from the training sample S.
We also have the notion of a validation sample V , which is different from the training sample S
and is used to differentiate between models and select the model that has the best performance.
We also have the validation error, which is defined as

ErrS(X) = E
(
L(Yval,Mθ|S(Xval))|S

)
(D-9)

where (Xval, Yval) are random samples from the validation sample V .

D-3 Appendix D.3: Bias-Variance Trade-Off

The goal of getting a model that is sufficiently flexible to capture the particular characteristics of
the data is at odds with the goal of finding a function that does not overfit. If we keep functions
simple enough to avoid overfitting we may introduce a bias in our predictions. However, letting
the function be overly complex can lead to overfitting and thus higher variance in predictions.
This is known as the bias-variance tradeoff.
Now, let’s take a look at the bias-variance decomposition when we have continuous scalar Y as
target. If we assume that Y = µθ(X) + ε, with ε ∼ N(0, σ2), we can derive a expression of the
fit µθ̂(X) at an input point X = x where θ̂ is the trained parameter. Now, using the squared
error loss, the expected test error becomes

Err(x) = E
(
(Y − µθ̂(x)2)|X = x

)
= σ2 +

(
E(µθ̂(x))− µθ(x)

)2 + E
(
µθ̂(x)− E(µθ̂(x))

)2
= σ2 +Bias2(µθ̂(x)

)
+ V ar

(
µθ̂(x)

) (D-10)

The first term is the variance of the target variable Y around its true mean µθ(x), which often
cannot be avoided no matter how well we estimate µθ(x). The second term is the squared bias,
the amount by which the average of our estimate differs from the true mean. The last term is
the variance, the expected squared deviation of our estimate around its mean.
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D-4 Appendix D.4: Early Stopping Rule

With the usage of neural networks an early stopping rule is commonly used to avoid overfitting
(Goodfellow et al., 2016). When we have a neural network with sufficient representational
capacity to overfit, we often observe that training error, decreases steadily over time, and the
validation error decreases, but begins to rise again at a certain point. This behavior occurs very
reliably (Goodfellow et al., 2016).
We could obtain a model with better validation error by returning to the parameter setting at
the point in time with the lowest validation error at the end of training. Early stopping does
not run the whole training till its is finished but stops training if the validation error has not
improved for some amount of time. Every time the validation error improves, we store a copy
of the model parameters. When training terminates, we return these parameters.

D-5 Appendix D.5: Quasi-Dropout

Secondly, we will describe a different way to apply Dropout then described in (5-4). Our goal
is to create an ensemble of neural networks in which we can manage the predictions of all
the ensemble components separately. One way to do this, is to randomly generate and fix B
Dropout masks M (b) with b ∈ {1, .., B} from a neural network architecture before training.
Do this by dropping out hidden units by a chance of p. Now the training procedure is the
same as in (6-1-1), except for the fact that the training samples (X,Y ) are independent of the
chosen mask M . Therefore, again, we can apply Monte Carlo by sampling x, y,m ∼ X,Y,M
and approximate the gradient of the expected loss by (6-1). This way, we can train multiple
neural network architectures jointly. One expected difference when removing bagging from the
BagDrop procedure, is the fact that the predictions of the ensemble components will have lower
variance but higher bias.

D-6 Appendix D.6: Kruskal-Wallis test

The Kruskal-Wallis test is very simple. Let us have k learning algorithms and E experiments
per algorithm. Let xji be the log-likelihood of the j-th algorithm on the i-th experiment. For
each experiment i, we rank the log-likelihood such that for each xji we get a corresponding rank
rji . Now, find the values

rj =
∑E
i=1 rij
E

r = 1
2(kN + 1)

Q = (kE − 1)
∑k
j=1E(rj − r)2∑k

j=1
∑
i=1E(rij − r)2

(D-11)

The Kruskal-Wallis statistic is given by Q. Note that the value of Q as computed above does
not need to be adjusted for tied values. The null−hypothesis H0 says that the algorithms
are equivalent, so the ranks should be approximately equal. In fact, if the null-hypothesis is
true, the Kruskal-Wallis statistic Q follows the chi-square distribution χ2 with k− 1 degrees of
freedom, when E and k are large enough. The p-value is approximated by

p ≈ Pr(χ2
k−1 ≥ Q) (D-12)
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