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Abstract 
 
Recent research suggested that the digital elevation models can be considered, as an 
alternative to the altimetry data. However, the water prohibits the ability of monitoring the 
construction the waterbed, due to the loss of the returning signal. The elevation models have 
therefore a flat surface, which prohibits the extraction of the water level and volume variability.   
 
The goal of this thesis was to develop a tool, that uses the elevations where no flatting had 
occurred, and create a linear representation of the shape of the lake or reservoir. The following 
research question was formulated:  
 
What is the potential of applying elevation models to monitor the volume levels of lakes and 
reservoirs, when replacing the flat elevations with extrapolated depths? 
 
The case study comprised of two parts. First, the validation of the water level extraction was 
conducted for pre-selected lakes and reservoirs. The results showed an average RMSE of 
4.10 [m]. When analysing the distribution of lakes and reservoirs data, the RMSE was centred 
at 1.27 [m] (NED and ALOS) and 3.70 [m] (SRTM). The comparison between the three 
considered elevation models, showed a minor improvement regarding the relative water level. 
At the same time, it demonstrated that the number of waterbodies that can be monitored 
increases when applying the developed tool.  
 
The second part of the case study aimed at providing an insight in the potential of applying 
the DEM for estimating the volume variability. An analysis of the USGS in-situ data compared 
to the results, showed that the overall RMSE decreased for each considered model. From the 
same analysis, the relative time-series could be determined for each model i.e., in case the 
minimum amount of surface area was available and in case the water level variation was 
significantly noticeable.  
 
The results from this work indicated the potential of the global elevation models to monitor the 
volume levels of lakes and reservoirs. The developed tool demonstrated that elevations can 
be extrapolated, which would fit a more realistic shape of the reservoir at areas where the 
bathymetry was flattened or not found.  
 
Accurate information for extracting the water level and assessing the volume variability of 
lakes and reservoirs currently depends on extensive hydrographic surveys. This work provides 
guidelines for an alternative method: the Linear Bathymetry for Digital Elevation Models tool. 
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 1 Introduction 
 
In the summer of 2021 seasonal floods hit large regions of Europe and China, where in some 
cases, even dams, and embankments, containing the water had to be blasted away to prevent 
damage to the population and region. Similar events happened in the USA, where extreme 
droughts caused the water level to drastically decline (Bernstein et al. 2021), most apparent 
in the Colorado River basin, experiencing the driest year in history. Hence stressing the need 
for real-time monitoring of the current water and volume level of the Lakes and Reservoirs 
(L&R) to prevent or predict future catastrophic events (Cretaux et al. (2015), Venot et al. 
(2012), Ballatore and Muhandiki (2001), Busker et al. (2019), Frappart (2018)). 
 
Unfortunately, the monitoring data is slim or inconsistent as hydrographic surveys are 
expensive and time-consuming. Consequently, remote sensing is considered as an alternative 
(Abileah et al., 2011). Altimetry techniques are applied as an alternative to the high-resolution 
tide stations or bathymetric surveys. The downside of the instruments is that the low temporal 
resolution is relatively low. Furthermore, since flyovers can differ between 10 to 20 days apart, 
the water can also influence the retuning signal, causing an increased vertical error when 
apply for volume monitoring.  
 
The recent high accuracy and high-resolution Digital Elevation Models (DEM) have shown to 
contain new opportunities (see e.g., Vanthof and Kelly, (2019)), since the terrain models are 
continuously updated by the respective agencies with the latest elevation data. Considering 
that with the recent gravity satellite missions, the global gravity models have increase in both 
spatial and vertical accuracy.  
 
In combination with the high temporal multi-spectral imagery, implemented for estimating the 
water contour, the recent studies showed, that the elevation models can monitor the water 
level within a meter order of magnitude (Weekley and Li 2021, Avissee et al., 2017, Vantof 
and Kelly, (2019)). However, the study of Weekely et al., (2021) suggested that the available 
models were limited by the lack of bathymetry data.  
 
The water column prohibits the ability of constructing the waterbed, due to the loss of the 
returning signal. Hence instead of including the noise elevations, the surfaces are given one 
single elevation value, representing the last determined depth at the water level. In Figure 1 
is the flat-elevation phenomenon depicted, portraying the bathymetry on the right, while 
showing the same reservoir of an older DEM. The black region in the left depiction of the 
reservoirs, portrays the flattened area where at the moment of construction, the water level 
was currently at.  
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Figure 1 Example of the flattened elevation, where the bathymetry(left) and the DEM (right) of the Ridgeway reservoir 
(Colorado, USA) is portrayed 

 
In comparison between the bathymetry and the DEM on the left, the region that is located at 
the waterbed is flattened. Therefore, the water level will not be estimated when the surface 
area declines. Also, the volume level will be different relative to the bathymetry output, as the 
variation will not be seen in the time series.   
 
Thus, when analysing the results and limitations found in literature, on applying the elevation 
models to monitor water and volume levels, the main innovation is the replacement of flattened 
surfaces by extrapolated depths. Direct implementation of the global available elevation 
models in combination with the multi-spectral imagery is currently not considered for volume 
variability. 

1.1 Research objective  
The research objective can be formulated as follows: 
 

• The development of an algorithm for replacing the flattened pixels in DEM, with linear 
extrapolated elevations based on the slope. The different datasets for this study will 
be collected through the Google Earth Engine data catalogue, to supply a tool based 
on open-accessible datasets. 

 
• Provide an insight in the applicability of global / local elevation models for the 

estimation of the volume level. This study will demonstrate the effect of using models 
with different spatial resolutions, which will be compared against the water-level and 
the volume time series data from the United States Geological Survey (USGS).  

 
• Demonstrating the potential of the elevation models for finding the water level aimed 

at monitoring the effects of water-level change smaller L&R as well.   
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1.2 Area of interest 
This study defines L&R according to Hayes et al., (2017) and Liebe et al., (2005) as water 
bodies that are either valley-dammed, at the bank side of rivers or man-made. Smaller L&R 
for this study and in line with the study of Vanthof and Kelly, (2019), being between 0.1 and 5 
km2, so the assumption can be made that the spatial variation in the water-level is neglectable.  
 
The aim of this study is to investigate the effect of the small reservoirs; therefore, the number 
of available sites is limited. The USGS provides a large database of the in-situ datasets that 
are publicly available. The selection-procedure consist of three steps, which are elaborated 
on below. 
 
First the L&R are filtered based on the maximum extent, determined by the water-occurrence 
provided by the Joint Research Centre (JRC). Followed by a comparison with the lowest found 
elevation in the different DEM and the maximum found in-situ water level. Favouring L&R that 
can potentially have bathymetry (like the test reservoir) or a sufficient usable for 
implementation of the tool. The last step was to filter the reservoirs based on the volume data 
was monitored in this reservoir in the set period (2016 to 2021).  
 
 Total L&R Smaller L&R Water-level Volume-level 
Num. reservoir 537 193 88 30 

Table 1 Selection of the Lakes and Reservoirs for the implementation of the DEM water level and volume monitoring  

The results of these filtering steps are shown in Figure 2, where the number of reservoirs is 
given per selection step. Please note that the USGS also monitors waterbodies in Porto Rico 
and Alaska. These were not considered for this study, therefore only focusing on the 
Continues USA (CONUS). 

 
Figure 2 Locations of the Lakes and reservoirs in the USA that were considered for the monitoring the volume and water 
level time series. 
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1.3 Research question 
From the objectives the following main research question is formulated: 
 
What is the potential of applying elevation models to monitor the volume variability of lakes 
and reservoirs, when replacing the flat elevations with extrapolated depths? 
 
When applying the developed tool for extrapolating elevations at the flattened pixels, an insight 
is provided for determination of the water level and volume variability in periods where the 
surface area has declined into the flattened region. Showing if global elevation models can 
serve as an alternative to the current method of estimating the volume level of lakes and 
reservoirs. 
 
To support the main research-question the following sub-questions are formulated, which 
describes a small subsection of the research: 
 

- What is the effect of using lower spatial resolution multi-spectral data for estimation of 
the water level, used for water level monitoring? 
 
The study of Deng et al., (2020) suggested that the Sentinel-2 imagery data can be 
considered instead of the frequently applied Landsat-8 data. The effect will be that 
higher spatial and temporal constructed binary land/water images are used, therefore 
strengthening the water level estimation process.  

 
- What is the effect of using lower spatial resolution DEM for the extrapolation of the 

elevations? 
 
For the area of interest three elevation models were considered, which are constructed 
with different techniques, resolutions and at different moments in time. Considering for 
a global implementation not every elevation model will be available, therefore 
supplying knowledge regarding the utilization of the tool in different situations. 

 
- What are the benefits of using the least flattened DEM in-order to improve the 

estimation of volume variations? 
-  

The study of Weekley and Li (2021) suggested that the flattened pixels prohibit the 
ability to successfully determine the water-level. Especially when the surface water 
declined to fully covered these flat regions. Hence when selecting the elevation model 
based on the lowest amount flat pixels, benefit could be seen in the water-level 
monitoring. Since the DEM with the highest like amount of bathymetry would be 
favoured.  

 
- What is the effect of extrapolating elevations in-order to estimate the volume level? 

 
The estimation of the volume time-series is also limited by the flattened pixels, 
frequently located at regions where the water occurrence is high. Hence the 
implementation of the developed tool to simulated depths at these regions can give an 
insight in the potential of the elevation model for volume estimation. As now a more 
realistic model is constructed and where the flatted regions have a reduced influence 
on the water level selection. 
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1.5 Research novelty 
In this work for the first-time linear extrapolation will be implemented to determine depths at 
global elevation models that were removed at locations where the bathymetry was not found.  
The tool, when successful, will increase the number of L&R that can be monitored from space, 
with a high temporal resolution achieved by, for instance, the multi-spectral imagery data of 
S2. As the tool will be tested on openly accessible data, the tool is applicable for global 
implementation.  
 
The results at the area of interest will contribute to the understanding of smaller L&R, which 
are less likely to be monitored by gauged systems. Therefore, this work supports the 
development of water level and volume monitoring based on remote sensing instruments.  
 

1.6 Thesis outline  
The thesis is outlined as follows; in Chapter 2 the literature study is provided. In this chapter 
the techniques are briefly discussed how the DEMs’ are constructed as well as the latest 
algorithms that are used for flat pixel replacement and the current state for volume and water-
levels monitoring. In Chapter 3, is the linear extrapolation tool is analysed including the 
foundation, limitations, and visualisation of the resulting DEM. In Chapter 4, the method is 
discussed, while focusing on the newly added steps that were applied for the estimation of the 
results in the area of interest. Chapter 4 also reviews the datasets that will be applied in the 
method. Chapter 5 will demonstrate the results found in the area of interest while implementing 
the LBDEM tool for water level and volume determination. Chapter 6 focuses on the discussion 
of the results, followed by the conclusion in Chapter 7 and recommendations.  
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2 Literature review 
2.1 Review of the considered digital elevation models 
construction techniques 
 
In this subsection the acquisition methods of the different elevation models are discussed. The 
following techniques used to build the considered elevation models are RADAR (§2.1.1), 
LiDAR (§2.1.2) and Stereoscopy (§2.1.3). Each method is briefly discussed, including with the 
accompanied limitations and vertical accuracy levels.  
 

2.1.1 DEM constructed with RADAR 
The Radio Detection and Ranging (RADAR) acquisition method, is frequently applied in the 
development of elevation models (Colins et al., (2015)). As the system transmits radio signals, 
the backscatter will not be hindered by clouds or vegetation (Tarpanelli et al. 2019, Amitrano 
et al., 2014). Therefore, considered to be favourable method for the construction elevation 
models. While also having the capability to potentially penetrate the water column up to a 
certain depth. 
 
To visualise the RADAR acquisition technique, two methods are depicted in Figure 3, showing 
two different instruments: TanDEM-x (left) and SRTM (right).   
 
 
 

 
Figure 3 Two examples of DEM construction by use of RADAR instruments, were the Repeat Pass (left) and the single pass 
(right) interferometry is given 

The repeat pass interferometry (left) consists of two satellites that create two backscatter 
images in between a lag time is present. This lag-time caused the ERS-TanDEM mission to 
be affected by variations of for instance wind, influencing the correlation between the two 
images that are combined for the creation of the elevation model.  
 
The right depiction of Figure 3 shows the single pass interferometry, which uses two 
backscatter images created at the same time. An example of the method is Shuttle RADAR 
Topography Mission (SRTM), where the extended antenna from the shuttle was used to create 
the second image. In both cases a coherence map is extracted from between the two images, 
where the elevations can be deducted.  
 

Repeat pass interferometry Single pass interferometry 
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Using RADAR shown in the examples, have different limitation present that influence the final 
elevations. For instance, the speckle noise arises from the coherence maps, creating a spatial 
variability between the two images, seen as a random bias. The origin of this problem is found 
at the variability in reflectance of the surface over a flat area (Rodriguez et al., 2006, Shawky 
et al., 2006 and Shawky et al., 2019).  Therefore, enlarging the travel path of the pulse, and 
thus introducing a vertical error in the elevation that are distinguished as noise. 
 
Likewise, the shift in average elevation within a large region can be seen as the absolute bias.  
To correct for the shift in elevation, ground control points are needed for collecting the 
reference heights. Which remains difficult in some regions, resulting that the error tends to be 
larger in regions were these validation points are not available in the high-quality that is 
required. 
 
The limitations from the RADAR based technique led to an elevation error of 6 and 12 [m] for 
the SRTM elevation model in flat areas. When the gradient increases, the error increases 
slightly for SRTM (Uuemaa et al., 2020). The same study concluded that the error for 
TanDEM-X was 8.25 to 10.25 [m] for slopes with a gradient lower than 5°.  While having a 
respective spatial resolution of 30 [m] for SRTM and 90 [m] for TanDEM-X.  
 
Important to consider that the resolution does not take the flat area at water regions in 
consideration. The effect of the flat elevations found for this technique is shown in Figure 4. 
Here a simulated reservoir was filled for water levels, portraying the effect of the backscatter 
affected by water in the elevation models (Amitrano et al., (2014)).  
 

 
Figure 4 Simulation of having different water levels when the DEM was constructed (taken form Amitrano et al., 2014).  

The backscatter is not returning when the water level increases. Hence the waterbed is 
secluded from the underlying bottom. The reason for this is that in general transmitted signals 
cannot fully penetrate the water column. As a results at a certain depth, the pulses will be 
reflected away or returned at lower decibel levels, so the original waterbed ripples are removed 
out or, in the case of SRTM, flattened (Sanborn, 2018). 
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2.1.2 DEM constructed with stereoscopy 
Stereoscopy is the second technique considered for this study. The method uses two images 
are taken at a fixed time apart. The resulting images are then matched, to identify 
corresponding features, by finding overlapping pixels. Vertical elevation can be deducted from 
the match images, taken that there is a minor difference in overlap due to the geometry and 
the distortion and that the location the satellite is known.  
 
To visualise the stereoscopy technique, the following representation is given in Figure 5, 
where two satellites are portrayed measuring over one ground feature.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Here H represents the height/elevation between the satellite and the reference frame, h the 
orthometric height, and B the distance between the two satellites. The shift between the taken 
images is given in the resulting Δp. Hence the following equation is given for computing the 
elevation: 
 
Δ𝑝 = 	 !

"
⋅ ℎ à 𝐻 = !

#$
⋅ ℎ         (1) 

 
An example of Stereoscopy method is the Panchromatic Remote-sensing Instrument for 
Stereo Mapping (PRISM). This instrument has a panchromatic radiometer, which includes 3 
independent optical systems (nadir, forward and backward) that constructs a stereoscopic 
image that can be utilised for the construction of elevation models (Stéphane and Christophe, 
(2009)) For example, the SPOT-5 panchromatic mission consists of two satellites that are in 
different orbits. Therefore, a significant time delay occurs between the images taken by the 
different satellites of this mission. Causing an increased sensitivity by clouds and landscape 
evolution in the resulting elevation model. 
 
The resulting data from PRISM was utilised to construct the Advanced Land Observation 
Satellite (ALOS) (Tadono et al., (2014)). Several limitations for this mission are that strip noise 
and random bias occur, as well as that the signal cannot penetrate water.  This is because 
the constructed images are depending on the returning light, which at lower water depths will 
be decreased or absorbed by the water.  As a result, ALOS elevation model has a vertical 
RMSE was below 5 [m] for flat regions and increases to 12 and 14 [m] in regions with higher 
and complex slopes (Uuemaa et al., (2020), Takaku et al., (2020) and Santillan and Makinano-
Santillan, (2016)), where the elevations underwater level is removed/flattened.  
 
 
 
 
 
 

Figure 5 An example of the SPOT-5 acquisition method using the stereoscopy 
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2.1.3 DEM constructed with LiDAR 
As an alternative to the earlier discussed techniques, the Light Detection and Ranging (LiDAR) 
acquisition method is considered for this study. LiDAR can be mounted as either an air or 
space borne instrument, and is used to create elevation models, or validate others (Yamazaki 
et al., (2017), AHN (2020), Gesch et al., (2002)).  
 
Although airborne LiDAR produces beneficially dense models, with spatial resolutions of 0.5 
[m], those are a limitation on its own. For data-size purposes, airborne LiDAR has to be divided 
into small areas, and is available in certain countries and regions that dedicated missions 
(AHN (2020), Fouladine et al., (2019)), 
 
Therefore, the space borne Ice, Cloud, and Land Elevation Satellites (ICEsat) missions are 
also considered for the validation of elevation models, due to the potential shown in the recent 
studies (Parrish et al., (2019)). The ICEsat-2 mission is equipped with the Advanced 
Topographic Laser Altimeter System (ATLAS (Neumann et al., (2019)). The beams can 
penetrate the water column (up to 40m in clear water (Parrish et al., (2019)). Therefore, 
increasing the likelihood of capturing the surface of the waterbodies. However, due to the 
relative smaller footprint of the beams, elevations can only monitor at pre-set intervals 
Yamazaki et al., (2017), When the ICEsat-2 data is used for estimating the water-level and 
submerged bathymetry at clear-water occasions, the vertical RMSE was estimated to be 
0.43m to 0.60m after refraction corrections. 
 
A limitation found in the ICESat data is that the footprint has a size of 17m, while having the 
photons lines 3.3km apart from each other. Therefore, reservoirs that are in between those 
lines could easily be missed when implementing this method for monitoring the water level.  
 
Also like the earlier methods, the LiDAR data is influenced by the absolute error and the effects 
caused by the tree height bias. The bias is affected by the fact that trees are reflectors for both 
LiDAR, RADAR, and Stereoscopy (i.e., PRISM). Therefore, when the waterline is located near 
or directly under trees, a vertical error is introduced in the elevation. Here a difference per 
model can be seen, as some elevation models are created over a barren earth (e.g., trees are 
removed) or represent the surface including the different features. 
 
In some cases, the elevation model is constructed while using a combination of the previously 
mentioned techniques. For instance, the USGS National Elevation Dataset (NED) is the 
primary DEM of the CONUS, Alaska, Hawaii, and the island territories. This elevation model 
is a derived product from different altimetry sources, that are processed to a common 
coordinate system and vertical unit.  
 
The accuracy assessment of this model conducted by the USGS, estimated that the overall 
vertical error was 2.44 [m] for the continues USA (Gesch et al., (2002)). An increase in the 
error can be noticed at elevations that are located at high gradients, which is true for all 
development techniques. 
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2.2 Review of the available bathymetry algorithms  
The literature showed that there are different algorithms available that constructed depths 
when working with elevation models. Two of the latest algorithms dating from 2019 were 
considered for this study, being the, MATLAB based Digital Elevation model (§2.2.1) and the 
Floodwater Depth Estimation tool (§2.2.2).  

2.2.1 MATLAB based Digital Elevation model 
The MATLAB Digital elevation model (MDEM) is an algorithm that replaces flattened pixels 
with a bathymetry, based on the linear variation between the in- and out-flow of the water 
stream (Pan et al., (2019)). The 8x8 pixels search-kernel is used for determining which pixels 
are considered flat and the in-and-out flow elevation.  This process is repeated multiple times, 
until no flat pixels are classified, therefore resulting in a computationally heavy algorithm (Pan 
et al., (2019)). 
 
To visualise the resulting bathymetry, when applying MDEM, examples of the ALOS and 
SRTM elevation models are given for the Ridgeway reservoir (Colorado, USA). In the left 
depiction the NED model is given, which includes the likely bathymetry of the reservoir. 
Therefore, can be served as a comparison of the achieved results.  
 

 
The pattern, at which the in-and-out flow pixels are determined, can be seen by the lines drawn 
to north of the reservoir of the middle figure. The newly created surface is extrapolated to the 
lowest elevation, therefore creating a cone shape in the direction of the out-flow region of the 
reservoir. However, the resulting waterbed does not resemble the same depth of the NED 
model. Implying that the bathymetry determined by using MDEM projects the newly found 
depths over the flat area.  Hence, the main limitation of MDEM for water-level and volume 
monitoring is that the surface is projected over the flat pixels. Causing the depth to decrease, 
that the volume variability falsely becomes small or neglectable.  
 
Thus, MDEM would lead to a fewer number of flat pixels and thus the region for which the 
water level can be determined have decreased. Monitoring of the volume would therefore also 
not be possible or lead to false outcomes when the surface is projected over the flat pixels.   
 
 
 

Figure 6 Visualization of the MDEM result, were the bathymetry (left) and the SRTM (middle) and ALOS (right) are given   
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2.2.2 Floodwater Depth Estimation Tool 
The second algorithm is the Floodwater Depth Estimation tool (FwDET), designed to 
determine depths at areas where the water has flooded a specific region. The basis of FwDET 
is to compute depths based on the inundation region, while subtracting the (flood)water from 
the topographic elevation determined from the selected DEM using nearest neighbour method 
(Cohen et al., (2019)) Therefore, taken the spatial water level variation into consideration that 
can be present at L&R. 
 
An example is given in Figure 7 of the resulting elevations using the FwDET algorithm. Here 
the SRTM depiction of the Ridgway reservoir is shown, since this DEM had the highest number 
of flat pixels. In red is the shape of the reservoir is given for illustration purposes.  
 
 
 
 
 
 
 
 
 
 
 

Striking is that the depiction is relatively coarse in comparison to the original DEM (see Figure 
7), as the algorithm has extrapolated the elevations linear to the centre of the reservoir. The 
nearest neighbour selection caused the reservoir to select the closest elevation, therefore 
adopting relative high elevation values creating the coarse DEM of the reservoir. Such a 
coarse DEM would not perform well for estimation of bathymetry. 
 
The second reason that FwDET would not operate sufficiently for the estimation of the 
bathymetry of the L&R, is the lack of information at the flat pixels. The algorithm was originally 
built to compute the water depths at regions that are flooded, which in does not include flatted 
elevations. Thus, using this depth algorithm can only be considered when working with 
bathymetry including data at larger L&R.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Results of the Floodwater Depth Estimation tool, were the SRTM was used to illustrated the effect on the elevations  
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2.3 Review of the currently suggested workflow 
The use of elevation models has been studied frequently for extracting the water level and 
volume variation (Weekley and Li (2021), Bonnema and Hossain (2017), Deng et al., (2020), 
Zhang et al., (2016)) suggesting a processing pipeline that can be implemented for the 
monitoring of the water level for L&R.  In Figure 8 are the steps given, which are commonly 
applied by the literature.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Three different phases can be distinguished for the suggested workflow: the surface water 
extraction (1), the water level estimation (2) and the volume estimation (3).  
 
 
 
 
 
 
 
 

Figure 8 A summary of the suggested workflow by the literature for estimating the water level and volume time series.  
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2.3.1 The extraction of the surface water contour 
The first step in determining the water-level, is estimating the contour between the water and 
land. The normalised difference water index (NDWI) (Mcfeeters (1996)) or the Modified 
Normalized Difference Water Index (MNDWI) (Xu (2006)) are frequently applied, formulated 
as follows: 
 
NDWI	 = %&''({"#$%})	+,-{"#$%}

%&''({"#$%}.	+,-{"#$%}
       (2.1) 

 

MNDWI	 =
/%&''({"#$%}	)	01,-{"#$%}2

/%&''({"#$%}	.	01,-{"#$%}2
        (2.2) 

 
Note that the SWIR (eq. 2.1) and NIR (eq. 2.2) are the reflectance collected in the short-wave 
infrared and near infrared band. Both equations are based on multi-spectral imagery data and 
the fact that water significantly absorbs most of the infrared radiation (Mcfeeters (1996)). 
 
This absorption of infrared radiation by water typically distinguishes water from land. However, 
this is not always the case (Donchyts et al., (2016)), therefore, to improve the classification, 
the Otsu thresholding is applied (Ji et al., (2009), Otsu (1979)).  
 
Otsu thresholding uses using the fisher's linear discriminant analysis, to compute the optimal 
fitted threshold by dissecting the image in multiple classes. The most basic form of this method 
is by classifying an image into two classes (e.g., land and water). This can be achieved by 
analysing the histogram of the pixel distribution of resulting NDWI values (please note that this 
distribution represents a bivariate distribution). An example of such classification is given in 
Figure 9 for the Crawford reservoir (Colorado, USA). Here the NDWI pixel histogram is 
portrayed, where the red line shows the Otsu threshold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So, considering NDWI values of Figure 9, the threshold is determined at 0.06 rather than 0, 
which is normally expected when distinguishing land and water NDWI values. Since the 
distribution of the water-pixels is more concentrated between 0.6 and 0.8, with the Otsu 
threshold these will all be classified as water, whereas anything with a NDWI value below 0.06 
will be classified as land.   
 

Figure 9  Example of the NDWI – Otsu thresholding for the Crawford reservoir (Colorado, USA) 
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The result is a contour between the binary water/land classes. Then the use of the canny edge 
detection method (Canny (1986)) is applied. The method follows on the following five steps: 
(1) images are smoothed by use of a Gaussian kernel (hence removing high-frequency noise), 
(2) intensity gradients are computed, (3) to remove spurious edges a non-maximum 
suppression is applied, (4) for finding the potential edge double thresholds are computed and 
finally (5) the edges that are classified as weak or have no connection are suppressed.  
 
The processed multi-spectral images are provided in two types: top of atmosphere reflection 
(TOA) and surface reflection (SR). The images from the former are supplied without the 
atmospheric corrections (i.e., aerosol anomalies). Whilst the SR images are supplied with the 
appropriate corrections, hence, portraying images that have clearer surface reflections. 
However, as the goal of this study is to determine the contrast between land and water, higher 
wavelengths can be utilised, which are less affected by the atmospheric parameters. 
Therefore, the TOA images can also be used for determining the surface water extend 
(Donchyts et al., (2016)).  
 
The limitations connected to the suggested steps of this phase are related to the multi-spectral 
imagery data, as this sensor measures the earth within the electromagnetic spectrum 
producing optical images. Therefore, different anomalies can potentially limit the performance 
of the NDWI/Otsu method by either natural and/or technical conditions. For example, the 
surface water extent of reservoirs and lakes might be detected wrongly as they are prone to 
current weather conditions like snow or ice. Likewise different cloud types can limit the ability 
to measure the underlying surface Aerosols may also cause anomalies by causing 
atmospheric transmission losses in different bands. Finally, the presence of shadows (i.e., 
from mountains), can result in gabs or black pixels that are classified as land by the 
NDWI/Otsu method. 

2.3.2 The estimation of the water level 
 
Next, the water-level can be determined based on the water surface extent. Here an altimeter 
can be utilised to determine the water elevation by use of radar (Pham et al., 2017 and Piptone 
et al., 2018) or LiDAR is applied to determine water level of the lakes and reservoirs (Parrish 
et al.., 2019, Ma et al., 2020 and Xu et al., 2020).   
 
Alternatively, the studies showed that the use of digital elevation models (DEM) can be used 
for estimating the water level (Weekley and Li., (2021), Vanthof and Kelly, (2019), Zhang et 
al., (2016), Avisse et al., (2017)). Currently the application of DEM has been preliminary tested 
as a tool to deduct the water level from different L&R. For instance, the study of Weekley and 
Li., (2021) demonstrated, that when selecting the DEM with the least flattened surface an 
improvement a RMSE of 2.41 [m] was found between the USGS data and the estimate time 
series (while using only clear images).  
 
To reduce noise found in the estimated water level a smoothing filter was frequently applied, 
based on the 1st, 2nd and/or 3rd polynomial hypsometric relationship (i.e., surface area extent 
and water level).  An illustration of this relationship is given in Figure 10, portraying the Clinton 
Lakes (Kansas USA) the surface area [km2] in relation to the water elevation [m] (taken from 
Weekley and Li., 2021) 
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The curve shows the relationship between the water level and surface area described by either 
the linear and/or 2nd/3rd polynomial. Hence, when data differs from this pattern, the curve can 
serve as a smoothing method for the estimation of the water level time series.  The study of 
Weekly et al., 2021 concluded, that based on the results, the 2nd polynomial was the optimal 
choice, were an increase of the water level RMSE was found of 2.41 [m].  
 
However, one of the limitations of this using the hypsometric relationship for noise reduction 
in the water elevation time series, is the fact that the surface area can change position over 
time, while remaining constant in size. Examples of this phenomena are the area is altered by 
the wind, or by introducing man-made constructions resulting in a change waterflow.  
 
This phenomenon is given in Figure 11, portraying two moments in time are depicted, 
representing artistic surface interpretation of a circular reservoir. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The example depicts that the surface changed position, while the water level can vary. 
However, this will introduce an error when considering the hypsometric relationship, as 
multiple elevations will have a constant area. Therefore, when using the 1st or 2nd polynomial 
(e.g., Zhang et al., (2014), Weekley and Li, (2021)), data could be distinguished as noise, 
when creating the smoothing water level curve. 
 
 
 
 

Figure 10 Example of the hypsometric relationship for smoothing the elevations, based on the surface water 
time series (taken from Weekley and Li,  (2021)) 

Figure 11 Example of the limitations for using the surface water as a smoothing filter 
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2.3.3 The estimation of the volume time series 
 
The final phase, in when the study considers estimating the volume of L&R, is the construction 
of the Volume-Area relationship. For instance, considering the simplest form of a reservoir, 
i.e., the pyramid shaped, the following power law equation (Liebe et al., (2005)) 
 
𝑉	 = 𝑎	 ∙ 𝐴!          (2.3) 
 
Here V represents the volume of the L&R, A is the surface area, a is the scaling coefficient 
and b is the indication of the decay or growth of the model. Equation 2.3 is used in studies to 
model the reservoir based on surface area and in-situ volume values. However, each 
waterbody has respective different a and b of Equation 2.3. For instance, small (and medium) 
sized reservoirs commonly have one or two inflows (Diekkrüger and Liebe (2002)) or are 
located upstream, which causes enough variation in the elevation to facilitate dams.  
Therefore, having different effects on the change in surface area and thus changes the factors 
a and b of Equation 2.3.  
 
The equation 2.3 or the bathymetry extracted from TanDEM-X self-constructed elevation 
models, is used to create the depth-capacity curves, where the water level is expressed 
against the volume (Peng (2006), Deng et al., (2020), Gal et al., (2016), Vanthof and Kelly 
(2019), Avisse et al., (2014), Hang (2016)). The correlation between the volume found by 
models is presented with high correlation coefficients (typically >0.8).   
 
The Vanthof and Kelly (2019) study, concluded that working with the power relationship, the 
volume levels of small L&R were determined using the TanDEM-X model to be between 6% 
and 8% of the absolute volume range. However, those results were found for basins that had 
a water level lower than 1.5m, suggesting that in other cases bathymetry data should still be 
considered.  
 
The limitation that can influence the V-A relationship, are that the rivers increase or decreases 
due to sand transportation downstream (Wisser et al., 2013). This feature is important due to 
the fact, that upon arrival in the reservoir the current drops significantly, hence the sand will 
set down. Changing the shape over the waterbed over time. These shapes influence the 
outcome of the correlation equation, as the surface area is variation differently for each L&R. 
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3 Linear extrapolation tool 
 
Chapter 3 comprise of the construction of the linear extrapolation tool, where the background 
is discussed (§3.1) and the basis of the method including the limitations (§3.2). 

3.1 Background  
The flattened pixels in the elevation models limit the ability to estimate the water-level and 
volume time series. The Linear Bathymetry for Digital Elevation Models (LBDEM) is based on 
the “half pyramid” system that represents a L&R in the simplest form (Liebe et al., (2005)), in 
line with the constructed fundamentals of the MDEM and FwDET algorithms. To illustrate the 
pyramid shape, Figure 12 is given, where an artistic interpretation is shown of the shape of 
the waterbody. 
 
 
 
 
 
 
 
 

 
 
 

Here 'd' represents the depth of the reservoir, which becomes deeper at the centre of the 
surface area (given as A). Also, the shape takes into consideration that the reservoir or lake 
is fed by a river or other water source. Thus, taking the linear approach of the MDEM and 
FwDET algorithms for extrapolating the DEM elevations.  

3.2 Design and visualisation 
To construct the pyramid shape, the tool uses two kernels to iterate over the flat classified 
pixels. Each kernel, visualised in Figure 13, has a different shape. The first kernel comprises 
of a 3x3 pixel gird, while the second larger kernel uses a 5x5 kernel.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12  The fundamental pyramid shape that serve as the basis of the developed tool 

Figure 13  Kernels that are applied for the LBDEM tool 
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Depending on the scale of the DEM, the size of the kernels can change. For instance, when 
using a model with a scale of 25m the small kernel will be 75x75m, whilst a model that has a 
1m resolution has a 3x3m size. The centre of the kernel is initially left empty, as the outer 
pixels contain the information that are used for determining the linear change in elevation. 
Please note that when working with the two kernels, the flat elevation-pixels are removed from 
the model and do not influence the linear change. 
 
Subtracting the average elevation of each kernel from each other will give the mean slope 
for centre pixel. This mean difference can then be subtracted from the centre pixel, creating 
a new elevation that is linear extrapolated.   
 
The extrapolation process can be repeated until the complete flattened surface includes 
simulated depths. This study utilised 40 iterations for simulating the elevations of the flattened 
pixels. When all the elevations are filled the tool will stop, therefore not altering the surface 
that is extrapolated.  
 
Furthermore, two limit-thresholds are constructed to stop the tool when the slope is too steep. 
Since high gradients can cause the elevation difference to be relativity high, when not stopped, 
create depths that potentially go to infinity. The second threshold is created to limit the 
elevations to go higher than the flatted surface. Therefore, when a small difference in elevation 
is found, the extrapolation process will create false bathymetry features.  
 
In Figure 14 the effect is given of applying LBDEM for the SRTM elevation model of the 
Ridgway reservoir, here the minimum threshold was set at 30m (LBDEM-30). The dark blue 
elevations in the original DEM depiction, represent the flat elevations at 2091 [m].  
 

 
 
Figure 14  The effect of applying the LBDEM model on the Ridgway reservoir (Colorado, USA), while using the STRM DEM 
(NASADEM30). 

 
The flattened surface of SRTM in Figure 14 is lowered with 30m. Where a larger region of the 
DEM can be now potentially be implemented for the estimation of the water level in the 
reservoir. In comparison to MDEM, the volume time series can be estimated by creating a 
bathymetry to replace the flat elevations, instead of projecting a pattern-based waterbed over 
the depths.  
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To compare the effects of LBDEM applied for the SRTM, the bathymetry of the Ridgway 
reservoir was subtracted from the resulting DEM. In Figure 15 the results given, showing three 
maximum depth thresholds given. Here red portrays the elevations that are respectively higher 
and lower than the original bathymetry, while green shows the depths within a threshold of +/-
5m.  
 

 
Figure 15  Effects of using different thresholds for the extrapolation of the elevations in the SRTM -DEM for Ridgeway 
(Colorado, USA).  

The main limitations of LBDEM can be seen at all three depictions, as the bathymetry is not 
found in either result. Features that are located at for instance the centre of a L&R will not be 
constructed when using the LBDEM tool. Thus, the reader should consider that the tool aims 
only to support the estimation of the water level and volume level, and not replace 
hydrographic surveys.  
 
 
 
 
 
 
 

extrapolation extrapolation extrapolation 



       

 
 

20 

4 Method and Data 
 
Chapter 4 focuses on the method applied for the determination of the water and volume levels 
(§4.1), here each added step of to the suggested workflow in comparison to the literature will 
be elaborated. Followed by the applied datasets that were considered for the analysis of the 
LBDEM method (§4.2). The case study setup is briefly discussed in §4.3.  

4.1 Method 
The applied method is given in the flowchart of Figure 16. Where each step is visualised for 
the Ridgeway reservoir (Colorado, USA), showing the applied 3 suggested steps by the 
literature: the estimation of the surface water contour (1), the extraction of the water-level (2) 
and the volume determination (3). 
 

 
 
 

Figure 16  Applied method of the case study in the area of interest 
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When comparing the applied method with the suggestions of the literature, the main difference 
is the application of the LBDEM tool. LBDEM was implemented prior to the extraction of the 
water level and determination of the volume time series. To adjust for the limitations posed by 
the suggested method, the added noise reductions are discussed for each phase in the 
workflow. 

4.1.1 Water contour determination 
 
Cloud temporal smoothing filter 
 
The QA60-band filter uses the 60 [m] spatial resolution band supplied with the S2 data to 
classify images containing more significant portions of dense clouds. The Cloud probability 
filter is an image-collection computed by the Sentinel 2-cloud-detector library, delivering a 10 
[m] resolution cloud-mask probability image. Each pixel will have a value between 0 and 100, 
representing the chance that a cloud is presented. This study utilises the max cloud probability 
of 60% with a threshold set at 50%. Hence, combining both filters remove cloud pixels that 
limit the ability to estimation the surface water contour.  
 
As the cloud filtering causes potential gabs over the reservoir, shown in the left image of Figure 
17, the contour of the area would have a lower amount region available for the construction of 
the water level distribution and the volume monitoring. Still, as the south side portrays, a part 
of the reservoir can be distinguished. Therefore, the example left image is combined with the 
right image within a 10-day window. Accepting a maximum error in the water level of 0.02 [m], 
computed from the available in-situ data series of the 88 selected reservoirs.  
 
The right depiction of Figure 17 shows the resulting image of the temporal smoothing filter of 
the Ridgeway Reservoir. Here both images are mosaiced, combining the parts with clouds of 
the left images with the middle image.  

 
 
 
 

Snow noise removal  
 
The snow/ice image removal was the following added noise remover applied in the suggested 
method for surface water contour determination was the snow/ice image removal. The 
limitation is caused by L&R that have the presents of snow and ice over the water surface. 
Therefore, limiting the ability of the NDWI/Otsu thresholding tool to build a water/land image 
successfully.  
 
 

Figure 17  Cloud filtering and reconstruction of the L&R that is affected by this noise 
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An example is given in Figure 18, showing the results of 2 images at different time intervals, 
December 2018 and June 2019. Here the land/water contour is given of lake Mayola (New 
Mexico, USA) in the top figures. At the same time, the respective water/land image is given in 
the bottom figures. Please note that the green in the bottom figures depicts the landmass and 
blue the water surface.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When comparing the winter images (left top/bottom) of lake Mayola, the snow in the region 
cannot correctly be distinguished from the land. Therefore, results in a water level that can be 
considerably higher than the original height and an incorrect volume for this lake.  
 
As a result, this study considered two solutions for restricting the false water level elevations 
caused by the snow/ice noise. First, the JRC water-occurrence data was used to suppress 
false detections between land and water. Removing elevations from the distribution that are 
located in the areas larger than 0% and smaller than 80% water occurrence. Therefore, when 
the contour is falsely placed over a more significant elevation, the data will be removed from 
the water level distribution. Please note that none of the L&R selected by this study dried up 
during the case studies time window. 
 
The second option is based on the study of Bonnema and Hossain (2017), which computed 
the fraction of usable Landsat images for each month. The study suggested that the usable 
images in the months December, January and February were relatively low. Therefore, the 
images from these three months were not considered and removed from the time series. 
 
The resulting surface area is depicted in Figure 19, where the original time series is given in 
red, and the snow months removed in green. 

Figure 18  Effect of snow on the determination of the Surface contour of lake Mayola (Colorado, USA) 
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Figure 19  Surface area time series of the Ridgway reservoir, showing the images with the snow months (green) and without 
(red) 

Note that the boundary created between the land and water classes, was computed with the 
canny edge detection method. Here the set threshold is kept at 0.99, while having a standard 
deviation of 0 was used (Donchyts et al., (2016)). 

4.1.2 Water level extraction 
The second part of the applied method, regarding the extraction of the water level the following 
steps were added or adjusted: the manner of how the water level is distribution is constructed, 
the noise removal filters and how the flattened pixels are classified in this study.   
 
Creation of the water level distribution 
The water level extraction for this study is explained with the following visualisation of Figure 
20. Here the left depiction shows the artistic interpenetration of a minor part of the L&R, where 
1 represents the water and 0 the land. The middle figure shows the small minor part of the 
border with the lower DEM elevation model.  
The right figure depicts the resulting elevation distribution, extracted from the DEM, where the 
red line depicts the water level sampled with the mean.  
 
Please note that the line created using the canny edge detection method is converted to an 
image therefore, each overlapping boundary pixel can collect the elevation. Applying a 
morphological operation to generate the pixel size of 2 [m]. 
 

 
Figure 20  Method of elevation distribution creation for water level time series determination, showing the water/land border 
(left), the water level extraction (middle) and the resulting elevation distribution (right).  
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The mean sampling method will be applied to select the water level based on the distribution 
shown in the two cases. Since the average considers that, although the water level is taken 
constant, the spatial variability also influences the water level determination. 
 
Two filters were considered to suppress noise that arises when using the elevation models to 
reduce potential false or elevations with a high vertical error from the distribution. First, since 
a water-occurrence filter is applied here, that considers that the surface area would not go to 
zero in the set period. Hence removing that the border pixels had made a false detection 
based on clouds or snow. The second filter is the gradient suppressor, which will be further 
discussed in the following subsection.   
 
Slope analysis 
 
To visualise the elevation error introduced by the gradient of the slope, the following 
visualisation is given in Figure 21. Showing two cross-profiles, including the change in water 
level over time (blue lines). The top reservoir portrays the effect of a relatively low gradient 
over distance, while the bottom example depicts the high gradient. The arrow drawn for each 
reservoir cross-profile portrays the elevation that can be measured whilst using this DEM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the spatial resolution of the DEM is larger than the portrayed arrow, no elevation 
variation will be found. Therefore, a constant water level is extracted from the pixels, while the 
depth increases, introducing the potential vertical error for the elevation and water level 
extraction.  
 
For suppressing the errors caused by the slope of the L&R, the elevation having a higher 
gradient than 10% were removed from the water level distribution (Uuemaa et al., (2020), 
Fernandez et al., (2016)) The effect of the slope reduction filter, removing boundary elevations 
having a higher gradient than 10%, is given in Figure 22. Here the left images depict the 
original boundary, while the right shows the resulting border.   
 

Figure 21  Water level extraction limitation by the slope of the L&R 
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Classification of flattened pixels 
 
The classification of flat pixels present in water bodies of elevation models was key to 
extracting the correct water level and the implementation of the LBDEM tool. Therefore, two 
aspects were implemented for this study to support the classification process: the elevations 
gradient and water occurrence.  
 
To visualise the first aspect, the elevations gradient, Figure 23 is given showing the Lemon 
(Colorado, USA) reservoir. Giving a representation of the elevations [m], where the left image 
shows the elevation levels and right the cross profile of the black line.  

 
 
 
 
 
 
 
 
 
 
 
 
 

From Figure 23, it can be deducted that the flat elevations have a gradient of 0. Therefore, 
filtering based on this gradient will remove the reservoir parts where the bathymetry was not 
determined. The gradient classification method's limitation is that, for instance, beaches have 
the same gradient as the flat pixels. Since the height variation at these regions is relatively 
small, resulting in a zero gradient.  
 
So, the second classification method introduced in this study is the water-occurrence of the 
water elevations as flat areas are present at regions where the water was present during the 
construction, therefore removing all the 0 gradient elevations that had a lower water 
occurrence than 70%.  
 
 

Figure 22  Effect of the slope and water occurrence noise reduction, for the construction of the water level distribution 

Figure 23  Visualization of the flat surface in the Lemon reservoir (Colorado, USA), where  the black line represents the 
cross profile on the right  
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Please consider that based on the proposed method for the classification of flat elevation, the 
following limitation was still present. The method neglects elevations that are present that are 
lower/depressed relative to the flat surface. The reason for this neglect is that the bathymetry 
is unknown for the available 88 L&R. Therefore, elevations that were potentially lower than 
the model could include the real waterbed. Nevertheless, this study considered the presence 
of depressed pixels to be neglectable small when analysing the results of 88 L&R.  
 
The area was computed per elevation model containing flat elevations shown in Figure 25, 
portraying the effect per model of the 193 L&R smaller or equal to 5 km2. The “presence’ is 
computed by the total area found in the JRC water occurrence data divided by the area 
classified as flat. 

 
Figure 24  The presence of flatting in elevation models, based on all the small reservoirs in the USA, portraying the 
histograms of NED (left), ALOS (middle) and SRTM (right).  

As the figure portrays, the NED model shows an interesting distribution. The L&R experiences 
either a small presence flatting or more than 60%. Likewise, the SRTM depicts the poorest 
results from the three models, where the distribution is centred at the 60 - 70% flatting for the 
193 reservoirs. Finally, when looking at the ALOS model, the distribution shows that most 
reservoirs are experiencing less than 50% of the region.  
 
Concluding that NED in most cases would have been the optimal selection choice based on 
the presence of flatting, whilst ALOS is depicting a relatively good distribution as an alternative. 
Nevertheless, the older SRTM would be the poorest choice for monitoring the reservoirs, 
based on the presence of flattened pixels without applying LBDEM. 
 

4.1.3 Volume level estimation 
For the last phase of the method, the depth capacity curves based on the DEM was added 
in comparison with the literature, while neglecting the results based on the volume models.  
 
Depth capacity curves 
 
With the extrapolated elevations and the extracted water-level time series, the depth capacity 
curves can be constructed. Like the USGS approach, these curves can be used to transform 
water levels to volume levels based on the selected reservoir. The minimum water level and 
the maximum water level of the extracted time were determined, constructing an input value 
to generate volumes based on the elevations of the selected DEM (with LBDEM).   
 
An example of a depth-capacity curve is given in Figure 26. Showing the relationship between 
the water level and the volume [km3] for the Ridgway reservoir. Please note that for the 
LBDEM tool, a maximum depth threshold of 30m was utilised to linear extrapolate the 
elevations.  
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The volume levels that are depicted here, show a rising trend for this reservoir. Meaning that 
when the water-level increases the volume increases.  
 
 
Limitations of DEM volume estimation 
 
The limitations that can arise when directly implementing a DEM with the flat elevation 
replaced, is the temporal resolution of the reservoirs in comparison with the construction of 
the models. Potentially leading to three situations, that can influence the volume time series 
estimation. Since for instance the satellite-mission flew prior to the construction of the reservoir 
or lake, therefore depicting a surface without the proper slopes and waterbed.  
 
Also, a potentially limitation for using DEM is that the mission was not continues, (i.e., still 
updating the elevations on a regular basis). Therefore, leaving the possibility, that new 
features like a dam or artificial island are not included in the model. Thus, even when the 
correlation is high between the water-level and the surface area or the in-situ data, will result 
in a false absolute time series. 
 

4.2 Data description 
 
For this study three datasets are required for demonstrating the effect of the LBDEM tool.  
 

- Multi-spectral imagery datasets, that are used for the classification of the water surface 
area of the reservoirs/lakes. 

- Digital elevation models that essentially contain the elevations for the water-level 
estimation and the volume time series. 

- In-situ data that has a higher vertical resolution than the DEM, which can be used to 
validate the estimated water-level and volume time series.  

 
 
For the multi-spectral imagery dataset, the Sentinel-2 image collection will be used in the case 
study. This collection has a higher spatial resolution than the alternative free-accessible 
missions like Landsat-8 or MODIS. Also, the temporal resolution is relatively high, which is 5 
days. 

Figure 25 Depth Capacity curve, showing the relationship of the elevation against the volume of 
the reservoir, while using the LBDEM tool for extrapolating elevations.  
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The elevation models selected for this study are the SRTM (RADAR), ALOS (Stereography) 
and the NED (combination). All three models are fully available for the L&R in the USA and 
represent different spatial resolutions, construction dates, and local and global models. The 
model that is considered for this study is referenced to the NAD83. Hence, a data conversion 
was applied to match the EGM96 geoid (like SRTM and ALOS). When looking at the spatial 
resolution of this model, the USGS supplies different types. This study utilises the 10m spatial 
resolution of the United States (CONUS). 
 
Table 2 is presented with an overview of the available datasets. Here the spatial, vertical, and 
temporal resolutions are given, when the data was constructed or available, where the data 
was collected from and the source. For example, the vertical resolution of the elevation models 
differs per location; therefore, the minimum and maximum range are given. All the 
implemented datasets were collected from the Google Earth Catalogue. 
 

 
Table 2 Summary of the used datasets for the case study  

 
The USGS in-situ instruments 
 
The in-situ data available for the validation of the extracted water level and volume data of the 
elevation models with LBDEM comprises two types. First, since the area of interest of this 
study focuses on the L&R located in the United States, the USGS database was considered 
for the water level and volume time series. 
 
The USGS monitors the water level by use of numerous systems that be categorized by 
systems that are near a waterbody. These systems include the Basic float system, Bubble 
gages, Pressure transducers, Acoustic transducers, Acoustic transducers, RADAR stations, 
Optical (laser) stations, Rapid deployment Gages.  
 
Each system has a vertical error in the magnitude of 0.01 ft (= mm order of magnitude) (Sauer 
and Turnipseed (2010)) while outputting data at a continuous interval. Please note that a 
designated office checked each time series before publishing the water level data. Therefore, 
ensuring the data has the set-vertical accuracy.  
 
The resulting water level found by these instruments is then implemented to monitor the 
storage of the reservoir as the volume levels of the reservoirs are deducted by the depth-
capacity curves, unique for each waterbody. The foundations are the bathymetric surveys or 

Data Spatial 
res. [m] 

Vertical 
res. 
[m] 

Temporal 
res. 

Availability Data source 

Surface water contour 
Sentinel-2 10  - 5 2015 - now European 

Union/ESA/Copernicus 
JRC 30  -  - 1984 - 2021 EC JRC / Google 

Water level extraction and volume variability determination 
SRTM 30 6 to 12  - 2000 NASA / USGS / JPL-

Caltech 
NED 10 2.44  - 2012 United States Geological 

Survey 
ALOS 30 5 to 12  - 2006 to 

2011 
JAXA Earth Observation 
Research Center 
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the use of the water balance equation, where for the latter, the change in water-level the main 
volume level is. The curves are supplied to the USGS by the following sources: 
 

- State Water Resources Control Board – Division of Water Rights Water Right License  
- Natural Resources Conservation Service 
- Department of Water Resources - Jurisdictional Dams 

 

4.3 Case study set-up 
The case study to determine the potential of the digital elevation models for estimating the 
volume variability of lakes and reservoirs will apply the water bodies of the area of interest.  
First, the water level extraction was validated to determine the accuracy levels of the method 
when the LBDEM was applied at the elevation models. Here the USGS in-situ data were 
considered for the validation of the DEM results. The validation comprises the relative water 
level series, where the correlation coefficient R2 was used. While the absolute water level was 
validated by the root mean square error, the mean absolute error and standard deviation.   
 
Please consider that the data where the LBDEM was not applied will be referenced to an 
“original”. Likewise, when the lowest elevation in the L&R of the DEM was not lower than the 
maximum water level found in the In-situ data, the data was removed from the time series.  
To assess why the relative or absolute time series in some situations is not corresponding 
with the in-situ data, several L&R were selected to determine the limitations of the LBDEM 
tool for water level extraction. 
 
Second, the model's volume variability was investigated using the selected 30 L&R, clarified 
in the area of interest. The same approach as the water level was used here, e.g., the relative 
(R2) and absolute (RMSE) time series. Also, for the absolute time series, will each volume be 
compared to the in-situ data to see the immediate difference. The limitations found by the 
water level extraction with the in-situ data will be validated for the low volume correlated L&R.  
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5 Results 
The results are presented into two parts, giving the impact of bathymetry extrapolation on 
the water level (§5.1). While the volume variability is analysed in the second part of the case 
study (§5.2).  

5.1 Impact of bathymetry extrapolation on the water 
level estimation 

 
When looking at the impact of LBDEM to estimation of the water level, the 88 selected L&R 
were analysed. Figure 27 shows two histograms that portray the correlation coefficient 
between the USGS in-situ data and the DEM water level. The left histogram represents the 
results without LBDEM. While the right shows the effect of LBDEM on the water level 
extraction. Please note that here the model was selected based on the highest correlation 
(R2).  
 

 
Figure 26  The water level correlation coefficient of the 88 L&R when the LBDEM is not applied (left) and when applied (right) 

Striking is that the number of L&R that were able to extract the water level was increased 
when LBDEM was applied. Considering that the higher correlated L&R (R2>0.6) rose from 13 
to 22. Showing that when applying the tool, a general increasing effect can be noticed for the 
deduction of the relative water level time series based on the overall correlation coefficient.  
 
The average RMSE, mode RMSE and the standard deviation of the three elevation models is 
presented in Table 3. The number of L&R is the number of waterbodies that corresponds with 
the mode of the RMSE.  The results were achieved while using the LBDEM tool with a 
maximum depth threshold of 20 [m]. 
 
DEM Avg. RMSE [m] Mode RMSE 

[m] 
Numb. of L&R Standard 

deviation [m] 
NED 4.2 1.3 44 4.6 
ALOS 4.2 1.4 31 3.3 
SRTM 4.4 3.7 31 3.7 

Table 3   RMSE of the 88 L&R using the LBDEM tool 

The results showed that the average RMSE remains constant with the ALOS and SRTM model 
when having a lower spatial model. Yet, the NED model has an advantage when looking at 
the mode of the RMSE, showing a water level error of 1.3 m. Interestingly the ALOS elevation 
model shows similar results, yet 10 L&R is lower than NED. 
 

Original LBDEM 
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To investigate if the same pattern is seen between the elevation models for the relative time 
series, the 22 L&R that have a higher correlation than the 0.6, the following histograms are 
given in Figure 28. Portraying the results of each elevation, ALOS (left), SRTM (middle) and 
NED (right), depicting the correlation coefficient of the original DEM at the top and with LBDEM 
at the bottom.  

 

 
Figure 27  Histograms of the L&R where at least one model had a higher coefficient than 0.6 for the water level extraction 

In general, the effect that can be seen that for more L&R the water level could be extracted 
when applying the LBDEM tool. The effect of LBDEM of the high correlated extracted water 
levels at the individual elevation models, the L&R where the available water level was 
monitored all have a high correlation. Implying that, in general, the spatial resolution did not 
directly affect the estimation of the relative water level. 
 
The L&R with a R2 higher than 0.8 after the LBDEM tool was applied is portrayed in Figure 
29. Demonstrating the models of the L&R, where the water level time series showed a distinct 
change. Here the in-situ data is shown in yellow, the LBDEM data in red and the original data 
in blue. 
 

 
Figure 28  Water level time series of the L&R with a correlation coefficient of 0.8 was found in the LBDEM time series. Each 
plot sows the USGS in-situ data (yellow), the original (blue) and LBDEM (red) affected timeseries  
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The first feature that can be noticed is the variation in the water level. When looking at the 
water level variation at the L&R with a low correlation, the results typically showed an in-situ 
variation of the 1 [m]. The results of Figure 29, portrayed a variation is observed to be typical 
10 [m], while in Appendix B, the water level variation should have at least a 10 [m] variation. 
To visualise the effect of between the low and high correlated elevation variation, the 
relationship between the results of applying the LBDEM and the in-situ data is given in Figure 
30.  
 

 
Figure 29  Visualization of the relationship between the LBDEM and in-situ data, fort he L&R that had a larger correlation 
coefficient than 0.8.  

 
Secondly the region at which the LBDEM tool could be applied, influences the water level 
extraction relative to the in-situ data. The amount of region that is available for the estimation 
of the water level increases, based on the slope noise reductor. To visualise the applicable 
surface, the small Nichols reservoir is given, where both the original  (Figure 31) and LBDEM 
(Figure 32) is depict with the three elevation models (ALOS, NED and SRTM).  

 
Figure 30  Slopes of the Nichols reservoir for ALOS (left), NED (middle) and the SRTM (right), where the LBDEM was not 
implemented  
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Figure 31  Slopes of the Nichols reservoir for ALOS (left), NED (middle) and the SRTM (right), where the LBDEM was 
implemented  

Striking is that ALOS and SRTM have a coarse representation of the reservoir due to the low 
spatial resolution (30 [m]). The Nichols reservoir is not larger than 0.15 km2, this in combination 
with the large spatial resolution, results in that only a minor part of the waterbed was found in 
the ALOS and SRTM model. Resulting that the elevation models were the LBDEM tool was 
implemented for the Nichols reservoir did not have any effect on the extraction of the water 
levels.  
 
The NED representation depicts a larger green region in Figure 31 that can be effectively used 
for the LBDEM tool to extrapolate the elevations. However, due to the region's small size and 
that boundary has a slope with a high gradient. Caused the two kernels of LBDEM to consider 
more significant elevation differences for the extrapolation part.  Thus, there was no increase 
in region for estimating the water level when the surface area declined into the flat-pixel area. 
 
The opposite effect is seen at a relative larger L&R, where sufficient water level variation was 
seen. In Figure 33 and 34 is the El Captain reservoir given, for the ALOS (left), NED (middle) 
and SRTM (right).  

 
Figure 32  Slopes of the El Capitain reservoir for ALOS (left), NED (middle) and the SRTM (right), were the LBDEM was not 
implemented  
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Figure 33  Slopes of the Nichols reservoir for ALOS (left), NED (middle) and the SRTM (right), were the LBDEM was 
implemented  

The effect for the el Captain reservoir is visible for all three elevation models. As the boundary 
region for this reservoir has a low gradient at the boundary, therefore the extrapolated 
elevations can be utilised for the determination of the water level. Resulting in an increased 
region for water level determination when the surface water declines. 
 
Also, the flat surface is for each model extrapolated when using the LBDEM-30m threshold. 
Showing that when using the LBDEM, potentially not all the flat surfaces will be replaced with 
the new elevations. Concluding that when the bathymetry of the L&R is unknown, the correct 
maximum depth threshold will not be found. Therefore, when taking the limitation into 
inconsideration, it is favourable to use the tool for extracting relative water levels. 
 
 
Effects of using higher spatial resolution imagery data 
 
For demonstrating the effects of higher spatial resolution for estimating surface area and the 
resulting water level, the 88 reservoirs are validated for both the Landsat-8 and Sentinel-2. 
Table 4 provides the mean absolute error [m], the standard deviation [m] and RMSE [m] 
compared to the USGS in-situ data for both multi-spectral instruments that were used to 
estimate the water level. Please note that for this validation, the highest correlation was 
chosen for representing the optimal elevation model. 
 
Optical Mean absolute error 

[m] 
RMSE [m] Standard deviation 

[m] 
S2 3.53 4.92 4.27 
L8 3.91 5.63 4.98 

Table 4  Results of the comparison between MAE, RMSE, SD of constructed water contours based on the time series by S2 
and L8.  

The mean absolute difference between the two optical determinations is relatively small being 
0.38 [m], while the RMSE had a variation of 0.71 [m]. Showing that, on average the selection 
of a lower spatial Landsat-8 multi-spectral data does not have a direct influence on the vertical 
error in the water level determination.  
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Figure 35 visualises the water surface [km2] through time for the Lemon reservoir and Nichols 
reservoir. When analysing the effect of the temporal differences between the two datasets, 
the following feature was noticed: the L8 data had a relatively higher noise level than the S2 
data. 
 

 
Figure 34  Surface area time series for the Lemon and Nichols reservoirs, were the results of Sentinel-2 (blue) and Landsat-8 
(red) are given 

 
Secondly, both depictions show that L8 had a lower number of images available than S2 for 
creating the binary images between land and water. When taking the complete distribution of 
L&R, the number of images containing WL data from 2016 (without the winter months) for L8 
was 13488 images, while S2 14387 images were available.  
 
Thus, showing that for a 6-year time window S2 had 899 images with a lower noise level. 
Therefore, the beneficial effect of using the S2 in comparison to frequent used L8, would result 
showed to have more usable images while having less effect of the anomalies discussed in 
Chapter 4.  
 
Effects of selecting the optimal model  
 
For demonstrating that the proposed selection method operates for the 88 reservoirs, the 
following comparison was conducted. Based on the correlation between the in-situ data and 
the water level, the optimal elevation model should have the highest R2. Hence the least flat 
pixels selection method was validated against the model with the highest correlation. 
Accordingly, the results are given in Table 5, showing the number of reservoirs where the 
correct model was selected. 
 
Method False selected Correct selected Optimal DEM 
ALOS  38 32 40 
NED 11 4 30 
SRTM 3 0 18 
Least flattened 52 36  - 

 

Table 5  Results of the comparison of selecting the optimal elevation model based on the highest correlation coefficient 
between the DEM and USGS in-situ WL-data, here showing the number of L&R that selected the model falsely and correct 

Table 5 shows, using the least flattened surface method resulted in elevation models that did 
not have the highest correlation with the in-situ data. The reason behind this higher amount of 
false, selected reservoirs is that the ALOS elevation model (as shown in does include as much 
flattened the water-pixels in the reservoir based on the gradient. The pixels at higher water 
occurrence are not altered, like NED or SRTM. Therefore, this DEM would usually be selected 
more frequently than SRTM or NED. So, a lower amount of the correctly selected elevation 
models to be selected to estimate the volume time series with LBDEM. 
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5.2 Impact of elevation extrapolation on the volume 
level estimation 

 
The absolute volume time series 
 
The USGS monitors a smaller distribution of L&R for the volume level; the 30 pre-selected 
waterbodies of the area of interest were analysed. The difference in volume level per time 
interval of the L&R was computed, giving an error between the LBDEM and the USGS in-situ 
data. The results are depicted in Figure 36, demonstrating the effect of applying the LBDEM 
tool at different maximum depth thresholds.  Here, LBDEM-0 represents the original data, 
while the -10, -20 and -30 are the respective maximum depth thresholds.    
 

 
Figure 35  Comparison between the USGS in-situ volume data and ALOS (left), NED (middle) and SRTM (right) data, were 
LBDEM-0 resents the unaffected data, while -10, -20 and -30 shows the maximum depth threshold.  

 
The distributions in Figure 36 showed two striking features. The first feature is that the 
distribution of volumes increases. Thus, implying that the LBDEM tool for volume variability 
monitoring increased the amount available to the L&R.  
The next feature is improvements seen in the mode of each distribution, where SRTM even 
show that the distribution is centred at a 0 km3 difference with the in-situ data. 
 
Figure 36  also showed the average RMSE between the in-situ and the DEM data. In line with 
the study of Vanthof and Kelly. (2019) study, the RMSE is computed as a ratio of the maximum 
volume level found by the monitoring stations. In Table 6, the results are given for each 
elevation model without and with LBDEM at a 20 [m] maximum depth threshold.   
 
DEM-Name Without LBDEM With LBDEM-20 [m] 
NED 11.8% 5.4% 
ALOS 2.3% 2.0% 
SRTM 5.7% 0.8% 

Table 6 RMSE relative to the maximum amount of in-situ volume level found for NED, ALOS and SRTM.  

Table 6 showed that the RMSE of the volume level decreased when the tool was applied. 
Thus, even for relatively older models (i.e., STRM), while correctly classifying the flat pixels, 
the model can improve the absolute time series of the L&R. The increase in both absolute 
volume levels and the RMSE was visualised in Figure 36. The volume time series of SRTM is 
given for the Ridgeway res., Fruit Growers res., lake Elanor and the Lemon Reservoir. The 
original volume is depicted in the top figures and the LBDEM in the bottom.  
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Figure 36  Volume time series of the three DEM, for the Ridgeway reservoir, Fruit Growers reservoir, lake Eleanor and Lemon 
reservoir, where the left shows the original data and the right the LBDEM results 

 
The time series shows that when implementing the LBDEM tool, more regions become 
available to monitor the L&R. Therefore, decreasing the difference between both the in-situ 
data and the found DEM data. 
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The relative volume time series 
 
The relative volume series was assessed using the correlation coefficient between the LBDEM 
implement and the in-situ time series. The selected 30 L&R are visualised in the following six 
histograms of Figure 38. The original and the tool implemented correlation is portrayed to 
demonstrate the effect of both the spatial and LBDEM.   
 

 
Figure 37  The correlation coefficient for each model, where the USGS volume is compared against the DEM without (top) 
and with LBDEM (bottom).  

The first striking feature that can be deducted from the histograms was the number of high 
correlated L&R increases when applying the LBDEM tool. In line with the results seen of the 
water level, showing more L&R were able to be implemented to estimate the volume.  
The second feature was applying the three different elevation models, depicting a minor effect 
in the correlation coefficient. ALOS had the highest number of L&R with an R2 higher than 
0.6, while also being the model with the least region altered by the LBDEM tool. 
 
The results showed that an increase in monitored L&R can be distinguished for the models 
containing the highest flatting (NED and SRTM). At the same time, the number of L&R that 
was able to monitor the volume remained constant for each elevation model, including a 
relatively high correlation coefficient. 
 
Limitations to the LBDEM volume estimation 
 
Table 7 supplies the following characteristics of the seven lakes and reservoirs that had a low 
correlation coefficient (<0.3), which help to deduct the limitations found by analysing the 
results of the water level (i.e., low water level variation and high gradient). Therefore, showing 
the average surface area, average water level variation, the correlation coefficient of the water 
level compared to the in-situ data and the amount of region of the DEM having a lower gradient 
than 10%.  For comparison, the NED elevation model of the Ridgeway reservoir is given, 
including the bathymetry.  
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 Region [%] 
Name Model R2 - Vol. Avg. SA 

[km2] 
Avg. 
dWL [m] 

R2 – WL Flat  Gradient 
(<10) 

Monroe 
City 

ALOS 0.07 0.30 0.01 0.62 88 54 

Mayola NED 0.26 0.44 3.9e-4 0.43 27 38 
Silver Jack ALOS 0.51 0.96 0.09 0.16 40 54 
Vail SRTM 0.55 1.6 0.01 0.56 29 60 
Donnel ALOS 0.35 1.65 0.12 0.15 33 27 
Tulloch ALOS 0.33 3.52 0.0039 0.06 27 56 
Ridgeway NED 0.80 3.18 0.017 0.91 0 58 
Alisal ALOS 0.86 0.28 12.9 e-4 0.68 34 41 

Table 7 Results of the low correlation volume L&R, where the type, average surface area, average difference in water 
level and the correlation in water level is given.  

Compared with the L&R with a high correlation, the average difference is within the meter 
magnitude and has a relatively high-water level correlation. However, the size of the L&R had 
a minor influence on the determination, as, for instance, the Alisal reservoir, which had a low 
water level correlation, has a 0.86 volume correlation coefficient.  
 
Since the results are based on constructing a depth-capacity curve, which was in line with the 
method of the USGS, the water level governs the construction of the volume time series. For 
instance, for the Monroe City Lake, the water level varies on average 0.1 [m] over time, leading 
to a lower likelihood for estimating the volume time series. In comparison, the water level of 
for instance the el captain reservoir (Appendix-B) showed a water level variation of more than 
10 [m], therefore having sufficient vertical differences which can be used to estimate the water 
level and, therefore, the volume levels.  
 
Based on the volume results, the following limitations hindered the volume monitoring with 
LBDEM; (1) the variability of the surface and water level over time, and (2) the increase in the 
region at which the water level (and the volume) could be determined. 
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6 Discussion  
 

6.1 Water level estimation by use of the digital 
elevation models 
6.1.1 General results 
 
The results found in the first part of the case study, that is the water level was determined with 
an average RMSE of 4.2 to 4.4 [m] and a mode of 1.27 to 3.27 [m] for the model with the 
highest correlation between the USGS in-situ data and the water level, correspond to the 
results of Vanthof and Kelly. (2019), Deng et al., (2020), Zhang et al., (2014), and Weekley 
and Li (2021).  
 
The literature results are based on using advanced smoothing algorithms, like a moving 
average polynomial (Avissee et al., (2017)) or pre-noise suppression (Weekley and Li (2021)) 
for the input values.  The results of this work, however, were constructed without these 
smoothing algorithms other than snow and cloud smoothing. The latter clearly demonstrates 
the advance of the noise reduction.  
 
The comparison between the different elevation models showed little difference between the 
correlation or RMSE; however, the number of L&R that had a low RMSE was higher for the 
NED and ALOS models. Hence, indicating that relatively newer constructed elevation models 
have an increased probability of extracting the water levels. However, the classification based 
on the gradient prohibited the ALOS model from fully implementing the LBDEM tool. 
Therefore, the results are more in the advantage of the NED model, were ALOS could be 
severe as a back-up DEM. 
 
The current method neglects the influence of vegetation along the boundary of the reservoir. 
If trees are present, the processing pipeline does not remove these elevations from the 
distribution. Taken into consideration that NED is a bare earth model, while ALOS and SRTM 
are surface models. Introducing an error in the water level could have potentially limited the 
effect of the LBDEM, as higher gradients were experienced by the ALOS and SRTM model.   
 
A closer look at the results revealed that a limited amount L&R showed a lower correlation 
between water level extract from the DEMs and the USGS in-situ data when using the LBDEM 
tool. Consequently, the current DEM had limited validity of the extraction water level elevations 
of these L&R. Cleary indicating the limitations of the LBDEM tool and method. These 
limitations were linked to the number of region available for the extraction of the water level 
and the small variation in the time series. Hence little effect of implementing further noise 
suppressing filters of contour pixels between land/water is expected.  
 
The main source of error in this work is connected to the lack of the lowest depth knowledge 
of the L&R. The maximum depth threshold, used in the LBDEM tool, caused an error with an 
unknown magnitude. A solution to is given by Zhang et al., (2014), who used a labour-intensive 
method to establish the lowest depth in absolute terms.  The method presented in this work 
should in a relative manner regarding the water level extraction.  
 
 



       

 
 

41 

6.1.2 Water level extraction with different multi-spectral imagery   
 
The effect of applying Sentinel-2 and Landsat-8 multi-spectral imagery data proved a minor 
increase in the average water level error compared to the in-situ data. Concluding surface 
area contours were similar, therefore it subtracted similar water level distributions.   
 
The temporal resolution of applying the S2 compared to L8 showed a positive effect on the 
surface area time series. Since the S2 has a higher temporal resolution, multiple images can 
be implemented within the set period for the cloud smoothing filters. While L8 only generally 
had one image, therefore having potential gaps in the data that was not filed by additional 
images. Confirming the suggestion made by the study of Deng et al., (2020), that Sentinel-2 
image would be beneficial for the extraction of water levels.  
 
The limitation that was not considered by results of this work is that S2 has a smaller time 
span than L8, Since the mission only started supplying images for the USA between 2015 and 
2017. Creating a potentially small window to compare both multi-spectral analysis image 
collections of the surface water extent. Furthermore, it should be taken into consideration the 
winter months generally have a low number of usable images (Bonnema and Hossain., 2017) 
therefore decreasing the number of available images for L8. 
 

6.1.3 Water level extraction by the optimal elevation model   
 
The Weekley and Li (2021) study suggests selecting the optimal elevation model for global 
implementation based on the least number of flat elevations. Results of the case study 
demonstrated that the suggested method would lead to 52 falsely selected L& and an over 
selection of the ALOS model. As this model compared to the NED and SRTM replaced the 
bathymetry less often with zero-gradient elevations.  
 
Still, it was beyond the scope of the study to develop a new selection method for the noise 
levels found in the ALOS elevation model as the purpose was only to provide insight if the 
method could be implemented on a global scale. Therefore, the results can be considered 
applicable for answering the research question.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



       

 
 

42 

6.2 The implementation of LBDEM for assessment 
of the volume variability 
 
The results demonstrated an increase in correlation between the volume variability of the 
USGS in-situ data and the LBDEM implemented elevation model time series. Therefore, 
suggesting the DEM can be implemented to assess L&R in the USA since most of the L&R 
had a higher correlation (>0.6) than the original elevation model. Therefore, supporting the 
hypothesis that the linear extrapolation of the elevation data positively affects the volume time 
series created by the depth-capacity curves. Interestingly, confirmers the claims of Liebe 
(2005), that the pyramid shape and power-law equation are applicable for the volume 
variability.   
 
The results contradict the claims made by the Vanthof and Kelly., (2019) study on volume 
estimation, since the results of this thesis estimated a lower RMSE ratio to the maximum in-
situ data. For instance, the SRTM model had a volume RMSE of 0.8% compared to the 
maximum USGS in-situ data.  
 
A closer look at the results between the three elevations, suggested that the implementation 
of the spatial resolutions did not directly affect the assessment of the volume variability. This 
because the NED had similar results to ALOS or SRTM for the correlation coefficient and 
RMSE.  The respective results between the elevation models did support the hypothesis, that 
models with higher spatial resolutions should have a sharper shape of the L&R.  Still the 
reliability of the results is impacted by the fact that only the USA is considered, which is 
therefore a constrained in this work. The global implementation is to be validated in future 
work.  
 
In comparison with the literature, the results demonstrated that volume variation could be 
found with DEM when the LBDEM tool is applied, accepting the found limitations. Furthermore, 
the results build on the suggestions made by or instance, Deng et al., (2020), Vanthof and 
Kelly (2019), as the studies showed that volume could be determined by self-made elevation 
models based on TanDEM-X.  
 
An interesting conclusion taken from the results is that the different L&R responded differently 
to the LBDEM tool, since the maximum depth threshold could go deeper than the actual 
bathymetry. This influenced the differences with the in-situ data. The latter implies that 
hydrographic surveys will still be needed to assess the real maximum depth threshold.  In line 
with the Pan et al., (2019)) study, that shows the relative in-and-out flow is achievable when 
applying MDEM, the LBDEM tool was without sufficient knowledge to estimate the relative 
volume variability. 
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7 Conclusions 
 
To assess the usability of high-resolution digital elevation models for extracting water levels 
and to compute the variability of the volume of lakes and reservoirs, the Linear Bathymetry for 
Digital Elevation models was developed. This was successfully demonstrated in the case 
study since the overall difference between the volume and the in-situ time series decreased 
from 11.9% for NED to 5.4%, for ALOS from 2.3% to 2.0%, and for SRTM from 5.0% to 0.8%. 
 
The second and third objectives, providing an insight into the effect of applying elevation 
models for the estimation of the volume variability and monitoring of smaller L&R, were 
successfully found by the case study performed in the USA. LBDEM was implemented at the 
area of interest, containing 88 L&R in the USA to extract the water level. From this set, 30 
L&R were selected for validation of the volume variability, as it contained volume in-situ data. 
 
The results of this case study provided an insight into the effects that the extrapolated 
elevations have on the ability to monitor L&R. The NED, ALOS, and SRTM digital elevation 
models were validated against the USGS in-situ data. Therefore, providing an answer to the 
formulated sub-questions of Chapter 1.  
 
What is the effect of using higher resolution imagery data for the determination of the water 
level? 
 
The results showed that, when based on the spatial resolution, a minimum variation was seen 
between Landsat-8 (pixel size of 30 [m]) and Sentinel-2 (10 [m] pixel size). The 88 reservoirs 
demonstrated that S2 had a 0.71m lower RMSE than L8, which is neglectable considering the 
vertical accuracy of the different elevation models. The beneficial effect was noticed when 
analysing the higher temporal resolution of S2. Since 889 more images can be used over a 
time span of 6-years while having a lower noise level in the surface area time series. 
Considering this result, the hypothesis that higher resolution spectral imagery has a beneficial 
effect on the extraction of water elevations was confirmed.  
 
What are the benefits of using higher resolution elevation models to determine the variability 
in the water level and volume? 
 
The comparison between the different spatial resolution DEMs regarding the water level 
showed two features. Firstly, the average RMSE did not vary for the 88 L&R between the three 
elevation models. Secondly, when taking the mode of the RMSE, the NED and ALOS it 
showed an improvement to an error of 1.27 [m], respectively for 40 and 30 L&R. Implying that 
the spatial resolution did not influence the water level determination at the moment of 
construction. Since more recent models have a higher lower vertical error compared to the 
older SRTM model.  The same phenomenon was demonstrated for the variability in the volume 
of the 30 L&R. No significant difference between the three DEMs observed for the correlation 
coefficient and RMSE after applying the LBDEM model.  
 
 
 
 
 
 
 
 
 



       

 
 

44 

What are the benefits of using the least flattened DEM to improve the estimation of volume 
variations? 
 
For the 88 available L&R, the optimal DEM selection method, based on the least flat elevation, 
showed that ALOS model was 38 time over-selected while at the same a higher noise ratio at 
the waterbed. Also, 43% of the distribution had an optimal DEM that did not contain the highest 
correlation coefficient of the three elevation models. Therefore concluding, that the selection 
method based on the least-flat elevation would not result in the optimal DEM.   
 
What are the effects of extrapolating elevations for estimating the volume time series? 
 
The first significant effect observed, when extrapolating the elevations, was that more L&R 
could be monitored. The RMSE reduced for the 30 selected cases, especially for the SRTM 
model, showing a 0.8% RMSE. The volume variability can be determined with the LBDEM 
tool.   
 
The second effect was that the absolute difference between the volume time series reduced 
for the different LBDEM maximum depth thresholds, implying that the tool creates more 
regions that can be utilized in order to assess the volume variation.  
 
The exceptions demonstrated that the main limitations of using the LBDEM tool were the high 
slope values at the border regions between land and water, the spatial scale not detecting the 
flat elevations in small L&R, and the actual depth of the bathymetry is unknown. Therefore, 
although the RMSE reduced for each model, the relative volume variability would be more 
favourable when a sufficient region is available to extract the water level.  
 
Thus, considering these conclusions, the following answer to the main research question can 
be formulate: 
 
What is the potential of applying elevation models to monitor the volume variability of lakes 
and reservoirs, when replacing the flat elevations with extrapolated depths? 
 
When using the Sentinel-2 data to construct surface areas, a smoother time series can be 
achieved and thus creating higher accurate water/land borders. Therefore, showing that the 
water level is estimated within the vertical errors of the model. The suggested least flattened 
selection procedure did not yield any beneficial results for the monitoring procedure. The 
results showed an over selection and choosing in-correct DEM for the water extraction.  
Nonetheless, the results demonstrated the potential for the global models to monitor the 
volume variability of smaller reservoirs without external altimetry data. The LBDEM tool 
suggested those elevations could be extrapolated, fitting a more realistic shape of the 
reservoir at areas where the bathymetry was flattened or not found. In conclusion, volume 
variability of lakes and reservoirs can be monitored with LBDEM, within the presented 
limitations.  
 
Accurate information for extracting the water level and assessing the volume variability of 
lakes and reservoirs currently depends on extensive hydrographic surveys. This work provides 
guidelines for an alternative method: the Linear Bathymetry for Digital Elevation Models tool  
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8 Recommendations 
 
This work successfully presented the first version of LBDEM for extrapolating elevations at 
classified flat regions. Nevertheless, LBDEM is still limited by several parts of the tool. Since 
the minimum threshold could potentially be automated when combined with, for instance, 
ICESat-2 or other altimetry data.  
 
Another improvement for LBDEM is that the flattened surface is lowered based on the gradient 
between the elevations. However, as the study of Pan et al., (2019) demonstrated, the MDEM 
algorithm uses the flood patterns to simulate bathymetry. Hence a fusion of both methods 
could benefit from applying elevation models for monitoring the volume levels.  
Likewise, the tool could be improved in the simulated depths, which is currently conducted by 
a linear interpolation method. Hence, other methods and shapes could be explored to 
determine which interpolation technique would best simulate depths according to the elevation 
gradient at the reservoirs/lake’s boundary. 
 
Considering that this study focuses on models with relatively higher spatial resolutions, future 
studies could analyse the effect of applying, for instance, the WorldDEM or NED3. Both have 
considerably higher spatial resolutions, therefore creating more acceptable input data for 
LBDEM. In the same manner, the input of higher resolution elevation models can also give a 
more detailed insight into the effect of applying S2 to estimate the surface water area.  
 
Next, the winter months for the reservoirs are causing an increased number of noisy images. 
Hence in the future, a potential machine learning algorithm could be developed to determine 
these images by order of weights. For instance, the NDSI could estimate the reservoirs' water 
extent in months where snow is significantly more present. Furthermore, removing the noise 
prior to the analysis could enhance the water-level time series and, therefore, the potential to 
monitor the volume. 
 
The L&R considered for this thesis was only located in the USA. Therefore, the global 
implementation of both LBDEM and the ability to monitor the volume time series should be 
further researched. For example, consider alternative in-situ data from countries like Spain, 
South Africa, and India while comparing other elevation models.  
 
Future research should consider an updated selection algorithm for determining the optimal 
DEM based on the number of flat elevations. Thus, providing an insight if ALOS would still be 
the optimal choice when the extrapolated depths of LBDEM replace the flat pixels.  
 
Regarding the extraction of the water level, an improvement can be made regarding the border 
between water and land. As of now, the border pixels take the DEM pixels that have the most 
overlap. However, hypothetically due to the large pixel size of SRTM or ALOS, it could still 
introduce an error in the elevation distribution. Therefore, an analysis should be made on how 
to determine the elevation found in the border pixels.  
 
Please note that this study did not consider the filling operation, demonstrated by e.g., 
Donchyts (2018) study or the estimation of the water/land border by use of radar images (i.e., 
S1). These images can be a helpful alternative/addition to the temporal cloud smoothing filter, 
reducing the water level error.  
 
Likewise, while using this filling operation, an insight can be given to what extent the reservoir's 
surface should be seen since the boundary of the reservoir could be distinguished from the 
clouds at only the usable area. Therefore, only a filling or cloud smoothing filter is needed to 
apply for the images where the L&R was not correctly located 
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Lastly, the volume levels are indirectly affected by the surface water extent constructed by the 
multispectral imagery data.  Therefore, a validation procedure can be developed that would 
give an insight into the method's accuracy in regions where in-situ data is not available. Since 
the surface area extent can be computed using the water level input relative to the choice 
DEM. With the inundated region, the surface area could be re-computed and compared to the 
results of, i.e., S2. When a significant difference is experienced between these two at a given 
moment in time, the volume level could be considered inaccurate, validating the method's 
effectiveness at objects with little in-situ data.   
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Appendix-A:  Selected equations 
 
Otsu thresholding  
 
So, to find this threshold that finds the minimum between the classes’ variance, the following 
equation is applied: 
 
𝑡 = 	𝑎𝑟𝑔𝑚𝑖𝑛(𝜎"(𝑡))#         (A1) 
 
Here 𝜎 is the variance that is within the classes. This is defined by: 
 
𝜎"#(𝑡) = 𝑤$#(𝑡) ⋅ 𝜎$#(𝑡) + 𝑤%#(𝑡) ⋅ 𝜎%#(𝑡)       (A2) 
 
Where w and sigma are the representing the variances and probabilities of the classes (i.e., 
Land and Water). The separation index t is threshold value. This t can be found by creating a 
histogram of L levels, where the probability is defined as W0,1 by 
 
𝑤&(𝑡) = ∑ 𝑝(𝑖)'

{)*$}          (A3) 
𝑤%(𝑡) = 	∑ 𝑝(𝑖){,-%}

{)*'.%}          (A4) 
 
When minimizing the sum of A3 and A4 for each possible threshold can become tentative. 
Hence Otsu gives a solution that the same result can be achieved for minimizing the different 
class variance (instead of determining the maximizing). This step is formulated as follows: 
 
 
𝜎!# = 𝜎# − 𝜎"#(𝑡) = 𝑤$(𝜇$(𝑡) − 	𝜇)# +𝑤%(𝜇(𝑡) − 𝜇)#     (A5) 
𝜎!#(𝑡) = 𝑤$(𝑡) ⋅ 𝑤%(𝑡)(𝜇$(𝑡) − 𝜇%(𝑡))       (A6) 
 
Hence the optimal threshold that can be achieved is by applying the following equation: 
 
𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝜎34(𝑡))         (A7) 
 
Canny edge detection 
The gradient is computed according the following equation value from the (such as Prewitt 
equation) returns a derivative in both directions (x,y): 
 

𝐺 = 78𝐺54 + 𝐺64:         (A8) 

 
 
Φ = 𝑎𝑡𝑎𝑛2;𝐺/ , 𝐺0>         (A9) 
 
Hence G is the gradient that results from both directions, whilst the Φ of A9 gives the direction 
of the gradient. When a gradient having a smaller magnitude are suppressed for finding the 
highest gradient between land and water. 
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Appendix-B: Additional 
information volume selected L&R 
Consider that the Optimal DEM was selected based on the volume correlation coefficient.  
*Here the in-situ data had a shift in the time series, caused by effects not known to the 
author.  
 

Name Max. 
Surface 

Area 
[km2] 

Range 
In-situ 

WL 
[m] 

DEM 
optimal 

Region [%] 
no flatting 

R2 - WL  R2 -VOL RMSE [km3] 

Monroe 
City 

0.3 2 ALOS 44 0.10 0.06 7.0 e-5 

Concordia 0.9 2 ALOS 64 0.16 0.08 0.1 e-3 
Trinidad 2.7 11 ALOS 84 0.96 0.94 2.2 e-3 
Maloya   0.4 2 NED 22 0.70 0.26 2.7 e-3 
Greenbelt 2.7 4 ALOS 54 0.87 0.85 1.2 e-2 
Vail          1.6 6 SRTM 29 0.56 0.56 3.0 e-3 
Piru.             2.4 24 NED 42 0.92 0.94 1.4 e-2 
Eleanor          3.8 15 SRTM 8.9 0.57 0.60 1.6 e-2 
Donnel* 1.6 - SRTM 33 0.12 0.12 4.7 e-2 
Beardsley 2.7 37 NED 2.3 0.56 0.81 6.1 e-3 
Tulloch  3.5 10 SRTM 27 0.49 0.17 4.9 e-3 
Wynoochee 2.9 19 ALOS 88 0.60 0.60 4.9 e-2 
Howard A 
Hanson 

1.8 30 ALOS 84 0.56 0.69 1.6 e-2 

Teller* 0.6 - ALOS 87 0.2 0.33 1.2 e-3 
Nambe 
Falls      

0.2 9 SRTM 50 0.83 0.78 6.41 

Mcclure         0.2 17 SRTM 24 0.86 0.91 4.8 e-4 
Nichols    0.09 10 SRTM 99 0.71 0.73 1.5 e-5 
Rifle Gap   1.0 13 NED 31 0.88 0.88 5.5 e-4 
Vega.             2.3 16 SRTM 25 0.89 0.89 5.8 e-3 
Silver Jack      1.0 23 ALOS 83 0.50 0.51 3.8 e-3 
Crawford 0.9 21 NED 3 0.91 0.95 5.9 e-3 
Paonia 1.0 27 SRTM 51 0.78 0.84 4.8 e-3 
Fruit  
Growers  

1.0 8.6 ALOS 82 0.34 0.64 1.2 e-3 

Ridgway 3.2 13 SRTM 14 0.87 0.87 3.1 e-2 
Lemon 1.8 26 ALOS 65 0.76 0.70 9.5 e-3 
Prosser  
Creek 

1.7 16 ALOS 70 0.84 0.84 3.8 e-3 

Boca 2.6 18 ALOS 94 0.80 0.84 1.9 e-2 
El Capitain 2.8 11 SRTM 21 0.92 0.92 2.6 e-2 
Santa Ynez       0.7 11 NED 26 0.82 0.83 2.2 e-3 
Alisal        0.3 7 ALOS 64 0.87 0.86 1.3 e-3 

Table 8 Additional information of the volume variability selected L&R  
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