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Abstract—Predicting aircraft Take-Off Weight (TOW) has been
a long-standing goal for aviation stakeholders, especially for
operational and regulatory bodies involved in flight planning. Ac-
curate TOW values would enable better emissions computation,
leading to more effective regulation of aviation’s climate impact.
However, aircraft operators prefer to keep TOWs confidential
because they are sensitive to operational trends and cost indices.
Consequently, many works have attempted to circumvent this
gap by predicting TOW values. Unfortunately, limited success has
been achieved primarily due to the lack of accurate real-world
operational data. This study is unique in utilizing operational
TOW data provided by airlines. We predict TOW before take-
off based solely on Flight Plan and Terminal Aerodrome Forecast
parameters, primarily focusing on flights at Amsterdam Airport
Schiphol. The accuracy of several Machine Learning algorithms
is directly compared. The best Mean Absolute Percentage Error
of 2.17% on the Schiphol testing dataset is achieved. The model is
further validated on flights at Paris - Charles de Gaulle Airport
and Brussels South Charleroi Airport with errors of 4.07% and
3.41%. We found that the distribution of flights in the training
dataset, particularly aircraft and airline types, significantly influ-
enced the model’s applicability. Recommendations are also made
on how to improve the model further.

Keywords—Aircraft Take-off Weight, Supervised Learning,
Flight Plan, Terminal Aerodrome Forecast

I. INTRODUCTION

The prediction of aircraft Take-Off Weight (TOW) has been
a difficult problem to solve for many aviation stakeholders.
More than just a safety-critical parameter for take-off perfor-
mance, TOW impacts fuel consumption and plays an important
role in trajectory prediction computations, especially during
the climb phase. Most operational and regulatory organisa-
tions involved in flight planning and network operations aim
to improve their flight planning and emissions calculations
before take-off. However, without TOW data, the accuracy of
such predictions cannot be guaranteed. Unfortunately, aircraft
operators are generally not willing to share this data as it is
used to calculate their cost index. The belief is that TOW
may reveal sensitive information about airlines’ operational
trends, making them vulnerable to market competition or
even penalties. However, predicting aircraft TOW could enable
aviation authorities to better compute emissions and other
climate-oriented parameters, improving regulations on avia-
tion’s climate impact.

The current state of the art, for the most part, has studied
the estimation of aircraft TOW using supervised Machine

Learning (ML) algorithms. However, these are highly de-
pendent on data quality, quantity, and selection. Thus, the
scarcity of TOW data makes training an ML algorithm a
challenging task. For this reason, previous studies have relied
on trajectory data - mostly sourced from Automatic Dependent
Surveillance-Broadcast (ADS-B) - to build a training dataset
by reverse engineering trajectories with a total energy model.
However, these approaches often introduce a sequence of
mass estimations for the climb profile, potentially leading to
propagating errors. Additionally, synthetic data is often used to
introduce certain assumptions into the data. Finally, and most
notably, all studies involved post-flight computations, which is
not practical for flight planning and operational applications
prior to take-off.

This work aims to use Flight Plans (FPLs) and perform
TOW predictions solely based on operational parameters
known to air traffic controllers before take-off. Airlines fill
their operational TOW in the FPL. As such, the data used in
this study is the closest to real TOW data and provides the best
achievable accuracy available for operations. The use of FPLs,
provided by EUROCONTROL, captures airline preferences
and enables a (pre-)tactical prediction horizon that is one to
seven days prior to take-off, including the day of operations.

This paper is structured as follows. Section II highlights
the main take-away points from previous studies, including
potential research gaps covered by this work. Section III
details the methodology of the developed model, including
the ML algorithms and features selected. Next, Section IV
describes the case studies and data selection procedure. The
findings of the analysis are discussed in Section V, together
with results from two validation activities treating the model’s
applicability. Finally, several points for improvement are dis-
cussed in Section VI, followed by the conclusions of the study
in Section VII.

II. LITERATURE REVIEW

A crucial consideration regarding previous research is the
lack or scarcity of operational TOW data. For this reason,
previous studies have attempted to deduce aircraft mass via
analytical calculations, focusing on estimating the parameter
after the flight has taken place. The computations are usually
based on flight trajectory data such as ADS-B or radar
Correlated Position Reports (CPRs). Works such as [1]–[6]



have made use of The OpenSky Network [7], an open-source
platform providing real-time and historical ADS-B data for
research and academia, while [8], [9] based their work on
Quick Access Recorder (QAR) data. The latter is an airborne
flight data recorder designed to provide raw flight data and
is mainly used by aircraft operators for routine monitoring
of their fleet and flight crew [10], [11]. These data sources
introduce constraints to the models’ accuracy.

Approaching the problem backwards involves building
training datasets containing synthetic TOW data, before ap-
plying ML methodologies. Following the sequential nature
of the available data (i.e. trajectories), the current state-of-
the-art approach opts for reverse engineering a sequence of
aircraft masses using a total energy model, generally over the
climb profile. These methods adjust the mass to fit observed
values of energy variation. Note that although [3]–[6] used
statistical methods instead of ML, they still take this approach
for TOW and mass estimations. Not only does this introduce
assumptions and errors, but it also limits the models’ capability
of estimating TOW to a post-operations time frame, having
mostly trajectory parameters as input. This restricts the predic-
tion horizon and hinders (pre-)tactical prediction capabilities.
At most, the predictions are computed using past trajectory
points and with a 10-minute prediction horizon [1].

Although the reverse engineering step is no longer needed
when using QAR data, the prediction time frame issue persists.
This is due to the capability of the flight data recorder itself,
which provides real aircraft mass data at each point along the
trajectory, yet only when the aircraft is airborne. Additionally,
building a model on QAR data introduces limitations to
its applicability due to the origin of such datasets. Certain
studies [8], [9] use QAR data gathered from two airlines
respectively; so although the data quality is improved, the
predictions become airline-specific. While QAR data is not
limited to airlines, it is typically regulated due to privacy and
security, limiting its variability on aircraft types, airlines, and
origin/destination pairs.

In previous research, there is a clear lack of FPL integration
in the studies, as well as long-term prediction capabilities
extended to at least a few hours before take-off. To the best
of the author’s knowledge, no successful study has been con-
ducted to predict TOW solely based on FPL data with a (pre-
)tactical prediction horizon. While [2], [12] have used some
FPL information, they either did not have access to the entirety
of the dataset or simply did not use it as training features for
their models. Omitting FPLs removes the airlines’ preferences
from the analysis and makes the results purely trajectory-
based without having intent or route planning information.
Furthermore, it has no added value for Air Traffic Management
(ATM) authorities, as the predictions cannot be applied prior
to the flight’s execution.

This study aims to better incorporate these features and
increase the prediction horizon that is best suited for ATM
flight planning applications. The goal of this research is to
predict TOW before take-off, hence with parameters available
in the FPL itself as well as Terminal Area (Aerodrome)

Forecast (TAF) at the airport of destination to include weather
impact. Furthermore, this paper focusses on the use of ML
- two main algorithms will be explored: Gradient Boosting
Decision Trees (GBDTs) and Random Forests. These proved
to be the most effective and least error-inducing algorithms
for predicting single variables.

III. METHODOLOGY

An overview of the steps taken and datasets used is shown
in Figure 1, where each white box represents one dataset.
In ML, data plays a crucial role in defining the capability
and applicability of the model to predict the selected target
parameter(s). The data considered for this study is described
in Section III-A. Regarding the ML algorithms, several have
been tested in order to select the best-performing one for this
particular application. Their selection, as well as their basic
working principle, are detailed in Section III-B.

Figure 1. Methodology overview flowchart.

A. Datasets & Features Selection

This study has gathered data from different sources, as
shown in Figure 1, all provided by EUROCONTROL. There
are three main datasets: The Operational Logbook (OPSLOG),
FPL, and TAF, each containing information for one flight prior
to take-off. OPSLOG contains all the information about the
flight in question, which is necessary for operational personnel
in the execution of their duties. The aircraft TOW is an op-
tional parameter which can be filed in the FPL, depending on
the airline’s willingness to share this data. Statistically, about
30% of the flights pertaining to EUROCONTROL’s network
have a TOW associated with their FPL. This corresponds to
circa 3M flights in 2023 [13].

All training features are listed in Table I, together with
the data type and unit used, when applicable, and the dataset
they were extracted from. Note that some of these features
are not taken directly from the dataset and were altered
for different reasons. First, the departure, destination, and
alternate aerodromes were not considered as categorical fea-
tures themselves. Instead, for generalisation of the model
and to make it independent of International Civil Aviation
Organisation (ICAO) airport codes, the great circle distance
between the aerodromes of departure and destination and
between the destination and alternate aerodromes were used.
Another altered parameter is the route available in the FPL
and OPSLOG. Instead of considering the route itself, different
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TABLE I. DESCRIPTION OF FEATURES USED FOR TRAINING.

Dataset Feature Description Type Units Encoding

great circle distance ADEP ADES great circle distance between aerodromes
of departure and destination numerical km -

great circle distance ADES ALTRNT1 great circle distance between aerodromes
of destination and alternate numerical km -

AOARCID aircraft operating agency ICAO ID categorical - ordinal
ARCTYP aircraft type ICAO ID categorical - ordinal
EOBT estimated off-block time numerical - datetime cyclical
TAXITIME taxi time (taxi before take-off) numerical s -
TTLEET total estimated elapsed time (flight duration) numerical min -
RFL requested flight level numerical FL -

OPSLOG

SPEED requested speed numerical kts -

flt rvr val runway visibility range numerical m -
airac cycl AIRAC cycle numerical - -
flt etot estimated take-off time numerical - datetime cyclical
flt eta estimated time of arrival numerical - datetime cyclical

FPL

flt f rte len length of the route numerical nm -

visibility cavok clouds and visibility ok categorical - ordinal
visibility distance visibility distance numerical m -
clouds height clouds ceiling height value numerical m -
clouds amount clouds amount numerical - -
wind speed mean wind speed numerical m/s -
wind gust wind gust speed numerical m/s -
wind compass mean wind direction categorical - ordinal
time time of TAF report creation numerical - -
validity start time start time of TAF report validity numerical - -
validity end time end time of TAF report validity numerical - -
precipitation presence of precipitation categorical - one-hot
obscuration presence of obscuration categorical - one-hot

other presence of extreme weather events
(tornado, volcanic ash, etc.) categorical - one-hot

thunderstorms presence of thunderstorms categorical - one-hot
freezing presence of freezing categorical - one-hot
snow presence of snow categorical - one-hot
clouds presence of clouds categorical - one-hot
indicator trend forecasts indicator categorical - ordinal

TAF

probability trend forecasts associated probability numerical % -

features were extracted from it, specifically the requested
speed and flight level for the cruise. These will impact aircraft
performance and are also linked to TOW. Note that adding
the Standard Instrument Departure (SID) and Standard Arrival
Route (STAR) was also considered. However, these are airport-
dependent and may lead to overfitting or bias in the model
predictions. Therefore, they have been left out of the features.
Finally, it is important to state that when computing a flight’s
Total Estimated Elapsed Time (TTLEET), the airlines make
use of weather predictions along the route, especially regarding
head or tail winds. These may have a significant impact on
the flight duration, so although cruise weather forecasts are
not taken into consideration as separate features in this study,
they are still accounted for via this feature.

B. Machine Learning Algorithms

A total of four algorithms were selected based on literature
findings: Gradient Boosting Decision Trees (GBDTs) [14],
LightGBM [15], Gradient Boosting Regressor (XGBoost) [16],
and Random Forests [17]. Regardless of the algorithm, the goal
in ML regression problems is to predict a target variable, in
this case the aircraft TOW, from a vector of features listed

in Table I. Table II lists the different hyperparameter values
explored for each algorithm presented in this section. When
the value is empty (‘-’), the corresponding hyperparameter is
not applicable to the algorithm in question.

IV. DESCRIPTION OF THE CASE STUDIES

Section IV-A presents the main case study along with the
aircraft types considered. Finally, the validation datasets are
detailed in Section IV-B.

A. Amsterdam Airport Schiphol (AMS)

The model first focuses on the flights departing and arriving
at Amsterdam Airport Schiphol (AMS) to simplify the analysis
and provide a first understanding of the results at one airport.
In this way, potential lagging aspects of the model could
be identified, especially regarding features considered for
training. AMS is a large airport in terms of traffic volumes and
passengers carried. Furthermore, it generally accommodates
legacy carriers traffic such as KLM and Air France while
also having a wide range of low cost aircraft operators, hence
it provides a good mix of traffic types. Only the flights
with the TOW information in their FPLs will be considered
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TABLE II. HYPERPARAMETERS SEARCH SPACE FOR USED ALGORITHMS.
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Forest - -

100
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17 - 10 -

since the latter provides the target output value for each
flight. Furthermore, only those Scheduled (S) and following
Instrument Flight Rules (IFR) are considered for these flights.
Regarding time range, the oldest FPL in EUROCONTROL’s
database with associated TOW dates back to February 2022.
For this reason, all flights scheduled starting February 2022
and up to the end of December 2023 are considered in
this research, amounting to 122,379 flights at AMS. These
were split using an 80-20% ratio between training and testing
datasets, resulting in 97,639 and 24,740 flights, respectively.
Note that this was not done randomly. The train-test split was
conducted on a daily basis to guarantee robust training and to
not omit potential cyclical patterns hidden behind ‘datetime’
features.

The distribution of flights across aircraft operators and
aircraft types is shown in Figures 2 and 3 for the training set,
respectively. Note that in Figure 2 only the top 10 airlines
with the highest amount of flights are plotted. The main
aircraft operator present in the training dataset is a low-cost
carrier, precisely easyJet (EJU and EZY), amounting to almost
50% of the flights. The next airline in terms of flight count
is Lufthansa, with almost 10% of flights from the training
dataset, followed by TUI fly in The Netherlands with circa
7%. Interestingly, the second airline is a legacy carrier, while
the third is a charter airline, giving a good variability for
the training data despite a large number of low-cost carrier
flights. Regarding Figure 3, almost 90% of most-flown aircraft
types in the training dataset are classified as medium-range
and narrow-body. As a consequence, the algorithms may have
better accuracy for this type of aircraft.

B. Validation Datasets

While the ML model is built on AMS data, two more
airports are considered for validation purposes: Paris - Charles
de Gaulle Airport (CDG) and Brussels South Charleroi Air-
port (CRL). CDG was selected to test the trained model on
another airport with similar traffic volumes and size, both
being major international hubs and some of the busiest airports
in Europe. Furthermore, both airports support a majority of
legacy carrier operations, with KLM at AMS and Air France
at CDG. On the other hand, CRL was chosen for its difference
in size and operated flights, in order to analyse the model’s
applicability to a completely different traffic mix. CRL is
known for its low-cost carrier operations, and Ryanair is one
of the most important players.

These datasets contain flights departing from and arriving at
the airports in question, for which TOW data is available. The
CDG and CRL datasets amount to 320,032 flights and 54,788
flights, respectively. The distributions of aircraft operators are
shown in Figures 4 and 5 for CDG and CRL, respectively. For
CRL, Ryanair amounts to more than 80% of the flights. On the
other hand, Figure 4 shows a promising distribution for CDG.
As almost 70% of the flights are operated by Air France, a
legacy carrier, this dataset will serve as a good baseline for
validation, since most of the flights in the training dataset are

Figure 2. Distribution of aircraft operators - training dataset (AMS).

Figure 3. Distribution of aircraft types - training dataset (AMS).

4



Figure 4. Distribution of aircraft operators - validation dataset (CDG).

Figure 5. Distribution of aircraft operators - validation dataset (CRL).

Figure 6. Distribution of aircraft types - validation dataset (CDG).

operated by a low-cost carrier (easyJet).
Finally, the most-flown aircraft types of each validation

dataset are given in Figures 6 and 7. Although the aircraft type
distribution of CDG may be similar to the training dataset,
that of CRL is not. More than 70% of flown aircraft are
B738, while these correspond to less than 5% in Figure 3.
Consequently, CRL will serve as a good baseline for validation
regarding the aircraft types feature, in the same way that CDG
serves as a good validation baseline for aircraft operators.

Figure 7. Distribution of aircraft types - validation dataset (CRL).

V. RESULTS

This section presents the results of the analysis, starting
with the selection of the most optimal ML algorithm trained
with AMS data in Section V-A. Section V-B discusses the
applicability of the best-performing model on CDG and CRL
airports, as was described in Section IV-B.

A. AMS Case Study

The ML algorithms presented in Section III-B were trained
with the same dataset from AMS, where a train-test split of
80-20% was followed. After training all the algorithms with
97,639 flights departing from and arriving at AMS, their per-
formance could be analysed based on the testing dataset with
24,740 flights. Different error metrics were used to determine
which ML algorithm performed best. These are listed in Table
III along with the corresponding results. XGBoost and Light-
GBM greatly reduce training time compared to Random Forest
and GBDTs. Nevertheless, the latter outperforms in terms of
Mean Absolute Percentage Error (MAPE), the selected metric
for this study. Based on this, the GBDTs model was selected
for further analysis and validation activities. Therefore, from
now on, prediction results and further details all refer to the
GBDTs model.

The scatter plot of the regression achieved with GBDTs is
shown in Figure 8, where the actual TOW values from the
testing dataset are given on the vertical axis and the TOW
predictions generated by the model are given on the horizontal
axis. This graph gives a good illustration of the high R2 score,
with all data points located very close to the regression line
and very few outliers.

The error distribution of the predictions done with the
testing dataset are given in Figure 9. This plot defines the error

TABLE III. ERROR METRICS OVERVIEW ACROSS ML ALGORITHMS. TEST-
ING DATASET USED AS REFERENCE.

Algorithm Training time MAPE (%) MAE (kg) R2 score

XGBoost 57s 2.59 1,629 0.9877
Random Forest 6h 32m 30s 2.38 1,503 0.9851
GBDTs 12h 51m 36s 2.17 1,376 0.9907
LightGBM 4m 43s 2.18 1,373 0.9913
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Figure 8. Scatter plot of GBDTs algorithm, testing dataset.

Figure 9. Error distribution of the testing dataset.

as the difference between predicted and actual values. The
curve nicely depicts a normal distribution of the errors around
0, with a limited spread. The comparison between minimum
and maximum errors suggests that the model may tend to
underestimate the predictions. Indeed, the minimum TOW
prediction of -4.7 tonnes is more than one tonne (absolute
value) over the maximum of 3.8 tonnes. Overall, it was found
that 53.19% of flights’ TOWs were underestimated, and the
remaining 46.81% were overestimated, which is not alarming.

TABLE IV. MAPE GROUPED BY AIRCRAFT TYPE, COMPARISON BETWEEN
TRAINING AND TESTING DATASETS.

Aircraft Type (ICAO) MAPE (%) - testing MAPE (%) - training

A320 2.40 1.93
A319 1.83 1.56
A20N 2.04 1.63
B38M 2.23 1.52
B738 2.07 1.43
A321 2.52 2.11
CRJ9 2.18 1.72
BCS3 2.48 2.09
A21N 2.20 1.19
B77W 2.57 0.63
E195 3.33 2.25
E190 3.98 2.38
A333 3.15 1.21
B789 3.14 0.64

Finally, Table IV lists the average MAPE of the model for
each aircraft type and for both training and testing dataset
results. Comparing this table with the aircraft distribution of
the training dataset from Figure 3, the results are consistent.
The more the model is trained with a specific aircraft type, the
better it predicts the TOW for that aircraft type. For example,
E190 and E195 (together) account for circa 1.5% of flights in
the training dataset, and they also have the highest MAPE.

The results of the feature importance analysis are given in
Table V for the top eight most-used and influencing features
during training. Note that the importance values are solely
given to the best-performing model, namely GBDTs. The
model’s output is essentially dictated by the top three training
features, that is requested speed, great circle distance between
aerodromes of departure and destination, and aircraft type.
The requested speed in cruise is the parameter which has
the highest influence on TOW predictions for this case study.
This can be surprising, as one may tend to hypothesise
that great circle distance between airports of departure and
destination could have more influence on TOW due to fuel
carried. However, the requested speed at cruise affects the fuel
consumption of the aircraft, so depending on this value, more
or less fuel will be consumed. To reach higher cruise speeds,
less fuel may be carried on board, affecting the overall value
of TOW. Vice versa, when the requested speed is lower, the
aircraft may accommodate a higher TOW. The great circle
distance between the airports of departure and destination
also influences TOW predictions. This suggests that there is
a pattern between airport pairs and the fuel carried onboard
to ensure that the aircraft reaches its destination. Finally, the
aircraft type flown is an obvious factor, providing the model
with a range of TOWs specific to each type.

A Shapley Additive Explanations (SHAP) overview is
shown in Figure 10. 2k sample flights were extracted randomly
for this calculation to reduce computational effort. SHAP
capture the marginal contribution of each feature to the target
output (TOW prediction). The top three features are identical,
although a different ranking is suggested, with aircraft type
being the most influential feature, followed by great circle
distance between airports of departure and destination, and
requested speed.

B. Extended Applications: CDG & CRL Airports

After performing the verification on both training and test-
ing datasets and analysing the performance of the model, two

TABLE V. FEATURE IMPORTANCE ANALYSIS

Feature Importance [%]

requested speed 42.38
great circle distance between aerodromes of depar-
ture and destination

33.72

aircraft type ICAO ID 19.71
length of the route 1.57
runway visibility range 0.81
requested flight level 0.54
aircraft operating agency ICAO ID 0.45
total estimated elapsed time (flight duration) 0.14
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Figure 10. SHAP analysis results.

more datasets were tested for validation purposes. To ensure
that the model can be applied to other airports, it was tested
on CDG and CRL airports, as explained in Section IV-B. The
error metrics are presented in Table VI.

TABLE VI. ERROR METRICS COMPARISON: CDG AND CRL DATASETS.

MAPE [%] MAE [kg] R2 score

CDG dataset 4.07 4,032 0.9722
CRL dataset 3.41 2,237 0.4344

As expected, the MAPEs for CDG and CRL are higher
than that for the testing dataset. Most likely, this is due to
the different flights being distributed in the dataset. Based on
Table V, and Figures 2, 4, 5, and 10, these values can be
explained. As the distribution of the training dataset consists
mainly of low-cost carrier flights (easyJet), it makes sense
that the errors are smaller for CRL than for CDG. The latter’s
traffic was mainly operated by Air France, a legacy carrier.
Low-cost carriers tend to have lighter aircraft and, therefore,
lower TOW values. This is due to limited fuel carried on-board
for better aircraft performance and reduced costs, but also due
to the constraints in luggage carried by passengers.

The score of the coefficient of determination (R2 score)
is positive for CDG, contrary to CRL. With Ryanair having
the highest traffic slice for CRL, the model is exposed to a
completely different distribution of the data, with an airline
that is barely present in the training dataset. Furthermore, the
distribution of aircraft types at CRL in Figure 7 shows that
circa 70% of the flights are operated by B738 aircraft, while
the training dataset only contains about 4.5% of its traffic with
this aircraft type (see Figure 3), suggesting that the target

output distribution in the CRL dataset does not match the
training data distribution.

The MAPE grouped by aircraft type is given in Table VII for
both CDG and CRL datasets. Note that the values missing (‘-’)
for CRL are simply due to the aircraft types not being present
in the dataset. The errors can be explained by comparing
the distribution of aircraft types across flights in the training
dataset, shown in Figure 3, with the same distributions of the
validation datasets, given in Figures 6 and 7. The aircraft with
which the model has been trained more (those ranked higher
in Figure 3) are associated with lower MAPE in Table VII.

TABLE VII. MAPE GROUPED BY AIRCRAFT TYPE, COMPARISON BE-
TWEEN CDG AND CRL DATASETS.

Aircraft Type (ICAO) MAPE (%) - CDG MAPE (%) - CRL

A320 3.14 5.33
A319 2.95 10.74
A20N 3.37 5.73
B38M 4.16 3.27
B738 2.77 2.93
A321 3.61 5.44
A333 4.22 -
B77W 11.16 -
B789 5.33 -
BCS3 5.22 -
CRJ9 5.23 -
E195 4.25 -
E190 31.99 36.06
A21N 3.83 5.15

VI. DISCUSSION

This section provides a discussion of the results. First,
Section VI-A compares the GBDTs model with some of the
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previous studies reviewed in II. Then, several conditions of
the model’s applicability are provided in Section VI-B along
with potential improvements to consider for future work.

A. Comparison with Previous Studies

Work [1] focused on improving aircraft climb prediction by
better estimating operational factors, specifically the mass and
speed profiles during climb. As there was no access to FPL
data, hence TOW, the total energy model was used to reverse
engineer the flown trajectories and build a dataset containing
aircraft mass sequences. The trajectory data was ADS-B data
extracted from The OpenSky Network. A stochastic gradient
boosting tree algorithm was trained to predict sequences of
aircraft masses. Generally, work [1] proved to achieve lower
Root Mean Squared Error (RMSE) per aircraft type despite
the synthetic nature of the training data, suggesting that the
use of trajectory data plays an important role in the quality of
mass predictions. Even though TOW is a static parameter, it
is part of a sequence of masses influenced by other trajectory
factors, especially during the climb. Consequently, completely
discarding trajectory features may not capture the entirety of
the picture.

Works [3], [6] used take-off and initial climb ADS-B data to
predict TOW. No quantitative error analysis was made due to
the lack of validation data. Cruise data on speed and altitude
is not used as the model focuses on the initial climb.

Work [9] predicted the initial-climb aircraft mass using a
Multi-Layer Perceptron Neural Network (MLPNN) and QAR
data. The MLPNN proved to outperform the GBDTs, with
merely 0.61% MAPE on the testing dataset compared to
2.17%. Nevertheless, it is important to note that the QAR data
used comes from one single airline, which has comparable
trends and, especially, uses the same cost index. The reduced
variability in training data is expected to lead to the lower
encountered MAPE. Nevertheless, it would be worth exploring
the capabilities of the MLPNN in the current study.

B. GBDTs Model Applicability and Improvements

A list of conditions for the applicability of the model can
be drawn. The GBDTs model was essentially trained with
narrow-body medium-range aircraft, with a majority of the
flights operated by low-cost carriers, explaining its general
tendency of underestimating TOW. The model’s behaviour
is found to be independent of aerodromes of departure and
destination. Therefore, to apply the model to another dataset
(e.g. another airport), it is essential to have sufficiently similar
distributions of aircraft and aircraft operator types. The latter
tend to significantly affect TOW due to luggage and fuel
limitations (within safety bounds).

It is expected that incorporating more diverse data, espe-
cially in terms of aircraft and airline types, will improve
the capabilities of the model and broaden its applicability.
The most straightforward approach is increasing the training
dataset to the entirety of the European network, for which
EUROCONTROL is responsible. However, upsampling tech-
niques could also be explored to synthetically balance the

aircraft and airline types in the training dataset. Increasing the
latter would enable the testing of neural network algorithms,
which show better prediction accuracy for larger datasets.

Regarding TOW data accuracy, the model provides opera-
tional TOW estimations, which can sometimes deviate from
the actual TOW depending on actual loading (passengers, fuel,
etc.). While the TOW data used in this paper is the closest to
actual TOW data and provides the best achievable accuracy
available for operations, it is important to compare both to
assess the precision of operational TOW data. However, this
would require close collaboration with airlines as only they
possess actual TOW information, and may quickly become a
very demanding task (logistically) for a potentially minimal
improvement in the training data.

Finally, because trajectory parameters are not considered
among the features, neither the reduced thrust take-off and
climb nor the corresponding cost index are captured by the
model. For reference, the Flight and Flow Information for
a Collaborative Environment (FF-ICE) format is expected to
be implemented into operations by the end of 2025. FF-ICE
will provide a speed schedule defined by (CAS1, CAS2, M),
from which a more accurate requested cruise speed could be
deduced. Alternatively, the reverse engineering approach could
be used on provided FF-ICE climb trajectory predictions, to
expand the training dataset to other aircraft operators that do
not share TOW data.

VII. CONCLUSIONS

This study explored different supervised learning algorithms
for the development of an ML-based TOW prediction tool at
AMS. The model was trained solely on FPL and TAF data,
reaching a MAPE of 2.17%. This proves that (pre-)tactical
TOW prediction, solely based on features available prior to
take-off, is possible and reliable. Feature importance revealed
that the most influencing parameters, in order, were cruise
requested speed, great circle distance between aerodromes
of departure and destination, and aircraft type. Furthermore,
the model proved to be independent of airports of departure
and destination in terms of traffic volumes and passengers
transported. Additionally, other flight-specific parameters had
an impact.

The limitations of the model included its dependence on the
distribution of AMS flights. When testing the model on CDG
and CRL, similar- and different-sized airports, it was found
that aircraft and airline types distribution influenced TOW
predictions the most, but the size or similarity of the airport
itself compared to AMS did not matter. Since the training was
essentially conducted with medium-range aircraft and low-cost
carriers, these categories showed better prediction accuracy,
limiting the model’s applicability to the distribution of flight
types in the training dataset. Future work should focus on
increasing the training dataset to provide a larger coverage of
aircraft and airline types. Finally, speed profile and trajectory-
based related parameters can potentially improve the current
results of the model.
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