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Abstract

In this paper, we are interested in classifying the different arising
(topological) structures of three-dimensional Turing-like patterns. By
providing examples for the different structures, we confirm a conjec-
ture regarding these structures within the setup of three-dimensional
Turing-like pattern. Furthermore, we investigate how these structures
are distributed in the parameter space of the discrete model. We found
two-fold versions of so-called “zero-” and “one-dimensional” structures
as well as “two-dimensional” structures and use our experimental find-
ings to formulate several conjectures for three-dimensional Turing-like
patterns and higher-dimensional cases.
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1 Introduction

In his 1952 paper “The chemical basis of morphogenesis”, Alan M. Turing
presented a model for the formation of skin patterns [10]. While it took
several decades, the model has been validated by finding corresponding nat-
ural phenomena, e.g., in the skin pattern formation of zebrafish [1, 7]. More
surprising, seemingly unrelated pattern formations can also be studied via
the model, like e.g., the formation of plant patches around termite hills [6].
Furthermore, three-dimensional Turing patterns have been observed in mi-
croemulsions [2] as well as in physical simulations [3].

In 1984, David A. Young proposed a discretization of Turing’s model,
reducing it to an activator/inhibitor process on a discrete domain [12]. This
model can be easily extended to the concept of three-dimensional Turing-like
patterns [8]. While the parameter space for two-dimensional Turing pat-
terns has been investigated in the context of predator-prey models [11] or
Ising models [5], no such investigation is available for the three-dimensional
Turing-like patterns resulting from the extension of Young’s cellular automa-
ton. This exploratory paper presents several findings and conjectures on the
parameter space of these automata.

2 Three-dimensional Turing-like pattern from CA

Based on previous models for patterns in the visual cortex of the brain ([9]),
Young presented his own two-morphogen model, see [12]. He assumes two
types of cells: differentiated (pigmented) cells (DCs) and undifferentiated
cells (UCs). Then, each DC produces an activator morphogen M1 which
differentiates nearby UCs and an inhibitor morphogen M2 which causes
nearby DCs to become undifferentiated. From this model, Turing-like pat-
terns are obtained by starting with a rectangular grid of cells. We will model
a cell at position (x, y) in the grid by its state st(x, y) ∈ {0, 1} at time t,
indicating a DC (st(x, y) = 1) or UC (st(x, y) = 0).

Initially, each cell is chosen to be a DC according to some random pro-
cess. To determine the state of a cell (x, y) in the next time step, compute

st+1(x, y) =


1

∑̃
> 0,

st(x, y)
∑̃

= 0,

0
∑̃

< 0,

, (1)

with
∑̃

=
∑

(x′,y′)∈BR2
(x,y) ωt,(x,y)(x

′, y′), where BR2(x, y) is the ball of

radius R2 around (x, y) and

ωt,(x,y)(x
′, y′) =


0 (x− x′)2 + (y − y′)2 > R2

2,

w1 · st(x′, y′) (x− x′)2 + (y − y′)2 < R2
1,

w2 · st(x′, y′) otherwise.

(2)
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That is, for any grid cell (x, y), all DCs within the circular region of radius R2

are taken into account. Those that lie within the smaller circular region
of radius R1 contribute weight w1 while those in the annulus between R1

and R2 contribute weight w2. If the sum of these weights is positive, the
cell becomes differentiated; if the sum is zero, the cell does not change its
state; if the sum is negative, the cell becomes undifferentiated. Note that the
domain is assumed to be toroidal, i.e., two opposite borders are identified
with each other.

In order to lift this model to a three-dimensional domain, the single nec-
essary addition is a term (z − z′)2 in the right-hand side of Equation (2).
To further simplify Young’s approach, it can be reduced to choosing initial
DCs in the domain uniformly randomly with some probability ρ ∈ [0, 1] and
furthermore fixing w1 = 1, w2 = −1, see [8]. Given a domain size, these sim-
plifications reduce the parameter space of Turing-like patterns to choosing
a probability ρ ∈ [0, 1] as well as two radii R1 and R2. It is this three-
dimensional parameter space that we aim to investigate in the following.

3 Fixing a finite parameter space

In order to experimentally investigate the parameter space spanned by R1,
R2, and ρ, we first fix the size of the cubical three-torus to work on. To
be able to fully classify the entire parameter space, we chose a grid size
of 70× 70× 70. Choosing too large values for the radii R1 and R2 in a
comparably small domain would obscure the patterns formed. Therefore,
we reduced the choice for the two radii to be from {1, . . . , 40} ⊂ N. The
value ρ determines the probability of initial activity of each cell in our cubical
grid. To discretize the probability, we chose a domain I := {0, . . . , nρ} ⊂ N
with nρ = 120. As the probabilities ρ = 0 and ρ = 1 only provide com-
pletely undifferentiated or completely differentiated1 domains respectively,
we chose the lowest probability to be investigated to be at exp(−minρ)
with minρ = 12, i.e., the lowest probability as exp(−12) ≈ 6 · 10−6. As [8]
found their zero-dimensional behavior for extremely large values of ρ, we
decided to discretize this dimension of the parameter space non-linearly.
Therefore, the domain is mapped to a probability value via the following
sigmoid

σ : I → [0, 1],

x 7→ exp(2·minρ ·n−1
ρ ·x−minρ)

1+exp(2·minρ ·n−1
ρ ·x−minρ)

,
(3)

which provides good resolutions at very low and very high probabilities
as well as a decent resolution of the behavior between these extremes.
In the following, we will assume that some x ∈ I was chosen and simply
write ρ := σ(x) for brevity.

1Note that complete DCs can turn to complete UCs within one step, e.g., if R2 � R1.
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(a) DC spheres � (b) DC pipes � (c) areas � (d) UC pipes � (e) UC spheres �

Figure 1: Five of the seven possible Turing-like patterns in a three-torus,
with the trivial cases of all DCs or all UCs not shown. The images show
the isosurface separating DC (green) and UC (gray) cells. Patterns include
sphere-like structures, (a) and (e), pipe-like structures, (b) and (d), and
area-spanning structures (c)).

The three parameters ρ, R1, and R2 span a 121× 40× 40 grid where each
included triple gives rise to a Turing-like pattern. Considering the types of
structures found in previous work [3, 2, 8], we expect to find seven different
types of structures that can form in the three-dimensional domain. Two of
these are the trivial patterns of only differentiated or only undifferentiated
cells. The remaining five structures are displayed in Figure 1. Note that
for the visualization of three-dimensional patterns, a different approach is
necessary than for two-dimensional patterns, in order to gain insights into
the presented structures. Thus, following [8], the renderings in Figure 1
show only the isosurface between regions of DCs (green) and UCs (gray).
Shrinking the structures by a factor of approximately R1, we reduce them as
follows: spheres become 0-dimensional points, tubes become 1-dimensional
strands, and areas remain 2-dimensional. In the following, we refer to the
patterns by these “dimension“ values.

Observe, that except for the 2-dimensional case, we obtain two possi-
ble scenarios for 0-dimensional and 1-dimensional structures, which come
from the distinction into interior and exterior cell types. The following ex-
perimental part of the project now consists of partitioning the discretized
parameter space into these seven cases, i.e., identifying for each parameter
triple (ρ,R1, R2) which type of Turing-like pattern arises.

4 Exploration of the parameter space

Our exploration of the parameter space consisted of picking a parameter
triple and starting the CA of [8] with it. After the automaton had either
converged or after 20 iterations/seconds had passed, the current state was
rendered using the Marching Cubes Algorithm [4]. The experimentalist then
classified the visualized pattern according to their closest resemblance with
the images in Figure 1 or (if the pattern clearly had not converged yet)
continued the generation for several more iterations.
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Figure 2: Top and bottom left: Plot of the three-dimensional parameter
space consisting of activator radius R1, inhibitor radius R2, and activation
(x as argument for ρ = σ(x)). The parameter triples are colored by found

structures. In the top left image, the shown hyperplane with increase 3
√

2
−1

indicates equal volume covered by the R1 ball and the R2 annulus. Note
that the color for all-DC triples is black, and we disabled their rendering for
enhanced visibility of the other structures. Note further that the x-axis is not
a linear depiction of the activation probability, but the argument for σ(x),
see Equation (3). Top right: Histogram over the found structures. Note
that the y-axis in the histogram follows a logarithmic scale. Bottom left:
Separating isosurfaces of volumetric distributed triples “UC all” (behind
white), “DC spheres” (between white and beige), “DC pipes” (between beige
and green), and “DC all” (remaining volume on top). Bottom right: The
respective triple groups from the parameter set, giving rise to the separating
isosurfaces. All figures follow the color coding according to Figure 1.
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The distribution of structures in our segment of the parameter space is
shown in a histogram in Figure 2. The dominating structure is “DC all”
followed by “UC all”, which enclose all other structures in the parameter
space. This encapsulating behavior can be seen in the two-dimensional layers
of the parameter space shown in the left images of Figure 2, where the “DC
all” states reside on top and the “UC all” states on the opposing side of
the parameter cube. Note that in the left of Figure 2 and in the upcoming
illustrations, we decided to neglect the “DC all” triples for visual reasons:
Rendering these would hide the distribution of the other structures within
the parameter space. Going back to the histogram in Figure 2, the remaining
non-trivial structures follow with decreasing amount, with “UC pipes” and
”UC spheres” having the rarest occurrences.

One first trivial observation regarding the distribution of structures can
be drawn from the behavior of the activator and inhibitor radii: If R1 ≥ R2,
all cells are differentiated (given that the random process guided by ρ > 0
creates at least one active cell), because the inhibitor range does not have
any impact.

When considering the special case of the volume of the activator ball
and the inhibitor annulus around it being equal, we obtain:

4

3
πR3

1 =
4

3
πR3

2 −
4

3
πR3

1 ⇒ R1 =
R2
3
√

2
.

Thus, we can separate the entire three-dimensional parameter space by
a separating hyperplane, see Figure 2, top left. Above this separation,
the triples are more likely to produce “DC all” structures and below it,
they tend to form “UC all” structures. However, as we are dealing with
a discretization—i.e., the volume of kernels is not 4

3πR
3
i , i = 1, 2 but the

number of discrete cells within—the obtained structures in our experiments
deviate from this theoretical assertion. All such structures (“areas”, “UC
pipes”, and “spheres”) occur in the vicinity of this linear separation, see
Figure 2, top left.

Within our discretization of the parameter space, we find that those
triples form volumetric groups that give rise to the following four struc-
tures: “UC all”, “DC all”, “DC pipes”, and “DC spheres”. On the lower
left of Figure 2, we draw isosurfaces in white, beige, and dark green that
separate the respective triple groups, which are shown in the bottom right.
From the dark green up to the beige isosurface, we find a slender wedge
consisting of “DC pipes”. The volume between the beige isosurface and the
highly non-planar white surface is filled with “DC spheres” while the rest
of the parameter space consists of “UC all”. The other structures (“areas”,
“UC pipes”, and “UC spheres”) do not obtain volumetric extent in our dis-
cretization and with the chosen parameter bounds. They all lie close to the
linear separation plane shown in the top left of Figure 2. These observations
motivate two conjectures.
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Conjecture 1 The wedge, formed in the parameter space by the “DC pipes”
triples, given as volume between the beige and dark green isosurface, Fig-
ure 2, will grow larger and wider with increasing values for R1 and R2.

Conjecture 2 The collections of parameter triplets associated to the struc-
tures: “areas”, “UC pipes”, and “UC spheres” will gain volumetric extent
in the parameter space when increasing the maximal values of R1 and R2.

From the above discussion, it is clear that we were able to find all struc-
tures displayed in Figure 1. Thereby, we positively answer a corresponding
conjecture, posed in [8]. Our experiments lead us to the following conjecture.

Conjecture 3 A Turing-like pattern of dimension d (cf. 1) exhibits struc-
tures of all dimensions from 0 to d− 1. Furthermore, each structure of
dimension 0, . . . , d− 2 occurs twice as “UC” and “DC” version, while struc-
tures of dimension d− 1 appear only once.

5 Towards automatic structure classification

The classification in our experiments where visually guided and depended
to a certain extent on the experimentalist. This section is devoted to in-
vestigating an automatic classification of the found structures, based on the
obtained data. Two entities of interest are the volume and surface area of the
structures. The scatterplots shown in Figure 3 suggest that the structures
are characterized to a large extend by their volume. Indeed, a correspond-
ing histogram and a violin plot of the volume distribution confirm this first
suspicion, see Figure 4.

Based on these preliminary analyses, we aim at building a predictor for
the structure type, based on the volume found. We use a total of 2, 214
hand-classified structures to train the predictor. Note that this data is not
uniformly selected, but rather chosen along the border of larger patches as
shown in Figure 2. For cross-correlation, we separate the data set into five
folds, with the distribution of structures as shown in Table 1. To train our
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Figure 3: Two plots indicating the relation between volume and surface area
(left) as well as volume and activator radius (right) of the structures.
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Figure 4: Left: Histogram over 2,214 data points from the parameter space,
selected from the border of two structure areas. The bins on the x-axis
represent the percentage of activated cells in the final state (excluding “UC
all” and “DC all” at the far ends). The stacked bars are colored following the
color scheme of Figure 1. Bars are printed up to 85 elements and cut from
there, where the actual values are given on top. Right: Violin plot over the
different types of structures, indicating the distribution of the volume that
is taken by each structure. Note the box-plot overlay indicating the mean as
well as the first and third quartile. Outliers are shown in red, most notably
for the “areas”. Furthermore, “UC pipes” and “UC spheres” do not show a
clear separation by their volume.

predictor, we perform the following operation on all folds. For two neighbor-
ing structure types, we use the training data (all data points not in the fold)
to find a certain volume-threshold to optimally distinguish these. Thus, we
obtain four volume-thresholds for each fold, indicating five intervals that
are associated with the respective structures. Then, we use these thresholds
to classify the testing data from the fold, where we report an error if the
hand-classified label does not agree with the threshold label of the structure,
see Table 1. Overall, the prediction of the structure by the volume admits
an average classification error of 8.39%. While this indicates the volume to
be a very strong predictor, the results differ drastically over the different
structures. While “DC spheres” exhibit an extremely low classification er-
ror of 3.47% across all folds and “DC pipes” are within the average with an
error of 8.05%, all other three structures have way larger classification error,
with 42.86% of “UC spheres” being wrongly classified, see Table 1. This
confirms the impression from Figure 4 that “UC pipes” and “UC spheres”
are not well separated solely by their volume.

The scatterplots in Figure 3 suggest that the surface area of the structure
does not carry a lot of information regarding the type of the structure, but
that the activator radius, in conjunction with the volume, could provide
a better classifier. On the same folds as used above, we train a k-nearest
neighbor predictor. The used neighborhood sizes were k ∈ {1, . . . , 20}. As
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Fold1 Fold2 Fold3 Fold4 Fold5 Error (%)

“DC spheres” 116 115 115 115 115 3.47
“DC pipes” 77 77 77 77 77 8.05
“areas” 29 30 29 30 29 14.97
“UC pipes” 20 20 20 20 21 18.81
“UC spheres” 6 6 5 6 5 42.86

Error (%) 7.26 9.27 8.06 9.68 7.66

Table 1: Distribution of the different structures over the folds of the data
set used for cross-correlation. The errors given indicate classification errors
of the structures solely based on the volume of the structure.

the two features, volume and activator radius, exhibit very different sizes,
we normalize these two dimensions to exclude any artifacts. For our data
set and the number of chosen folds, we obtain a minimal classification error
for k = 1, where the mean classification error over all folds is 7.35%. Thus,
most of the information on structures is already captured by the volume and
the activator radius only provides a minimal gain in information.

Considering that the data is randomly generated and hand-classified, the
predictors presented here already obtain a high level of accuracy. It is clear
from our findings that the volume of a structure is the best predictor for its
type. Further research is necessary to provide more precise classifications.

6 Conclusion

In this paper, we have presented a visually-guided investigation of struc-
tures in three-dimensional Turing-like patterns. Based on a discretization,
we gave a complete partition of a finite portion of the parameter space and
found five different non-trivial structures, see Figure 1. Thereby, we con-
firmed a conjecture of [8], who proposed the existence of two-dimensional
structures in three-dimensional Turing-like patterns. Based on our exper-
iments, we furthermore provided statistical insight into the distribution of
the different structures within the parameter space. From these data, we
presented several conjectures both regarding three- and higher-dimensional
Turing-like patterns.

Future research has to be directed at finding a thorough mathematical
description of the different structures described in this work, e.g., based on
the number of connected components or the Euler characteristic. We have
shown that the volume is a strong predictor to classify the “DC” structures,
but it does not work well on the “UC” structures. Furthermore, a larger
portion of the parameter space has to be investigated to better understand
the zero-, one-, and two-dimensional structures that arise. The experiments
presented in this paper can help narrow down a corresponding portion of
the parameter space and thus help focus on the relevant parts.
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