
Comparing bandit algorithms in static and changing environments
An experimental study on the regret performance of bandit algorithms in various environments

Cody Michel Boon1

Supervisor: Julia Olkhovskaya1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Cody Michel Boon
Final project course: CSE3000 Research Project
Thesis committee: Julia Olkhovskaya, Ranga Rao Venkatesha Prasad

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

The aim of this paper is to show experimental data
on the regret-based performance of various solver
algorithms within a class of decision problems
called Multi-Armed Bandits. This can help to more
efficiently choose the algorithm most suited for an
application and to reduce the amount of modifica-
tion work needed to adapt the algorithm to fulfill
its purpose. This is done because current research
is largely based on theoretical analysis, strictly
within a specific environment, using random data.
These studies can be difficult to use to predict the
performance of a practical implementation in a
less strictly defined environment, but the amount
of data on more directly comparable practical im-
plementations is limited. The experiments involve
several of the environments which some of the al-
gorithms have been designed for, including a basic
stochastic environment, a static linear contextual
environment and two different changing contextual
environments. Based on the experiments ran in
these environments, we conclude that algorithms
designed for stochastic environments tend to
perform a lot worse in contextual environments
than algorithms designed for linear contextual
environments, and that all of the algorithms we
tested that were designed for contextual environ-
ments tend to perform similarly in most cases.
We also find that in most cases the contextual
algorithms’ performance relative to each other in
changing environments is generally similar to their
relative performance in static ones, even though the
absolute regret behaviour tend to be different in the
different environments. Our findings also include
various more specific strengths and weaknesses for
the individual algorithms.

1 Introduction
Multi-armed Bandit (MAB) problems are problems where
one has to repeatedly pick between performing one out
of two or more different actions, also called arms, with
unknown (random) reward distributions with the objective to
minimize (optimal policy) regret. Regret in this case defined
as ”the difference between the total expected reward using
policy π for n rounds and the total expected reward collected
by the learner over n rounds [1, p. 10].” In other words, a
solver for an MAB problem has to repeatedly attempt make
the best choice out of some options, but they do not know
how the rewards of each option are determined.
Problems that can be represented as MAB problems are
very common in relevant modern-day computing, occurring
in areas like web development (e.g. ad placement and
recommendation systems), machine learning and many
more. While these problems are common, the exact envi-
ronment in which they occur often differs and a specialized
implementation is often required to solve them efficiently.

This means there is high value in thoroughly understanding
the effect of the problem environment on various algorithms
designed to solve MAB problems, how well the algorithms
adapt to variations in these environments in practice and
what changes can generally be made to the algorithms to
respond to these variations.
The primary source on the main concepts of MAB problems
for this paper is the book ”Bandit Algorithms” by Tor
Lattimore and Csaba Szepesvári [1] which presents a lot of
background information on these problems, some relevant
environments and various common bandit algorithms.

The aim of this paper is to find the difference in regret
based performance between various algorithms (see Table 1),
depending on whether they are in an environment with static,
perturbed or slowly changing reward functions.

Table 1: Algorithms considered in this research project

Algorithm Intended purpose
UCB [1], [2], [3] Basic MAB

EXP3 [4], [3] Adversarial MAB
linUCB [5] Linear contextual MAB

CW-OFUL [6] Adversarial contextual MAB
SW-UCB [7] Slowly changing reward MAB

The algorithms that will be considered are sourced from
various papers in the field. The simplest, UCB, was first
described by Tze-Leung Lai [2] and has been used as a basis
for many other algorithms for MAB problems. A problem
with UCB is that it does not hold up against an adversarial
environment, as it is very predictable. This is what EXP3
[4] was designed for. While adversarial environments
themselves are outside the scope of this paper, it is still
valuable to know how EXP3 performs in other environments.
At roughly the same time as the development of EXP3,
Auer [8] and Abe et al. [9] developed and introduced the
linear contextual bandit problem, where the arms share a
reward vector but use their own context, which is visible
to the solver algorithm, to determine the reward. Various
algorithms have been developed to solve this version of the
problem, but our focus will be on linUCB, introduced by
Li et al. [10] and analysed by Chu et al. [5], the latter of
which was used as a guide to implement the algorithm for
this paper. Based on the last two environments, the linear
contextual environment with adversarial corruptions was
later created. While adversarial environments are outside the
scope of this paper, they did inspire the creation of various
algorithms. One of which is CW-OFUL [6], which uses
weighted ridge regression, weighted with the inverse of the
exploration bonus, to predict a corrupted θ∗. Lastly, we
consider the work of Cheung et al. [7] on non-stationary
environments and their algorithm SW-UCB, which is based
on linUCB and uses a change budget β and a sliding window
to predict a θ∗ that changes over time. All of these papers
have a strong focus on developing a (near) optimal algorithm
for their respective intended environments and all except for

1



Li et al. [10] focus mainly on theoretical analysis.
What these papers lack is a broader, practical overview on the
performance of their algorithms, especially in environments
that do not perfectly represent what they were designed
for, and a broader range of other algorithms to compare
their performance to. While there is not enough time to
make an extensive comparison between many of the known
algorithms that can work in our selected environments in this
paper, the chosen algorithms are chosen from various related
larger categories and this should give some insight into how
various similar algorithms will perform in an environment
like this one.
In this paper we will first explain our testing environment and
methodology in section 2, then in section 3 some noteworthy
results will be shown and explained. Following that will be a
brief explanation of our considerations relating to responsible
research in section 4, after which some discussion points and
potential open future research is described in section 5 and
our conclusions in section 6.

2 Methodology
The testing environment for this study [11] was set up
using Python 3.9, with the library SMPyBandits [3] as a
basis. This has been expanded to support contextual bandits,
contexts, contextual arms with static, changing or perturbed
reward functions and all of the algorithms necessary for this
research, as shown in Table 1.
All tests produce a ranking of each algorithm in text based
on the final value of their average cumulative regret, and
an ”average cumulative regret over time” plot with 95%
confidence bounds using MatPlotLib. Additionally, for most
tests, plots of the rewards and semi-logarithmic plots of
the regret have been stored (without confidence bounds).
These additional plots will also be published but due to time
constraints these will not be considered in this paper.
For every test, weight vector(s) θ⃗∗t and context vectors x⃗a,t

are normalized using their l2 norm if their l2 norm is greater
than 1.0.
For every algorithm that uses parameters (all except for
UCB), several different instances are used in each test
environment, each with different parameters. All of these
instances are included in the rankings of each test, but
the plots only show the best of each algorithm for better
readability.
The full list of algorithms with their parameters is the same
for every test and can be found in Tables 2, 3, 4 and 5 in
Appendix A. UCB is not listed there as its implementation in
the library [3] has no parameters.
All tests are first ran with 10 repetitions and a time horizon
of 3000. Some of the tests with noteworthy results will then
be rerun with a higher number of repetitions and/or a higher
horizon to produce clearer graphs and tighter bounds and to
confirm trends. This will be visible in the graphs when it
occurs: The number of repetitions is shown in the title of the
graph and the time horizon is displayed on the x-axis.
After every test its setup, all result rankings and plots, in-
cluding those from additional reruns, are stored. The full set

has been published on Google Drive [12]. Please note that in
the configuration documents, only the main diagonals of the
contexts’ covariance matrices are listed to save space. The
rest of the values of these matrices are all zero. Furthermore,
this set contains some graphs where the cumulative regret of
all of the displayed algorithms is so low that the graphs show
a lot of noise. This could be improved by various means, but
that was not feasible in this study due to time constraints.

2.1 Process
First, tests are ran on UCB and EXP3 in a stochastic envi-
ronment, using Gaussian reward distributions. As the other
algorithms require contexts to run, which this environment
does not have, they are excluded from this test.
The second stage of tests is ran with i.i.d. multivariate
Gaussian distributed vectors as context vectors x⃗a,t, com-
paring performance between various settings for θ⃗∗, context
means vectors µ⃗a, context covariance matrix Σa and all the
algorithms’ parameters.
After that, in stage three, the tests of stage two will be re-
peated, but the weight vector will occasionally be perturbed
over the course of the tests with different alternative vectors
and perturbation frequencies.
Stage four will be mostly the same as stage two and three,
but the weight vector will be slowly changing instead, again
with various amounts for different tests. This is done using a
time based weighted average between two different weight
vectors, which means the change in this environment is linear.

To run these tests, a large number of environments has been
created. The full set of tests includes 9 stochastic environ-
ments, 45 static contextual environments, 756 perturbed
contextual environments and 27 slow-changing contextual
environments.
Due to time constraints, not all perturbed contextual environ-
ments have been run. Environments have been sampled from
the set using an interval, taking every 10th environment and
running it. The configuration data and every environment’s
index in the full set have been preserved to ensure repeatabil-
ity and the option of running only the remaining tests later if
desired.
After the tests are done, we will be comparing the perfor-
mance of the various algorithms to each other. Statistics
will be gathered on how often each one outperforms the
others and how often they are outperformed in each of
the environments, taking into account the 95% confidence
bounds of their cumulative mean regret. If they can be clearly
isolated, we will also show similarities and differences in
the setups of environments where an algorithm distinguishes
itself from the others in terms of performance.

3 Experiment configurations and Results
In the paragraphs below some noteworthy results and patterns
are shown and explained for each of the tested environments.
This includes both situations where algorithms perform
notably different relative to each other and situations where

2



they perform very similarly. The full set of rankings, includ-
ing the algorithm instances that were left out in the graphs,
and the set of all graphs not shown in this paper, is published
through Google Drive, as mentioned in the methodology
section [12]. For the convenience of the reader, an enlarged
version of the graphs in this section can also be found in
Appendix B.

3.1 Stochastic environments
In stochastic environments, in experiments where all arms
have similar or equal means and variances, UCB and EXP3
both perform very similarly, as can be seen in Figure 1.
This is as expected because the algorithms don’t have any
valid metric they can use to pick a good arm, and therefore
perform similar to an arbitrary random policy.

Figure 1: Stochastic environment with identical reward mean and
variance for every arm

In experiments with different mean rewards for the arms and
low reward variance UCB appears to perform significantly
better than EXP3, like for example in Figure 2, where UCB
and EXP3 seem to start converging at around the same time
(roughly between t=100 and t=300). UCB has a sharper
overall reduction in regret over time on average, which seems
to be somewhat of a pattern in our stochastic environments.

Figure 2: Stochastic environment with different reward mean for
every arm and low reward variance

If the means are different but the variance is higher, UCB and
EXP3 perform far more similar to each other within our given

time horizon. This can be seen in Figure 3. The difference
in this graph does not exceed the 95% confidence bound, so
more computation may be needed to get a significant result
in this situation.

Figure 3: Stochastic environment with different reward mean for
every arm and higher reward variance

3.2 Contextual environments
In contextual environments, and all other environments from
this point onwards, all five algorithms are taken into account.
For the behaviour of stochastic algorithms compared to
contextual algorithms, four general patterns of behaviour
have been found. These patterns seem mostly independent of
θ∗.
The first of these patterns occurs in environments where
the context means are all low, and environments where the
means are all high and the context variances are uniformly
high. In these environments, UCB and EXP3 behave very
similar to an arbitrary random policy and the contextual
algorithms perform very well in comparison, to the point
of their regret not being clearly visible in a graph where
stochastic algorithms are also shown. An example of this
pattern is the environment in Figure 4.

Figure 4: The first pattern in a contextual environment with identical
low weights, identical low context means and low identical context
variance

The second pattern occurs in our environments where the
context means are high and the context variances are very
different for each arm, and in all environments with very

3



different context means for each arm and any configuration
of context variances. In these situations, the stochastic
algorithms tend to have a lot of variance in their cumulative
regret between repetitions, but their regret over time does
converge to a lower trend within the time horizon of 3000
steps, generally within the first 1000 steps. Their behaviour
compared to each other is still similar in these environments.
The contextual algorithms perform similarly to the previous
example. An example of this pattern can be seen in Figure 5.

Figure 5: The second pattern in a contextual environment with iden-
tical low weights, identical higher context means and strongly vary-
ing context variance between every arm

The third pattern seems to occur when the context means
are low and the context variance is very different for each
arm. In these environments, there is a lot more variation
based on θ∗ and SW-UCB specifically tends to perform a
lot worse, sometimes even to the point of having worse
performance at the time horizon of 3000 than one of the
stochastic algorithms. All algorithms tend to have relatively
high variance between repetitions in these environments. An
example of this can be found in Figure 6.

Figure 6: The third pattern in a contextual environment with iden-
tical higher weights, identical low context means and identical low
context variance

The last pattern occurs when the context means are high
and the variance is low. The pattern is similar to the first
behaviour (Figure 4) but the cumulative regret of all of the
algorithms is so low within the used horizon that the variance
is very high compared to the regret and the data is very noisy.

The stochastic algorithms appear to behave similar to an
arbitrary random algorithm and the contextual algorithms all
have very low amounts of regret, but no meaningful trends
can be seen in this data beyond that. An example of this
pattern can be seen in Figure 7.

Figure 7: The fourth pattern in a contextual environment with iden-
tical higher weights, identical higher context means, identical low
context variance, additional repetitions and a higher horizon

When comparing only the contextual algorithms with each
other, 30 out of 45 graphs show all algorithms’ cumulative
regret confidence bounds intersecting, indicating no clear
difference in those configurations. In the remaining 15
graphs, SW-UCB always has notably higher regret or a
similar value at the time horizon compared to the other two
algorithms. In 11 of those graphs, linUCB and CW-OFUL
both perform similarly. This leaves 4 notable experiments.
In 2 of them linUCB ends with the highest regret, with
SW-UCB and CW-OFUL performing similarly to each other.
Both environments have high context variance and means.
The weights of the first environment are high, uniform
weights and the other has large, negative, uniform weights.
An example of this can be seen in Figure 8
In 2 environments linUCB distinctly has the lowest regret
at the end of the time horizon. These environments both
have low means and strongly varying variances. The weights
of one are low and uniform, the other has strongly varying
weights. An example of this can be seen in Figure 9
Environments with the same means and variances but dif-
ferent weights show the same patterns as these last four, but
the difference in mean final regret is not strong enough for
the results of linUCB and CW-OFUL to be outside of each
others’ confidence bounds.

3.3 Perturbed environments
In perturbed environments, similar patterns seem to hold
when comparing stochastic and contextual arguments; The
stochastic algorithms generally gather the most regret, with
SW-UCB gathering similar amounts to the stochastic envi-
ronments in a small number of environments and performing
similarly to the contextual algorithms in most others.
The first difference is seen when comparing the two stochas-
tic algorithms with each other. While UCB generally still
produces the least regret if there is a noteworthy difference,

4



Figure 8: Contextual environment with identical higher weights,
identical higher context means and identical higher context variance

Figure 9: Contextual environment with identical low weights, iden-
tical low context means and strongly varying context variance

that occurs less often. In 14 out of 76 tested environments
UCB has statistically significantly less regret at the end of
the experiment. In one environment, EXP3 actually has a
lower mean regret than UCB at the end. There are 5 more
environments where EXP3 trends towards lower regret than
UCB around the end of the experiment, and 12 more where
UCB trends towards lower regret than EXP3, but in these
cases the algorithms do not achieve a significant enough
difference before the end to cross the 95% confidence
bounds, so more computation in these environments may
result in more information. The remaining 44 environments
show UCB and EXP3 performing very similarly.
There is more to be said when comparing the various
contextual algorithms with each other. In 31 out of 76 tested
environments, all three algorithms performed similarly.
There were 24 environments where linUCB and CW-OFUL
performed similarly to each other but SW-UCB gained
notably more regret, and there were 16 environments where
SW-UCB and CW-OFUL performed similarly to each other
and linUCB gained notably more regret. There were no
environments where CW-OFUL performed significantly
worse than any of the other algorithms.
This means that the environments in this set where the
algorithms gain large enough regret values to produce clear
graphs and where there is a significant difference between
some of the algorithms tend to follow a few patterns. Within
these groupings, the biggest difference between individual
experiments is generally the slope and variance of the regret
scores of the various algorithms, but the shape of each

individual algorithm’s regret graph will be mostly the same
across these environments. An example of these patterns can
be seen in Figures 10, 11 and 12.

Figure 10: Perturbed contextual environment pattern where linUCB
converges far slower than the other two algorithms. SW-UCB and
CW-OFUL also generally show some divergence in these experi-
ments

Figure 11: Perturbed contextual environment pattern where SW-
UCB trends somewhat steeper after converging than the other two
algorithms. LinUCB and CW-OFUL tend to perform very similarly
to each other in these environments

The remaining 5 environments showed inconclusive results,
they show trends towards certain relations between the
algorithms’ regret but the confidence bounds are too large to
draw any meaningful conclusions.
Of these inconclusive experiments, environments 131, 241
and 311 trended towards an unknown relation between
CW-OFUL and SW-UCB’s mean regrets and linUCB’s
mean regret being worse than both others. Environment
451 trended towards an unknown relation between SW-UCB
and linUCB’s mean regrets and a better mean regret value
from CW-OFUL (Figure 13). Environment 651 trended
to linUCB’s regret being the lowest, CW-OFUL’s trending
slightly higher, with SW-UCB’s being significantly worse
(Figure 14).

3.4 Slowly changing environments
In the 27 slowly changing environments similar patterns
appear to hold as in stochastic environments and basic

5



Figure 12: Perturbed contextual environment pattern where SW-
UCB trends far steeper than the other two algorithms, with very little
variance. LinUCB and CW-OFUL tend to perform very similarly to
each other in these environments

Figure 13: Perturbed contextual environment with identical high
weights that get uniformly lowered for a relatively high duration on
a relatively large interval. It has identical low context means and
identical low variances

contextual environments, the difference remains large, but
just like in linear and perturbed contextual environments, in
3 experiments SW-UCB gathers a similarly large amount of
regret, such as in Figure 15. A small difference is that in
the changing environments this seems to happen when the
context means are high and the context variances are low.
Aside from the 3 cases where SW-UCB ends with higher
average regret than one or both of the stochastic algorithms
however, the contextual algorithms gather significantly less
regret than the stochastic ones.

Comparing the contextual algorithms to each other, the re-
sults of the various environments can once again be separated
into 5 groups based on algorithm behaviour.
The first behaviour type (ie. Figure 16) is observed in 5 out
of 27 environments and shows linUCB and CW-OFUL with
very similar average regret growth, generally very small, and
SW-UCB with significantly greater average regret at most
timesteps.
The second type of behaviour is observed in 10 environ-
ments and shows SW-UCB and CW-OFUL performing very
similarly, gathering little regret over time, and linUCB with
significantly greater average regret growth over time, such as
in Figure 17.

Figure 14: Perturbed contextual environment with strongly varying
weights that get uniformly lowered by 2 times the highest weight
for a relatively high duration on a relatively large interval. It has
identical low context means and identical low context variances

Figure 15: Slowly changing contextual environment with decreas-
ing uniform weights, identical high context means and identical low
context variances

The third type of behaviour includes the environments where
all of the contextual algorithms perform nearly identically,
with high variance relative to the algorithms’ mean regrets.
This can be observed in 7 of the environments.
The fourth group, consisting of 4 environments, includes the
experiments that appear like they would produce noteworthy
results at a greater time horizon or with smaller confidence
bounds, like for example in Figure 18.

The final type, consisting only of environment 22, shows all
of the contextual algorithms with a mean regret of 0.0 and
variance of 0 at every time step. The resulting graph can be
seen in Figure 19.

4 Responsible Research
This project does not involve data relating to people, so there
are no concerns, ethical or otherwise, in that regard.

In terms of repeatability, this paper aims to include as
much of the experiment setup and data as possible, including
all parameters, results for each test run and the full code base
that was used to run these tests.

All of the data obtained in the definitive run of each
test is considered, and test runs have only been redone

6



Figure 16: Slowly changing contextual environment with strongly
varying weights where the distribution slowly inverts (eg. the high-
est weight becomes the lowest), identical high context means and
identical low context variances

Figure 17: Slowly changing contextual environment with increasing
uniform weights, identical high context means and strongly varying
context variances

without preserving previous results if the previous run was
deemed invalid, due to either a problem with the code, the
setup or the graphs.

The full set of randomly generated contexts and rewards,
however, is not stored or published. This is not feasible due
to the size of the data, which is in the order of hundreds of
gigabytes due to the number of tests and repetitions.

5 Discussion and Future Work
As one might expect, the results of this study show that
stochastic algorithms nearly always gather far more regret
over time than contextual ones in a contextual environment,
be it static, perturbed or changing. Our results show UCB
generally performing somewhat better than EXP3 in the
environments we covered, with few exceptions. This aligns
with prior analysis by other studies and can mostly be ex-
plained with the extra information the contextual algorithms
can use compared to stochastic ones. This does come at the
price of a very slight loss in flexibility however, as stochastic
algorithms can be applied to contextual environments, but
not the other way around.

The performance of the various contextual algorithms
is generally very similar in linear contextual environments.

Figure 18: Slowly changing contextual environment with increasing
uniform weights, identical high context means and strongly varying
context variances

Figure 19: Slowly changing contextual environment with increasing
uniform weights, identical high context means and strongly varying
context variances

Both linUCB and CW-OFUL seem to be very consistent in
their performance, with SW-UCB sometimes performing
slightly worse. This may be slightly helped by tuning its
parameters, but from our results it seems unlikely that it
would outperform linUCB and CW-OFUL consistently
enough to justify using it in this environment over one of
the others. We cannot give a conclusive answer on which of
these two algorithms would definitively be better in static
environments however, as their performance in our tests has
mostly been within each other’s confidence bounds. This
means that for a more conclusive answer, further research
would be required.

The comparison between contextual environments shifts
slightly in perturbed and slowly changing environments how-
ever. In both of these setups linUCB and SW-UCB show high
regret values in certain, albeit somewhat rare, configurations.
This is not unlike the behaviour of SW-UCB we described
in linear contextual environments. Interestingly, at least in
our tests, these algorithms do seem to show this behaviour
in different environments, never in the same one. The cause
of these high regrets seems different in contextual, perturbed
and changing environments however, and also doesn’t appear
to be the same for the two algorithms, so we don’t have a
conclusive reason for this occurrence. CW-OFUL does seem
to consistently either be within confidence bounds of the
algorithm with the lowest mean regret, or to be that algorithm

7



itself. Based on this it seems from our results, given that it
is feasible to tune its parameters based on the environment
it will be implemented in, that CW-OFUL is generally
the best choice in both types of changing environments.
This conclusion is somewhat surprising, as SW-UCB was
specifically designed for environments that gradually change
over time, whereas CW-OFUL was designed for adversarial
contextual environments.

5.1 Potential future work
While performing this study, a few points of interest came
to our attention which may be of value to research, but that
were infeasible to cover thoroughly in this paper due to our
various limitations.
A logical followup to this study would be to do more
reasearch into the cause of the high regrets that linUCB and
SW-UCB sometimes show.
Another would be to repeat our tests with more repetitions
and a higher time horizon, given more time and/or computa-
tion power, as a lot of the experiments ran in this study were
inconclusive due to limitations in these resources. In the
same vein, it would make sense to gather more robust data
on the influence of specific properties of the environment,
like the number of arms, dimension of the contexts and the
amount of noise, on the performance of the algorithms.
Beyond that, it would be of value to cover more types of
environments and bandit algorithms in general, including but
not limited to higher order algorithms that estimate their own
parameters instead of requiring information about the dataset
or tuning (ie. BOB [7]), or adversarial environments [4].
Another option that remains, which was originally intended
to be part of this study but that was left out due to a lack of
usable data, is using data from user interactions to test bandit
algorithms to simulate an environment more representative
of what the algorithms might encounter in practice.

6 Conclusions
The aim of this paper was to find the difference in regret-
based performance between the MAB algorithms UCB,
EXP3, linUCB, CW-OFUL in static, perturbed or slowly
changing environments and with or without user data as
context vectors.
In the basic, stochastic environments considered in this study,
UCB and EXP3 generally performed roughly the same,
but in the rare cases that there was a difference, UCB was
generally the one that performed better.
In contextual environments, the stochastic algorithms are
generally the ones with the worst performance.
LinUCB and CW-OFUL both consistently perform the best
in linear contextual environments, but in both of the changing
contextual environments in this study, CW-OFUL is the
algorithm with the most consistent good performance.
Interestingly, SW-UCB often does not perform as well as
linUCB and CW-OFUL in slowly changing environments,
even though it has been designed for that.

In conclusion, it appears from our results that UCB is
the best performing algorithm of our collection in basic,
stochastic environments with normally distributed rewards
and CW-OFUL is one of the best performing algorithms
in all of the contextual environments we considered, with
linUCB being a slightly better static environments, especially
if one wants to reduce the need to tune algorithm parameters.

7 Acknowledgements
Finally, acknowledgement should be given to Julia
Olkhovskaya, who was of great help explaining several
aspects of multi armed bandit problems, algorithms and
environments. Furthermore, I offer my sincere thanks to the
various anonymous students who reviewed this paper for
their feedback. Finally, I am very grateful for the help from
my peer group, and especially the help they offered in finding
errors in my code and fixing them.

References
[1] T. Lattimore and C. Szepesvári, Bandit algorithms.

Cambridge University Press, 2020.
[2] T. L. Lai, “Adaptive Treatment Allocation and the

Multi-Armed Bandit Problem,” The Annals of Statis-
tics, vol. 15, no. 3, pp. 1091–1114, 1987. DOI: 10 .
1214 / aos / 1176350495. [Online]. Available: https : / /
doi.org/10.1214/aos/1176350495.

[3] L. Besson, SMPyBandits: an Open-Source Research
Framework for Single and Multi-Players Multi-Arms
Bandits (MAB) Algorithms in Python, Online at:
GitHub . com / SMPyBandits / SMPyBandits, Code at
https://github.com/SMPyBandits/SMPyBandits/, doc-
umentation at https://smpybandits.github.io/, 2018.
[Online]. Available: https://github.com/SMPyBandits/
SMPyBandits/.

[4] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.
Schapire, “The nonstochastic multiarmed bandit prob-
lem,” SIAM journal on computing, vol. 32, no. 1,
pp. 48–77, 2002.

[5] W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual
bandits with linear payoff functions,” in Proceedings
of the Fourteenth International Conference on Artifi-
cial Intelligence and Statistics, JMLR Workshop and
Conference Proceedings, 2011, pp. 208–214.

[6] J. He, D. Zhou, T. Zhang, and Q. Gu, “Nearly optimal
algorithms for linear contextual bandits with adversar-
ial corruptions,” Advances in neural information pro-
cessing systems, vol. 35, pp. 34 614–34 625, 2022.

[7] W. C. Cheung, D. Simchi-Levi, and R. Zhu, “Learn-
ing to optimize under non-stationarity,” in The 22nd
International Conference on Artificial Intelligence and
Statistics, PMLR, 2019, pp. 1079–1087.

[8] P. Auer, “Using Confidence Bounds for Exploitation-
Exploration Trade-offs,” Journal of Machine Learning
Research, vol. 3, pp. 397–422, 2002.

8

https://doi.org/10.1214/aos/1176350495
https://doi.org/10.1214/aos/1176350495
https://doi.org/10.1214/aos/1176350495
https://doi.org/10.1214/aos/1176350495
GitHub.com/SMPyBandits/SMPyBandits
https://github.com/SMPyBandits/SMPyBandits/
https://github.com/SMPyBandits/SMPyBandits/


[9] N. Abe, A. W. Biermann, and P. M. Long, “Rein-
forcement Learning with Immediate Rewards and Lin-
ear Hypotheses,” Algorithmica, vol. 37, pp. 263–293,
2003. DOI: 10 .1007/s00453- 003- 1038- 1. [Online].
Available: https://doi.org/10.1007/s00453-003-1038-
1.

[10] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A
contextual-bandit approach to personalized news arti-
cle recommendation,” in Proceedings of the 19th in-
ternational conference on World wide web, ser. WWW
’10, ACM, Apr. 2010. DOI: 10 . 1145 / 1772690 .
1772758. [Online]. Available: http : / /dx .doi .org /10 .
1145/1772690.1772758.

[11] D. Arsene, C. M. Boon, M. Herrebout, W. Hu, and
R. Owczarski, Contextual SMPyBandits, Online at:
GitHub . com / thatCbean / SMPyBandits, 2024. [On-
line]. Available: https : / / github . com / thatCbean /
SMPyBandits/.

[12] C. M. Boon, Comparisons of bandit algo-
rithms in static and changing systems, Online
at: https : / / drive . google . com / drive / folders /
1JrtXX7Y - DM2ZRKCvpuFMjDQNPYH5rWFE ?
usp = sharing, 2024. [Online]. Available: https :
/ / drive . google . com / drive / folders / 1JrtXX7Y -
DM2ZRKCvpuFMjDQNPYH5rWFE?usp=sharing.

9

https://doi.org/10.1007/s00453-003-1038-1
https://doi.org/10.1007/s00453-003-1038-1
https://doi.org/10.1007/s00453-003-1038-1
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1145/1772690.1772758
http://dx.doi.org/10.1145/1772690.1772758
http://dx.doi.org/10.1145/1772690.1772758
GitHub.com/thatCbean/SMPyBandits
https://github.com/thatCbean/SMPyBandits/
https://github.com/thatCbean/SMPyBandits/
https://drive.google.com/drive/folders/1JrtXX7Y-DM2ZRKCvpuFMjDQNPYH5rWFE?usp=sharing
https://drive.google.com/drive/folders/1JrtXX7Y-DM2ZRKCvpuFMjDQNPYH5rWFE?usp=sharing
https://drive.google.com/drive/folders/1JrtXX7Y-DM2ZRKCvpuFMjDQNPYH5rWFE?usp=sharing
https://drive.google.com/drive/folders/1JrtXX7Y-DM2ZRKCvpuFMjDQNPYH5rWFE?usp=sharing
https://drive.google.com/drive/folders/1JrtXX7Y-DM2ZRKCvpuFMjDQNPYH5rWFE?usp=sharing
https://drive.google.com/drive/folders/1JrtXX7Y-DM2ZRKCvpuFMjDQNPYH5rWFE?usp=sharing


A Algorithm instance parameters Table 2: EXP3 Parameter values

γ
0.01
0.05
0.1
0.25
0.5
0.75

Table 3: linUCB Parameter values

α
100.0
50.0
20.0
10.0
5.0
2.0
1.0
0.5
0.2
0.1
0.05
0.01

0.001

Table 4: CW-OFUL Parameter values

α β λ
0.1 0.5 0.1

0.01 0.5 0.1
0.1 0.1 0.1

0.01 0.1 0.1
0.1 0.5 0.5

0.01 0.5 0.5
0.1 0.1 3
0.1 0.5 3

0.01 0.5 3
0.01 0.5 10
0.001 0.5 3
0.001 0.5 10

Table 5: SW-UCB Parameter values

window size R λ δ
50 0.1 1.0 1.0

200 0.1 1.0 1.0
50 0.1 3.0 1.0

200 0.1 3.0 1.0
50 0.4 3.0 1.0

200 0.4 3.0 1.0
50 0.1 3.0 0.5

200 0.1 3.0 0.5
50 0.1 0.5 0.5

200 0.1 0.5 0.5

10



B Enlarged graphs

Figure 1: Stochastic environment with identical reward mean and
variance for every arm

11



Figure 2: Stochastic environment with different reward mean for
every arm and low reward variance

Figure 3: Stochastic environment with different reward mean for
every arm and higher reward variance

12



Figure 4: Pattern 1 in a contextual environment with identical low
weights, identical low context means and low identical context vari-
ance

Figure 5: Pattern 2 in a contextual environment with identical low
weights, identical higher context means and strongly varying context
variance between every arm

13



Figure 6: Pattern 3 in a contextual environment with identical higher
weights, identical low context means and identical low context vari-
ance

Figure 7: Pattern 4 in a contextual environment with identical higher
weights, identical higher context means, identical low context vari-
ance, additional repetitions and a higher horizon

14



Figure 8: Contextual environment with identical higher weights,
identical higher context means and identical higher context variance

Figure 9: Contextual environment with identical low weights, iden-
tical low context means and strongly varying context variance

15



Figure 10: Perturbed contextual environment pattern where linUCB
converges far slower than the other two algorithms. SW-UCB and
CW-OFUL also generally show some divergence in these experi-
ments

Figure 11: Perturbed contextual environment pattern where SW-
UCB trends somewhat steeper after converging than the other two
algorithms. LinUCB and CW-OFUL tend to perform very similarly
to each other in these environments

16



Figure 12: Perturbed contextual environment pattern where SW-
UCB trends far steeper than the other two algorithms, with very little
variance. LinUCB and CW-OFUL tend to perform very similarly to
each other in these environments

Figure 13: Perturbed contextual environment with identical high
weights that get uniformly lowered for a relatively high duration on
a relatively large interval. It has identical low context means and
identical low variances

17



Figure 14: Perturbed contextual environment with strongly varying
weights that get uniformly lowered by 2 times the highest weight
for a relatively high duration on a relatively large interval. It has
identical low context means and identical low context variances

Figure 15: Slowly changing contextual environment with decreas-
ing uniform weights, identical high context means and identical low
context variances

18



Figure 16: Slowly changing contextual environment with strongly
varying weights where the distribution slowly inverts (eg. the high-
est weight becomes the lowest), identical high context means and
identical low context variances

Figure 17: Slowly changing contextual environment with increasing
uniform weights, identical high context means and strongly varying
context variances

19



Figure 18: Slowly changing contextual environment with increasing
uniform weights, identical high context means and strongly varying
context variances

Figure 19: Slowly changing contextual environment with increasing
uniform weights, identical high context means and strongly varying
context variances

20


	Introduction
	Methodology
	Process

	Experiment configurations and Results
	Stochastic environments
	Contextual environments
	Perturbed environments
	Slowly changing environments

	Responsible Research
	Discussion and Future Work
	Potential future work

	Conclusions
	Acknowledgements
	Algorithm instance parameters
	Enlarged graphs

