TU Delft

Optical Flow Estimation Using Event-Based Cameras
Improving Optical Flow Estimation Accuracy Using Space-Aware De-Flickering

Per Magnus Skullerud
Supervisors: Nergis Tomen, Hesam Araghi

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Per Magnus Skullerud
Final project course: CSE3000 Research Project
Thesis committee: Nergis Tomen, Hesam Araghi, Guohao Lan

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Event cameras are novel sensors whose high tem-
poral resolution and bandwidth motivate their use
for the optical flow estimation problem. However,
the properties of event cameras also introduce a
vulnerability to flickering. Flickering hurts the per-
ceptibility of motion by overwhelming event data
with unrelated information. The single existing
event de-flicker method (EFR) is built for scenarios
where the relative position of the camera and the
flickering object is constant, which is uncommon
in motion-heavy optical flow estimation scenarios.
Our contribution is a new de-flickering method that
incorporates spatial awareness of nearby pixels. We
hypothesize this feature to increase robustness to
movement, and thus to better improve optical flow
accuracy. Compared to EFR our method falters
at filtering intensely flickering surfaces, but better
preserves the spatial coherence of edges. However,
we observe that both de-flickering methods remove
much geometric information, especially given slow
motion or weak ambient illumination. Our bench-
marking shows that neither our method nor EFR
significantly affects optical flow estimation accu-
racy, despite reducing event counts by 50 — 65%.
Overall, we conclude that the niche benefits of spa-
tial filtering are nullified by the result that filtering
hardly affects optical flow estimation.

Code: https://github.com/per1234567/
spatial-event-flicker-filtering

1 Introduction

Optical flow estimation is the problem of predicting near-
future motion using earlier motion. More precisely, opti-
cal flow is the displacement of pixels corresponding to the
same object in two adjacent video frames [3]. Predicting
optical flow is relevant to systems whose functioning incor-
porates the movement of their surroundings (e.g. drones,
robots, etc.). Conventional (shutter-based) cameras are suit-
able for computing optical flow if motion is slow, but details
are lost at high speeds due to motion blur and insufficient
frame rates [2]. These problems are alleviated by event cam-
eras - novel sensors featuring high temporal resolution and
bandwidth, as well as high dynamic range. However, event
data is largely incompatible with optical flow estimation algo-
rithms designed for standard cameras. That is because stan-
dard cameras produce periodic frames containing absolute
brightness and colour information, whereas event cameras
record asynchronous per-pixel brightness changes (events).
In spite of event cameras’ challenging and unfamiliar output
format, their great potential for optical flow estimation has
spurred ample research [4].

A broad challenge in using event cameras for optical flow
estimation is accounting for brightness variations. That is be-
cause events produced by brightness variations are uncorre-
lated to motion, and thus obstruct the purity of motion in-
formation. This work focuses on a type of brightness varia-
tion known as flickering. Flickering is a faint, high-frequency

2. Accumulate each cell’s events
onto the temporally nearest frame.

1. Divide events into dense cuboidal
spaciotemporal cells.

Time ice st of el 6

4. Remove events in a space-aware way
to match the smoothed polarity sum
graph. The filtered event set can now be
reconstructed.

3. Compute the difference of the number
of up and down events at each frame.
Smoothen the curve to remove high-
frequency components.

Figure 1: Our algorithm’s event data de-flicker pipeline. Step 1 im-
age adapted from Gallego et. al.’s survey [4].

brightness oscillation exhibited by some light bulb designs
when connected to an AC power grid. While flickers are
usually too faint to be observed by the naked eye or even
a standard camera, they are easily picked up by event cam-
eras due to their high dynamic range and temporal bandwidth
[6]. Flickering can overwhelm an event stream, increasing
processing costs while distorting the scene’s geometric fea-
tures. Explicitly mitigating flickers is not essential when us-
ing learning-based methods, as training can embed a resis-
tance to the adverse effects of flickering [7]. However, pow-
erful model-based methods built on the Contrast Maximiza-
tion (CM) [5] framework often assume brightness constancy
(that scene illumination is invariant); the methods’ unavoid-
able reliance on this assumption is listed as a limitation [3; 5;
8; 10]. Some of these methods explicitly highlight bad accu-
racy attained on the popular DSEC dataset’s [6] single heavily
flickering test sequence zurich_city_12_a. To the best of our
knowledge, the adverse effects of flickering on optical flow
estimation have never been explicitly investigated.

Our research follows from EFR [11], which is (to the best
of our knowledge) the only algorithm removing flickering
from event data. This method produces remarkable results in
static conditions but is not designed (nor tested) for motion-
rich scenarios such as optical flow estimation, where the rel-
ative position of the camera and the flickering object is not
constant. That is because the algorithm performs filtering per
pixel, but the temporal distribution of events reaching a sin-
gle pixel is likely distorted by motion. We hypothesize that
integrating spatial awareness into event-based de-flicker
filters improves subsequent optical flow estimation accu-
racy. We further hypothesize that the effect is more posi-
tive for CM-based methods due to them frequently assuming
brightness constancy. The overarching objective is to derive
an algorithm filtering out flickers that is robust to motion, or
to demonstrate that such an improvement is not beneficial.

https://github.com/per1234567/spatial-event-flicker-filtering
https://github.com/per1234567/spatial-event-flicker-filtering

To investigate our hypothesis, we design a motion-resistant
algorithm that pre-processes event datasets to remove events
identified as caused by flickering. We achieve this by group-
ing events into small spatial regions, wherein distortions
caused by small movements are less noticeable. We then re-
move events responsible for rapidly changing ratios of bright-
ness up and down events in narrow temporally adjacent slices.
The process is visualized in Figure 1. We test our algorithm
against EFR in scenarios with and without flickering, using
CM-based and supervised learning-based optical flow estima-
tors. In short, our contributions are:

* A hypothetically motion-resistant algorithm to remove
flickering from event data.

* An evaluation of our method relative to EFR for optical
flow estimation tasks.

* A deeper understanding of the impact of flickering on
event data used for optical flow estimation.

2 Previous works

2.1 The Effects of Brightness Variations in Optical
Flow Estimation

Model-based optical flow estimators are predominantly built
on the Contrast Maximization (CM) framework, which as-
sumes Brightness constancy [5]. This restrictive assumption
is therefore inherently embedded into CM-based optical flow
estimators, but they are nevertheless promising due to their
great accuracy in favourable lighting conditions. A notable
example is MultiCM [10], which builds upon the initial for-
mulation of CM to mitigate its dominant aperture and event
collapse problems [9]. MultiCM has been empirically shown
to outperform many learning-based methods in the widely
used MVSEC [13] dataset. This result suggests that accurate
optical flow can be computed without network-based meth-
ods, which is relevant in scenarios where GPU acceleration is
impractical. Brightness constancy is also regularly assumed
by self-supervised learning (SSL) methods that use CM as an
objective function. TamingCM [8] is one such method; it in-
tegrates CM by continuously adjusting contrast-maximizing
motion directions upon receiving new events. TamingCM
performs well if lighting is constant, but benchmarks on
the single flicker-heavy zurich_city_12_a sequence from the
DSEC dataset [6] suggest that intense brightness variations
heavily hurt accuracy. TamingCM’s EPFE (average endpoint
error) metric on this sequence is 50.4% worse than the av-
erage of all test sequences, as seen in the publicly available
optical flow estimation benchmark on the DSEC dataset [1].
Therefore, it is both theorized and evidenced that CM-based
methods are adversely sensitive to brightness variations.
Supervised learning (SL) methods can discard the bright-
ness constancy assumption because training them may em-
bed an ability to account for brightness variations. However,
training SL methods is difficult due to the immense challenge
of acquiring ground-truth optical flow vectors. Furthermore,
encoding event data into tensors typically leads to losing in-
formation about the temporal distribution of events [7; 12;
14]. An early SL method is EV-Flownet [14], which en-
codes events as 4-channel 2D images containing the count

and most recent timestamp of up and down events at each
pixel. Later methods, such as E-RAFT [7] and IDNet [12],
encode events into 3D voxel grids, effectively preserving
more temporal detail. This data representation is more likely
than EV-Flownet’s to capture intricate temporal patterns such
as flickering. In the DSEC benchmark [1], both E-RAFT’s
and IDNet’s FPE metric is ~20% better in the flicker-heavy
zurich_city_12_a sequence compared to their respective av-
erages over all sequences. This is in stark contrast to Tam-
ingCM'’s significant decrease in accuracy. It is worth not-
ing that SL. methods consistently outperform all other bench-
marked methods, though it has been posited that SL methods
overfit to DSEC’s largely forward-facing motion [10]. Never-
theless, an accuracy improvement observed on a flicker-heavy
sequence suggests that SL. methods may be resistant to bright-
ness variations due to their inherent properties.

2.2 Event Data De-Flickering

To the best of our knowledge, EFR [11] is the only algo-
rithm that attempts to solve the problem of removing flick-
ering from event data. EFR incorporates the observation that
the brightness signal of flickering lights is not sinusoidal, but
is composed of infinitely many harmonics of decreasing mag-
nitude, with peaks at multiples of the power grid frequency.
This observation motivated EFR to use a feed-forward comb
filter with a feedback mechanism, which encodes an ability to
attenuate the recurring frequency peaks. Figure 2 shows the
power spectral density of a light bulb, and the comb filter’s
corresponding shape. EFR produces good results when the
relative position of the light source and camera is constant.
However, the method performs filtering per pixel, where each
pixel is exposed to the same composition of harmonics over
a long time frame. These conditions are likely to be violated
in many optical flow estimation scenarios, as both the camera
and the flickering objects may move independently. We are
not aware of any methods preprocessing event data to reduce
flickering adapted to motion-heavy situations.

. SN B
.|
|

Magnitude (dB)
&

ne (dB)

olum

v

Phase (deg)

-400 200 200 400

0 100 200 300 400 500

0
Frequency (Hz) Frequency (Hz)

Figure 2: Left: The power spectral density of a flickering light
bulb’s intensity. Right: The frequency response of the comb filter
used by EFR; damping occurs at the frequency peaks of flickering.
Images taken from the EFR paper and video demonstration [11].

3 Method

We describe the process of designing our algorithm to remove
events caused by flickering in motion-heavy scenarios. We
begin by describing event cameras and CM, whose proper-
ties have motivated our decision to improve optical flow es-
timation via preprocessing. We then discuss our assumptions

made to ease modeling flickers, and finally, we explain our
algorithm’s steps.

3.1 Event Cameras & Contrast Maximization

Event cameras are light sensors built upon an operation prin-
ciple different to conventional (frame or shutter-based) cam-
eras. Instead of employing a shutter mechanism to capture
frames at a constant frequency, pixels of event cameras in-
dividually record asynchronous events triggered whenever
the change in brightness (log intensity) since the last emit-
ted event exceeds a certain threshold [4]. The output of an
event camera is thus a stream of data points characterized
by four parameters: pixel x and y coordinates, timestamp ¢,
and polarity p € {—1,+1} (whether brightness decreased
or increased respectively). Event cameras boast high tem-
poral resolution and high pixel bandwidth, as well as low
power consumption and high dynamic range. However, event
cameras do not measure absolute brightness nor color; event
streams are difficult to integrate with multimedia processing
algorithms designed for classical cameras.

CM is one of the first methods operating natively on event
data [5], optical flow estimators built upon it show good per-
formance if lighting is constant [8; 10]. CM’s reliance on
brightness constancy follows from its modeling of all events
as caused by moving edges, whose movement leaves a pla-
nar trail of events in spacetime. CM finds the orientation of
the planar trail by warping its constituent events along a tra-
jectory, iteratively adjusting it to make it better resemble a
likely direction of motion (Figure 3). The objective function
of this iterative process is the variance (contrast) of a 2D im-
age whose pixel intensity is the count of events accumulated
along the trajectory ending at that pixel. However, the pres-
ence of brightness events uncorrelated to motion can reduce
image contrast at any warp direction. The consequence can
be a slower convergence speed of optimization or an incorrect
final direction, especially in cases of structured noise such as
flickering. Furthermore, warp trajectories are typically as-
sumed to be linear; regions containing motion modellable
as linear are small and thus lack context from surrounding
events that may help identify large edges whose observabil-
ity is less impacted by noise. CM’s demonstrated weakness
to flickering, alongside its indispensable reliance on bright-
ness constancy, has motivated our choice to filter out flickers
via preprocessing as opposed to integrating flicker resistance
directly into optical flow estimators.

1452 q457 100 120 140 160
time [s] X [pix] time [s] X [pix]

Figure 3: Left: A 3D scatter plot representing events in spacetime.
Right: When viewed from the angle corresponding to the direction
of motion, the events form a sharp image. Contrast Maximization
finds this direction. Images from Gallego et. al.’s survey [4].

3.2 Problem Modelling

To make the problem of identifying flickering-induced events
tractable, we replace brightness constancy with several new
less restrictive assumptions, not as likely to be violated in a
real-world scenario. The assumptions, while not universally
describing brightness inconsistencies, provide a framework
for identifying events triggered by flickering. These ideas
follow primarily from observations we have made while ex-
ploring event data.

1. Events caused by mild brightness changes are indistin-
guishable from noise. Mild brightness changes are char-
acterized by a relatively small total number of events and
presence across the whole scene possibly over a long
time period. This characterization is almost identical to
that of noise (sporadic, isolated motion events), possibly
differing solely by illumination events’ near-uniform po-
larity in a short time slice. However, harnessing this dis-
tinction is probably unrealistic given the large number of
total events produced under normal conditions.

2. The presence of brightness events does not affect the ob-
servability of motion events (and vice versa). It follows
that each event can be classified as uniquely produced
by a motion or a brightness change, an idea underpin-
ning the process of filtering out events identified as un-
wanted. However, the assumption may be violated in
cases where motion and illumination changes affect a
scene point simultaneously. For example, equal posi-
tive and negative brightness changes produced by mo-
tion and lighting changes would cancel out, effectively
producing no events at the affected spatiotemporal re-
gion. Mitigating this would require generating artificial
events to fill the gap, which is likely overcomplicated for
fixing these edge cases. Realistically, however, an over-
lap of motion and brightness event groups in a region
maintains many of their distinguishable features.

3. Motion events are spatially close to other motion events
of opposite polarity. Brightness at a point does not rise
nor fall indefinitely, so the presence of many +1 events
must be followed by a presence of —1 events (and vice
versa). In the case of motion events, this can usually be
observed as edges of opposite polarity passing through
pixels sequentially as seen in Figure 4. On the other
hand, flickers result in close proximity between events of
opposite polarity temporally because flickering is an os-
cillation of illumination intensity over time. This obser-
vation is important for modeling the way events caused
by different effects are positioned relative to each other.

The three assumptions imply the use of temporal filtering
in small spatial regions to be beneficial. The first assump-
tion suggests that for brightness events to be distinguishable,
the illumination changes should be intense, i.e. many events
can be attributed to them. The third assumption implies that
the sum of event polarities in a spatiotemporal region mildly
fluctuates around zero when only motion events are present,
since the presence of an edge results in a similar number of
events of opposite polarity. Whereas these fluctuations are
chaotic and aperiodic, flickering is likely to appear mostly si-
nusoidal. Consequently, a time series of event polarity sums

Figure 4: A common spatial feature of event data is edges being mir-
rored in the direction of motion by edges of opposite polarity. Visu-
alization frame from sequence interlaken_00_c of the DSEC dataset
[6]. The frame is produced by grouping events by pixels in a tempo-
ral slice of width 1/200s, and color-coding pixels by the dominant
event polarity (blue if +1, red if —1, white if equal).

(the count of +1 events minus the count of —1 events) will
appear as fluctuations around zero superimposed onto a high-
magnitude sinusoid. We can remove it with a smoothing filter
while maintaining the motion component of the time-series.
The presence of the sinusoid is unlikely to be affected by
small movements, as translating event clouds spatially retains
largely the same distribution of dominant event polarities over
time. This will not hold under fast motion due to many events
entering and leaving the boundaries of a fixed spatiotemporal
region; this is a limitation of our method. Nevertheless, in
most scenarios, as hypothesized, we expect that incorporat-
ing information from events spatially close to those being fil-
tered increases robustness to motion and thus result in more
accurate optical flow estimation.

3.3 Algorithm Description

We integrate the results of previous works with our observa-
tions to derive an algorithm for solving the problem at hand.
We provide, motivate, and evaluate the steps of the algorithm.
We choose hyperparameters that work favourably with the
DSEC dataset, which our implementation is designed around.
The steps of our algorithm are:

1. Group all events into cells of a dense 3D lattice. This
is done to group events into clouds of a size appropri-
ate for identifying flickering behaviour. Specifically, we
first divide the entire event space into temporal slices
of width 1 second, then divide each slice spatially into
80 x 60 cells of dimensions 8pz x 8pz. Temporal slicing
is essential to avoid loading in the entire dataset simul-
taneously, assuming that events are pre-sorted by time.
The cell dimensions 8px X 8pxr were chosen because
they evenly divide the pixel dimensions of the camera
used to record the DSEC dataset (640pz x 480pz) [6].
A cell too small would be unable to capture oscillating
behavior due to insufficient data, whereas one too big
may contain different lighting effects or lead to heavy
discretization artifacts in the filtered event set. In our
testing, cell dimensions of size 1s x 8px x 8px produce
visualizations with desirable features.

2. Compute the event polarity sum time series in each
cell. This step is what fundamentally highlights the pres-
ence of brightness oscillations by sampling the domi-
nant event polarities at many time steps within a cell.
To achieve this, we subdivide the cell temporally into
200 equally spaced frames and group events into their
respective temporally closest frames by common pixel
coordinates. An illustration of how we perform the event
splitting is given in Figure 5. The hyperparameter 200
is a multiple of the frequency of the AC power grid of
Switzerland (50Hz), where DSEC was recorded [6]. We
sum the event polarities of each frame to obtain a 1-
dimensional time-series of length 200.

time [s] X [pix]

Figure 5: Left: Example of event grouping showing three 0.02s x
20px x 20pz cells in an event space, adapted from [4]. Right: A
division of a cell’s events into 5 frames. The images are formed
using parameters with values chosen to ease visualization.

3. Apply a Gaussian filter onto the event polarity sum
time-series. By applying a Gaussian filter onto the time-
series obtained in the previous step, we remove the high-
frequency sinusoidal component as shown in Figure 6.
We use o=1, as this smoothens out adjacent peaks of
the high-frequency flickering while preserving the low-
frequency general shape of the series. We opt for a Gaus-
sian filter due to its generality; a filter derived from the
power spectral density of a flickering light bulb (Fig-
ure 2) may suffer from its dominant frequencies being
distorted by motion. With respect to our second assump-
tion, this step corresponds to removing the event field
caused by flickering while maintaining the natural fluc-
tuations resulting from motion.

—— original time series
301 —— Smoothened time series

Polarity sum

0.0 02 0.4 0.6 0.8 1.0
Time since start of cell (s)

Figure 6: The original and the dampened event polarity sum time-
series in a cell; our method attenuates flickering visible at 0.3-0.4s.

4. Delete events such that the event polarity sum time-
series matches the smoothed one. This means delet-
ing +1 events in frames whose time-series entry was
decreased by smoothing, or —1 events where smooth-
ing increased it. The challenging part of this step is
removing events in a way that preserves well-defined
edges while removing the formless event structures at-
tributable to flickering. To solve this problem, we group
events from adjacent 2 x 2 pixel squares into buckets and
repeatedly remove one event from each bucket until the
expected number of events in the frame is reached. Our
approach removes a smaller proportion of events from
dense clusters compared to sparse noise-like fields as ex-
emplified by Figure 7. Conversely, a simpler method like
randomly selecting events for deletion would remove the
same proportion from edges and flickers. This step con-
cludes the algorithm.

Figure 7: Left: The dominant event polarity at each pixel in a frame.
Right: The frame after removing 636 events of polarity +1. Sparse
& noisy regions are affected more heavily as desired; the clear edge
is preserved.

4 Evaluation

‘We begin this section by discussing the implementation of our
described algorithm and presenting the experimental setup.
Our results begin with an analysis of the filtering itself, which
we use to support the subsequent analysis of the optical flow
estimation results.

4.1 Implementation

We have implemented and published the described algorithm
in Python. Since we have not implemented GPU acceleration,
our algorithm is too slow to be practically applicable - filter-
ing a dataset with 10° events on an Intel i5-7500 CPU takes
around 2 hours. The performance is mostly limited by the
process of removing events, as we were unable to find a fast
method of grouping events by common coordinates; this part
of our algorithm is implemented in pure Python. As such, our
code is primarily a proof of concept to be used for research
purposes.

Our development was guided by visualizing the effects
of possible adjustments using the zurich_city_10_a sequence
from the DSEC dataset [6]. This sequence was chosen as it
is characterized by a strong flickering due to overhead street-
lights in a relatively dark evening setting, as seen in Figure 8.
As a result, the implementation may not generalize without
tweaking our chosen parameters. Notably, the hyperparame-
ter denoting the number of frames per cell (200 in our case)

is chosen with knowledge of the lights’ flickering frequency.
We specifically use the sequence zurich_city_10_a because it
captures the effects of flickering while involving few other
severe challenges.

. hpll

Figure 8: Left: A frame recorded using a standard camera from
DSEC’s zurich_city_10_a sequence. Right: A frame at the same
timestamp constructed from event data; flickering events on the
street are abundant. The frames appear misaligned due to absent
rectification.

4.2 Procedure

Given that our algorithm is a proof-of-concept solution to a
scarcely studied problem, we aim to test on cases we know to
be favourable. Therefore, we test on a reduced version (first
10° events) of the flicker-heavy sequence zurich_city_10_a,
which was also used to guide development. To evaluate the
ability of our algorithm to distinguish flickers from other ef-
fects, we also test on the sequence zurich_city_02_d which is
filmed at a brighter time of day and displays no flickering.
Both sequences are shot facing forward from a car driving
along a street, the vehicle’s speed is faster in zurich_city 02 _d.
We aim to provide complete qualitative and quantitative eval-
uation for both filtering and optical flow estimation. We ex-
amine the original sequences, as well as ones filtered by our
algorithm and by EFR, to determine if our spatial awareness
delivers meaningful benefits.

To support the analysis of optical flow estimation results,
we begin by identifying noteworthy characteristics immedi-
ately displayed by the filtering process itself. We visualize
the original event set alongside the filtered one and qualita-
tively highlight notable phenomena. Our visualization tech-
nique is a video made of frames using the same method
as described in Figure 4. We focus on our chosen flicker-
heavy sequence zurich_city_-10_a because we are primarily
interested in the effect of filtering on large flickering blobs,
where a large number of flicker events is concentrated. We
also care about the clarity of affected edges, as they are heav-
ily exploited by optical flow estimators to discern motion [7;
8]. Overall, we seek to determine whether both de-flickering
algorithms’ results correspond to expectations before at-
tempting to predict optical flow.

Ultimately, we are interested in the effect of filtering on
optical flow estimation accuracy. To validate our hypothe-
sis that spatial filtering is an improvement, we benchmark
our two chosen sequences on their original forms, as well as
versions produced by filtering using our algorithm and EFR.
As optical flow estimation algorithms, we use TamingCM [8]
since it is the best-ranked CM-based algorithm on the public

DSEC benchmark (as of the writing of this paper) [1]. To
contextualize the relevance of flickers to CM, we additionally
benchmark E-RAFT as a representative supervised learning
(SL) method [7]. We use a checkpoint, pre-trained on DSEC,
provided by each method’s authors; we do not train the net-
works ourselves. We record two often used metrics: the av-
erage Euclidean distance between predicted and ground truth
optical flow vectors (EPE), and the percentage of vectors off
by more than 3 pixels (3PE%). As also hypothesized, we ex-
pect our filtering’s advantages to be best defined when using
TamingCM on zurich_city_10_a because of CM’s sensitivity
to flickers. To better justify the validity of our results, we
qualitatively highlight noteworthy variations of errors by spa-
tiotemporal region.

It is worth noting that the benchmarking was not performed
under perfectly identical conditions. A problem arises from
TamingCM using reformatted versions of DSEC sequences,
whereas E-RAFT accepts them in the same format as they
are downloaded from the official repository [1]. To mend
this problem we had to edit TamingCM’s data loader. Sim-
ilarly, since EFR loads events stored in a .zxt format, we mod-
ified its data loader to support the .45 format used natively by
DSEC sequences. We also use our own code to compute met-
rics. These circumstances affect the reliability of our work;
we seek to mitigate this by providing all supplementary code
used alongside our filtering algorithm itself.

4.3 Filtering

Just like EFR, our algorithm successfully removes the bulk
of flickering events. Figure 9 demonstrates a decrease in the
overwhelming number of flicker events below the streetlight
in the sequence zurich_city_10_a. However, as seen in Ta-
ble 1, EFR removes 12.8% more events than our algorithm.
The images suggest that our algorithm struggles at the bound-
ary of the flickering blob; this faltering is likely caused by
a quickly changing flickering intensity at this spatial region
over time due to motion. This is an example of a discretiza-
tion problem caused by our algorithm dividing event space
into 8px x 8pz cells, with related artifacts evident at the
boundaries between cells containing starkly different flicker-
ing intensities. It seems that EFR’s per-pixel filtering is more
effective on large textureless surfaces such as the street, since
the distribution of events upon it appears near-uniform spa-
tially due to the absence of edges. Naturally, spatial aware-
ness has no reason to be beneficial in this case, and can only
lead to discretization problems. However, EFR filters the
flicker-free sequence zurich_city_02_d more aggressively, re-
moving almost twice as many events as our algorithm. Over-
all, our algorithm satisfies its most basic expectations; while
our removal of bulk flickers is not as effective as EFR’s, we
are less likely to mischaracterize motion events as caused by
flickering.

A big downside of both filtering methods is that edges,
particularly minuscule ones, lose much of their definition.
Concerningly, this appears to be a consequence of the algo-
rithms working as intended. Given the dark ambient light-
ing, the flickering street light is a dominant part of the to-
tal illumination received by many edges. Removing flicker-
ing events from them thus means removing much information

%

Figure 9: Filtering removes most flickering events. Three pairs of
subsequent frames (5ms apart) at the same timestamp, constructed
using event data of the sequence zurich_city_10_a. Left: No filtering.
Center: EFR. Right: Our filtering.

Filtering | Sequence Event count
g q Count Reduction
None zurich_city_10_a 1.000-107 | n/a
zurich_city 02_d || 0.795-10° | n/a
EFR zurich_city_10_a 0.368-10% | 63.2%
zurich_city 02_d 0.506-10° | 36.4%
Ours zurich_city_10_a 0.496-10% | 50.4%
zurich_city 02_d 0.640-10° | 19.5%

Table 1: The decrease in event count as a result of filtering.

about their presence. As seen in Figure 10, our algorithm re-
duces the thickness of edges by discarding events outside of
the dense central region, whereas EFR leaves thick but noisy
edges by removing events evenly. As anticipated, movement
results in EFR filtering adjacent pixels inconsistently. The
distinction showcases the effect of recognizing the spatial co-
herence of edges, though it is unclear whether our algorithm’s
behaviour is better due to its reduction of edge thickness.
Both algorithms show a clearly detrimental effect to small
edges, which produce few motion events. This suggests that
flickering may actually highlight edges by repeatedly creating
events upon them at a much greater pace than motion under
constant lighting would. It may also be the case that the in-
tense flickering obstructs the creation of motion events. In
either case, it is clearly evidenced that filtering removes some
useful information about the scene’s geometric features.

4.4 Optical Flow Estimation

The most striking finding, presented in Table 2, is that
filtering hardly affects optical flow estimation accuracy in
any case. The most significant change is on the sequence
zurich_city_10_a when using E-RAFT, with the 3PE% met-
ric increasing by 27-30%, though this is likely because of its
small absolute value. We observe no cases where filtering in-
creases one of the two metrics but decreases the other. Filter-
ing always hurts E-RAFT accuracy whereas TamingCM sees
some improvements, though the changes are < 5% for either
metric. Curiously, the flicker-free zurich_city_02_d sequence
shows mild improvements despite losing non-flicker events,
implying that any high-frequency variations may be detri-
mental. One of the few consistent results is that our filtering

Figure 10: De-flickering causes a harmful reduction to the clarity of
edges. The fine tree branches are nearly eliminated, the tree support
structure is diversely affected. Left: No filtering. Center: EFR.
Right: Our filtering.

gives better results than EFR when using E-RAFT, whereas
the opposite is true for TamingCM. It must be remarked that
TamingCM’s results are much worse than E-RAFT’s; it is
clearly easier to increase accuracy (or not decrease it as much)
the worse it is initially. Overall, neither our algorithm nor
EFR meaningfully affects optical flow estimation despite re-
moving a significant portion of events. Both methods’ bench-
marks are hardly different and do not strictly favour either
algorithm; we cannot conclude which one is better.

Filtering TamingCM E-RAFT
EPE| 3PE%) | EPE] 3PE%)
None 3.36 344 0.44 1.05
EFR 3.22 33.6 0.63 1.33
Ours 3.45 36.1 0.54 1.31
(a) zurich_city_10_a results (heavy flickering)
Filtering TamingCM E-RAFT
EPE| 3PE%)| | EPE] 3PE%.
None 3.25 25.7 0.72 2.98
EFR 3.17 24.6 0.88 3.88
Ours 3.20 25.5 0.75 3.12

(b) zurich_city_02_d results (no flickering)

Table 2: Benchmarked optical flow estimation metrics. a) Results
obtained on the sequence zurich_city_-10_a. b) Results obtained on
the sequence zurich_city-02_d.

A big limitation of the results from Table 2 is that ground
truth optical flow vectors are sparse. Due to the peculiari-
ties of the process used to obtain them, they are generally
only available for pixels corresponding to edges as opposed
to textureless surfaces [6]. The consequences are illustrated
in Figure 11, showing how ground truth optical flow vectors
are concentrated at the scene’s sides as opposed to the street.
As a result, we could not quantitatively evaluate filtering on
the street below the lamps, where we have observed the most
dominant desirable elimination of flicker events. Another ex-
planation for the neutrality of the results is that TamingCM,

and to a larger extent E-RAFT, may both be overfitted to the
original sequences’ overwhelmingly forward-facing motion
[10]. Upon filtering, the sequences may become less familiar
to both algorithms due to a reduced density of event clusters.
These effects imply that to a large extent, quantitative eval-
uation is insufficient to conclusively evaluate the effects of
filtering.

07

°
d

roportion of GT flow vectors define

°
P

Figure 11: The partial availability of ground truth flow vectors on the
first ground truth frame of the sequence zurich_city_10_a. Left: A
frame from the sequence; pixels for which GT is defined are white.
Right: The proportion of frames for which a GT flow vector is de-
fined at each pixel. Both frames are rectified.

It is worth noting that each entry in Table 2 is computed
as the average of comparing around 107 predicted flow vec-
tors with their ground truth counterparts. Naturally, much
information about the spatiotemporal distribution of errors
is lost. One interesting temporal observation is that Tam-
ingCM’s (unlike E-RAFT’s) predicted flow vectors are con-
sistently shorter than the ground truth’s, as seen in Figure 12.
As for many CM-based approaches [10], recognizing the cor-
rect speed of fast motion appears to challenge TamingCM.
Filtering further worsens this problem, which is likely caused
by edge thinning (Figure 10) since fewer events generally in-
dicate slower motion. On the other hand, improvements to
TamingCM’s behaviour caused by filtering are clearly visi-
ble when analyzed spatially. As seen in Figure 13, the event
cloud formed below the streetlight (Figure 9) results in Tam-
ingCM predicting optical flow at a direction roughly perpen-
dicular to the true motion. Eliminating these events results
in zero flow predicted, which while also incorrect, is unsur-
prising given the noise-like cloud remaining on the flat tex-
tureless street. Flow predicted by TamingCM is also more
intricate, possibly explaining why its accuracy is worse when
using our filtering (Table 2) - we reshape edges more strongly
than EFR. E-RAFT still correctly predicts flow on the street
irrespective of the (lack of) information present before and
after filtering, which implies overfitting. Overall, a valuable
takeaway is that TamingCM (unlike E-RAFT) reacts as ex-
pected to the identified positive and negative aspects of filter-
ing.

5 Responsible Research

We go to a great extent to maximize the reproducibility of our
research. We provide all of our code and the files from other
projects we modified to facilitate our experiments. We have
maintained as many variables as possible equal to the original
authors’ default settings, all deviations are documented both
in this paper and the public repository. The code written by

— Flows predicted on unfiltered events — Flows predicted on unfiltered events
1B — Flows predicted on filtered events — Flows predicted on filtered events
— GTflow 2 — GTflow

low vector length (px)

Average fi
Average flow vector length (px)

Figure 12: The average lengths of predicted and ground truth flow
vectors per frame of the sequence zurich_city_10_a. Left: The case
of E-RAFT. Right: The case of TamingCM. Only the first 200
frames are used for clarity of the figure.

Figure 13: Visualizations of optical flow prediction frames at the
same timestamp. Center: The used encoding of flow vector direc-
tions as color; a color at the circle’s edge indicates a flow vector of
magnitude 90px. Top left: E-RAFT, no filtering. Bottom left: E-
RAFT, our filtering. Top right: TamingCM, no filtering; a region of

erroneous flow is outlined in white. Bottom right: TamingCM, our
filtering; filtering eliminates the erroneous flow predicted.

us is minimal and well-documented to permit simple analy-
sis, tweaking, and reproduction of results. All of our used
datasets are publicly available, figures are labeled such that
the data used to generate them can be easily extracted. Our
implementation slightly randomizes which particular events
to delete, though it is unlikely that this effect leads to signifi-
cantly different results.

With the tremendous amount of predicted flow vectors ob-
tained, it is possible to intentionally choose unusual ways
of analyzing them that would illustrate a disproportionately
positive outcome. This is particularly enticing given that
the near-universally used quantitative optical flow evaluation
methods (Table 2) show neutral results. However, we firmly
believe that this evaluation discards much useful information
about the effects of filtering due to the unfavourable positions
where ground truth is defined. As such, it is misleading to not
provide a qualitative analysis of what goes wrong. The par-
ticular examples in figures 12&13 were chosen to showcase
how the main identified positive and negative aspects of fil-
tering translate into optical flow estimation. To avoid cherry
picking favourable frames, we use ones at the same times-
tamp in all of section 4’s figures (9, 10, 11 (left), 13). Given
the difficult-to-compare results we obtained (many of which

are qualitative), we avoid making definitive conclusions about
the properties of filtering. We hope that our observations will
lead to future interest; we believe this is appropriate given the
virtually unexamined state of this paper’s niche subject.

An important ethical concern stemming from the develop-
ment of event cameras is that their various properties make
them highly suitable for surveillance tasks. To disable such
a system or simply hurt its performance, intentionally gen-
erated flickering could be used. Therefore, removing flick-
ers may represent a conflict of interest between owners of
the surveillance system and those it is used to monitor. This
problem is linked to the broader societal issue of exchanging
personal freedoms for security. Nevertheless, we believe that
a significant number of proposed sincere uses of event cam-
eras may be held back by flickering, such as self-driving cars
at night. Nevertheless, it must be kept in mind that the mali-
cious applicability of event cameras (and/or flicker removal)
may prove to outweigh the benefits once more research be-
comes available.

6 Discussion

We obtain a more nuanced view of flickering by analyzing
how removing it affects the scene at diverse regions. Flicker
events are most visible in bulk on large edgeless surfaces, but
they are present in non-negligible quantities on edges as well
(Figure 10). Filtering successfully removes flickers on the
flat street below the lamps (Figure 9), though the benefits of
this are scant. That is because what remains is mostly noise,
not easier-to-discern motion. On the other hand, events pro-
duced by edges form well-defined geometric clouds evolving
in measurable ways over time. While removing flickers from
edges may seem beneficial, it has the side effect of reducing
the edge’s clarity. This means, to a large extent, removing
information about an edge’s presence that may be useful to
an appropriately designed optical flow estimation algorithm.
The effect of thinning an edge is similar to a decrease in il-
lumination intensity or motion speed, both of which are cor-
related with the density of events corresponding to an edge
(Figure 12). Overall, flicker removal increases the uniformity
of edges’ event polarities, but hurts the observability of the
scene’s well-defined geometrical features.

The only clearly identified advantage of filtering is that it
greatly reduces the number of events in a dataset at a minimal
impact on accuracy. This is true for both our algorithm and
for EFR. However, their subtle differences result in our fil-
tering giving better performance when using E-RAFT, unlike
TamingCM, which prefers EFR (Table 2). Filtering seems
to always decrease E-RAFT’s performance, so one might as-
sume that our algorithm is better because it filters out fewer
events (Table 1). This is unlikely, however, as many of the ex-
tra events removed by EFR are on the street, where GT flow
is unavailable. A more probable explanation is that E-RAFT
is less sensitive to our filtering’s reduction of edge thickness
(Figure 10) since the flow it predicts appears less spatially
intricate than TamingCM’s (Figure 13). Quantifying these
effects objectively would require correcting our work’s limi-
tations: using datasets designed to isolate flickering, retrain-
ing models on filtered datasets, or using synthetic datasets

with complete ground truth flow. Regardless, all evidence
supports rejecting our hypotheses - the advantages of space-
aware filtering are too situational, and are further undermined
by de-flickering barely impacting optical flow estimation.

7 Conclusion & Future Work

Event cameras are novel sensors whose properties motivate
their use for the motion estimation problem of optical flow but
also incur susceptibility to flickering lights. The goal of this
project was to enhance optical flow estimation accuracy by
integrating a spatial component into a de-flicker filter, which
we hypothesized to increase robustness to motion. This is
in contrast to EFR, the only existing event de-flicker algo-
rithm that filters purely temporally on a per-pixel basis. We
have designed and implemented a solution that measures the
polarity sum of events in spatiotemporal regions and deletes
events detected as constituting intense fluctuations. Quali-
tatively, edges de-flickered by our method are thinner and
denser, whereas EFR’s are thick but sparse; neither alterna-
tive is obviously superior. Also, EFR is more likely to delete
events regardless of whether they were caused by flickering.
Quantitative evidence shows that both algorithms’ filtering
removes 50 — 65% of events from a flicker-heavy dataset.
However, this barely impacts subsequently computed optical
flow accuracy, even using a Contrast Maximization-based es-
timator known to suffer from flickering. We conclude that our
algorithm is on par with EFR; the advantages of space-aware
filtering are niche and undermined by de-flickering hardly af-
fecting optical flow accuracy in the first place.

Our qualitative analysis has revealed that removing flickers
does not always positively affect an event set’s usefulness. A
positive aspect is that removing events on edgeless surfaces
can reduce erroneous flow predictions at those regions, but re-
moving flickers on protruding edges harms their clarity. The
adverse effect on edges appears more relevant, as edges are
more useful for identifying the direction of motion than tex-
tureless surfaces. We posit that flickering produces useful in-
formation on edges by repeatedly highlighting their presence,
whereas they may appear faint under slow motion or constant
lighting. Therefore, eliminating events caused by flickering
may not be a sound way to distill motion information.

Instead of deleting flickers, we suggest that optical flow
estimators incorporate these artifacts into the process of de-
ducing the direction of motion. One option is to simply ig-
nore event polarities. The reason is that a moving edge forms
a planar structure in event space; the presence of flickering
would result in oscillating event polarities inside it but would
not distort the plane’s general shape. One may consider using
a variation to Contrast Maximization where event counts are
accumulated along the warp trajectory as opposed to polari-
ties. A different lucrative direction to investigate is removing
any high-frequency event patterns, motivated by our finding
that filtering a flicker-free sequence improves accuracy. This
result motivates using de-flicker algorithms as general low-
pass filters, reducing event dataset sizes at a minimal penalty
to accuracy while improving computation speed.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

Dsec-flow: Optical flow benchmark.
https://dsec.ifi.uzh.ch/uzh/
dsec-flow-optical-flow-benchmark/. Accessed:

2024-05-27.

Simon Baker and Iain Matthews. Lucas-kanade 20 years
on: A unifying framework. International journal of
computer vision, 56:221-255, 2004.

Patrick Bardow, Andrew J. Davison, and Stefan
Leutenegger. Simultaneous optical flow and intensity
estimation from an event camera. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

Guillermo Gallego, Tobi Delbriick, Garrick Orchard,
Chiara Bartolozzi, Brian Taba, Andrea Censi, Stefan
Leutenegger, Andrew J. Davison, Jorg Conradt, Kostas
Daniilidis, and Davide Scaramuzza. Event-based vi-
sion: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(1):154-180, 2022.

Guillermo Gallego, Henri Rebecq, and Davide Scara-
muzza. A unifying contrast maximization framework
for event cameras, with applications to motion, depth,
and optical flow estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018.

Mathias Gehrig, Willem Aarents, Daniel Gehrig, and
Davide Scaramuzza. Dsec: A stereo event camera

dataset for driving scenarios. IEEE Robotics and Au-
tomation Letters, 6(3):4947-4954, 2021.

Mathias Gehrig, Mario Millhiusler, Daniel Gehrig, and
Davide Scaramuzza. E-raft: Dense optical flow from
event cameras. In 2021 International Conference on 3D
Vision (3DV), pages 197-206. IEEE, 2021.

Federico Paredes-Vallés, Kirk Y. W. Scheper,
Christophe De Wagter, and Guido C. H. E. de Croon.
Taming contrast maximization for learning sequential,
low-latency, event-based optical flow. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 9695-9705, October 2023.

Shintaro Shiba, Yoshimitsu Aoki, and Guillermo Gal-
lego. Event collapse in contrast maximization frame-
works. Sensors, 22(14):5190, 2022.

Shintaro Shiba, Yoshimitsu Aoki, and Guillermo Gal-
lego. Secrets of event-based optical flow. In Euro-
pean Conference on Computer Vision, pages 628—645.
Springer, 2022.

Ziwei Wang, Dingran Yuan, Yonhon Ng, and Robert
Mahony. A linear comb filter for event flicker removal.
In 2022 International Conference on Robotics and Au-
tomation (ICRA), pages 398-404. IEEE, 2022.

Yilun Wu, Federico Paredes-Vallés, and Guido C. H. E.
de Croon. Lightweight event-based optical flow estima-
tion via iterative deblurring. In Proceedings of IEEE

International Conference on Robotics and Automation
(ICRA’24), May 2024. To Appear.

https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark/
https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark/

[13]

[14]

Alex Zihao Zhu, Dinesh Thakur, Tolga Ozaslan, Bernd
Pfrommer, Vijay Kumar, and Kostas Daniilidis. The
multivehicle stereo event camera dataset: An event cam-
era dataset for 3d perception. IEEE Robotics and Au-
tomation Letters, 3(3):2032-2039, 2018.

Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and
Kostas Daniilidis. Ev-flownet: Self-supervised optical
flow estimation for event-based cameras. arXiv preprint
arXiv:1802.06898, 2018.

	Introduction
	Previous works
	The Effects of Brightness Variations in Optical Flow Estimation
	Event Data De-Flickering

	Method
	Event Cameras & Contrast Maximization
	Problem Modelling
	Algorithm Description

	Evaluation
	Implementation
	Procedure
	Filtering
	Optical Flow Estimation

	Responsible Research
	Discussion
	Conclusion & Future Work

