
 
 

Delft University of Technology

Addressing Unmodeled Path-Following Dynamics via Adaptive Vector Field
A UAV Test Case
Fari, Stefano; Wang, Ximan; Roy, Spandan; Baldi, Simone

DOI
10.1109/TAES.2019.2925487
Publication date
2020
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Aerospace and Electronic Systems

Citation (APA)
Fari, S., Wang, X., Roy, S., & Baldi, S. (2020). Addressing Unmodeled Path-Following Dynamics via
Adaptive Vector Field: A UAV Test Case. IEEE Transactions on Aerospace and Electronic Systems, 56(2),
1613-1622. https://doi.org/10.1109/TAES.2019.2925487

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TAES.2019.2925487
https://doi.org/10.1109/TAES.2019.2925487


IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. XX, NO. X, XXXXXX XXXX 1

Addressing Unmodelled Path-Following Dynamics
via Adaptive Vector Field: a UAV Test Case

Stefano Farı̀, Ximan Wang, Spandan Roy, and Simone Baldi

Abstract—The actual performance of model-based path-
following methods for Unmanned Aerial Vehicles (UAVs) show
considerable dependence on the wind knowledge and on the
fidelity of the dynamic model used for design. This work analyzes
and demonstrates the performance of an adaptive Vector Field
(VF) control law which can compensate for the lack of knowledge
of the wind vector and for the presence of unmodelled course
angle dynamics. Extensive simulation experiments, calibrated on
a commercial fixed-wing UAV and proven to be realistic, show
that the new VF method can better cope with uncertainties than
its standard version. In fact, while the standard VF approach
works perfectly for ideal first-order course angle dynamics (and
perfect knowledge of the wind vector), its performance degrades
in the presence of unknown wind or unmodelled course angle
dynamics. On the other hand, the estimation mechanism of
the proposed adaptive VF effectively compensates for wind
uncertainty and unmodelled dynamics, sensibly reducing the
path-following error as compared to the standard VF.

Index Terms—Adaptive Vector Field, fixed-wing UAV, path-
following, unmodelled course angle dynamics.

I. INTRODUCTION

Born initially for military applications, Unmanned Aerial
Vehicles (UAVs) have nowadays also civil applications, such
as monitoring, aerial mapping, small cargo deliveries, search
and rescue operations [1]. UAVs must rely on accurate path-
following algorithms: wind disturbances, unmodelled dynam-
ics, and the quality of sensing and control, are all critical
limits to the achievable accuracy [2]–[5]. Taking into account
that UAVs must operate in windy environments where wind
speeds are 20-50% of the UAV airspeed, the design of high-
performance path-following strategies is compelling.

Path-following techniques can be developed using geometric
or control-theoretic approaches [6]. The first class include
the pure pursuit and line-of-sight guidance laws [7]–[11],
which make use of a virtual target point where the UAV is
directed to. Control-theoretic techniques include PIDs, lin-
ear quadratic control, sliding-mode control, model predictive
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control, adaptive control and their variants [12]–[16]. The
Vector Field (VF) approach [17]–[22] sits in between these
two classes, by combining geometric reasoning with a sliding-
mode technique. The goal of the VF approach is to drive
the cross-track error to zero by providing a field of desired
(inertial-referenced) course angles for each point around the
desired path [17]. An extension of the VF to curves/lines in n-
dimensional spaces was studied in [18]. In [19] the VF idea is
extended to decentralized navigation with collision avoidance.
In [20] a hybrid VF is proposed as a combination of Lyapunov
analysis and geometry. In [21] the vector fields are made
time-varying so that a team of UAVs can reach a rendezvous
position. The VF-based strategy of [22] can consider input
and state constraints. The VF idea has also been considered
for simultaneous localization and mapping [23], [24]. In the
survey [6], many path-following methods are applied to point-
mass UAV kinematics. It is shown that VF achieves the lowest
steady-state error at the price of tuning more parameters.

The actual performance of path-following methods show
considerable dependence on the wind knowledge and on the
fidelity of the dynamic model used for design. In particular,
the standard VF method crucially relies on two assumptions:
known constant wind and first-order course dynamics [17].
Both assumptions can be found in all aforementioned VF
works [17]–[22], but unfortunately are seldom met in practice.
The first assumption has been relaxed in [25] by augmenting
the VF path-following control law with adaptation. However,
relaxing the second assumption is a relevant but, to the best of
the authors’ knowledge, open problem. This work aims at an-
swering the following question: can VF adaptation compensate
not only for unknown winds, but also for unmodelled course
angle dynamics?

To answer this question, we show in Section III how
unmodelled course angle dynamics arise from the low-level
autopilot layer: such dynamics are derived after reverse-
engineering ArduPilot [26], a popular open-source autopilot.
A complete fixed-wing UAV simulator is designed, whose
system parameters are derived for a commercial UAV, the
HobbyKing Bixler. Physical and low-level control parameters
are derived for the Bixler and proven to be realistic. In Section
IV the standard and adaptive VF strategies are discussed,
while Section V provides extensive simulation comparisons.
As compared to literature, the crucial contribution of this work
is showing that the estimation mechanism of the adaptive VF
effectively compensates for the unmodelled UAV course angle
dynamics. The proposed method outperforms even ‘ideal’ VF
strategies, relying on perfect knowledge of the wind vector,
but based on simplified first-order course angle dynamics.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. 
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II. PRELIMINARIES

State Description
pn Inertial north position along ii in Fi

pe Inertial east position along ji in Fi

pd Inertial down position along ki in F i

u Body frame velocity along ib in Fb

v Body frame velocity along jb in Fb

w Body frame velocity along kb in Fb

φ Roll angle defined with respect to Fv2

θ Pitch angle defined with respect to Fv1

ψ Yaw angle defined with respect to Fv

p Roll rate measured along ib in Fb

q Pitch rate measured along jb in Fb

r Yaw rate measured along kb in Fb

TABLE I: UAV states (F i is the inertial frame according to the
North-East-Down (NED) convention, Fb is the body frame,
Fv , Fv1, Fv2 are the vehicle frame and the intermediate
vehicle frames arising from the (ki-jv1-iv2) Euler rotations).

A. Equations of motion

Any UAV can be modelled using a 6-DOF rigid body
equations of motions [27], briefly recalled hereafter:ṗnṗe
ṗd

 =R−1
vb (φ, θ, ψ)

uv
w

 ,
u̇v̇
ẇ

 =

rv − qwpw − ru
qu− pv

+
1

m

fxfy
fz


φ̇θ̇
ψ̇

 =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) sin(φ)
0 sin(φ)/ cos(θ) cos(ψ)/ cos(θ)

pq
r


ṗq̇
ṙ

 =

 Γ1pq − Γ2qr
Γ5pr − Γ6(p2 − r2)

Γ7pq − Γ1qr

+

Γ3L+ Γ4N
1
Jy
M

Γ4L+ Γ8N


where the twelve state variables used to derive the equations

of motion are in Table I. With Rvb we denote the rotation
matrix from the vehicle to the body frame (located at the
aircraft center of mass). The terms fx, fy , and fz are the forces
acting on ib, jb and kb, respectively (comprising propulsion,
aerodynamic, and gravity forces). Finally, L, M, N are the
rolling, pitching and yawing moments about the same axes.
The mass of the UAV is m and

Γ1 =
Jxz(Jx − Jy + Jz)

JxJz − J2
xz

, Γ2 =
Jz(Jz − Jy) + J2

xz

JxJz − J2
xz

Γ3 =
Jz

JxJz − J2
xz

, Γ4 =
Jxz

JxJz − J2
xz

, Γ5 =
Jz − Jx
Jy

Γ7 =
(Jx − Jy)Jx + J2

xy

JxJz − J2
xz

, Γ8 =
Jx

JxJz − J2
xz

, Γ6 =
Jxy
Jy

where the J-terms are components of the inertia tensor J. The
complete 6-DOF equations of motion, as well as more details
on the equations, can be found in [27], [28].

B. The wind triangle

Let Vg be the UAV ground speed relative to the inertial
frame. Airspeed Va, ground speed Vg , and wind speed Vw
are related via the so-called wind triangle (cf. Fig. 1)

Va = Vg − Vw. (1)

An inertial-referenced angle, called course angle χ, is in-
troduced, which represents the angle between the true north
and the projection of Vg on the horizontal plane (ib, jb); χ
constitutes the control variable for the guidance logic. In this
work we model the wind as the composition of a steady-state,
a dynamic, and a slowly time-varying wind

Vw = Vw,s + Vw,d + Vw,v (2)

where the dynamic part Vw,d represents wind turbulence,
obtained by passing white noise through appropriate forming
filters [29], and the time-varying part Vw,v is taken as a
sinusoidal or multi-sinusoidal term perturbing the constant
wind amplitude and direction.

Fig. 1: The wind triangle (figure adapted from [28]). Here, β
represents the side-slip angle of the UAV, χ the course angle,
ψ the yaw angle, and ψw the wind angle.

III. UAV COURSE ANGLE DYNAMICS

The primary goal of the autopilot layer is to provide
low-level controllers to govern the UAV inertial position
(pn, pe, pd) and attitude (φ, θ, ψ). This implies computing the
trim (equilibrium) states and inputs: the book [28] shows that,
with the standard assumption of decoupled longitudinal/lateral
dynamics, the linearized lateral dynamics around the trim equi-
librium can be described by the following transfer functions:

Roll angle φ(s) =
aφ2

s(s+ aφ1
)

(
δa(s) + d̃φ(s)

)
(3)

Course angle χ(s) =
g

Vgs

(
φ(s) + d̃χ(s)

)
(4)

for appropriate constants aφ1
, aφ2

, where δa is the aileron
command and d̃φ and d̃χ are disturbances coming from cross-
effects of neglected dynamics. Let us focus only on the lateral
dynamics, most relevant to path following; details on the
longitudinal UAV control loop can be found in [30].

A. Arising of unmodelled course angle dynamics

In practice, the cross-effects d̃φ and d̃χ are neglected to
obtain first- or second-order linearized dynamics, and thus
simplify the low-level control design via PID controllers [28].
ArduPilot employs a special nested structure for lateral control,
depicted in Fig. 2. It consists of three nested loops: the inner
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Fig. 2: UAV course and roll control (the variables with
subscript c indicate controlled variables of the nested loops).

one controls the roll rate p; the second one controls the roll
angle φ; the outer one controls the course angle χ. In the
inner loop, a PID controller (whose gains KPφ , KIφ , KDφ

are arranged in a special ad-hoc structure, see the Ardupilot
documentation [31]) is combined with a feed-forward gain
K̃Pφ ; at the second loop there is a proportional gain Ωφ. From
the structure and parameters of all blocks in Fig. 2, the nested
loop gives rise to a third-order transfer function

φ(s)

φc(s)
=

2017.8

(s2 + 8.467s+ 44.88)(s+ 45)
(5)

where φc is the commanded roll angle in the inner loop.
The numerical values for the parameters in (5) arise from
aφ1

= 9.344, aφ2
= 68.46 (identified specifically for the

Bixler), and the gains KPφ = 0.7, KIφ = 0.1, KDφ = 0.01,
K̃Pφ = 0, Ωφ = 2.22 (obtained from the ArduPilot Autotun-
ing function). The last high-frequency pole in (5) represent
actuator dynamics identified specifically for the Bixler.

Remark 1: The advantage of using ArduPilot is the possibil-
ity to reverse-engineering the ArduPilot open-source software,
so as to simulate the ArduPilot-controlled behavior with good
accuracy. To check the validity of (5), the actual UAV closed-
loop roll dynamics have been compared to the simulated roll
dynamics: Fig. 3 shows that the responses from simulations
and from the actual UAV Bixler are comparable.

From (4), neglecting d̃χ, we see that the transfer function
from roll angle φ to course angle χ is just g/(Vgs). For Vg =
15 m/s and g = 9.81 m/s2, this results in

χ(s)

φc(s)
=

φ(s)

φc(s)

g

Vgs
=

0.654φ(s)

sφc(s)
. (6)

The loop is finally closed by a proportional controller Cχ(s) =
0.7 (whose value is chosen so as to guarantee a sufficient fre-
quency separation between the inner and outer lateral loops),
resulting in the final fourth-order course angle dynamics

χ(s)

χc(s)
=

923.72

(s+ 0.51)(s2 + 7.97s+ 40.38)(s+ 44.99)
(7)

where χc is the commanded course angle. Approximated first-
order course dynamics can be obtained from neglecting high-
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Fig. 3: Comparison of actual and simulated roll dynamics.

order dynamics in (6), closing the loop with the same Cχ(
χ(s)

χc(s)

)
1st

=

Cχg
sVg

1 +
Cχg
sVg

=
αχ

s+ αχ
⇒ χ̇ = αχ(χc − χ) (8)

where αχ = 0.4578 is the first-order time constant. Fig. 4
shows that the first-order approximation necessarily creates
unmodelled dynamics: in particular, the -3dB bandwidth of
(7) is 11% larger than the bandwidth of (8), clearly affecting
the operating range of a UAV.

Remark 2: ArduPilot is not only a platform for low-level
UAV control, but it also assists in capturing the motivation of
this work. In fact, through the nested architecture of ArduPilot,
we can quantify the distance between the first-order dynamics
(8) and the fourth-order dynamics (7). The next step, answered
in Sects. IV and V, is to discover how such a distance affects
VF path-following performance, as the reported conventional
VF methods rely on (8).

B. Ardupilot-controlled simulation platform

In order to design realistic path-following tests, a Matlab-
based UAV simulation platform has been developed, which
includes all UAV and environmental dynamics. All drag and
lift coefficients of the UAV have been derived as look-up tables
by means of USAF Digital DATCOM [32], after inputting
the geometric characteristics of the Bixler. Additionally, by
reverse-engineering the ArduPilot autopilot layer, the UAV
simulator includes all low-level controllers (roll, pitch, altitude,
airspeed, side-slip and course). A screenshot of the UAV
simulator is in Fig. 5, together with the actual Bixler during
some field tests performed to identify pitch and roll dynamics.

IV. VECTOR-FIELD PATH FOLLOWING

As standard in literature, straight-line and orbit path are
considered for VF path following [28]. In the following we
describe the standard VF method along with its issues (section
IV.A) and the proposed adaptive VF (section IV.B).

A. Standard Vector Field

The control laws for standard Vector Field [17] are recalled.
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1) Straight Line Following: The reference course vector
field meant to drive the UAV on the straight line path is

χd(epy) = χq − χ∞
2

π
tan−1(kslepy) (9)

where epy is the cross-track error, χq is the angle between the
reference line and the north, χ∞ is a parameter in (0, π2 ] which
is the course reference when the error is large, and ksl is a
tuning parameter governing the vector field smoothness. The
cross-track error epy is calculated with respect to the straight-
line path frame. In [17] it is shown that, for first-order course
dynamics as in (8), the control law which is able to let χ→ χd
and epy → 0 as t→∞ is

χc = −ζslχ̃+ χ− χ∞
2

π

βsVg
αχ

sin(χ− χq)

− κsl
αχ

sat

(
χ̃

εsl

) (10)

where χ̃ = χ − χd, βs = ksl/(1 + (kslepy)2), Vg = ‖Vg‖,
ζsl provides a stability margin, and κsl, εsl govern the aggres-
siveness and chattering of the control action.

2) Orbit Path Following: The desired course vector field
which drives the aircraft to loiter on an orbit path is

χd(d̃) = γ + λ
(π

2
+ tan−1(kod̃)

)
(11)

where is d̃ = d − R, d is the distance of the UAV from the
orbit center, R the orbit radius and γ is the angle between the
north and the UAV position with respect to the orbit center.
The parameter λ is 1 for clockwise orbit path and −1 for
counter-clockwise orbit path. In [17] it is shown that, for first-
order course dynamics as in (8), the control law which is able
to let χ→ χd and d̃→ 0 as t→∞ is

χc = −ζoχ̃+ χ+
Vg
αχd

sin(χ− γ)

+ βo
λVg
αχ

cos(χ− γ)− κo
αχ

sat

(
χ̃

εo

) (12)

where βo = ko/(1 + (kod̃)2), and the parameters ko, κo, εo,
ζo are defined similarly to the straight-line case.

Remark 3: Not only (10) and (12) are based on the
assumption that Vg is known, but the stability analysis in [17]
is based on first-order course dynamics as in (8). Therefore,
even full wind knowledge, i.e. Vg = ||Va+Vw,s+Vw,d+Vw,v||,
(10) and (12) may perform poorly in the presence of high-
order course angle dynamics as in (7). Section V will verify
this to be true, especially for orbit paths.

B. Adaptive Vector Field

In view of the last remark, a relevant question is whether
there exists an mechanism to automatically ‘adaptat’ the VF
in such a way to compensate for unmodelled dynamics: in the
following we will illustrate how to adapt Vg depending on the
cross-track error. We will consider V̂g in place of Vg , where
V̂g is adapted by an auxiliary differential equation.

1) Straight Line Following: The estimation dynamics for a
straight-line path is

˙̂
Vg = Γslµslχ̃χ∞βs

2

π
sin(χ− χq) + Fsl − σslΓslV̂g (13)

where Γsl is the estimator gain, µsl is a weighting term and
σsl adds damping action. The feed-forward term Fsl accounts
for the variation of Vg with respect to the course angle χ

Fsl =
∂V̂g
∂χ

[
−χ∞

2

π
βsV̂g sin(χ− χq)− κsl sat

(
χ̃

εsl

)]
(14)

where the partial derivative is approximated by

∂V̂g
∂χ
'Ws

[
sin(ψw,s − χ) +

(
V 2
a −W 2

s sin2(ψw,s − χ)
)− 1

2

· sin(ψw,s − χ) cos(ψw,s − χ)]
(15)

with Ws = ‖Vw,s‖ and ψw,s having similar meaning as in
Fig. 1, but for the steady-state wind component Vw,s.

2) Orbit Following: The estimation for an orbit path is

˙̂
Vg =− Γoµoχ̃

(
1

d
sin(χ− γ) + λβo cos(χ− γ)

)
+ Fo − σoΓoV̂g

(16)

Fo =
∂V̂g
∂χ

[
V̂g
d

sin(χ− γ) + λβoV̂g cos(χ− γ)

−κo sat

(
χ̃′

εo

)]
.

(17)

Stability/robustness of the proposed adaptive VF are given
in the following theorem in terms of uniform ultimately
boundedness (UUB) (it is well known that in the presence of
disturbances and unmodelled dynamics asymptotic Lyapunov
stability cannot be guaranteed, cf. [33, Sects. 8.4 and 8.5]).

Theorem 1: Consider the course angle dynamics

χ̇ = αχ(χc − χ) + ∆, (18)

where |∆| ≤ ∆̄ is a disturbance term with given upper
bound ∆̄ which arises from the unmodelled dynamics of (8).
Furthermore, assume that the unknown Vg is slowly time-
varying with |Vg| ≤ V̄g and ˙|Vg| ≤ ¯̄Vg , for some unknown
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(a) UAV simulator (in Matlab-Simulink environment) (b) Actual Bixler during tests

Fig. 5: UAV simulator and actual Bixler during field experiments.

V̄g and ¯̄Vg . Then, the control laws (10), (12) (with V̂g in
place of Vg) and the adaptive laws (13), (16) guarantee

uniform ultimate boundedness of
∥∥∥[epy, ρ1/2χ̃, Γ

−1/2
sl Θ

]∥∥∥2

,
with bound B as in (20).

Proof. See Appendix.
Remark 4: The importance of Theorem 1 is to recast the

path-following problem as an adaptive control with robustness
against unmodelled course angle dynamics and slowly-time
varying wind. Note that the assumption of bounded |Vg| and

˙|Vg| requires Vw and Va to be bounded and with bounded
derivative. As this situation is often met in practice, such
assumption is commonly adopted in VF approaches [17].

Remark 5: The proposed adaptive VF requires to tune two
extra pairs of parameters: the adaptive gains Γs and Γo should
be high enough to speed convergence, while being aware
that too high adaptive gains might lead to oscillations and
eventually instability [33, Sect. 8.3]). The gains σs and σo
are leakage gains [33, Sect. 8.4] that should be larger if the
bounds of the unmodelled dynamics are large.

V. ALGORITHM EVALUATION

In this section, the performance of the adaptive VF is
assessed, as compared to the standard VF method of [17] and
to an ideal VF method, with the following wind knowledge:
• Standard VF: (10), (12) with Vg(t) = ||Va(t) + Vw,s||;
• Ideal VF: (10), (12) with Vg(t) = ||Va(t) + Vw,s +

Vw,d(t) + Vw,v(t)||;
• Adaptive VF: (10), (12) with Vg(t) = V̂g(t) and (13),

(16) with V̂g(0) = ||Va(0) + Vw,s||.
The standard VF knows only the constant wind component,
the ideal VF knows constant, dynamic and time-varying wind
components, while the adaptive VF estimates all components
starting from the initial knowledge of constant wind.

Scenario Constant wind Turbulence S.T.V. wind
#1 ||Vw,s|| = 0 m/s No Vw,d No Vw,v

#2 ||Vw,s|| = 4 m/s No Vw,d No Vw,v

#3 ||Vw,s|| = 4 m/s Yes No Vw,v

#4 ||Vw,s|| = 4 m/s Yes Yes

TABLE II: Flight environmental conditions (S.T.V. = Slowly
time-varying).

Four different wind scenarios have been defined, summa-
rized in Table II, so as to draw conclusions on the effectiveness
of adaptation in different conditions. For each scenario, we
simulate a straight-line and an orbit path. The constant wind
direction is 240 deg. A Dryden dynamic wind model is
configured following the Military specifications MIL-F-8785C
(altitude of 50 m, turbulence intensity of 2.15 m/s on the ib

and jb axes, and 1.4 m/s on the kb axis, with wavelengths of
200 m). The slowly time-varying wind is taken as a sinusoid
of 0.01 rad/s, perturbing both wind magnitude and direction
with amplitudes 3 m/s and π rad, respectively.

Two experimental sets are performed:
• Using ideal first-order course angle dynamics;
• Using the more realistic UAV model (with high-order

course angle dynamics).
The first set has the purpose of testing the algorithms in the
ideal scenario. In such a way we can see how the performance
degrades in non-ideal scenarios.

The performance of the standard, adaptive and ideal VF
are evaluated using the RMS steady-state cross-track error,
calculated in the last portion of the path when epy or d̃ have
converged. The parameters ksl, κsl, εsl, ko, κo, εo, Γsl, σsl,
Γo, and σo, summarized in Table III, have been tuned so as to
find a good compromise between convergence speed and no
oscillations. The scaling parameters µsl and µo are chosen as
the ratio between the initial cross-track error and the maximum
course error, i.e. µsl = (epy(0)/π)2, µo = (d̃(0)/π)2.

χ∞ ksl, ko κsl, κo εsl, εo
π/2 0.1 m−1 π/2 rad2/s 1 rad

Γsl Γo σsl, σo ζsl, ζo
0.5 0.1 0.001 0.001

TABLE III: Standard and Adaptive Vector Field parameters.

A. Simplified first-order model
For the first-order course dynamics (8), Table IV reports the

RMS steady-state errors in all environmental conditions.
The following observations can be drawn from Table IV:
• With perfect knowledge of the wind and assuming sim-

plified first-order dynamics, the ideal VF achieves zero
steady-state error in all wind conditions;
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Straight-line path following
Scenario Standard VF Adaptive VF Ideal VF

#1 0.00 0.00 0.00
#2 0.00 0.00 0.00
#3 0.16 0.12 0.00
#4 0.17 0.12 0.00

Orbit path following
Scenario Standard VF Adaptive VF Ideal VF

#1 0.00 0.00 0.00
#2 0.00 0.00 0.00
#3 0.29 0.14 0.00
#4 0.31 0.14 0.00

TABLE IV: Vector field RMS steady-state errors in meters
(first-order course dynamics).
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Fig. 6: Ideal vs Adaptive VF during orbit following with high-
order dynamics (Scenario #1). To highlight the path following
error of the ideal VF, a zoom is shown in the small picture.

• In the absence of wind, or with only constant wind
(Scenarios #1 and #2) also the standard and the adaptive
VF can achieve zero steady-state-error;

• The adaptive VF outperforms the standard VF in Scenar-
ios #3 and #4 (error reduction > 20% for the straight
line and > 50% for the orbit), when unmodelled wind
components cannot be accounted by the standard VF.

B. Realistic UAV model

Using the more realistic UAV model, Table V reports the
RMS steady-state errors in all environmental conditions.

Straight-line path following
Scenario Standard VF Adaptive VF Ideal VF

#1 0.00 0.00 0.00
#2 0.00 0.00 0.00
#3 0.26 0.25 0.26
#4 0.24 0.24 0.20

Orbit path following
Scenario Standard VF Adaptive VF Ideal VF

#1 0.10 0.00 0.10
#2 0.10 0.00 0.10
#3 0.39 0.21 0.31
#4 1.29 0.80 1.09

TABLE V: Vector field RMS steady-state errors in meters
(high-order course dynamics).

Table V demonstrates that the ideal VF has lost its perfect
performance shown in Table IV. That is, even with full knowl-
edge of the wind, the ideal VF cannot cope with unmodelled
dynamics. Other observations drawn from Table V:
• For straight line, the improvement of the adaptive VF

is often small. This can be explained by the fact that
the unmodelled UAV dynamics are not ‘excited’ by the
straight-line path. The term ‘excited’ is used in the sense
of persistency of excitation, a concept well known in
adaptive control [33, Sect. 5.2] and referring to the
number of sinusoids contained in a signal. The higher the
frequency content of a signal flowing across the closed-
loop system, the more the unmodelled dynamics of the
system will ‘manifest’ and make the tracking error differ-
ent than zero, which in turn will activate the adaptive law.
Persistency of excitation is reflected in the path-following
problem by the fact that the periodic motion induced by
the orbit path contains sinusoidal components which are
absent in the straight line. In fact, the poor excitation of
the straight-line makes all algorithms achieve zero errors
in Scenarios #1 and #2 despite the unmodelled dynamics;

• In the orbit scenario, apparently the excitation induced
by periodic motion activates the adaptive law and makes
the adaptive VF attain drastic improvements, outperform-
ing not only the standard VF, but also the ideal VF.
Remarkably, in Scenario #1 the adaptive VF achieves
zero tracking error by completely compensating unmod-
elled dynamics, as shown in Fig. 6: on the other hand,
the unmodelled dynamics prevent the ideal VF from
perfectly following the orbit (the steady-state error is
around 0.11m). Also in Scenario #2 the adaptive VF
drives the error to zero by counteracting the constant wind
disturbances, while in Scenarios #3 and #4 the error is
reduced by 46% and 61% respectively.

C. On transient performance and a priori wind knowledge
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Fig. 7: Transient of Ideal, Standard and Adaptive VF during
line following with high-order dynamics (Scenario #2).

To comment on transient performance of the VF algorithms,
Table VI collects the errors calculated from the beginning of
the trajectory till when the error is less than 1 meter (the
values are higher than the previous tables, because the UAV
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Straight-line path following
Scenario Standard VF Adaptive VF Ideal VF

#1 23.53 23.52 23.53
#2 26.24 26.20 26.24
#3 26.63 26.58 26.62
#4 27.32 27.08 27.13

Orbit path following
Scenario Standard VF Adaptive VF Ideal VF

#1 31.02 31.01 31.02
#2 32.54 32.53 32.54
#3 33.02 33.00 32.99
#4 33.86 33.85 33.73

TABLE VI: Vector field RMS transient errors in meters
(high-order course dynamics).

Straight-line path following
Scenario Standard VF Adaptive VF

#5 0.35 0.32
#6 0.40 0.36

Orbit path following
Scenario Standard VF Adaptive VF

#5 0.69 0.33
#6 0.81 0.45

TABLE VII: Vector Field RMS steady-state errors in meters
(UAV flight simulator experiments).

starts 50 meters away from the desired trajectory). Table VI
reveals that the transient performance of the adaptive VF is
close and in most cases slightly better than the non-adaptive
versions (cf. Fig. 7 for straight-line following in Scenario
#2). The explanation is twofold: (a) as indicated previously,
the initial estimated ground speed in the adaptive VF results
from the vector sum of airspeed and constant wind, which is
good starting point feasible for implementation (the same a
priori knowledge as the standard VF); (b) the estimator (13)
and (16), being Lyapunov-based, contributes to stability by
driving the error to zero. While the transient performance of
any adaptive algorithm inevitably benefits from good initial
knowledge of the uncertain parameters [33, Sect. 4.3.7], it is
worth remarking that, thanks to the estimator (13) and (16),
the a priori knowledge of standard VF is not requested in the
adaptive VF, giving benefits in unknown wind environments.

D. UAV flight simulator experiments

Finally, some extra experiments using a UAV flight simula-
tor developed by the System Engineering Research Institute,
China State Shipbuilding Corporation, have been performed
in order to further validate the methodology. Due to non-
disclosure agreements, the details of the simulator cannot be
reported. The experiments have been performed on a simulated
Bixler UAV whose first-order time constant was identified to
be αχ = 0.4213. The environmental conditions for the UAV
flight simulator experiments were:
• Scenario #5: Wind direction 220 deg, wind speed 4.0 m/s

(including turbulence around such nominal values);
• Scenario #6: Wind direction 310 deg, wind speed 5.0 m/s

(including turbulence around such nominal values).
Table VII reports the RMS steady-state errors. The experi-

ments overall confirm the simulation results.

VI. CONCLUSIONS

The goal of this paper was to analyze and demonstrate the
performance of a new robust adaptive Vector Field control
law which exploits an estimator to compensate for the lack
of knowledge of the wind vector and for unmodelled course
dynamics (as arising from the low-level control structure of
the autopilot). Extensive experiments have shown that the new
Vector Field method operates better than its standard version
in windy environments, and that the estimator can effectively
compensate unmodelled course angle dynamics.

Further developments of the adaptive Vector Field could
be extension of the approach in three dimensional paths, and
addressing time-delayed measurements.
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APPENDIX

Stability analysis for adaptive vector field

For lack of space, the stability analysis is provided for the
straight line case only. The stability analysis for the orbit path
follows similar steps and is left to the reader.

The adaptive law of V̂g is derived based on the Lyapunov
argument below. Let Θ = V̂g − Vg be the estimation error.
Consider the Lyapunov function V = V1 + ρV2 + 1

2Γ−1
sl Θ2,

with V1 = 1
2e

2
py , V2 = 1

2 χ̃
2 whose derivative is

V̇ = V̇1 + ρV̇2 + Γ−1
sl ΘΘ̇

where ρ is the positive user-designed weight. Substitute (10)
(with V̂g in place of Vg) into the derivative of V

V̇ = V̇1 + ρχ̃[χ∞
2βs
π

(V̂g − Vg)(sin(χ− χq)

− κslsat(
χ̃

εsl
)] + Γ−1(V̂g − Vg)( ˙̂

Vg − V̇g).

Now substitute (13) (omitting Fsl for simplicity)

V̇ = V̇1 − ρζslχ̃2 − ρκslχ̃sat(
χ̃

εsl
) + {( ˙̂

Vg − V̇g)Γ−1
sl

+ ρχ̃χ∞
2βs
π

sin(χ− χq)}(V̂g − Vg) + ρχ̃∆

≤ V̇1 − ρζslχ̃2 − ρκslχ̃sat(
χ̃

εsl
)− σslΘ2

+ ρ |χ̃| ∆̄− σslΘ(−Γ−1
sl V̇gσ

−1
sl − Vg)

Using the design condition κsl ≥ ∆̄ we can remove the third
and fifth terms of the last inequality when χ̃

εsl
≥ 1 (the analysis

for χ̃
εsl

< 1 straightforwardly leads to boundedness, cf. [34]).
Furthermore, after applying the inequality −a2 +ab ≤ −a

2

2 +
b2

2 (valid for any a and b) to the fourth and last term above,
we write

V̇ ≤ V̇1 − ρζslχ̃2 − σsl
2

Θ2 +
σsl(Vg + V̇gΓ

−1
sl σ

−1
sl )2

2
. (19)

Since we assume that the wind changes in a slowly time-
varying fashion, the magnitude of V̇g will be bounded. Also,
the ground velocity Vg is bounded. Therefore we can bound∣∣∣Vg + V̇gΓ

−1
sl σ

−1
sl

∣∣∣ ≤ ∆V , for some unknown ∆V . Then, using
the definition of the Lyapunov function V and the analysis of
V̇1 carried out in [17], we have that (19) implies

V̇ ≤ −κV − (κ̄− κ)V + C

where ζsl ≥ 1
2σslΓsl, 0 < κ < κ̄, κ̄ = σslΓsl, and C =

σsl∆̄
2
V

2 ,
i.e. C is proportional to ∆̄2

V (upper bound on the combined
variation of the wind). After defining the scalar B = C/(κ̄−κ)
we straightforwardly obtain the bound∥∥∥[epy, ρ1/2χ̃, Γ

−1/2
sl Θ

]∥∥∥2

≤ max {V(0), B} (20)

i.e. epy , χ̃, Θ converge inside a compact set and stay bounded.


