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Executive summary
To combat the effects of climate change, there is a worldwide shift to reduced emissions and increased use of
renewable energy sources. Solar energy is a vital part of this transition and necessary to be able to achieve
the targets. Solar energy, including household and community-based solar photovoltaic panels, is the fastest
growing source of low-carbon electricity worldwide. The rapid pace of adaptation raises questions about the
negative equity and justice associated with this development. Along with the rapid growth, regional differences
in solar panel adoption have been found across the world. In literature, therefore, solar panel adoption inequity
has been increasingly identified as an emerging energy justice issue. Literature presents multiple socioeconomic
inequities that could possibly enforce energy injustice in the context of rooftop PV installations.

Society would benefit from higher carbon reduction due to increased solar adoption. A fair distribution of
solar adoption ensures widespread deployment of solar energy technology and equal spread of the benefits of
current policy levers. Little is known about the geographic and socioeconomic disparity of solar panel adoption
in the Netherlands, or how adoption might evolve within its volatile (geo)political context. More insights into
the possible regional differences, how these are caused, and how these could evolve would benefit the equitable
transition to increased renewable energy generation.

This study aims to fill these research gaps. Through filling these gaps, the study aims to answer the following
main research question:

How could distributed solar panel adoption speed and disparity develop in the future and under different policy
measures?

One of the research objectives is to construct an integrated, structured approach to assess the above research
question. Within literature, such a cohesive approach is lacking. This thesis, therefore, aims to adopt an
integrated, data-driven approach that provides a set of tools that can aid in a more structural assessment of
adoption and adoption disparity, and gauging scenarios for policy-making purposes.

To answer the main research question, a Design Science Research approach is adopted. The study started with
an introduction to energy justice in relation to solar panel adoption and a thorough analysis of the system at
hand as part of the environment phase. In the latter, the current technological, political, social, and economic
context for PV adoption in the Netherlands was examined, which resulted in a thorough understanding of the
problem context as input for the design cycle. Next, in the knowledge base phase, the factors determining
residential PV adoption behavior were set out. During the operationalization, the outputs of the relevance and
rigor cycle are conceptualized into an artifact design. The designed artifact is a research approach enabling an
integrated analysis of the solar panel adoption landscape in a municipality, with two main purposes. First, it
enables to the assessment of the equity of solar panel distribution amongst the municipality. Second, it aids in
policy testing, scenario evaluation, and policy-making on the solar panel system within the municipality. In this
research, the artifact has been developed while simultaneously testing and demonstrating it for the municipality
of Amsterdam.

Part I of the artifact includes two steps. First, it entails conducting a rooftop suitability assessment that maps
the potential for residential solar energy generation by adopting a GIS-based approach. Next, a socioeconomic
analysis is performed, which allows investigation of the correlation of socioeconomic factors with PV adoption
and the disparity of adoption possibly leading towards a so-called "adoption gap". This statistical data analysis
deploys ANOVA- and correlation analysis on empirical adoption data. The most significant socioeconomic de-
terminants for adoption are then used in a clustering method to create groups of similar neighborhoods, which
can be studied in part II of the artifact. Performing part I of the artifact results in a clear assessment of the
adoption disparity, the used and the unused potential, and the factors that can aid in explaining this.

Part II of the artifact deploys a system dynamics modeling approach to simulate the adoption of solar panels
from a system perspective. The context of residential PV adoption was further conceptualized from a system
perspective with a causal loop diagram, and then quantified through mathematical equations and parameters.
During the conceptualization and model formulation, the output of Part I of the artifact, such as the adoption
rates and the neighborhood groups, is used. After testing the model, scenarios and policies analysis leads to
understand the system behavior and explore the impact of policy measures on diffusion speed and diffusion
disparity. This way, the model provides understanding of the structural dynamics and behavior of solar panel
diffusion amongst different groups of neighborhoods and the possibility to experiment with policy levers and
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external developments.

Demonstrating the artifact on the municipality of Amsterdam generated several results. Part I of the artifact
showed that PV adoption is unevenly spread amongst neighborhoods. Several neighborhood-clusters with high
adoption rates are detected. Thus, a high disparity in adoption - an adoption gap - is observed. Contrary,
rooftop suitability is spread relatively equal amongst neighborhoods. The correlations and group-differences ex-
amined in this study highlight areas where more attention may be needed and where barriers for solar adoption
might exist. The results also show that there is a significant difference between PV adopters and non-adopters.
The type of household property, income, type of ownership and the household composition are observed to be
the most significant socioeconomic factors when comparing the results of the two statistical studies. These fac-
tors are identified as possibly the most significant adoption barriers. The inequities in adoption perceived in the
neighborhood analysis points the way towards specific, targeted policy mechanisms that can tackle, mitigate,
or minimize possible injustices caused by adoption disparity.

In Part II of the artifact, experiments are conducted with the system dynamics model using different configura-
tions of netting-scheme policies, external developments, adoption rates, and leveling policies. The experiments
yielded several results. First, the perceived adoption gap is expected to further widen in the future. Under the
proposed netting scheme, group 2 neighborhoods achieve a marginal adoption rate of approximately 5%, and
group 2 neighborhoods of approximately 25%. Under the proposed netting scheme, and without adequate policy
interventions, average future PV diffusion will continue to grow only moderately. Solar panel diffusion appears
to be highly impacted by the netting scheme policy in place. The difference is caused by the diverging payback
times of PV under the policy options. When looking at the leveling policies, the "low-income netting scheme"
and the "low-income subsidy of €1000" policies had the most promising individual results. Given that the
individual policies alone do not succeed in closing the adoption gap, it is likely that a tailor-made combination
of policies is most effective. A combination of a €1000 low-income subsidy, a low-income netting scheme, and
a sustainability plan mandate can level the adoption percentage of group 1 to the adoption levels in group 2,
reaching approximately 35% of the total number of households, which limits the adoption gap to a minimum.

Several main conclusions can be drawn from the study. First, a gap in adoption is observed. There is a significant
difference between neighborhoods with high and low adoption when it comes to socioeconomic characteristics.
Currently, policy levers to stimulate PV adoption benefit a small portion of households. The current netting
scheme is beneficial to adoption rates but increases adoption rates mostly within several societal groups. This
creates distributive justice implications: the benefits and burdens of energy policy are not equally distributed
amongst citizens. The proposed netting scheme, planned to phase in 2025, will only modestly increase adoption
rates compared to a lacking netting-scheme policy. Besides, without target policy interventions, the adoption
gap between high and low-adoption neighborhoods will widen over time. The adoption disparity and possible
justice implications emphasize the need for more targeted policy measures to minimize injustices. The leveling
policies have shown to reduce the adoption gap, where a combination of policies achieves the best results. The
results emphasize that more policy attention is necessary, especially when the proposed netting scheme comes
into place. Targeted policies are needed to close that gap, where there is a need for a combination of all three
leveling policies to narrow down the gap to a minimum.

Although the artifact is suitable for obtaining insights into the solar panel adoption disparity and diffusion
dynamics, interpreting the outcomes requires a note of caution. It must be said that the system dynamics model
is an abstraction of the real-world solar panel adoption context, where real-world complexity and uncertainty are
present which can never be captured comprehensively in a model. Further research could provide improvements
to the model by testing the model on a new local case-study area, which allows to compare results and draw
more conclusions on the generalizability of the tool. Besides, the artifact has served as a suitable approach to
answering the main research question in this study, but requires further validation to assess the scalability and
validity of the approach. Further examining and addressing the limitations and uncertainties could improve the
artifact’s robustness. Furthermore, it would be interesting to include other neighborhood groups in the analysis,
that are grouped based on different socioeconomic factors. Finally, the impact of renewable energy adoption on
utilities could be further explored, to improve insights into the socialization of costs to consumers in the context
of distributive justice.
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Preface
The master thesis in front of you tries to create a clear picture of the now and the future of solar panel adoption
disparity. It does so by examining real data from the municipality of Amsterdam and deploying a simulation
model evaluating multiple policies. I hope that the thesis can serve as a starting point for putting adoption
equity higher up on the agenda of policymakers. Addressing citizen equity is an important societal topic, and
can be used to benefit the transition towards more renewable energy generation.

Defining the thesis topic and shaping the research started as a challenge. I wanted to both cover a societal
topic that I feel passionate about and use research methods to my interest. When I first started my topic brain-
storming, a long list of possible topics have been considered and I did not expect to end up with the research
I present to you now. But I am very content and happy with the result. The process has been challenging at
times, but extremely educational and valuable. I hope to both contribute to increased attention towards a topic
with high societal relevance and to inspire on trusting the research process and not be afraid to come up with
new ideas and methods to reach your study objective.

The realization of this thesis would not have been possible without my graduation committee. I would like to
thank Zofia for being my Chair of the committee, providing me with insightful feedback, clear directions, and
pleasant meetings, where there was always room for a laugh beside the serious topics we discussed. Nazli, thank
you for your time, support, directions, and suggestions. And not to forget, your always spot on questions during
our meetings. And of course, I would like to thank Roel for guiding me through this process and creating the
time to meet every single week, even when the agenda was packed or you were on a work sabbatical in the U.S.
the last weeks of my thesis. You were always available to support me with your much appreciated knowledge
and feedback, or with a fun off-topic discussion. I really enjoyed this process together. Thank you for sharing
your enthusiasm about the research topic, and I hope to work together on a great paper next!

To everyone within the Data & Analytics team at EY, thank you for this opportunity and the great time! I
have felt extremely welcome in the team from the beginning. Your continuous interest in my progress and your
motivational words are much appreciated. To Christiaan, thank you for being my supervisor on behalf of the
team at EY.

Finally but not least, my friends and family have supported me through this journey a lot. I would like to thank
my parents for their warmth and support. My brother, for his time and help sitting down behind my laptop
with me to solve some issues I myself could not see working out at the time. I want to thank Thies, for his
continuous patience, support, motivational words, and cooking-skills when I was sprinting for a deadline. And
of course, my other friends and roommates who provided laughter and distracted me when needed.

All in all, these last couple of months have been a challenge at times, but a rewarding experience overall. I hope
you will enjoy reading this thesis!

Daphne van Meggelen April 28, 2023
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1 Introduction

1.1 Problem context
To combat the effects of climate change, there is a worldwide shift to reduced emissions and increased use of
renewable energy sources. Energy is thus one of the central topics in the Agenda for Sustainable Development
Goals (SDG) by the United Nations (United Nations, 2022). A fast-paced shift towards sustainable energy pro-
duction and solutions is crucial to the achievement of the Paris Agreement. In this context, the Dutch national
government aims to stimulate renewable energy production in order to create a sustainable energy system. The
government aims to decrease the emission of greenhouse gasses in the Netherlands in 2050 by 95% compared to
1990 and to acquire 14% of its energy from sustainable sources, of which 70% renewable electricity (Ministerie
van Algemene Zaken, 2022). These goals have been agreed upon in the national Climate Act on May 28, 2019.
Municipalities play an important role in reaching these goals (VNG, n.d.). They have, in their turn, translated
the national renewable energy targets into local targets, policies and roadmaps, aiming to contribute to reaching
the national climate goals.

Solar energy is a vital part of this transition and necessary to be able to achieve the targets. In urban areas,
solar photovoltaic (PV) deployment on existing rooftops has proven to be one of the most viable large-scale
resources of sustainable energy (Assouline et al., 2017). Unlike other techniques, solar panels can be realized
at a fast pace and can therefore greatly contribute to accelerating the transition and reaching the energy and
climate targets. Accordingly, a rapid acceleration of solar energy has been witnessed across the globe. National
governments have provided numerous incentives and subsidies to promote the development of residential solar
panels, aiming to achieve the goal of reducing greenhouse gas emissions and mitigating climate change (Lan
et al., 2021). And in line with the volatile geopolitical developments in the past years, that impacted the energy
market worldwide, the desire for energy independence has driven adoption rates even higher.

Along with the rapid growth, regional differences in solar panel adoption have been found across the world. For
example, Lan et al. (2021) found a high disparity in PV adoption in Australia. In their research, socioeconomic
factors are successfully used to explain the regional disparity. Lukanov and Krieger (2019) investigated adoption
levels in the United States and found persistently lower levels of PV adoption in disadvantaged communities,
suggesting clear distributive and equity impacts of existing PV support policies, and indicating that the benefits
bypass some of the state’s most vulnerable populations. Darghouth et al. (2022) also identified solar inequities
at national and state scale in the U.S. The observed regional differences are becoming a main concern because
it means the unequal availability of solar energy services and also indicates potential social and economic in-
equality (Poruschi & Ambrey, 2019).

In line with many nations worldwide, the Dutch national government and local governmental bodies have pro-
vided tax incentives, feed-in tariffs, and subsidies to promote the adoption of residential solar panels. Also in the
Netherlands, the residential solar panel market has witnessed rapid growth in the past years, partly due to these
government incentives. Besides these incentive programs, the high energy prices over the past years and the
subsequent drive for greater energy independence have increased the attractiveness of solar panel installations
(Breukelman, 2021). Dutch grid operators have recorded historic growth in solar panels on residential rooftops
in 2022. In the various provinces last year, the capacity of solar panels on residential roofs grew between 25
and 40 percent compared to 2021 (Netbeheer Nederland, 2023). In order to reach carbon neutrality by 2050
however, in line with the climate goals, more than tenfold of the current installed capacity is needed. According
to a Dutch solar-energy expert, the low-hanging fruit has been picked and growing solar energy by a factor of
ten will be technically and socially challenging. This suggests new and innovative insights into solar potential
and deployment are needed, that however not only address the need for further growth to reach climate goals
but also equitable growth.

Besides the possible energy justice implications, several other challenges in utilizing the full potential of solar
energy exist. One of these challenges is the capacity of the electricity net and energy storage, which is under
pressure due to the disbalance in energy demand and supply to the net (Deloitte, 2018). Due to the congestion
on the electricity net large solar park projects are currently stalled, putting more emphasis on the integration of
small-scale solar installations (NU.nl, 2021). A shortage in technicians and materials, such as converters, also
slows down the installation of PV systems (Planbureau voor de Leefomgeving & van Polen, 2021). Furthermore,
the solar panel adoption context is a volatile landscape, where policy levers and energy prices highly impact
consumers. Insights into the potential developments of PV adoption in a municipality, and the underlying
socioeconomic factors explaining this potential, can aid net operators in pro-active planning of the electricity
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distribution system (Liander, n.d.). The challenges faced call for both more effort in implementing existing
policies and formulating new policy measures (Planbureau voor de Leefomgeving & van Polen, 2021). Insights
into the potential developments of PV adoption in a municipality, and the underlying socioeconomic factors
explaining this potential, can aid net operators in pro-active planning of the electricity distribution system and
can aid (local) governments in exploiting renewable integration policies in a more effective way (Liander, n.d.).

1.2 Solar Energy Justice
Solar energy, including household and community-based solar photovoltaic panels, is the fastest growing source
of low-carbon electricity worldwide. The rapid pace of adaptation raises questions about the negative equity
and justice associated with this development. This is the main focus of the field of energy justice. Energy
justice research, which is an extension of social justice, has recently emerged in the solar energy research agenda
to understand the underlying reasons for the regional disparities (Poruschi & Ambrey, 2019). As the proposed
research aims to include a social perspective on solar panel potential and adoption, the energy justice context
related to this study is relevant to consider.

In the public debate and literature, the affordability, reliability, and sustainability of our energy supply are
increasingly associated with the phenomenon of justice (Weijnen et al., 2021). Sovacool et al. (2017) define
energy justice as, “a global energy system that fairly distributes both the benefits and burdens of energy ser-
vices and one that contributes to more representative and inclusive energy decision-making” (p. 1). Energy
justice often concerns the way in which different groups of citizens experience the benefits and burdens of the
current energy supply (Weijnen et al., 2021). Several aspects of climate justice exist, of which procedural,
distributive, recognition, and transformative are the most occurring in literature. Procedural climate justice
is about processes for making decisions about the impacts of and responses to climate change that are fair,
accountable, and transparent. Distributive climate justice deals with how the costs and benefits of climate
change are spread among citizens and businesses. Recognition climate justice focuses on the recognition of dif-
ferences alongside protecting equal rights for all. van Uffelen (2022) describes recognition justice as the adequate
recognition of all actors through love, law, and status order. Transformative climate justice is perceived to be
more of an overarching justice of the previously named types of justice, where transformative climate justice
includes, and goes beyond, "the immediate and proximate challenges of distribution of costs and benefits from
climate interventions" (p.36). Transformative justice thus focuses on the change that happens in a social system.

In literature, PV adoption inequity has been increasingly identified as an emerging energy justice issue
(O’Shaughnessy et al., 2020a). Several studies on energy justice and the sustainable energy transition show
that there is a lack of social or financial inclusion, and different types of inequities such as demographic, spatial,
and temporal inequities are defined (Darghouth et al., 2022; Lukanov & Krieger, 2019; Si & Stephens, 2021;
Sovacool et al., 2022; Zhang et al., 2011). Weijnen et al. (2021) see a possible future scenario unfolding, where
inequality between citizens in the affordability of electricity increases. They state it is a given that incentive
benefits end up mostly with the relatively prosperous and highly educated section of the population that own
their residences. Besides, questions arose on the socialization of incentive schemes for solar energy to all citizens,
also those who do not own solar panels. It is estimated that the transfer of wealth from households without
solar panels to those with solar panels is in the region of billions of euros (Parliamentary Questions 2022Z13495,
2022). In the United States, research shows that the growth of solar deployment over the last decade has indeed
not occurred equitably across socioeconomic groups. There is a clear difference between lower and higher income
communities and home ownership, which is emphasized in multiple studies (Darghouth et al., 2022; Lukanov
& Krieger, 2019; O’Shaughnessy et al., 2020a). Research in the U.S. also shows minimal participation from
low-income households in community solar projects, with the majority of community solar subscribers being
businesses, higher education institutions, government agencies, and higher-earning households (Gallucci, 2019).

In the Netherlands, 15-20% of households do not have enough income or savings to carry the costs of sustain-
ability measures. Often, these households live in qualitatively poorer homes, and relatively a large amount of
money is needed for such sustainability measures. Besides these income disparities, Si and Stephens (2021) also
note racial disparities that persist even when corrected for household income and home ownership. Adding to
this, Weijnen et al. (2021) state that due knowledge and ‘acting ability’ are also factors required to contribute
to solar panel installation projects. Given the many benefits of owning solar panels - such as decreased monthly
energy costs and profiting from the financial incentives, tax reductions, and subsidies - and several burdens of
now owning them - such as the socialization of netting scheme costs and the dependence on volatile energy
market prices - providing equal access to the technology improves the equal spread of the benefits and burdens
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of energy policy and improves the resilience of citizens.

Some studies argue that the observed differences might be caused by the uneven spatial distribution of solar
energy, while other studies indicated that the different solar policies especially financial incentives and subsidies
should account for the unbalanced PV adoption (Lan et al., 2020). However, a majority of the studies believe
that this imbalance was caused by the difference in socioeconomic status. For example, Zhang et al. (2011)
found that high-income households had a higher rate of PV installation. These studies identified the inequity
of accessing solar panels and they also pointed out the underlying socioeconomic factors that have important
implications for more regionally effective policies.

The literature base clearly presents multiple socioeconomic inequities that could possibly enforce energy injus-
tice in the context of rooftop PV installations. O’Shaughnessy et al. (2020a) emphasizes that there is a challenge
in how to address the inequities while expanding rooftop PV and maximizing its long-term benefits, and the
need for justice-oriented rooftop PV policy reform. Due to these concerns, it is relevant to incorporate a socioe-
conomic perspective into this research. Including this perspective will allow a broader detection and analysis of
the dilemmas within the solar energy problem area, and avoid privileging efficiency over social inclusion.

Given that many studies focus on income-related inequities, these studies often adhere to an adoption equity
definition related to income. O’Shaughnessy et al. (2020a) for example define PV adoption equity as the degree
to which PV adopter incomes reflect the incomes of the broader local population. In this study, a broader
perspective on adoption equity is adopted. Adoption equity is defined as the degree to which PV adopters’
socioeconomic characteristics reflect those of the broader local population.

1.3 Knowledge gaps and research objective
Residential solar energy generation has a large potential to play a versatile role in future global sustainable
energy systems. Clearly, society would benefit from higher carbon reduction due to a rapid increase in solar
adoption. Fair use and distribution of solar adoption ensure widespread adoption of solar energy technology.
In many parts of the world, the difference in solar adoption between regions is raising concerns about adoption
equity (Poruschi & Ambrey, 2019; Sovacool et al., 2022). Previous studies on solar energy adoption have shown
that socioeconomic factors such as age (Sommerfeld et al., 2017), education (Vasseur & Kemp, 2015b) and
income (Dharshing, 2017; Margolis et al., 2017; Veen, 2014) are correlated to adoption rates and can be used
to explain adoption disparity. Little is known about the geographic and socioeconomic disparity of solar panel
adoption in the Netherlands. A small selection of literature studies exists that cover this topic in the Nether-
lands, including the studies of Vasseur and Kemp (2015a) and Vasseur and Kemp (2015b). These studies cover
statistical analysis of adoption factors based on survey data. No study on the Netherlands to date explores spa-
tial adoption patterns. Schulte et al. (2022) state that solar panel adoption characteristics are highly local and
that even within nations study outcomes differ. This emphasizes the need for local insights. More large-scale
insights into the possible regional differences and how these are caused would benefit a fast and equal transition
to increased renewable energy generation.

Thus, on the one hand, there is a need for additional insights into current adoption patterns and the disparity
of adoption. Second, there is a need to understand how this adoption behavior and disparity might develop
in the future to shape a justice-oriented rooftop PV policy reform. A selection of studies explores solar panel
diffusion amongst households (Lan et al., 2020; Meehan, 2015; Morcillo et al., 2022; J. Palmer et al., 2013).
These studies differ in approach and study area. J. Palmer et al. (2013) model the diffusion of rooftop solar
using an agent-based modeling approach for a study area in Italy. Meehan (2015) explores residential rooftop
solar diffusion and its impact on electricity and utility rates. Multiple other studies exist that explore solar
panel diffusion and the so-called Utility Death Spiral (Castaneda, Jimenez, et al., 2017; Costello & Hemphill,
2014; Felder & Athawale, 2014; Grace, 2018). None of the studies however adopt a social perspective, where
the focus is not only on adoption extent and speed but also on adoption equity. Some of the studies include an
evaluation of policy impacts. Most of these studies examine the effect of subsidy policies - including the netting
scheme - on adoption rates, such as Zhang et al. (2011) who studied panel data of households in Japan. Existing
studies however often include one type of policy lever instead of multiple to allow for comparison. Besides, none
of the studies cover the Netherlands as a case study area. Best et al. (2023) state that much more research
is needed to support equitable policy development, through research that combines both equity and policy, as
this research is currently highly limited. They further imply that future research on the links between economic
distributions, policies, and solar-panel uptake is highly useful and that using actual household data and solar
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uptake is necessary for contributing to equitable policy development.

The possible energy justice implications identified in the previous section emphasize the need for more research
on the regional difference in solar panel adoption and to understand how the difference is caused. This study aims
to fill a societal knowledge gap where there is a lack of knowledge on the adoption disparity in the Netherlands,
what socioeconomic factors might be used to explain the observed adoption patterns, and how the adoption
might evolve in the future, under different policy levers. In the literature base, a small selection of studies on
solar panel adoption and socioeconomic factors exist, however, none covered regions within the Netherlands and
none study the possible future developments of solar panel adoption and adoption disparity. These knowledge
gaps lead to the following main research question:

How could distributed solar panel adoption speed and disparity develop in the future and under different policy
measures?

Adoption speed is defined as the number of households within a specified area installing rooftop solar installa-
tions per time period. Adoption disparity is defined as a noticeable and significant difference or dissimilarity
between adoption rates of different socioeconomic groups or spatial boundaries such as neighborhoods.

To be able to answer the main research question, this study also aims to construct and adopt a structured ap-
proach for addressing both knowledge gaps. Therefore, one of the study objectives is to develop an integrated,
data-driven approach that can be used to aid in a more structural assessment of adoption disparity and policy-
making. From a methodological perspective, several methods exist to evaluate adoption patterns or to study
future adoption diffusion. Considering adoption factors, Lukanov and Krieger (2019) used a correlation analysis
approach to study trends of residential PV adoption in California. Lan et al. (2021) used a machine learning
approach to understand the regional disparity of residential solar adoption in Australia. Sovacool et al. (2022)
used a mixed-methods design to investigate four types of inequities associated with household solar adoption,
focusing on spatial, inter-species, temporal, and demographic inequities. Other methods found in literature
consider surveys (Vasseur & Kemp, 2015b) or Choice Behaviour experiments (Grbosz-Krawczyk et al., 2021).
Considering adoption diffusion studies, a popular approach is the Technology Diffusion theory (Lan et al., 2020),
or system-dynamics modeling (Morcillo et al., 2022). Thus, approaches exist that study either adoption charac-
teristics or that study diffusion evolution, but up to date, no integrated approach is found in the literature base.
Existing methods offer either a static examination of adoption disparity or study adoption diffusion without
taking socioeconomic differences into account. This study aims to present a data-driven approach that provides
a set of tools that can aid in a more structural assessment of adoption and adoption disparity, and gauging
scenarios for policy-making purposes.

The main objectives of this research, therefore, are to:

• develop insight into adoption patterns and the dynamics of diffusion of residential solar panel adoption,
and to;

• explore what measures could enhance a rapid and equitable deployment of solar panel adoption.

• adopt a structured approach for assessing adoption disparity and evolution.

Through fulfilling these objectives, the study aims to create insights into solar panel adoption disparity in the
Netherlands and plausible future developments and propose a set of concrete policy recommendations to lever
the acceleration of diffusion of solar panels in an equitable manner. Possibly, the study eventually contributes
to providing a reference for governmental bodies to consider in formulating more sophisticated policies and
incentives.

1.4 Research scope
The modeling approach will be demonstrated as a proof-of-concept applied to the municipality of Amsterdam.
Amsterdam is a municipality with both ambitious goals and high potential in terms of rooftop area (Deloitte,
2018). The municipality of Amsterdam captured its own regional climate goals in the Roadmap Amsterdam
Climate Neutral 2050. The transition to sustainable electricity generation is one of the main pillars in this
roadmap: “maximizing solar energy generation of roofs” (Gemeente Amsterdam, 2022d). The municipality aims
to use half of all suitable roofs by 2050.
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Research has shown the municipality has a large potential for residential solar energy generation (Isabella &
Verkou, 2020). However, there is still a large gap to fill in order to reach the regional climate goals. Around
70% of the suitable roofs do not yet have solar panels installed (Briels, 2022). Approximately 500.000 more
solar panels need to be installed to reach the regional targets. Despite consistent growth over the past years,
the adoption rates lag behind the national average (van Groesen, 2022). Applying this study to the munic-
ipality can yield insights as to why adoption progresses slower in this area. The municipality thus has high
ambitions and a high potential for solar panel deployment. Besides, Amsterdam is a large municipality with
citizen counts approaching 900.000, making it the largest municipality of the Netherlands (CBS, 2022b). The
municipality includes 484.574 households and over 500 neighborhoods. The municipality is also found to be a
suitable case-study region given the rich diversity in socioeconomic groups. The municipality is amongst the
group of municipalities with the highest share of low-income households in the Netherlands (Gemeente Ams-
terdam, 2022b). The municipality includes many different forms of housing types (detached, apartment, etc.),
ownership types (owned, rented, owner associations, etc.), and rental types (housing corporations, landlords,
etc.). Besides, the inhabitants of the municipality represent a large diversity in age, education, and cultural
background. The municipality is therefore found to represent a broad, inclusive reflection of Dutch society from
a social, economic, and cultural perspective.

A limitation of the case study area could include the high urbanity of the municipality compared to some other
municipalities in the Netherlands. This and other limitations and their implications for the research outcomes
will be properly evaluated and discussed in the research discussion and conclusion.

1.5 Link with EPA program
The Master thesis research is part of obtaining a master’s degree in Engineering and Policy Analysis (EPA).
A typical Engineering and Policy Analysis thesis covers modeling, policy, and societal relevance of complex
socio-technical systems. This research tackles a situation where there is a lack of understanding on how to
shape local or national policy in a way that it efficiently stimulates reaching the climate goals, while also
overcoming socioeconomic dilemmas. This knowledge gap will be tackled using modeling techniques that map
the potential of solar energy in a city, explore socioeconomic factors behind neighborhood adoption patterns,
and explores plausible futures of PV adoption under different policy levers and external influences. Such findings
can inform municipal policymakers in enhancing their decision-making towards reaching regional and national
climate goals. The research is thus located at the intersection of renewable technology diffusion, social justice,
and policy-making, making it highly suitable for an EPA thesis. Technical artifacts, such as System Dynamics
systems, are placed into a political multi-actor context to understand their impact and explore competent
applications in the future.

1.6 Thesis outline
The report is divided into four parts, shown in figure 2. The first section includes the introduction and the
methodology. The second section consists of Chapter 3, the system description, and Chapter 4, the chapter
defining adoption potential and drivers. The third focuses on the operationalization, conceptualization, model
formulation, and model demonstration, and includes Chapter 5, 6, 7, and 8. Finally, part three concludes with
the conclusions, discussion, recommendations, and suggestions for future research in Chapters 10 and 9.
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Figure 2: Report outline
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2 Research approach and methods
This chapter describes the methods used to answer the aforementioned sub-questions and main research question.

2.1 Selection of the research strategy: Design Science approach
This research aims to understand the relationship between solar panel adoption and socioeconomic factors. It
further seeks to understand the disparity of this adoption, and how it might evolve in the future under different
policy levers. The approach selected to achieve these research objectives is Design Science research. Design
Science research focuses on problem-solving questions and consists of a problem investigation and a design
phase. This suits the research objectives, as the final research aim is to develop an integrated analysis of PV
adoption that increases understanding of a real-life system. Design Science methodologies provide guidelines
on the design process including the problem specification, knowledge base, the solution design, the solution
demonstration, and the solution evaluation. Multiple approaches exist, of which a combination of Hevner et al.
(2004) and Peffers et al. (2007) is adopted.

Design Science is a research paradigm focusing on the development and validation of prescriptive knowledge:
design sciences are concerned with how things ought to be, that is, with devising artifacts to attain goals (Simon,
1996). An artifact is the object of study. It is something created by people for some practical purpose. That is,
the studied artifacts are designed to interact with a problem context in order to improve something in that con-
text (Wieringa, 2014). Design Science research is motivated by the desire to improve the environment through
the introduction of new and innovative artifacts and the processes for building these artifacts (Simon, 1996).
The application domain consists of the people, organizational systems, and technical systems that interact to
work toward a goal (Hevner, 2007).

2.1.1 The artifact

The proposed research is a design problem: the goal is to design an artifact that will improve the problem
context. In this case, the problem context is that of technology diffusion where knowledge of adoption factors
and future developments under different policy levers is limited. There are four types of artifacts constituting
the possible outputs of Design Science research: constructs, models, methods, and instantiations (March &
Smith, 1995). The output for this research project is a data-driven approach, that can be used to increase un-
derstanding of the dynamics within a real-life system. The output (artifact) is not solely a model, but a method
that situates a model in a specific social context. This touches on the idea of situated design (Greenbaum &
Kyng, 1991). Greenbaum and Kyng (1991) emphasize that the context and the designer’s interpretation of it
are crucial to the output and outcome of the design process. The context of the problem area and thus the
artifact will therefore be well established, resulting in a design that fits into the social context.

2.1.2 Design Science cycles

This research will include the three phases of design research defined by Hevner (2007), with an additional
fourth phase adapted from Peffers et al. (2007). Hevner presents three inherent research cycles of Design
Science research: the relevance cycle, the rigor cycle, and the design cycle.

• The relevance cycle bridges the contextual environment of the research project with the Design Science
activities. This cycle initiates an application context that provides the requirements for the research
(e.g. the opportunity/problem to be addressed) as input to the design cycle and defines the criteria for
evaluating the research results.

• The rigor cycle connects the Design Science activities with two types of additional knowledge: the state-
of-the-art knowledge base of scientific foundations, experience, and expertise that informs the research
project, and the existing artifacts and processes found in the application domain. A key element in the
rigor cycle is that the research results contribute to the existing knowledge base.

• The central design cycle combines the results from the two previous cycles to develop a new and relevant
artifact. The relevance cycle provides the requirements as input for the design cycle, and the rigor cycle
provides the design and evaluation theories and methods as input for the design cycle. Hevner (2007)
emphasizes the importance of a proper balance between the construction and evaluation of the artifact.

14



The model will be evaluated through a demonstration of the use of the artifact, applied to the municipality
of Amsterdam.

• Where Hevner does not include an explicit demonstration phase, but rather a more implicit evaluation
phase, Peffers et al. (2007) defined a six-phase Design Science process in which the demonstration phase
is a separate step in the process. This will be adapted in this research, as the demonstration phase is a
significant part of the research.

Figure 3 shows the framework used in this study and adapted from Hevner’s Design Science cycles.

Figure 3: Design Science approach for this study adapted from Hevner (2007)

2.2 Research phases and sub-questions
The research approach follows the construction of the Design Science cycles. The Design Science research
consists of three subsequent phases. In each phase, one or more sub-questions are answered. These together
answer the main research question. The sub-questions are as follows:

1. What does the current landscape surrounding residential solar energy generation in Amsterdam and in
the Netherlands look like, from a social, technical, economic and political perspective?

2. What factors contribute to solar panel adoption behavior?

3. What is the potential for residential solar energy generation in Amsterdam and how are observed adoption
patterns correlated with various socioeconomic indicators to explain adoption disparity?

4. How might solar panel adoption disparity develop in the future

5. What are effective interventions for increasing residential PV adoption and narrowing down the adoption
gap?

2.2.1 Research phase 1: Understanding the context of residential solar panel adoption in the
Netherlands

Research phase one constitutes the environment phase of the Design Science cycles. This phase focuses on
getting a thorough understanding of the problem context and system at hand. The phase structures the system
description into four dimensions, to construct a broad sense of the existing stakeholders, policies, economic
developments, and technological innovations. This way, the main objective of this sub-question is to explicate
the problem environment. The following sub-question is answered in this research phase:
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Sub question 1: What does the current landscape surrounding residential solar energy generation in Ams-
terdam and in the Netherlands look like, from a social, technical, economic, and political perspective?

2.2.2 Research phase 2: Exploring the factors contributing to solar panel potential and adoption

In the second research phase, a thorough understanding of the knowledge base is acquired. This phase aims to
map the factors that contribute to solar panel potential and adoption, serving as input fur the artifact design.
First, the factors that contribute to rooftop potential for solar generation are introduced. Next, the consumer
characteristics that play a role in adoption behavior are mapped. This way, the concept of solar panel adoption
is conceptualized into factors that can be used in research phase 3. Research phase 1 answers the following
sub-question:

Sub question 2: What factors contribute to solar panel adoption behavior?

2.2.3 Research phase 3: Developing a method to study solar panel adoption disparity and
dynamics

Research phase 3 reflects the design cycle of the Design Science research method. In this step, all gathered
insights inform the process to design a method that allows the evaluation of adoption patterns, adoption dis-
parity, and adoption evolution. The design process starts with an operationalization section, that translates
and combines the insights from phases 1 and 2 into an artifact design. This section conceptualizes insights so
that they can be used to construct the artifact design and ultimately answer the main research question.

The design process results in an integrated analysis and modeling approach. Sub-questions 3, 4, and 5 are an-
swered using this designed approach. Sub-question 3 aims to understand adoption potential, current adoption
patterns, and the socioeconomic factors correlating with the observed adoption patterns.

Sub question 3: What is the potential for residential solar energy generation in Amsterdam and how are
observed adoption patterns correlated with various socioeconomic indicators to explain adoption disparity?

The insights from sub-question 3 are used to further develop the model for sub-question 4. For this sub-question,
a model is developed that allows studying the behavior of the system of solar panel adoption over time. The
next step is to use the developed method to explore the evolution of the adoption patterns that have been
observed in sub-question 3. Sub-question 4 aims to understand the dynamics of solar panel adoption over time
and under several policy measures and external developments.

Sub question 4: How might solar panel adoption disparity develop in the future?

Sub-question 5 aims to understand the dynamics of solar panel adoption disparity under leveling policy options
specifically, aiming to narrow down the adoption gap.

Sub question 5: What are effective interventions for increasing residential PV adoption and narrowing down
the adoption gap?

Finally, all insights from the research phases and sub-questions are combined to answer the main research ques-
tion:

How could distributed solar panel adoption (disparity) in Amsterdam develop in the future and
under different policy measures?

2.3 Research methods
This section explains what research methods have been used for the first two research phases. For the latter
three sub-questions, the creative design process is used to develop a suitable approach for analyzing solar panel
disparity and adoption dynamics. As such, for these sub-questions, the research methods will follow from the
design process. During the design phase, the used methods will be detailed out.
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Sub-question 1: (grey) literature study and semi-structured interviews
To create an understanding of the solar panel adoption landscape in Amsterdam and in the Netherlands, semi-
structured interviews and reviewing (grey) literature and policy documents are used as methods to answer this
sub-question. To understand the policy landscape, grey literature, and policy documents are scanned. Grey
literature, specifically news articles, gives additional insights into what problems or developments exist within
society. Policy documents are used for understanding current local and national regulations and climate goals.

Semi-structured interviews are conducted with several stakeholders. Semi-structured interviews are the most
common qualitative research method (Qu & Dumay, 2011). This type of interviewing includes a set of questions
that can be discussed in a flexible order and are mixed open and closed questions. This way of interviewing
stimulates interaction with the interviewee and is found to be beneficial for investigating complex issues (Jo-
hannesson & Perjons, 2014). A prior stakeholder analysis is conducted to select interview candidates. Three
stakeholders have been selected for the semi-structured interviews: municipalities, provinces, and net operators.
A total of ten interviews have been conducted, of which three with net operator Stedin, three with net operator
Alliander, one with the municipality of Amsterdam, and two with the province of Noord Holland. The munic-
ipality of Amsterdam is included in the net operator region of Alliander and is located within the province of
Noord Holland. Besides, one interview is held with a researcher from the TU Delft, regarding Energy Justice
implications in the problem area. The interviews aim to aid in determining the problem area, relevant dynamics
within the system, the current challenges and dilemmas, and future opportunities and developments. Prior to
the interview process, questioning is prepared and guided by identified themes in a consistent and systematic
manner. In each interview, appropriate questions to the specific interviewee are asked, while adhering to the
prior identified themes. Afterward, interviews are transcribed, summarized, and coded using ATLAS.ti (Qu &
Dumay, 2011).

Table 1 shows the interviewees, their institute, and their role within the institute. To refer to interviews in text,
reference codes are used, which are included in the most right column of the table.

Role Institute Reference code

Researcher Energy Justice Delft University of Technology DUT1
Program Manager Solar Energy Municipality of Amsterdam AMS1
Policymaker Energy Transition & Climate Province Noord Holland NH1
Spokesperson Climate & Energy Province Noord Holland NH2
Technical Trainee Stedin ST1
Grid Analyst Stedin ST2
Program Manager Strategic Investments Stedin ST3
Consultant Congestion Alliander AL1
Technical Trainee Alliander AL2
Principal Researcher Alliander AL3

Table 1: Conducted interviews and their reference codes

Sub-question 2: literature study (and semi-structured interviews
To answer the second sub-question, a literature review is conducted. The literature review will give theoretical
insights into what is known and unknown in the field of solar panel potential and adoption. First, literature
research is performed that studies in a broad sense what factors are involved in determining whether consumers
adopt solar panels. Next, these factors are investigated in more detail. The insights are added onto with some
insights from the semi-structured interviews, which were mainly focused on sub-question 1 but also provided
some insights from sub-question 2.

Data gathering and processing
To gather data for the first and second sub-question, several literature databases combined with search engines
are used. Scopus is used to find literature and Google is used to find grey literature and policy documents.
Besides, the data gathered from the semi-structured interviews serves as input for these sub-questions. To
structure the data from these interviews, transcripts are generated and coding is performed using the software
ATLAS.ti.
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For the third sub-question, which investigates adoption patterns, adoption potential, and socioeconomic corre-
lations, several data sources are used that are retrieved from online databases. These data sources are described
in more detail in the corresponding sections.

2.4 Research Flow Diagram
A detailed presentation of the research steps and their link to the research questions and used methodologies is
presented in the Research Flow Diagram in Figure 4. The Research Flow Diagram presents the three research
phases, consisting of research activities leading to answering the sub-questions in each chapter. The research
methods are presented in the green boxes of every chapter. The arrows present research outputs of research
phases that serve as input to subsequent phases. Combining the insights of all phases leads to answering the
main research question.

Figure 4: Research Flow Diagram
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3 System description
This Chapter answers sub-question 1:

What does the current landscape surrounding residential solar energy generation in Amsterdam and in the
Netherlands look like, from a social, technical, economic and political perspective?

The objective of the system description is to explicate the problem environment - the first cycle of the Design
Science methodology - and to identify the existing challenges, relevant stakeholders, policy levers, and external
factors impacting the system at hand.

The analysis is based on a literature study of many governmental papers and documents, as well as grey liter-
ature and policy documents. It is further elaborated upon using semi-structured interviews with experts from
grid operators, municipalities, and provinces. When referring to an interview, the codes depicted in table 1 are
used.

In this research, the environment is composed of a social, political, economic, and technical dimension. These
dimensions are adapted from Hevner et al. (2004), who applies the method in a business domain, and altered to
fit a socio-technical policy domain. Within the environment are the goals, tasks, problems, and opportunities
that define the “problem” as perceived by the researcher. Framing the research activities to address policy needs
assures research relevance.

This chapter starts with describing the system from a social perspective, including a stakeholder analysis.
Hereafter, the political dimension is discussed, summarizing relevant laws and regulations. These are followed
by the economic dimension, discussing relevant economic developments, and the technical domain, discussing
what technical elements are relevant and how they influence the system.

3.1 Political
To combat climate change, both on national and EU-level numerous climate laws, policies, and targets exist.
Their focus differs widely, ranging from common rules for the generation, transmission, distribution, energy
storage, and supply of electricity to guidelines for the environmental sustainability of economic activities. The
most important and relevant policies on the national and European Union (EU) level are described below. These
are the policies, laws, and regulations that include solar energy generation at the household level.

3.1.1 International policy

Internationally, several agreements and policies exist. These documents focus on climate and renewable energy
in a broad sense and set agreements on emission levels. The European Green Deal consists of European policy
plans, mainly considering climate and energy. The deal aims to improve resource efficiency and the well-being
of citizens with amongst others cleaner air, cleaner energy, and renewable products. While some EU-level policy
documents describe general climate and emission reduction goals, some have a direct impact on residential solar
generation in EU countries. Member states of the European Union have reached an agreement on stricter energy
standards for buildings. New rules will apply to both new and existing commercial and residential buildings.
The target, as set out in the EU’s climate plans, is for all buildings to be energy neutral by 2050 (European
Commission, n.d.). The strictest standards will apply to newly built buildings. In the case of existing buildings,
a requirement will be imposed that when a building is extensively renovated, its overall energy efficiency rating
must be improved. From 2029 onwards, solar panels will be mandatory for every newly built residence (Boven,
2018).

3.1.2 National policy

European policy and directives are ‘translated’ into national legislation, the legislation that applies in the
Netherlands. The Dutch government aims to reduce the Netherlands’ greenhouse gas emissions by 49% by
2030, compared to 1990 levels, and a 95% reduction by 2050. Climate policy is formulated to guide the re-
duction of greenhouse gas emissions in the Netherlands (and Europe). The energy transition ambitions of the
Dutch government are rooted in the Energy Agreement of 2013, and the Climate Agreement of 2019, and are
legally cemented through the Climate Act of May 2019 (Feenstra et al., 2021). The Climate Act is a framework
for the development of this policy. The goals are laid down in this law and the Cabinet must adhere to these
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goals. The Climate Act does not state how to do this. The Climate Plan, the National Energy and Climate
Plan (NECP), and the National Climate Agreement contain the policy and measures to achieve these climate
goals (Ministerie van Economische Zaken Landbouw en Innovatie, 2020).

The Netherlands Authority for Consumers and Markets (ACM) published the congestion management code de-
cision in May 2022. This allows grid operators to use existing electricity grids more intelligently. Grid operators
can now conclude contracts with large-scale consumers and producers for the long term. These contracts state
that they use the net less for a fee (RVO, 2017).

Looking at national policy, the netting scheme (“salderingsregeling”) plays the most crucial role in the residential
adoption of PV due to the increased financial benefits it offers. The net metering law, introduced to stimulate
PV adoption by households by increasing financial attractiveness, obligates power companies to deduct the
power that a household feeds back to the grid, from the amount of power that it consumes from the grid. This
means a household pays for the resulting balance between the feeding-back amount and the consumption. When
the feeding-back amount is larger than the consumption, the household receives a smaller “feeding-back tariff”
per kWh for the excess amount ((Milieucentraal, n.d.)). In the remainder of this paper, the term net metering
or netting scheme refers to the deduction of generated electricity on the energy bill, and net billing refers to
receiving a fixed amount per injected kWh into the grid. On the deducted amount of kWh, both the distribution
tariff and the energy tax are remitted.

The netting scheme has been an ongoing point of debate over the past years. In literature, incentive schemes
such as the netting scheme and other net-metering alternatives are increasingly linked to notices of injustice
and inequity. Keady et al. (2021) describe the existing inequities in access to household-level transition benefits
such as solar net metering. Si and Stephens (2021) points to the increasing awareness of how these policies
are exacerbating inequities by disproportionately benefiting wealthy communities. Lukanov and Krieger (2019)
conclude in their study that there are clear distributive and equity impacts of PV support policies (e.g. net
energy metering). The Dutch government is currently debating the option to out phase the net metering scheme
from 2025 onwards. This entails that each year, a smaller percentage of the electricity fed back into the grid can
be deducted from your consumption. Instead, households will receive a fixed, lower feeding-back tariff for each
kWh fed back into the grid (Milieucentraal, n.d.). In the final stage, net metering will be phased out completely
from 2031. The bill has been passed by the House of Representatives. It is now up to the Senate to decide
whether this bill will pass.

There are multiple causes that sparked the debate about phasing out the net metering scheme. One of these
reasons is the (un)fairness of the scheme. First of all, the net metering policy creates a redistribution issue.
The costs for net metering are not fully covered by the national government. Net metering increases costs in
two main ways:

• Net metering increases costs for energy suppliers. At times when there is high PV electricity generation,
the market price for electricity is often also lower, because the supply of cheap power exceeds demand.
The net metering scheme allows households with solar panels to offset this cheap power against the power
they purchase at other times – when prices are often higher. This increases costs for energy suppliers,
which they compensate for by increasing electricity unit costs for áll customers.

• It is known that PV generation increases the potential energy imbalances on the grid, due to the fluctua-
tions in sunlight and the mismatch between generation and consumption. As net metering stimulates PV
installation and feeding electricity back to the grid, the scheme contributes to imbalance on the grid and
thus increases balancing costs. As prices on the ‘imbalance market’ are much higher than regular electric-
ity prices, extra costs are generated by TenneT that energy suppliers pass on to their customers. Henri
Bontenbal, representing the political party CDA, states that residential consumers should contribute to
the system costs caused by feeding electricity to the grid: “The net metering does not allow this, costs are
carried by energy suppliers and socialized to all customers” (Parliamentary Questions 2022Z13495, 2022).
Imbalance price costs are estimated to be around AC1-AC5 /MWh (Hoogervorst, 2020; Koelemeijer & Bart,
2021).

Second, solar panel owners benefit from tax advantages. Households that produce a surplus do not pay any
energy taxes, or the so-called SDE levy, nor VAT, for their own yearly consumption (Bellini, 2022). This means
that users of solar panels can take advantage of tax breaks on the energy they offset against their generation.
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As a result, households without solar panels are now indirectly contributing to the financial benefits for house-
holds with solar panels. These costs can rise to about AC100 to AC200 a year (van Weezel, 2023). And the
more roofs with panels are added, the higher that amount becomes. This chafes especially because households
without solar panels often have no choice. Authority Consumer and Market (ACM) recommends abolishing the
scheme. According to the ACM, the scheme mainly benefits homeowners with a relatively high income (ACM,
2023). Multiple interest groups, including the Consumers’ Association and the Home Owners Association, have
called on the House of Representatives not to agree to the phasing out of the energy-saving scheme if there is
no good alternative for (future) solar panel owners. They also suggest that the dismantling of the scheme leads
to even more inequality, as the purchase of PV becomes less viable for low-income households (Donat, 2023).

Another reason for debating the continuation of the netting scheme is the emphasis of the scheme on the produc-
tion of power, rather than the use of one’s own power. The current scheme does not encourage small consumers
to use their own generated solar energy, or store it, because of the financial benefits of feeding electricity back
to the grid. This increases the pressure on the grid. Expanding the grid to prevent overloading from these
mechanisms requires substantial investments. Phasing out of the netting scheme would increase the incentives
for small consumers to use appliances at home at the time of energy generation (Boele, 2023).

Besides these challenges, the Cabinet states that the netting scheme has become redundant due to the sharp
decline in prices for PV installations and increased efficiency. Even without the net metering benefits, it remains
attractive to buy solar panels as the payback time has decreased significantly over the past years. A TNO anal-
ysis shows that the payback time of 10 solar panels in 2022 is 5 years. Should the netting scheme be phased out,
the payback period will increase to around 7 years (Verheij et al., 2020a). This calculation however assumes
an investment cost of 1.20 per Wp. Current price per Wp is 1.85 however, which would increase payback time.
The high energy prices compensate for this, making solar panels attractive compared to other energy sources.
Besides, because no tax has to be paid on the electricity stripped away, the scheme decreases the tax revenue
for the government (Ministry of General Affairs, 2023).

It is clear that the netting scheme policy, both nationally and internationally, and both in politics and in liter-
ature, is controversial. The scheme is increasingly linked to notices of inequity and injustice, mainly due to the
unequal access to the benefits of the scheme compared to the increasing costs for non-adopters.

Besides the netting scheme, national subsidies for residential solar energy investments are no longer in place.
However, there are some national or local favorable loans available for energy-saving or sustainability invest-
ments, often with low interest rates, and some municipalities offer local subsidies or support collaborative solar
panel investments. Besides, from 2023 onwards, no taxes are issued for rooftop-mounted solar panel purchases
(Ministry of General Affairs, 2023). The national government also introduced an interest-free loan for house-
holds with a low income who are willing to take sustainability measures on their owner-occupied homes. In
Amsterdam, the municipality offers the Energy Loan Amsterdam. This loan allows households in Amsterdam
to finance sustainability investments, including solar panels. While no subsidies for residential PV adoption are
in place, there are some scheme’s for homeowner associations, such as the SCE (Subsidy Scheme Cooperative
Energy Generation) and the SEEH (Subsidy Scheme Energy saving own Home).

Policy regarding solar energy generation is continuously under development. The federal government is currently
working on a new Energy Act, and is planning to give municipalities the mandate to obligate the installation
of solar panels on existing rooftops of utility buildings (buildings without residence purpose. The latter plan is
aimed to commence in 2024.

3.2 Social
The social domain is investigated through stakeholder analysis. Following the stakeholder analysis, supple-
mented with the insights from the interviews, a list of the most relevant stakeholders is composed, together
with their role within the problem area and possible justice implications.

Actor Analysis
The actor analysis focuses on stakeholders involved in the PV adoption landscape, that are an influence on
the system or are influenced by the system. Actors are those parties that have a certain interest in the system
and/or that have some ability to influence that system, either directly or indirectly (Enserink et al., 2022). Note
that the term ‘actor’ and ‘stakeholder’ are often interchanged. However, sometimes the term ‘stakeholder’ is
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used to refer to those groups that are mostly involved because they have an interest, or stake, in decision-making
processes, while the term ‘actor’ is used to refer to those with the capacity to influence the decision-making
or to act on decisions and their outcomes. In this analysis, the previous definition by Enserink et al. (2022)
is followed. There are several methods available to support actor analysis. In practice, most use is made of
approaches for stakeholder analysis.

Understanding the involved actors and their objectives and motivation is a crucial part of problem structuring
within complex policy issues. Very often, the interests and/or objectives of the involved actors are not fully
aligned. Understanding these interests and objectives might enrich the problem-solving process and lead to
better solutions. Enserink et al. (2022) thus stress it is of great importance that a problem analysis provides
insight into the range of actors involved.

Involved actors are identified through an interest-based approach as described by Enserink et al. (2022) and
supplemented with knowledge gained from the interviews. The interest-based approach identifies actors who
feel strongly enough about a certain policy problem or issue to act on their feelings. The general question
asked here is ‘Who has an interest in or feels the consequences of the issues around which the problem revolves,
or the solutions that are being considered?’. Actors are identified within the problem domain and scope: the
adoption of solar panels by households within municipalities in the Netherlands. Following the actor analysis,
supplemented with the insights from the interviews, a selection of the most relevant actors is composed. Figure
5 present these stakeholders in a hierarchical order, including three main stakeholder categories: governmental,
electricity sector stakeholders, and consumers.

Figure 5: Hierarchy of stakeholders

The federal government sets out national rules, regulations, and guidelines regarding solar energy policy and
climate goals. This includes amongst others the netting scheme, the Climate Law, Climate Agreement, and
the zero-VAT rate on PV installation (See section 3.1). The Ministry of Economic Affairs and Climate
Policy is mostly connected to solar energy policy. This party also initiated the phasing out of the netting scheme.

The role of the province in solar energy integration is at the medium-voltage level, meaning they concern
with large-scale solar projects such as solar farms and solar systems on large roofs. The role of the province
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concerning the integration of solar panels in households is very limited (NH1, NH2). Provinces focus on reaching
the goals stated in the Regional Energy Strategies (RES). To do so, they closely work together with other par-
ties such as municipalities, grid operators, ministries, citizens, and companies. Given the recent developments
with grid overload, the province and municipalities are looking to strengthen collaboration on these issues (NH2).

The actor most directly involved in stimulating and facilitating PV adoption at the household level is the mu-
nicipality (AMS1, NH2). Municipalities implement national and own policy and act on those matters in the
direct interest of their residents. Municipalities usually have local renewable energy targets, which they aim
to reach amongst others by stimulating sustainability measures in households. However, most rooftops are not
municipal property, and thus they can only stimulate in these cases (AMS1).

The Netherlands Authority for Consumers and Markets (ACM) is an independent regulator that cham-
pions the rights of consumers and businesses. ACM is charged with competition oversight, sector-specific
regulation of several sectors, and enforcement of consumer protection laws (ACM, n.d.). The ACM is also
responsible for the execution of the Electricity Act, grants permits to Energy Suppliers and supervises what
grid operators and Energy suppliers charge to their customers.

The Dutch solar landscape offers a broad range of fundamental and applied solar research, and many Re-
search Institutes are investigating materials and processes, devices, and systems. Research & Development
is conducted at universities of technology like the Universities of Eindhoven, Delft, and Twente, as well as at
the leading international energy research institutes ECN, TNO, and the Holst Centre. Also, large companies
such as OTB Solar, Scheuten Solar, Solland Solar, and Tempress Systems have extensive research programs
(van Gastel, 2012). Although the Netherlands itself has an ecosystem of companies and research institutes that
cover the entire solar technology chain: from materials to device design, manufacturing equipment, software,
high-end solar modules, and complete project development, the vast majority of solar panels is manufactured
in Chinese factories (RVO et al., 2020).

Transmission and distribution grid (network) operators are responsible for managing the energy net-
work in a specific region. This network includes the transportation of gas and electricity. Grid operators are not
the energy suppliers. The grid operators expand and maintain the grid by laying and repairing cables and pipes.
The grid operators get notified afterward when a household installed solar panels, as usually no modification of
the cabling is necessary (ST3). They aim to adjust the capacity of the low-voltage grid when the impact of PV
installations (in combination with electric cars or heat pumps) on the net within a neighborhood causes issues
(ST3). Grid operators cooperate with provinces to achieve the goals set in the RES.

Energy suppliers deliver gas and/or electricity to business or private customers. Customers can choose an
energy supplier for their own contracts. The largest energy suppliers in the Netherlands are Essent, Eneco,
and Vattenfall, but there are approximately 50 energy companies active in the Netherlands (United Consumers,
n.d.). Some of the large energy suppliers are not only suppliers but also energy producers, owning their own
power plants, wind farms, or solar farms.

PV retailers are companies selling PV installations to households or businesses. Many retailers exist in the
Netherlands, of which most also offer installation services and PV design advice. In most cases, PV retailers
are also the PV installers. Due to the many retailers, market competition can keep prices relatively low.

Given the scope of the research - residential rooftop PV adoption - households form the most central actor
within the system. Households decide on an investment in a PV installation given the many external factors (en-
ergy prices, PV prices, renewable technology popularity, etc.) and household characteristics (financial resources,
perception of renewable energy sources, type of residency, rooftop availability, etc.). Some households rent a
property and some households own a property. Thus, not all households own a private roof. Some households
share a roof of an apartment building with other residents. All owners of apartments in a complex together form
an association of owners (OA). All members of the OA have to decide together on the purchase of solar panels
for the communal roof. The Municipality of Amsterdam counts approximately 20.000 OAs, covering 230.000
residencies. That covers 53% of all residencies in Amsterdam (Gemeente Amsterdam, 2018). OAs and rental
properties form a complexity when it comes to PV adoption, due to the many involved stakeholders having to
agree on an installation (AMS1). Households that rent a property have a housing corporation or landlord.
For rental houses, commercial landlords or housing corporations are often responsible for the installation of
solar panels.
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Besides the private installation of solar panels by households, energy cooperatives exist that aim to col-
lectively purchase and install solar panels, for example at public buildings. The Netherlands, currently, has
around 110 energy cooperatives with the objectives of local energy generation and energy saving, as well as
strengthening the community. The activities of these cooperatives consist of collective purchasing campaigns
for solar panels, small-scale energy conservation campaigns for private homeowners, operating an information
and advice help desk, and the reselling of electricity (Planbureau voor de Leefomgeving & van Polen, 2021).

Figure 6 shows the different stakeholders involved plotted for both interest and power. The plot is based on the
power/interest matrix by Enserink et al. (2022) and is used to map actor dependencies.

Figure 6: Hierarchy of stakeholders

The roles, responsibilities, and hierarchy of stakeholders suggest the presence of several energy justice implica-
tions. Most prominently, property renters and property sharers have no direct roof access and thus no individual
decision-making power on placing solar panels on the roof’s property. This form of unequal access and availabil-
ity to renewable energy technology relates to distributive justice - the equal distribution of benefits and burdens
from the energy sector - concepts and has been previously discussed in literature (Sovacool et al., 2022; Sunter
et al., 2019). The hierarchy of stakeholders also reveals a large deviation in actor power. Several governmental
bodies construct laws or policies that actors such as households, OAs, housing corporations, and landlords have
to comply to. This diverse power spread implies that actors with low decision-making power may or may not
be included in the decision-making process of actors with high decisive power. This touches upon the notion
of procedural justice, which concerns the inclusion and equitable access to participation in the decision-making
process (Si & Stephens, 2021).

3.3 Economic
The economic environment is part of the problem context and aids in understanding how the economic situation
in the Netherlands might impact the problem at stake. Households are impacted by the economic situation
in deciding on renewable energy investments. Besides, the economic situation creates several challenges that
impact the renewable energy market.

3.3.1 Economic developments

Following several years of a COVID-19-shaped economy, the war in Ukraine is affecting the Dutch economy,
which is reaching its capacity limits again after recovering from the COVID-19 recession. The economy recov-
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ered in 2021 and experienced a 4.3% expansion of economic growth in 2022. A combination of substantially
higher energy prices, international trade sanctions, and heightened uncertainty due to the war in Ukraine -
including the availability of energy supply - however dampens the economic outlook. The economic growth is
projected to slow to 0.8% in 2023 and 1.1% in 2024 (OECD, 2022).

The shock of the war is driving energy prices higher, causing inflation in both the energy market and other
goods and services. The inflation development of household electricity prices is shown in figure 7. The inflation
is expected to fall from 8.7% in 2022 to 3.9% in 2023 and 2.4% in 2024 (DNB, 2022) (see figure 8). Lower-income
households are particularly vulnerable and are feeling the impact of the sharp and sudden rise in energy and
food prices. They spend a relatively large part of their income on energy and often have no buffer to absorb
the large rise in energy prices, possibly leading to energy poverty (see section 3.3.2) (DNB, 2022).

Figure 7: Development of household electricity prices. Source: (Statista, 2023)

Figure 8: Development of inflation. Source: (DNB, 2022)
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To compensate for the sharp rise in energy prices and the increased financial load on households, the govern-
ment introduced several measures. These include a lower energy tax on electricity, a higher energy tax refund
and a reduced VAT on energy from 21% to 9% (in 2022). For lower-income households, the government offers
extra measures. Households with an income around the social minimum are entitled to an energy surcharge of
approximately AC1300. Municipalities will receive AC300 million to help residents in poorly insulated houses save
energy. Next to all this, the government announced a price cap for gas and electricity for small consumers of
energy, from 1 January to 31 December 2023 (Ministry of Economic Affairs & Policy, 2023).

Besides the challenge of inflation, the labour market is extremely tight again immediately after the COVID-19
recession. Staff shortages are being felt across the whole economy. It is expected that employment will barely
grow in the coming years. Besides, the supply of labour is also reaching its limits. The tightness of the labour
market and higher inflation are driving wage rises higher. The unemployment rate is projected to average 3.3%
in 2022, and is expected to rise to 3.6% in 2023 and 3.4% in 2024.

The tightness of the labour market has a clear impact on the solar PV market in the Netherlands. The renew-
able energy market, including the PV market, experiences a severe shortage of technicians and mechanics which
limits the growth of the market (Stil, 2022). The Dutch Planbureau even stated that the shortage is a threat
to reaching the climate goals (Weterings et al., 2022).

3.3.2 Energy poverty

The energy crisis has led to an increase in energy-poor households. The increase is caused by a sharp rise in
both energy prices and prices of other goods. This increased the costs of living for all households, and thus also
increased the share of energy costs households pay relative to their income. When the energy burden (energy
quota) of a household is equal to or more than 10% of their spendable income, the Dutch government speaks of
energy poverty. The municipality of Amsterdam is amongst the areas in the Netherlands where energy poverty
has increased sharpest since 2020 (Mulder et al., 2023). Within this municipality, the increase in energy poverty
highly differs per neighbourhood and is, besides the household income, also related to the type of buildings. In
the city centre, buildings are relatively old and poorly isolated, which increases changes in energy poverty. In the
West, there are relatively many small residencies and almost solely multi-household residencies (apartments).
In the South-East of Amsterdam, energy poverty occurs the most, where 14% of the households are classified
as "energy poor". In the South-East, this high number is mainly caused by the share of low-income households,
given that energy consumption is around the average. The municipality of Amsterdam states that in general,
neighbourhoods that experience high numbers of energy poverty have a high share of low-income households
(Gemeente Amsterdam, 2022c).

Related to energy justice, energy poverty is becoming a widespread problem in both developing and developed
economies, including the Netherlands. Energy poverty is an indicator related to the pressure of energy costs on
the disposable household income (Weijnen et al., 2021). Most countries use a threshold of 10% of the household
income to indicate energy poverty. TNO defines energy-poor households as households that have to deal with
a low income in combination with an excessively high energy bill and/or a home of (very) poor energy quality.
TNO investigated that in the Netherlands, 1 out of 13 households experience energy poverty in 2022. This
number has increased significantly compared to previous years, mainly due to the sudden increase in energy
prices. The financial compensation measures introduced by the Dutch government have limited the increase
in energy poverty by 2020 and 2022. Without these measures, it is estimated that the energy poverty number
would have doubled compared to 2020 (Mulder et al., 2023).

In recent years, researchers have contended that the issue of energy poverty is a key dimension of the broader
energy justice paradigm (Jenkins et al., 2016). G. Walker and Day (2012) claim that, at its core, energy poverty
is ‘fundamentally a complex problem of distributive injustice’ (p. 69), and suggests that this is underpinned
by further injustices in recognition and policy-making procedures. Other studies have built upon this work to
establish energy poverty as a form of injustice (Christman & Russell, 2016; Sovacool et al., 2016). Looking
at energy poverty within the solar energy domain, distributed solar energy has large potential benefits for
alleviating energy burdens for low-income households, and thus decreasing energy poverty (Si & Stephens,
2021). It is however the households that experience energy poverty that cannot afford the technology.
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3.3.3 The PV market in the Netherlands

The European market, including the Dutch solar market, is growing significantly. The market experienced a re-
duction in costs for solar panels due to increased competition, tightened European climate objectives, increased
political support, and the introduction of the European recovery plan. These are important drives of the solar
market. (Intersolar Europe, 2022). The European market experienced the third-largest growth worldwide in
2021.

In 2021, solar power was the largest energy source for renewable electricity. Specifically, the role of distributed
systems increased. Policy incentives, such as the netting scheme, drove distributed PV capacity to increase
enormously in 2020 and 2021. That same policy incentive causes the Dutch market to fall behind compared to
other Western markets when it comes to the self-consumption of generated electricity. The main reason for this
is the focus on production due to the advantages of the net metering system.

In the Netherlands, demand for solar panels also increased due to the high energy prices. Partially because of
the netting scheme, the Netherlands is one of the largest growing solar energy markets in Europe. The vast
majority of solar panels are installed on roofs. The number of households with solar panels passed the 1.5 million
mark in the second half of 2021. In total, 1.3 GW of newly installed capacity was added to the residential part
of the sector. The growth of residential installed solar capacity is shown in figure

Regarding the costs of solar panels, on average, the price of the modules steadily decreased in the period of
1985 to 2020. The nominal price of panels has however risen steadily in 2021. This is due to the scarcity of
resources and high transportation costs. Fierce competition in the low-cost sector keeps the prices relatively
low (DNE Research, 2022).

Just as in other markets, the COVID pandemic has had a great impact on the sector of solar energy modules.
Where the demand for solar panels surprisingly increased sharply, so did the shortage of different resources
for the production of solar panel systems. Solar panel suppliers thus had little opportunity to meet the rising
demand for solar panels (NVDE, 2022). Where the PV industry mostly dealt with a shortage in resources for
solar panels in the previous years - ranging from glass to silicum to eva-foil – in 2021 and 2022 it is the converter
producers that deal with problems due to the chip crisis. Converters contain chips that regulate that electricity
from the solar panel is converted to electricity usable by households. Manufacturers of converters point to the
chip shortage to explain the current supply problems (van Gastel & Stultiens, 2022). The raw materials for chips
are scarce, and many chip manufacturers experienced production problems due to the COVID pandemic (Teije,
2022). On top of this, many stakeholders in the supply chain experience increased transportation costs due to
the COVID pandemic and rising fuel prices. These developments caused a worldwide shortage of converters,
and to a lesser extent batteries, slowing down the supply of solar panels and increasing the waiting times for
solar panel deliveries (Teije, 2022).

3.4 Technical
Within the technical dimensions, the PV market is discussed in Section 3.4.1. The electricity grid is discussed
in Section 3.4.2.

3.4.1 PV market

Based on technology, the market is segmented into monocrystalline silicon, thin-film, multi-crystalline silicon,
and others. The multi-crystalline segment dominated the global market in 2020 with over 95% market share
(RVO et al., 2020). This segment has a wide range of applications in this market and it is widely used in the
commercial, residential, and industrial segments.

The monocrystalline silicon segment is expected to grow at the highest pace during the forecast period.
Monocrystalline silicon sun-energy panels are more widely used in solar rooftop systems. These panels are
commonly preferred for large-scale solar PV installations. Such solar panels are used in different sectors,
such as industrial, commercial, or residential. Many manufacturers are also shifting from multi-crystalline to
monocrystalline solar cells due to their high efficiency, compact design, and durability (Fortune Business In-
sights, 2022).
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The shift to more efficient monocrystalline wafers accelerated in 2021, with the technology capturing almost all
crystalline PV production. In parallel, more efficient cell design (PERC) is also expanding its dominance with
almost 75% market share. New, even higher-efficiency cell designs (using technologies such as TOPCon, hetero-
junction, and back contact) saw expanded commercial production and captured about 20% of the market in 2021.

3.4.2 The Electricity Grid

High and low voltage grids
For the largest share, the Netherlands is dependent on the large-scale generation of electricity in power stations,
which is transported and distributed from power stations to the end users. In the transport- and distribution
network, there are no storage possibilities. Up to date, storing electricity is only affordable for small amounts
in batteries.

The Dutch main transport network for electricity, also called the transmission network, consists of the high-
voltage grid, which is used for transporting electricity at 110,000 volts (110kV) and higher and has a frequency
of 50 Hz, in line with European Standards (Our high voltage grid (TenneT, n.d.). The high-voltage grid is the
system that is visible above ground: the electricity pylons in the Dutch landscape and the electricity transport
cables connected to them. The Dutch transmission network is directly connected to that of Germany and
Belgium. The high-voltage grid is managed by TenneT, which is responsible for maintaining and ensuring a
balance in supply and demand on the grid, securing electricity supply, transmitting electricity from producers
to regional distributors, and facilitating the energy market. Our high voltage grid (TenneT, n.d.) The electricity
flowing through the grid is generated from various sources. These include fossil fuels (natural gas, coal, lignite,
oil), renewable sources (wind, solar, biomass, geothermal), and nuclear energy.

Households are not directly connected to the transmission network. Only some large industrial consumers are
directly connected to this grid. TenneT transmits electricity from the source to regional distributors, which in
turn supply power to consumers, or directly to large consumers. This is done by connecting the high-voltage grid
and the distribution grids at high-voltage substations or switching substations. At these ‘nodes’, transformers
convert the high voltage to low voltage, suitable for use by households, businesses, and organizations (Chappin,
2022). The intricate distribution networks do not fall under the responsibility of the national transmission net-
work operator (TenneT) but under the responsibility of regional distribution net operators (including Stedin,
Enexis, and Liander).

Balance on the electricity network
Because the electricity grid lacks storage solutions, there is a need to balance the demand and supply at any
time. It is the responsibility of TenneT to manage the balance on the grid at a frequency of 50 hertz at all time
and to ensure that no shortages or surpluses arise. Maintaining this balance is challenging, given the many
different consumer patterns of all individual customers, the fluctuating supply of renewable energy by wind and
sun, and the absence of large-scale storage possibilities for electricity. Especially shortages in electricity can
lead to fallouts of parts of the electricity network (Chappin, 2022).

Because of the lack of large-scale storage solutions, at any moment there could be more electricity being fed to
the net than there is being taken from the net. Solar energy projects and solar panels at households contribute
to the mismatch between demand and supply, due to the unpredictable and fluctuating load. These develop-
ments mainly cause high fluctuations between summer and winter.

TenneT manages the balance in cooperation with balance service providers (BSP) and balances responsibility
partners (BRP). Each supplier or buyer with a connection to the grid carries balance responsibility and needs
to be connected to a BRP. A BRP is financially responsible for any imbalances that occur in his/her portfolio
of grid allocation points and delivers portfolio forecasts to TenneT. BRPs have the ability to correct their own
imbalance by changing load or production behind their allocation points or trading with another BRP. If an
imbalance occurs in the Netherlands, TenneT sends a signal to the BSP who then activates balancing energy
to reinstate the system balance. If the BRP contributed to an imbalance in the system, the BRP has to pay
TenneT. or if the imbalance supported the system, the BRP will receive the imbalance price from TenneT. The
costs for imbalance are being passed on to customers, causing increased electricity prices (Vattenfall, n.d.).

Another consequence of the limited storage options accounts for households with solar panels specifically. Be-
cause energy storage is a challenge, without a battery it is impossible to store electricity, e.g. electricity generated
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in summer until winter. A solution to this is the use of small-scale batteries for decentralized energy systems.
The batteries are expensive, however, and still offer limited storing capacity for the price (van Zoelen, 2022).
Besides, due to the advantages of the netting scheme, it is still relatively attractive to deliver electricity back
to the grid, instead of investing in local energy storage (NH1, ST1). Batteries as part of a decentralized energy
system are however seen as an important solution to balance and capacity problems on the grid. These problems
will be elaborated on in the next section.

Grid congestion
Grid congestion occurs due to transmission constraints: a lack of transmission line capacity to transport elec-
tricity without exceeding thermal, voltage, and stability limits designed to ensure reliability (NRG, 2018). The
demand for the transport of electricity, both at the producer and at the consumer, is larger than the available
transmission capacity of the existing grid. Overall, there are two types of congestion: delivery congestion and
feeding-back congestion. Delivery congestion occurs when the demand from an energy consumer is higher than
the supplying transmission line capacity. This happens for example when many large consumers are connected
to the grid within a small area. Feeding-back problems occur when for example generators of renewable electric-
ity feed back unused electricity to the grid, at places where the grid is not adapted to two-way traffic (ST1, AL1).

The increased traffic of electricity causing grid congestion problems has several causes. One development that
increased traffic on the grid is the changed electricity market. There has been a shift from a centralized en-
ergy system, where energy is generated at a few large sources and dispatched to consumers through somewhat
one-way traffic, to a decentralized system where energy is also generated by consumers and fed back to the grid
(ST1). This development results in increased traffic in new directions, where locations, where energy can be
generated, do not match with the current capacity spread of the electricity net (Limited grid capacity endangers
strong Dutch Solar growth (Dutch New Energy, 2021). This causes problems with feeding electricity back to
the grid. The shift to a decentralized energy system is a development that has a large impact on grid operators
in the Netherlands, who have to adjust the grid capacity to the shifted demand and supply of electricity to
avoid grid congestion.

The congestion in the electricity net occurs most apparently in rural, sparsely populated areas, where tradi-
tionally there has been relatively little offtake of electricity. The grid, once built on the basis of a predictable
production and offtake model, is not designed to cope with large peaks, particularly in these rural areas.
Large-scale solar parks - a development of recent years - that want to establish themselves precisely in sparsely
populated areas (cheap land and space), make great demands on the grid when transporting the peaks in gen-
erated solar power. Especially if several large producers of renewable energy in a region want access to the grid,
the risk of overload is apparent. In addition, in urban areas, there is the problem that, due to the rapidly grow-
ing demand for data centers and the electrification of industry, grid operators are unable to increase the grid’s
capacity fast enough to meet all the demand (source: interview). Under the new connection policy adopted by
the Ministry of Economic Affairs,1 Dutch transmission system operator TenneT is required to connect all new
generation capacity to the transmission grid regardless of whether sufficient transmission capacity is available
(van Blijswijk & de Vries, 2012).

A second development is the increased generation of renewable electricity due to environmental concerns and
climate targets. Lower carbon emissions mean more electrification. The share of generated electricity increases
and more renewable solar and wind projects arise. Another development is the increased demand for electricity
over the years due to economic growth, the large housing assignment the government is facing, and the rapid
digitalization of society, resulting in overall more traffic on the electricity grid (Liander, n.d.).The trends named
above have the most impact on the grid when they cause increased traffic of electricity at one or a concentrated
location.

Voltage issues on the grid
On the lower-voltage grid, where PV installations by small consumers or businesses are attached, congestion is
still limited but solar panel installations mainly impact the voltage of the grid (AL1, AL3, ST3). Voltage issues
arise when high levels of electricity are transported to the grid at the same time, mainly when the grid capacity
is not built for such levels of transported electricity. To date, voltage issues occur frequently in neighborhoods
with a large share of renewable energy generation. An important element in these issues at the low voltage grids
is the simultaneity of consumption and generation of electricity. This issue arises both on a daily and yearly basis.

On a daily basis, generally, household energy consumption and generation of electricity by PV systems are
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not simultaneous. This means that for a large share of the consumption, which generally has its peaks in the
morning, late afternoon, and evening, electricity is demanded from the grid. Only a small share of the generated
electricity by solar panels is directly used. The remaining of this generated electricity is fed back to the grid.
Especially when high levels of simultaneously generated solar energy by households are being fed back to the
grid, voltage issues can occur.

On a yearly basis, PV electricity generation widely varies between different seasons due to the seasonal nature
of radiation intensity. As the radiation intensity is impacted by hours of light and weather conditions, solar
radiation is on average much higher during summer months compared to winter months. Thus, during summer
months solar panels yield more electricity than in winter months. The average energy consumption of house-
holds however shows a contradictory pattern, where more electricity is demanded during winter months, such
as for heating and lights. During the summer months, when PV yield is high, the increased transport on the
electricity grid results in more voltage problems than during the winter.

A solution to voltage issues on the grid is an expansion of the grid capacity. When in a specific neighborhood
for example, a large share of the households adopts solar panels, it is very likely that voltage issues occur and
the grid needs adaptation (ST3).

3.5 Main conclusions Chapter 3
The relevance cycle revealed relevant policy measures, stakeholders, possible adoption barriers, and external
influences that can serve as input for the Design Science Research cycle. Besides, the cycle aided in explication
the problem at hand and identifying the relevant challenges and dilemmas. Doing so, this section answers
research question 1:

What does the current landscape surrounding residential solar energy generation in Amsterdam and in the
Netherlands look like, from a social, technical, economic and political perspective and through an energy justice

lens?

The main findings resulting from the first research question are summarized below.

The impact of relevant policy levers on the system
The (grey) literature review and interviews have given a clear overview of the policies that currently influ-
ence the system or that might do so in the future. Policies currently in place include the netting scheme, tax
subsidies, and in the year 2023, the energy price cap. The netting scheme policy is the most crucial policy
momentarily. It significantly impacts PV adoption behavior, raises questions about energy-justice matters, and
increases pressure on the grid and electricity system. Doing so impacts many stakeholders including households,
grid operators, utility companies, and policymakers. The netting scheme policy in specific is an ongoing point of
debate both in politics and in literature, as the scheme is increasingly linked to notices of injustice and inequity.
This is mainly due to the fact that the scheme can cause distributive injustices: the benefits of the scheme are
not equally accessible to households and the costs of the scheme are socialized to all citizens.

The impact of important external factors on the system
Many external factors have been revealed during the relevance cycle that directly or indirectly impacts the
system of PV adoption. The price of PV systems and energy prices impact the adoption decision-making.
Geopolitical developments have played an important role over the past years, increasing uncertainty in the
energy market and energy prices. PV efficiency has increased over the years and, together with solar radiation,
increases the potential electricity yield for consumers and thus increases PV attractiveness. Public awareness
for renewable energy generation has accelerated over the past years, which has greatly contributed to favorable
policy incentives and increased adoption rates for renewable energy generation. A shortage of materials and
technicians has both impacted the speed of PV adoption and installation and the speed of grid expansion.

The main identified challenges
Grid congestion and voltage issues. Increasing capacity on the grid is the main challenge for grid operators,
given the limited resources and capital. Grid expansion is needed because of voltage issues and congestion
issues. The non-simultaneousness of demand and supply is an important cause of the pressure on the grid:
demand and supply are often not at the same time. Households can experience the increased pressure on the
grid through PV converters that shut off due to overvoltage on the grid.

30



Anticipating PV adoption. The municipality and grid operators experience anticipating PV adoption by house-
holds as a challenge, given the largely unpredictable nature of consumer PV adoption. Predictions are compli-
cated because of the many socioeconomic factors and external “drivers”, such as electrification of the industry,
the netting scheme, and the energy prices. Therefore, additional insights into explanatory variables of adoption
are useful. Scenarios are needed to evaluate future development given the significant impact of external factors.

The main identified adoption barriers
Municipalities distinguish several target groups when it comes to PV adoption, including homeowners, OAs,
commercial renters, and housing corporations. There is a large difference in complexity between these groups.
The adoption barriers for solar panels are partially clear, however, non-adopters are not a very clear target
group. Several observed adoption barriers through the interview process are the ownership of property, access
to a roof, household income, and language/information barriers. These adoption barriers indicate that some
groups within society have limited opportunities for purchasing a PV installation. For some households, the
initial investment of a PV purchase is too high. These households also cannot benefit from the advantages of
the netting scheme. Besides, PV generation and specifically the netting scheme cause additional costs for grid
operators and utility companies such as balancing costs, as customers with solar panels increase the pressure
on the grid. These costs, together with the netting scheme costs, are socialized to all customers, which creates
justice complications.

Energy justice implications following from the system description
The identified system and its stakeholders, external drivers, challenges, and barriers reveal multiple possible
inequities caused by justice implications. The diversity in actor power could imply procedural justice compli-
cation: not all actors might have equal participation in the decision-making process. This injustice can exist
between actor groups (grid operators vs. citizens) but also within actor groups: different socioeconomic char-
acteristics such as income or race can influence decisions making power (Si & Stephens, 2021). The netting
scheme policy has implications for distributive justice: not all citizens experience the benefits and burdens of
the policy equally. Recognition of injustice results more implicitly from the injustices above, where it is about
recognizing the rights of different groups, particularly the underserved groups or minorities. Several literature
studies identify the injustices named above - although none cover the Netherlands as a study area. In the United
States for example, Si and Stephens (2021) identified societal groups that have less political power than other
target groups and less ability to participate or be represented in the solar-energy policy process.

Energy poverty, a nation often linked to energy justice, is an increasing problem in the municipality of Amster-
dam. Though residential solar energy generation has a large potential for alleviating energy burdens and thus
decreasing energy poverty, it is the households that experience energy poverty that cannot afford the technology.

The system explication and literature studies clearly point towards possible justice implications that can arise in
the solar energy field. Most literature research covers geographic areas outside of the Netherlands. To properly
understand the justice implications at stake, a clear assessment of the solar adoption behavior is necessary. The
remaining study will focus on identifying socioeconomic groups that are under-served when it comes to solar
panel adoption, and how external drivers and policy levers impact this.
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4 Residential solar energy adoption and generation
Whether households adopt solar panels, is determined by several factors. Research question 2 aims to map
these factors as described in previous studies:

What factors contribute to the technical and social potential of rooftop solar generation through PV-systems?

By answering this research question, insights can be used for the operationalization towards a design arti-
fact. This section covers a definition of solar panel adoption potential, including the main factors determining
adoption behavior, in Section 4.1. Next, these factors are explicated in more detail. Section 4.2 describes the
rooftop suitability factors, and Section 4.3 describes the consumer characteristics related to adoption behavior.

4.1 PV adoption behaviour
A comprehensive literature study is conducted on solar panel adoption and potential studies. This literature
review revealed that many factors come to play during the adoption decision-making process. On the one hand,
adoption behavior is determined by consumer characteristics (Bouaguel & Alsulimani, 2018), (Vasseur & Kemp,
2015b), (Lan et al., 2021), and more. Consumer characteristics include demographic factors, as well as percep-
tions of external factors that influence the decision-making process. On the other hand, rooftop suitability forms
a direct physical determinant of PV adoption. To structure the factors influencing the adoption decision-making
process, the diagram in figure 9 is constructed. This diagram is not conclusive but gives an overview of factors
that have been noted in the literature to influence PV adoption. A limited fraction of the literature spends
attention on external drivers (such as electricity prices) as a separate factor of influence. Rather, these factors
are embedded in the consumers’ behavioral and psychographic characteristics. This way, it is assumed that the
perception of consumers of these external drivers impacts their choice for adoption.

The factors presented in the diagram are explained and detailed in the sections below. Section 4.2 discusses the
rooftop photovoltaic potential and Section 4.3 discusses the consumer characteristics.

Figure 9: Representation of determinants for solar panel adoption. Source: author

4.2 Rooftop photovoltaic potential
In order to understand rooftop photovoltaic potential, a basic understanding of photovoltaic technology is
necessary. Therefore, this section starts off with an introduction to electricity generation through photovoltaic
technology. Next, the important factors for electricity generation are discussed. Finally, rooftop characteristics
determining rooftop suitability are described.

4.2.1 PV systems: Solar cells and electricity generation

Solar panels, or photovoltaic cells are used to convert solar power into electricity. Photovoltaic (PV) is a
combination of the words photo (‘light’) and voltaic (electricity). PV converts solar irradiance into electricity
that can be used in on-grid and off-grid applications (Boxwell, 2012). When the sun shines onto a solar panel,
energy from the sunlight is absorbed by the PV cells in the panel. This energy creates electrical charges that
move in response to an internal electric field in the cell, causing electricity to flow (Veen, 2014). The more
light and the higher the intensity of the light, the greater the flow of this current. Several applications of solar
panel systems exist, such as rooftop-mounted systems or solar parks. Given the scope of this study, this section
focuses on rooftop-mounted PV systems.
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4.2.2 Rooftop installations

Solar Panel types
Two main types of solar panels are currently available on the commercial market: crystalline silicon panels
and thin-film panels. The division is based on the material properties of the semiconductor that makes up a
solar panel. In the current market, crystalline silicon panels account for >90% of total production worldwide
(Tozzi et al., 2020). Within these two main types, module technologies differ based on the material used and/or
the structure of the panel, giving each technology unique characteristics. Important panel attributes include
efficiency, performance at high temperatures, and production costs. The efficiency is the fraction of the total
energy a solar panel can convert to usable electric energy. Besides, panels differ in production costs and com-
mercial market prices, whereas in general panels with higher efficiency are more complex to produce, and thus
more expensive (Tozzi et al., 2020).

Generally, solar panel systems consist of several elements, besides the panels described above, a solar panel
system includes an inverter, a power meter connecting the system to the utility grid, racking, and possibly
a battery system. Racking ensures that the panels are securely attached to the roof. An overview of the
components of a grid-connected residential solar panel system is shown in figure 10.

Figure 10: Components of a grid-connected residential solar panel system. Source: Solar Electric (n.d.)

Converters and batteries
Solar panels rarely power electrical equipment directly. The current from all the connected solar panels is col-
lected and fed into an inverter. This inverter changes the direct current (DC) from the panels into alternating
current (AC), which allows using the electric current for appliances at home or to feed electricity back into the
grid (Boxwell, 2012). A battery can be used to store electricity from the moment of generation to the moment
it is needed for consumption. In the Netherlands, the march of battery-storage solutions is limited given the
high prices of these systems (NH1, ST1).

Grid-connected systems
In the Netherlands, most commercial PV installations are grid-connected (AL2). Grid-connected solar systems
are systems directly connected to the national utility grid. Some of the produced electricity is directly consumed
by the owners. During the day when the sun is shining, these systems transport (sell) excess electricity to the
grid which is then used elsewhere. During the night, when there is no sunshine, consumers buy electricity from
the grid as required. Grid-connected solar systems have largely contributed to the shift towards a distributed
electricity system in the Netherlands (Al1).

4.2.3 Electricity generation factors

A wide range of factors influences the electricity generation of PV systems, of which the most important ones
are described below.

• Solar irradiance. The quantity of power coming from solar sources per unit area is known as irradiance
(Boxwell, 2012). The energy produced by a photovoltaic module is directly related to the availability of
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solar energy and is, therefore, location dependent. Incoming solar radiation (insolation) originates from
the sun and is modified as it travels through the atmosphere and reaches topography and surface features.
The radiation is intercepted at the earth’s surface as direct, diffuse, and reflected radiation (see figure 11).
Direct radiation is received in a direct line from the sun. Diffuse radiation is scattered by atmospheric
objects such as clouds and dust. The reflected radiation is reflected from surface features such as the
ground. The sum of the direct, diffuse, and reflected radiation is called total or global solar radiation.
Generally, direct radiation and diffuse radiation contribute most to the total radiation, and reflected
radiation only constitutes a small proportion. Therefore, in most radiation models only the direct and
diffuse radiation are included (ArcGIS Documentation, 2021a). Irradiance usually fluctuates according to
the weather and the sun’s location in the sky. The location of the sun changes throughout the day due to
changes in the sun’s altitude (the angle between the sun’s rays and the horizontal plane) and the azimuth
angle (the angle between true north and the projection of the sun rays onto the horizontal) (Fouad et al.,
2017).

• The module temperature. A PV cell converts a small portion, approximately less than 20%, of the
irradiance into electrical energy while the remaining is converted into heat (Fouad et al., 2017). Solar
panels can warm up to temperatures above 70°, making it crucial that the panels keep their performance
under high temperatures (Tozzi et al., 2020).

• Dust accumulation. Some of the sunlight can be blocked from the PV module due to the presence of dirt
or dust. This causes a considerable amount of losses in the generated power since the solar irradiance is
scattered on the surface of the solar panel (Meral & Diner, 2011).

• Shading. Shadows, caused by trees, buildings, or other objects near roof installations, lower the power
output from PV panels. Viitanen and Halonen (2014) showed that the power output can be reduced up
to 80% when only 5-10% of the panel is shaded.

• System degradation. PV panels degrade over time, due to a degradation of PV materials, cells, corrosion,
or broken connectors. A panel is considered degraded when it reaches a level below 80% of its initial
power. On average, solar panels are expected to last 25 to 30 years.

• Performance ratio. The performance ratio is a measure of the quality of a PV panel that is independent
of location. The performance ratio is stated as percent and describes the relationship between the actual
and theoretical energy outputs of the panel. Performance ratio ranges from 46% to 105% (A. Walker &
Desai, 2011).

• System sizing: the number of PV modules installed. A PV system has to generate enough energy to cover
the energy consumption of the loads and the energy used by the system itself.

• System surface area. The larger the surface area of a PV system, the higher the potential electricity yield.

• Panel efficiency. A PV panel has an energy conversion efficiency, which represents the percentage of
collected power that is converted when a PV cell is connected to an electrical circuit. The efficiency,
therefore, depends on the PV panel, the surface area of the panel, and the solar irradiance (Boxwell,
2012).

• PV material. Different photovoltaic materials exist and each has its own efficiency. Solar cell materials
include crystalline silicon, thin-film (such as cadmium telluride and copper indium gallium diselenide) and
perovskite photovoltaics (U.S. Energy Department, n.d.). Crystalline silicon cells are the most efficient
among the current commercially-available solar cell technologies.
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Figure 11: There are three types of insolation: direct, diffused, and reflected radiation. Source: ArcGIS
Documentation (2021a)

4.2.4 Rooftop suitability assessment

Several attempts and various methods for urban solar PV roof suitability determination exist within literature,
where the earliest literature dates back to 2010. The number of studies in this field increased significantly during
the past 10 years, mainly due to technological advancements, the need for precise knowledge of solar energy
resources for electricity production, the rising energy crisis, and environmental concerns (2021). A clear shift
can be seen when comparing the literature on this topic between 2010-2015 to the literature between 2015-2020:
statistical sampling approaches disappeared and Artificial Intelligence approaches appeared and immediately
became the largest share. The attempts differ in approach, method, data, project scale, and focus. The meth-
ods include physical and empirical models, geostatistical methods, constant-value methods, sampling methods,
geographical information systems (GIS) methods, light detection and ranging (LiDAR)-based methods, and
machine learning methods (2017). Many papers, however, adopt a combination of these methods.

Several roof characteristics are important in determining the rooftop photovoltaic potential. The selection of
variables used strongly depends on the project scales, data availability and method used. Overall, regardless of
the methodologies and project scales, different sub-potentials can be determined and studied in order to assess
rooftop photovoltaic potential. These sub-potentials are shown in figure 12, which is adapted from Fakhraian
et al. (2021).

Figure 12: Sub-potentials and factors for rooftop photovoltaic potential determination, adapted from Fakhraian
et al. (2021)

The physical potential is the solar power available, that is, the solar irradiance coming to the zones of interest.
It represents the resource’s maximum energy received from the sun by the roof area. The geographical potential
is the portion of the physical potential captured over the restricted area, more specifically here the available
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area for PV installation on roofs. It essentially considers factors such as rooftop geometry, other buildings, and
trees, shading effects, structures on rooftops, rooftop inclinations, and rooftop slopes (Fakhraian et al., 2021).
The daily and monthly energy production from PV panels is for example strongly influenced by the module
orientation. The technical potential is the actual electricity generated by the PV panel by transforming the solar
energy received by the available roof area into electrical energy. The technical potential considers the technical
characteristics of the solar photovoltaic technology such as the efficiency and performance, as described above.
The economic potential represents the installation’s economic attractiveness under current market conditions.
This sub-potential takes into account installation costs, maintenance costs, installation lifetime, interest rate,
and governmental regulations. The technical potential is based on the assumption that building owners will
only consider investing in rooftop photovoltaic installations when these facilities are economically justifiable
(Fath et al., 2015).

4.3 Factors contributing to adoption behavior
Consumers have different personal characteristics and traits that influence adoption behavior. There is an
extensive body of literature on PV adoption factors, motives, and intentions. Research into PV adoption has
traditionally focused on financial drivers and economic analyses, but a growing body of social science energy
research has broadened the focus to include a range of non-financial factors that influence energy behavior (Bach
et al., 2020). Research on attribute preferences and perceptions ((Vasseur & Kemp, 2015b), (Dharshing, 2017),
(Schulte et al., 2022)), socioeconomic adopter characteristics ((Margolis et al., 2017), (Sommerfeld et al., 2017),
(Balta-Ozkan et al., 2015), (Lan et al., 2021)), and behavioral characteristics ((Sun et al., 2020), (Vasseur &
Kemp, 2015b), (Zhang et al., 2011)) have developed a nuanced understanding of the drivers and barriers of PV
adoption. The study is wide-ranging in terms of methodological approaches and case-study locations. While
not a systematic review nor an exhaustive list of PV adoption research, this Section summarized the diversity
of factors influencing the adoption process.

Within literature, several dimensions of PV adoption understanding are observed. Studies cover amongst others
consumers’ preferences, perceptions, demographic variables, behavioral characteristics, motivations, and barri-
ers. To structure the insights that have already been informed by literature, broadly four types of dimensions
are distinguished to understand PV adoption behavior, inspired by Vasseur and Kemp (2015b): demographic
characteristics, geographic characteristics, psychographic characteristics, and behavioral characteristics.

• Demographic characteristics refer to age, gender, family composition, education level, housing type, and
income (Vasseur & Kemp, 2015b). Geo-demographic segmentation involves a combination of geographic
and demographic factors. This segmentation is based on the notion that people who live close to one
another are likely to have similar financial means, tastes, preferences, lifestyles, and consumption habits
(Schiffman & Wisenblit, 2021).

• Geographic characteristics include characteristics related to the living situation and area of consumers,
such as the housing type, housing situated, ownership, and number of residents per dwelling.

• Psychographic characteristics, or lifestyle characteristics, refer to activities, interests, opinions, attitudes,
and values (Vasseur & Kemp, 2015b). These include perceptions of product characteristics and govern-
mental incentives.

• Behavioral characteristics divide consumers into groups according to their motive to buy/benefits sought
(price, esthetic, functionality, idiosyncratic preferences), readiness to buy, and occasions (events that
stimulate the purchase). Behavioral characteristics include the motivations and the barriers to adopting
a PV system.

This study focuses on socioeconomic influences on PV adoption. However, it is deemed necessary to understand
the broader context of solar panel adoption behavior in order to properly study its diffusion. Looking at the
dimensions above, this study includes demographic characteristics and geographic characteristics, which are
taken together in this study in the term socioeconomic characteristics. For each of the dimensions, findings
from literature are discussed below.

Psychographic characteristics
Considering psychographic variables, Vasseur and Kemp (2015b) find that climate change is a concern for people
with a positive attitude toward PV. The price of a system is a major issue perceived by all respondents in their
study. Adopters consider the costs for PV affordable, while non-adopters view the costs as too high. A study by
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Dharshing (2017) revealed that the environmental attitude had significantly positive impacts on PV adoption.
The results of a study by Schulte et al. (2022) imply that with stronger environmental concern and a stronger
propensity to innovation, the perception of the benefits of PV systems increases.

Many studies suggest that solar PV systems markets rely heavily on governmental support policies (Hsu, 2012),
(Parker & Paul, 2008). Within studies on psychographic characteristics, a share of attention, therefore, goes
toward the perception and importance of governmental support. Sun et al. (2020) report that crucial factors
for the diffusion of solar energy systems are financial incentives, government-led initiatives, and reductions in
investment costs.

Perceptions and values are impacted by a consumer’s environment. Several studies investigated the so-called
"peer effect". Palm (2017) report that the participants in their study acknowledged peer effects as important
for their adoption decision, although they had in general been seriously contemplating PV adoption before the
effects. The study concludes that the main function of peer effects appears to have been a confirmation that
PV works as intended, rather than the procreation of unexpected insights or the provision of more advanced
information. Noll et al. (2014) state that positive peer effects for PV can increase the likelihood of adoption
and decrease the length of decision time. They find that peer effects had mainly occurred through existing and
rather close social relationships, rather than between neighbors that did not already know each other. Salazar
et al. (2013) also confirmed that peer groups like colleagues, family, and friends may affect the decision to choose
environmentally friendly products rather than conventional ones.

Behavioral characteristics
Behavioral characteristics study the motives, barriers, and drivers of PV adoption. In terms of motives, Veen
(2014) found that financial benefits were the most important motive for households who install and use a PV
system, followed by environmental concern, independence from energy suppliers, and being self-supporting.
The findings from Sun et al. (2020) do not support the positive influence of environmental concern on the atti-
tude toward rooftop PV installation. They do agree that financial motives are the main motive for PV adoption.

In terms of barriers and drivers, many studies find similar results. High investment costs and long capital
payback times are the main barriers for households for installing PV systems in the study of Veen (2014).
Uncertainty and/or knowledge gaps about (future) subsidies and legislation and about (future) technology de-
velopment were found as barriers. Knowledge gaps are also observed to be an adoption barrier by Vasseur and
Kemp (2015b). These authors also observe that for the vast majority of non-adopters, the high investment costs
of PV are the most important barrier followed by a large distance with low energy yield. Similarly, Sun et al.
(2020) find that high costs are the primary barrier to installing PV systems, and they suggest a strong prefer-
ence for capital incentives to reduce investment costs is needed. They conclude that subsidies and incentives are
among the key drivers of global solar PV systems. Zhang et al. (2011), who also studied adoption barriers and
drivers, reported that the high capital costs were identified as a barrier to households’ willingness to install PV
panels, while also indicating that government subsidies, housing investment, and environmental awareness had
significant positive impacts on the PV adoption outcome could be used to promote the PV installation among
households.

Demographic characteristics
When looking at demographic characteristics, many studies have demonstrated that socioeconomic differences
contribute to the regional disparity of PV adoption. There is some general consensus on the direction of the re-
lationship between demographic characteristics and PV adoption. Studies suggest that households are typically
between 45-64 years old have high or middle incomes, and own their home (Veen, 2014), (Vasseur & Kemp,
2015b), (Sommerfeld et al., 2017), (Sardianou & Genoudi, 2013), (Dharshing, 2017), (2017). Regarding educa-
tion, studies differ in observations. Vasseur and Kemp (2015b) find that adopters have a higher education than
non-adopters. This is in line with the findings from Sardianou and Genoudi (2013), Dharshing (2017), and Balta-
Ozkan et al. (2015). Sommerfeld et al. (2017) however found education, as well as income, to be less significant.
Their study showed the greatest significance of dwelling type, home ownership, household composition, and age.

Sardianou and Genoudi (2013) also find that income had a positive impact on people’s likelihood to adopt
PV and that marital status and gender were not statistically significant. Unique from other studies, Margo-
lis et al. (2017) find the number of rooms and house age to be key influential variables. Balta-Ozkan et al.
(2015) found that the number of PV installations in a region was negatively related to its density, the average
number of households, and the share of home ownership, while positively related to the share of detached homes.
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To summarize, previous studies have proved that socioeconomic variables play a significant explanatory role
in residential PV adoption across the world. While many studies examine individual relations of factors with
PV adoption, Lan et al. (2021) investigated the intercorrelation of socioeconomic factors and concluded that
variables interplay with each other to condition their individual explanatory effect on the regional difference
of residential solar PV adoption. For example, a high income is found to be a stimulant for adoption, but the
concurrence of a high income with home ownership or property-sharing may discourage PV adoption.

Geographic characteristics
Multiple studies linked home ownership, dwelling type or property-sharing to adoption behavior (Sommerfeld
et al., 2017), (Balta-Ozkan et al., 2015), (Vasseur & Kemp, 2015b). Balta-Ozkan et al. (2015) find that the
number of PV installations in a region was negatively related to the share of home ownership, while positively
related to the share of detached homes. Citizens who have their own houses have a more positive attitude
towards PV adoption than the respondents who rent. Concerning housing type, Vasseur and Kemp (2015b)
report that the majority of the respondents with solar panels in their research live in the middle of row dwelling.
Living in an apartment is identified as a physical barrier.

There seems to be consensus on the importance of home ownership and attitude towards PV adoption. The
domestic sector in the Netherlands is divided into three types of ownership: (1) owner-occupied sector in which
the residents themselves are the decision makers, (2) private rental sector in which private landlords make the
investment decision, (3) public rental sector in which housing associations make the investment decision (Vasseur
& Kemp, 2015b). Each sector represents a different type of decision-maker with respect to the purchase of PV.

Bach et al. 2020 notes that besides the more well-studied technical and economic factors, there are various
place-specific societal factors influencing uptake, including social and cultural differences. These societal factors
can vary within and between countries. socioeconomic differences are also not just perceived on a national scale.
Even within a given country, research findings are not always consistent.

Technology diffusion studies
Technology diffusion theory seeks to explain how, why, and at what rate technologies spread. Diffusion studies
cover a broad range of studies and methods. Generally, diffusion studies evaluate the adoption of a technology
by a population, where the diffusion speed and extent depend on several factors including the nature and qual-
ity of the innovation, how information about the innovation is communicated, and the characteristics of the
population into which it is introduced.

During a diffusion process, consumers go through different stages. This process is referred to as the innovation-
decision process. It consists of the following five stages: knowledge, persuasion, decision, implementation, and
confirmation. First, a consumer becomes aware of an innovation and some knowledge is gained on the presence
of that innovation. Next, the consumer starts to form a certain attitude, either towards the innovation at the
persuasion stage. At this stage, he or she seeks further information about the innovation actively. During the
decision stage, the consumer takes part in activities that end with the adoption or rejection of the innovation.
The implementation stage refers to the period when the consumer has adopted the innovation and is deploying
it. Finally, the confirmation stage occurs for some time after adoption or rejection where the individual is
convinced of his or her own decision to adopt or reject (Rogers, 1962).

The diffusion of innovation theory provides an understanding of the rationales for household consumers to
purchase solar panels. The studies are used to identify some of the factors described in Section 4.3.

4.4 Main conclusions Chapter 4
This section covers research question 2:

"What factors contribute to solar panel adoption behavior?"

The potential for residential solar panel adoption broadly depends on rooftop suitability and consumer character-
istics. Considering rooftop suitability, the factors to be examined depend on the methodology used. Generally,
rooftop photovoltaic potential can be divided into four sub-potentials: technical potential, geographic potential,
physical potential, and economic potential. Generally, when assessing roof suitability, one examines a combina-
tion of these factors.
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Considering the adoption behavior of solar panels, it appears adoption choice behavior is complex, and deter-
mined by amongst others: demographic characteristics, geographic characteristics, behavioral characteristics,
and psychographic characteristics. In literature, these characteristics have been identified through numerous
studies and methods, of which the technology diffusion theory is a popular approach. Within the existing
studies, there appears to be consensus on the general directions of some factors, e.g. the negative effects of
perceived barriers, as well as the positive effects of perceived benefits and general personal motivations (such
as environmental attitude). Given the focus of this study, a socioeconomic perspective of PV adoption, several
characteristics are found to be significant in the literature. These factors include the consumers’ income, house
ownership, property-sharing, age, and dwelling type. On some variables, literature studies differ in conclusions.
There is no clear consensus on the relationship between gender and education. It however remains difficult to
compare study results. Uncertainties remain related to the inconsistent use of predictors, different operational-
izations of predictors, differences in dependent variables assessing PV adoption, and different contextual and
political environments (e.g. subsidy programs, different market maturity states) (Schulte et al., 2022).

With the literature study results in mind, it is important to note that PV adoption factors are highly location-
specific, especially socioeconomic factors. Research at different locations has yielded contradicting results in the
past, and differences are not just at the national scale. This location sensitivity for the investigation of energy
behaviors may help to explain why some previous studies have produced different findings regarding the drivers
and barriers of PV adoption. Differences on the one hand occur due to different political environments. But
even within a given country, research findings are not always consistent (Bach et al., 2020). This observation
has two main implications. On the one hand, it emphasizes the need for local investigation of adoption factors
instead of generalization of the findings from the literature review to this study. Second, it emphasizes the
need for targeted policy designs that are based on place-specific societal factors, instead of a one-size-fits-all
perspective.

It should also be noted that the technology diffusion process is a complex decision-making mechanism. This
section is not conclusive of the factors that might play a role but aim to map the factors that are most relevant
to this study.
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5 Operationalization towards a Design artifact
Chapters three and four described the relevance and rigor cycle of the Design Science Approach. The central
design cycle combines the results from the two previous cycles to develop a new and relevant artifact that
enables answering the main research question. This section will build upon these results and operationalize
them into a suitable artifact design.

In the relevance cycle, the landscape surrounding solar panel adoption was investigated, including the political,
technical, social, and economic context. The analysis, performed with literature research and semi-structured
interviews, revealed the important system elements and dynamics, and the current challenges and perceived
dilemmas, from a multi-actor perspective. An XLRM diagram is composed of presenting the main external
factors (X), policy levers (L), relationships within the system (R), and performance metrics (M), that have
come forward during the relevance cycle (see figure 13). During this cycle the dynamic nature of the system
and its sensitivity towards external factors and policy levers became apparent.

Figure 13: XLRM diagram for the studied PV adoption system. Source: author.

The rigor cycle shaped the understanding of the factors that seem to influence PV adoption choices by consumers,
both considering rooftop suitability and socioeconomic context. It is learned that factors influencing solar panel
adoption can roughly be divided into socioeconomic factors, rooftop suitability, and psychographic variables.
Many socioeconomic variables have been linked to relate to PV adoption in previous studies, however, due to
the local characteristics of these factors, it is difficult to scale these findings to other locations. Therefore, the
studies have served as an inspiration for the socioeconomic analysis is this study.
The outputs of the rigor and relevance cycle are used to formulate an artifact that can answer the main research
question. To be able to answer the research question, firstly, there is a need to understand the current state of
PV adoption, how this adoption is spread amongst different groups in society, and what socioeconomic factors
correlate with PV adoption. Although factors behind PV adoption behavior are complex, interrelated, and
multi-dimensional, insights into what socioeconomic characteristics correlate with PV adoption might increase
understanding of adoption behavior, and aid in targeted policy-making in the future. Second, there is a need to
understand how PV adoption might develop in the future, under different external factors and policy measures.
Understanding the dynamics of PV adoption allows us to inform measures to stimulate PV adoption and the
disparity of the adoption amongst different societal groups. This Section proposes an artifact design to address
both objectives.

The results so far emphasize the need for an integrative and dynamic analysis of PV adoption. A static ap-
proach, i.e. solely investigating what adoption patterns are currently perceived, does not suffice in addressing
how PV adoption can be improved. An understanding of how the system reacts to external factors and policy
measures over time is needed to properly understand PV adoption dynamics. The proposed artifact therefore

40



includes an integrated approach, that evaluates both the current state of PV adoption and the dynamics of the
system over time. The approach thus essentially consists of two, connected, parts. The initial artifact design is
shown in figure 14.

Figure 14: Artifact design

5.0.1 Part I: The spatial and socioeconomic analysis

First, in order to move towards a method to analyze the dynamics of PV adoption, a proper assessment of the
current state of and potential for PV adoption is needed. This analysis should investigate adoption potential,
current adoption patterns, how adoption is spread amongst different neighborhoods, and whether a so called
“adoption gap” exists. The analysis is split into two sub-parts: an investigation of the spatial rooftop PV po-
tential and a study on neighborhood socioeconomic data and corresponding adoption patterns. The aim of the
spatial analysis is to investigate what the rooftop PV potential is for residential PV deployment in Amsterdam.
In Section 4.2, it is explained that rooftop PV potential consists of physical, geographic, and technical potential.
All of these will be covered to assess the overall rooftop PV potential for residencies in Amsterdam.

To be able to accurately investigate adoption patterns and, more specifically, why some neighborhoods have lower
adoption patterns than others, it is important to determine what the potential for rooftop solar generation is per
neighborhood. Little to no PV adoption could be caused by lacking rooftop potential for electricity generation
within a neighborhood. Therefore, prior to investigating the relationship between adoption and socioeconomic
factors, the rooftop PV potential is considered.
Many methods of estimating rooftop PV potential have been developed, ranging from simple multipliers of total
building space (Molnár et al., 2022) to methods that employ complex geographic information systems (GIS)
(Yesilmaden & Dogru, 2019) or three-dimensional (3D) models (Han et al., 2022). Some studies assess solely
either the physical, geographic, or technical potential, while others take an integral approach to cover all three.
Geographic Information Systems (GIS) is a technology that connects location and attributes, which facilitates
spatial investigation, data capture, presentation, and analysis (Goodchild, 2009). Melius et al. (2013) iden-
tifies three main approaches to estimating rooftop suitability: constant-value methods, manual selection, and
methods based on geographic information systems (GIS). The manual selection methods were found to produce
detailed results but were labor-intensive, and cannot be replicated on a large scale. The constant value methods
were quick. On the other hand, these did not reproduce local characteristics. GIS-based methods supplied
detailed maps and may be automated. The GIS-based methods provide more precision than constant-value
methods while handling much larger data sets than manual selection. They require either orthophotography or
LiDAR data as input for their models (D. Palmer et al., 2016). In more recent years, Artificial Intelligence (AI)
approaches, such as machine learning, also increasingly appeared in the literature. AI approaches like machine
learning are explored because of the model scalability, computational power, and ability to automatically detect
obstacles, materials, slopes, and areas from satellite imagery ??. AI approaches are however time-consuming to
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develop and train and require extensive data sources and data quality (Assouline et al., 2018).

For this analysis, a GIS-based approach is chosen to analyze the rooftop PV potential of residential rooftops.
This approach is found to be suitable given the high precision of results, the availability of necessary data for
the study area, and the ability to handle large data sets. Several previous applications have proven the accuracy
and suitability of this method (Margolis et al., 2017).

For the second analysis, adoption patterns and socioeconomic neighborhood statistics are analyzed using de-
scriptive statistics and correlation analysis in Python. The overall geospatial distribution of PV adoption is
examined, including the temporal dynamics of solar uptake since 2016, and a correlation study of PV deploy-
ment with predictor variables. These predictor variables are socioeconomic neighborhood indicators that cover
multiple themes including population, income, and education. An analysis at the neighborhood level is chosen
based on the availability of data and the level of granularity that is wished for. Considering the availability
of data, at the individual household level very little data is available due to privacy reasons. A dataset was
acquired on the postal code level, which is more granular than the neighborhood level, but the quality of the
dataset was poor and included a lot of missing data points. The data on the neighborhood level was of good
quality and included more than 100 socioeconomic indicators within different themes and little missing data.
Besides, in the performed interviews it came forward that policy plans at the municipality level are often formed
at the neighborhood level, which makes analysis at this granularity suitable.

5.0.2 Part II: Modelling PV adoption (disparity)

Second, the spatial adoption patterns and distributions derived from the first step of the design cycle, are used
to develop a dynamic simulation model of PV adoption in the municipality. The model aims to investigate how
the adoption rates and disparity of PV adoption might develop in the future, and how several policy measures
and external influences influence the system. Besides, it is investigated what policy measures can be used to
close a possible adoption gap and how effective these are. To model PV adoption dynamics, a System Dynamics
approach is chosen.

What is System Dynamics?
System Dynamics (SD) is a method to describe, model, simulate and analyze dynamically complex issues and/or
systems in terms of processes, information, organizational boundaries, and strategies. SD allows us to identify
desirable system changes and test them in a ‘virtual laboratory’ (Pruyt, 2013). It is a widely adopted approach
used to understand the behavior of a complex system as determined by its components. In other words, a
change in each component will affect the final behavior of the complex system.

The system dynamics approach has emerged as a robust methodology to analyze and simulate complex feed-
back systems. By simulating various scenarios, a better comprehension of the dynamic behavior of systems
over time can be obtained. The central elements of the system dynamics methodology encompass variables in
mathematical equations, which present stocks and flows, as well as causal relationships. By employing com-
puter simulations, the actual influence of the social system under a policy can be observed in a laboratory
setting to comprehend the implied causal feedback in the system. Consequently, a "policy laboratory" can be
established through system dynamics, which allows decision-makers to simulate diverse policy scenarios. The
system dynamics approach in this study is adopted from Pruyt (2013). The resultant findings can subsequently
be utilized to enhance the quality of their decisions. Hence, the formulation of system dynamics is appropriate
for this study (Hsu, 2012).

Why System Dynamics?
System dynamics is a modeling approach based on a systems perspective, commonly used to design and evalu-
ate public policy, to aid policymakers in the development of policy dealing with complex and dynamic systems,
such as energy systems and infrastructure. A number of recent studies use system dynamics to model renewable
energy systems on a broader scale. System dynamics is commonly used to model the implementation of solar
and other renewables into the energy system.

Several System Dynamics studies have been performed regarding PV adoption rates and dynamics under netting
schemes and feed-in-tariffs. Many of these papers focus on the so-called "utility death spiral", or on the effect of
policy levers such as feed-in-tariffs on PV adoption (Castaneda, Franco, et al., 2017) (Costello & Hemphill, 2014)
(Grace, 2018) (Meehan, 2015) (Felder & Athawale, 2014). The utility death spiral is a phenomenon that may
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occur when a greater ratio between the electricity tariff and the cost of solar PV sparks the adoption of solar PV
by households. With more PV systems in place, electricity demand falls, which forces utilities to raise charges
in order to compensate for energy usage reduction and to help recover costs. The rise in retail rate acceler-
ates PV adoption and further charge increases, inducing a utility death spiral (Castaneda, Jimenez, et al., 2017).

Most closely related to the objective of this study, Morcillo et al. (2022) assess the speed, extent, and impact
of the diffusion of residential solar PV in three case study areas: the United Kingdom, Colombia, and Brazil.
Their focus is on at what locations the energy transformation towards sustainable energy sources can take place,
how fast it could take place, and how different stakeholders are affected. They deem SD as a suitable method
for such studies given its ability to capture multidimensional and complex problems. The authors do assess
technological diffusion rates but do not distinguish between different societal groups.

Agnew et al. (2018) explores residential solar and battery adoption dynamics in Australia using causal loop
modeling. Their research objective was to identify what ambiguous and multi-dimensional problems relate to
the adoption and integration of residential PV and battery adoption. The focus here was mainly on battery
adoption, what non-financial and financial reinforcing feedback loops encourage battery storage uptake, and
what impact is perceived on the electricity market. Though a different focus, the modeling approach can be
used as a source of inspiration for this study.

Hidayatno et al. (2020) studied the effectiveness of two policy instruments (net billing and net metering) by
analyzing and understanding the dynamic complexity of household rooftop PV adoption using a system dynam-
ics approach incorporated with a policy analysis framework. Though the study assessed the diffusion process
for the country’s population as a whole, and not how adoption differs between groups, they successfully used
the method of system dynamics to do so. The authors also emphasize the importance of taking a systems
perspective to acquire a sufficient understanding of the dynamic complexity of solar energy development for a
better evaluation of energy policy.

Though SD has made significant contributions to understanding both current and previous energy transitions,
it has not specifically addressed the questions of this study. No study distinguishes between adoption rates of
different socioeconomic groups or neighborhoods. While several studies investigate the impact of incentivizing
policy levers, no study exists that includes other policies than net metering or feed-in-tariffs, or leveling, tailored
policies that aim to increase adoption equality. Besides, none of these models use actual case-study data, such
as growth or adoption rates, as observed in previous years. Last, no prior study has used the Netherlands as
a case-study area before. Therefore, there is an opportunity for a systematic approach to assess the speed and
disparity of PV adoption using this method, to further add on to the existing literature. A novelty of this study
is therefore to develop a model-based framework, that includes both the spatial analysis as presented in Section
6, followed by a system-dynamics approach presented in Section 7.

5.0.3 Moving towards a demonstration of the artifact

This section described the operationalization of the relevance and rigor cycle into an artifact that allows the
to answer the main research question. In Section 6, part I of the artifact is demonstrated for the case study
area Amsterdam. In Section 7, the development of the System Dynamics model of Part II of the artifact is
described, followed by the demonstration of the model and the results in Section 8.
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6 Design artifact part I: Current state of residential PV adoption
This chapter aims to analyze the overall state of PV adoption, existing adoption patterns, and (unused)potential
by assessing both the rooftop suitability and socioeconomic features of residents in Amsterdam, given that the
psychographic variables are out of scope for this research. This section thereby answers research question 3:

What is the potential for residential solar energy generation in Amsterdam and how are observed adoption
patterns correlated with various socioeconomic indicators to explain adoption disparity?

The performed steps are explained in Section 6.1.2 and Section 6.3. The results are discussed in Section 6.4.

The current state of residential PV potential and adoption is assessed following two main steps. First, the
rooftop potential for residential PV adoption is assessed through estimating the rooftop suitability of residen-
cies, using the geospatial tool ArcGIS Pro. Next, rooftop suitability data, current PV installations data, and
socioeconomic data are combined in a Python analysis to examine the correlation between socioeconomic factors
and PV adoption, and possibly explain adoption patterns between neighborhoods. The steps are explicated
in detail below. Assessing the rooftop PV potential and socioeconomic factors behind current adoption rates
enables an understanding of adoption patterns and geographic disparity, why some neighborhoods have higher
adoption rates than others, what neighborhoods have a high potential for PV adoption, and why potential
rooftops might not have solar panels installed yet.

6.1 Assessing rooftop PV potential: Rooftop suitability analysis
To assess the rooftop suitability using a GIS-based approach and the geospatial tool ArcGIS, several inputs are
needed. These include Digital Surface Models, address data, and building footprint data. The data is processed
to determine the shading, tilt, and azimuth of each residential rooftop at a resolution of 0.5 m2. A set of criteria
is applied to determine which residential rooftops are suitable for PV deployment. Once the suitable rooftop
area is quantified, the potential PV electricity generation is calculated. The following approach has been tested
and validated by numerous sources (Dahal et al., 2021; Koch et al., 2022; Margolis et al., 2017; Nicoletti, 2018).
The approach is outlined in detail below.

6.1.1 Input data

Digital Surface Model
Digital Surface Models (DSM) depict the topography of the Earth’s surface, including objects above the terrain
(such as buildings). Contrary, Digital Terrain Models (DTM) do not include buildings or vegetation. DSM data
is obtained through LiDAR techniques. LiDAR data offers height information with a high degree of accuracy
and short-time acquisition. Unlike photogrammetry, which relies on aerial images, LiDAR technology is less
sensitive to cloud cover and shadows. The high geometric detail of LiDAR data enables to calculate the solar
radiation of an area of interest and subsequently find suitable roof areas for PV installation (Marešová, 2014).
The LiDAR aerial scanning results in a collection of unstructured 3D points (point clouds). These raw LiDAR
data allow the generation of digital surface models (DSM) of the ground surface. LiDAR data is attainable at
various resolutions for the Netherlands.

For this study, DSM data is obtained from the ArcGIS database in the form of a 50 cm Digital Surface Model.
The DSM data obtained includes the whole surface of the Netherlands and is generated in 2020-2021. In Ar-
cGIS, the dataset is shaped to the boundaries of the municipality of Amsterdam.

Building data and footprints
To distinguish different buildings and rooftops and to be able to select residencies from other types of buildings,
building data from the Basisregistratie Adressen en Gebouwen (BAG) 2.0 is used. The dataset includes all
addresses and buildings in the Netherlands and includes both building information and building footprints in
the form of polygon shapefiles. Building information includes building identification, construction year, build-
ing status (in use, in construction, e.g.), building purpose (residential, commercial, public, e.g.), the number of
residencies in the building, and the surface area.

This data is downloaded through the ArcGIS Database. In ArcGIS, the dataset is fitted to the municipality of
Amsterdam. For Amsterdam, the dataset includes data for about 545.950 addresses, of which 115.876 addresses
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are residential buildings.

Neighborhood boundaries
To scope the analysis on the municipality of Amsterdam, and to be able to distinguish adoption patterns be-
tween different neighborhoods, municipal and neighborhood boundaries are provided by the Central Bureau of
Statistics (CBS), in the form of polygon shapefiles.

Solar radiation data
Solar radiation data is provided by the ArcGIS Pro Solar Radiation toolset. The solar radiation analysis tools
calculate insolation across a landscape or for specific locations, based on methods from the hemispherical view-
shed algorithm developed by Rich (1990) and further developed by Fu and Rich (2000). The total amount of
radiation calculated for a particular location or area is given as global radiation. The calculation of direct,
diffuse, and global insolation is repeated for each feature location or every location on the topographic surface,
producing insolation maps for an entire geographic area (ESRI, n.d.).

6.1.2 Method

Figure 15 summarizes the GIS-based method for estimating rooftop PV suitability. Given the high resolution of
the DSM file and the large study area, the surface model is divided into multiple parts to limit the simulation
time of each separate run.

Figure 15: Steps for determining the suitability of roof area for PV. Source: author.

The simulation starts with importing the DSM, building footprint, and neighborhood data. The first step is
to compute a solar radiation layer, that contains the amount of solar radiation received on each rooftop. This
is done by taking the DSM layer as input and calculating the annual received solar radiation for each building
footprint. Radiation is calculated based on a sophisticated model that takes into account the position of the sun
throughout the year and at different times of the day. The model is based on the hemispherical viewshed algo-
rithm developed by Rich (1990) and Fu and Rich (2000). Since radiation can be greatly affected by topography
and surface features, a key component of the models’ algorithm requires the generation of an upward-looking
hemispherical viewshed for every point in the Digital Surface Model (ArcGIS Documentation, 2021b). The
hemispherical viewsheds are similar to upward-looking fish-eye photographs. The amount of visible sky plays
an important role in the insolation at a location, e.g. a point located in an open field receives more solar radia-
tion than a point at the ground in between four high buildings. The sophisticated model calculates the received
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solar radiation for each point location on a map based on the direct and diffuse radiation (see Section 4.2.3)
resulting in the total global radiation. The calculations for direct, diffuse, and global insolation are repeated
for each location on the topographic surface, producing insolation maps for an entire geographic area (ArcGIS
Documentation, 2021a). In ArcGIS, the Area Solar Radiation toolbox is used to compute the above calculations.
Through using this method, obstacles that may block sunlight such as nearby trees or buildings, the slope, and
the orientation of the surface are taken into account. The output is a raster layer where each cell value contains
the amount of solar radiation in watt-hours per square meter (Wh/m2) at that location. As a reference year
for the solar radiation data, the year 2022 is used. Radiation is calculated on a one-hour interval, using 16
calculation directions. The solar radiation raster uses watt-hours per square meter as its unit of measurement.
To reduce the size of the raster values, the raster layer is converted to kilowatt-hours per square meter (kWh/m2).

Roof suitability is determined by roof slope, received solar radiation, and rooftop orientation (azimuth). To
identify suitable rooftops for solar panels, four selection criteria are applied:

• Suitable rooftops should have a slope of 45 degrees or less. The optimal slope for PV installations in the
Netherlands is 37°, and for south-facing installations (Schepel et al., 2020). Steeper slopes tend to receive
less sunlight.

• Suitable rooftops should receive at least 800 kWh/m2 of solar radiation (Koch et al., 2022).

• Suitable rooftops should have at least 30 square meters of suitable roof surface (ESRI, n.d.).

• Suitable rooftops should not face north. North-facing rooftops in the northern hemisphere receive insuffi-
cient sunlight (Schepel et al., 2020). Slopes that face north have an aspect value of less than 22.5 or more
than 337.5 degrees. Slopes that are (almost) flat (10 degrees or less) are not removed, regardless of their
aspect.

To apply the above criteria, several steps are performed using the Surface Parameters toolbox. To determine
the rooftop slope, a slope raster layer is created. Each cell in the slope raster contains a slope value ranging from
0° to 90°. This allows selecting surfaces with a slope of 45 degrees or less. To determine rooftop orientation, an
aspect raster layer is created. Each cell of the aspect layer contains a value expressing orientation in degrees,
with 0 being north and 180 being south. This allows for removing slopes that face north. Next, areas with low
solar radiation (<800 kWh/m2 ) are removed.

Applying the above criteria results in a map showing the amount of received solar radiation each suitable raster
cell receives. Next, data will be aggregated to determine the amount of solar radiation each building receives on
average in a year. For every building, the area covered by suitable cells (in m2) and their average solar radiation
(kWh/m2) are calculated. The number of suitable cells, the area covered by suitable cells (m2), and the average
solar radiation (kWh/m2) received by the cells are outputs. The cells are then aggregated for each individual
building. Next, buildings are selected that have at least 30 square meters of suitable roof surface. The result is
a map with all suitable buildings, and for each building, the suitable area and mean solar radiation per square
meter.

For each building’s suitable area, the total amount of solar radiation received per year is calculated, using the
following formula:

(Area ∗Mean)/1000

Solar radiation is converted from kWh to MWh by dividing by 1000. Finally, for each building, the received
solar radiation per building per year is converted to electric power production potential. Power production de-
pends not only on solar radiation but also on panel efficiency and performance ratio. The U.S. Environmental
Protection Agency estimates an average solar panel efficiency of 16.3% and a performance ratio of 86% (EPA,
2021). To determine electric power production potential, the following formula is used:

Suitable cells ∗ 0.16 ∗ 0.86

Where suitable cells are the usable area of suitable cells in MWh. Each suitable building is symbolized according
to the amount of potential electricity yield, as shown in figure 16.
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Figure 16: Example of categorization of suitable buildings

6.2 Suitability assessment validation
To validate the results of the suitability simulation, several steps are performed. The validation steps are
intended to ensure that:

• the model thresholds are appropriately set to capture the rooftops that are deemed appropriate for resi-
dential PV

• unsuitable rooftops were excluded

• suitable rooftops are not wrongfully removed

First of all, suitable rooftop cells are compared to Google Earth imagery. Comparing the results with satellite
imagery allows us to check how the model deals with roof objects such as chimneys, shadows, roof windows,
and dormers. Taking such objects into account prevents wrongfully selecting inappropriate roofs as suitable for
PV. An example comparison is shown in figure 17. A random selection of buildings has been compared using
visual inspection, and the used model appears to take roof objects into account in an appropriate way, removing
chimneys from the usable area and taking shadows into account.
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Figure 17: Example of validation through visual inspection of satellite imagery

Second, randomly selected buildings were compared to the Zonatlas (Vermaas & Hoogendijk, 2021). The
Zonatlas is a commercial online tool that computes the suitability of rooftops for several municipalities in the
Netherlands. The tool can be used to compare individual buildings from both analyses, but no large-scale
comparison is possible as the Zonatlas only allows retrieving suitability results of one building at a time. The
comparison with the Zonatlas is used to determine whether the assumptions and outcomes of this analysis are
in line with the outcomes of a tool that has a similar objective.

The Zonatlas takes several similar assumptions, such as a panel efficiency of 15% (compared to 16% in this
study) and a performance ratio of 86% (identical to this study). The Zonatlas uses three categories for suitabil-
ity (very suitable, suitable, and less suitable) compared to the five categories in this study. When comparing
several randomly selected buildings from the study area, it appeared that all of the buildings that were classified
as suitable in this study were also classified as suitable by the Zonatlas. Several buildings that were classified
as "suitable" by the Zonatlas, were classified as unsuitable in this study. It is deemed likely that this is caused
by less strict selection criteria considering the minimal suitable roof surface area by the Zonatlas. This obser-
vation led to conducting a more thorough investigation of the minimum required roof area thresholds used in
the literature. The ArcGIS default minimum area is 30m2. The Zonatlas minimum suitable area is 11m2. In
literature, thresholds differ. Several sources use 28-30m2 as a minimum suitable surface area (Assouline et al.,
2017; Fortson, 2021) while other studies use 10-16,5m2 as minimum required surface (Hong et al., 2017; Melius
et al., 2013; van der Wilt, 2022). The required surface area depends on several factors, such as the type of solar
panels, the radiation intensity, and the electricity consumption of a household (Assouline et al., 2017). In the
Netherlands, the average PV system size is 10 solar panels, which require approximately 16,5m2 of roof surface.
This minimum is used in this study, but given that space is needed between the roof edge and the solar panels,
and in between the solar panels, the ArcGIS model will adopt a minimum of 20m2. Based on the validation with
the Zonatlas, other literature sources, and relevant data from the Netherlands, the minimum required surface
for PV is thus adjusted to 20m2 in this study.

Third, the model outcomes have been compared against the PV installation database. This database contains
the PV installations for the municipality of Amsterdam from the years 2016 until 2021 (Gemeente Amsterdam,
2021). This comparison is used to compare calculated potential yield to actual yield from the database and to
compare the suitability of rooftops with actual PV installations. Comparing the calculated potential yield in
this study with the actually generated electricity from current installations in the database is difficult, however,
as this model estimates the maximum potential yield if all suitable cells are covered with solar panels. In reality,
some buildings do not cover their full roof area with solar panels. Therefore, for the calculated potential values
it is evaluated whether the data is in the same order of magnitude as the actual generation data, which was
true for the randomly selected buildings that were tested.
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6.3 Assessing socioeconomic PV adoption patterns
The previous section described the technical potential of rooftop solar adoption. As described in Chapter 4,
PV adoption depends on both technical potential and socioeconomic factors. This section explains how socioe-
conomic adoption patterns are analyzed. The results are described in Section 6.4.

The technical rooftop suitability analysis generates insights into the technical potential for PV adoption in
households and how this potential is spread amongst different neighborhoods. This socioeconomic analysis aims
to use these insights, combined with current adoption numbers and socioeconomic neighborhood data, to study
the current state and spread of PV adoption, e.g. what neighborhoods and what type of residencies have many
or few solar panels installed? And what socioeconomic factors are correlated to the % of PVs installed?

6.3.1 Data

• socioeconomic data at the neighborhood level. This dataset, retrieved from the Central Bureau of Statis-
tics, includes 212 socioeconomic indicators. The factors cover thirteen themes: population, living, income,
energy, education, labor, social security, healthcare, business, motor vehicles, facilities, surface, and ur-
banity. Data is included at the municipality, district, and neighborhood levels. Data from 2020 is used,
as this is the most recent dataset with the least missing values. From the 212 variables, a selection will
be made based on the insights from the previous sections.

• socioeconomic data at the residence level. Some data is available at the residence level, such as construction
year, energy labels, roof access, and property ownership. However, due to privacy reasons, most data is
only available at neighborhood level.

6.3.2 Method

The rooftop suitability analysis resulted in a dataset with all residencies in Amsterdam, including a suitability
categorization, and for the suitable rooftops a suitable surface area and potential electricity yield. Besides this,
the dataset already contained general information such as building function, construction year, and building
status (see Section 6.1.1).

In ArcGIS, the residence building dataset is combined with the solar panel dataset. First, from the solar panel
dataset, only solar panels installed on residencies are selected. Next, building footprints from the residence
building dataset is linked to the current PV installation locations. This results in a dataset that contains all
residential buildings in Amsterdam, building data, address data, the suitability of the rooftop of that building,
and whether these buildings have solar panels installed.

All residential buildings are categorized on whether they have (1) a suitable roof for PV, (2) no suitable roof
for PV, and on having (3) a suitable roof and PV installed or (4) a suitable roof, and no PV installed. These
categories can be used to aggregate the data to neighborhood level.

Next, in ArcGIS, all residential buildings are aggregated to neighborhood level, and combined with the socioe-
conomic neighborhood characteristics dataset. socioeconomic data is obtained at the neighborhood level, as this
allows a more granular analysis of geographic differences than an analysis at the district level. Besides, little
data is available at the individual residence level due to privacy reasons, therefore the analysis mostly focuses
on neighborhood characteristics and patterns. As policymakers and grid operators often target policy measures
at the neighborhood level (Al2, ST2, AMS1), an analysis at the neighborhood level is deemed applicable. The
complete dataset is exported for further analysis in Python.

In Python, the complete dataset is studied using descriptive statistics and correlation analysis. The overall
geospatial distribution of PV adoption is examined, including the temporal dynamics of solar uptake since
2016, and a correlation study of PV deployment with predictor variables. Based on the review of household PV
studies in Section 4, 95 socioeconomic variables that may explain the household PV installation disparity have
been selected from the database, covering the themes population, living, income, energy, education, labor, social
security, healthcare, motor vehicles, and urbanity are studied. During data exploration, a smaller selection of
variables that include high data quality will be selected.

For each neighborhood, several variables are computed:
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• the number of PVs per residence for each year (2016-2021)

• the number of PVs per citizen for each year (2016-2021)

• the growth of PVs per neighborhood for each year, in absolute numbers and growth percentages

• the growth of PVs per citizen for each year, in absolute numbers and growth percentages

Adding variables expressing the number of PV installations per citizen allows comparison between neighborhoods
indifferent to the number of households in that neighborhood. Besides, the average prices for PV installations
over the years 2016 until 2021 have been added as variables to the dataset. These prices are obtained from
Milieu Centraal (Milieucentraal, 2022).

6.4 Results spatial analysis
The spatial analysis investigated the current spread of solar panel adoption amongst the neighborhoods and
the potential for solar panel installations per neighborhood. The figures described in this section have been
plotted during the suitability analysis in ArcGIS. The figures are provided in Appendix A.2, where several are
highlighted in the main text.

Figure 18 shows the total yearly growth of residential rooftop PV installations over the years 2016-2021. Steady
growth can be seen from approximately 4.000 households with PV in 2016 to 16.000 in 2021. This means that
in 2016, the household adoption percentage was 1% compared to 4% in 2021.

Figure 18: Growth of residential PV installations in the municipality of Amsterdam over the years 2016 - 2021

Figure 19 shows the number of residential PV installations per neighborhood. It can be observed that mostly the
outer neighborhoods have high numbers of PV. It is, however, when looking at adoption rates, more accurate to
study the PV installations per household, which is shown in figure 69. This figure shows similar results, where
several clusters of high-adoption neighborhoods can be perceived in the northeast, southwest, and southeast.
The center of Amsterdam structurally has low adoption rates. It should be noted that the inner center of
Amsterdam contains several monumental buildings and restricted areas for in-sight PV installations. However,
this area is much smaller than the observed low-adoption neighborhoods in this study.
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Figure 19: Number of residential PV installations in each neighborhood

Next, the suitability of rooftops within neighborhoods is assessed. Figure 70 shows the total potential usable
electricity yield in MWh per neighborhood. Notably, rooftop suitability is spread amongst the whole city, in
contrast to the observed clusters of adoption that are generally located at the outer borders of the municipality.
Several neighborhoods show little to no potential electricity yield. These have been studied in more detail.
Most of these neighborhoods contain little to no residential buildings, such as neighborhoods that are mainly
recreational areas. Examples are the "Vondelpark buurt" and the "Oeverlanden", which mainly consist of parks,
water, or public buildings.

Figure 20 shows the potential electricity yield per citizen. Expressing the potential yield per citizen is a useful
way in comparing how the potential for rooftop solar generation is spread geographically. The figure shows
that for most neighborhoods, the potential electricity yield per citizen is similar. Several neighborhoods show
outliers, with a high above-average potential electricity yield. When investigating several of these individual
neighborhoods, it appears these neighborhoods have a relatively low number of citizens compared to the resi-
dential suitable roof space available.

Figure 71 shows the unused potential of suitable residential rooftops per neighborhood, as a percentage of the
total suitable rooftops. The figure can be used to detect neighborhoods with high unused potential, however, it
can be misleading when there are only a few residencies that do not have solar panels. In that case, the unused
potential is 100%, though the actual potential electricity yield might not be that high in that neighborhood. In
that case, one can best refer to figure 70. The figure can however be useful to distinguish between areas of high
unused potential.

To compare, figure 72 shows the number of suitable rooftops per neighborhood. The figure shows a similar
pattern as figure 70. Again, some neighborhoods show little to no suitable rooftops due to a low number of
residencies in that neighborhood, or because of small rooftops.
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Figure 20: Usable rooftop surface in potential electricity yield (MWh) for each neighborhood per citizen

From the results in figures 19 and 69, a high disparity in adoption can be observed when comparing adoption
rates at neighborhood level. Most notably, some neighboring neighborhoods have highly diverging adoption
rates. This raises questions as to why some neighborhoods have high adoption and some have low adoption,
and why two neighborhoods next to each other can have such different adoption behavior. These questions will
be further investigated in Section 6.5. From the results in figure 20 it appears that although PV adoption per
citizen is not evenly spread across the municipality, the potential electricity yield per citizen is spread more
equally.

6.5 Results socioeconomic analysis
The results of the socioeconomic analysis are structured as follows: first, in Section 6.5.1 the data is explored
and distributions are plotted. Next, in Section 6.5.3, the data is described using descriptive statistics and cor-
relation metrics. This is done for each of the included socioeconomic themes separately, to limit the number of
variables per analysis. In Section 6.5.4, a more detailed analysis is done of the neighborhoods with high levels
of unused potential. Finally, in Section 6.5.5, the observed adoption gap is discussed.

6.5.1 Data exploration and distributions

In Python, the necessary packages for data gathering, data cleaning, statistical and correlation analysis, and
data visualization are imported. These packages include pandas, geopandas, numpy, seaborn, matplotlib, scipy,
statsmodels and sklearn.

The dataset has been pre-processed in ArcGIS to combine solar panel, suitability, and neighborhood data into
one complete dataset. The dataset is imported and explored for data quality, consistency, and missing values.
The dataset initially contains 484 neighborhoods and 212 socioeconomic attributes, of which 95 socioeconomic
variables are selected for further analysis based on their relevance for the study purpose and the outcomes of
the analysis in Section 4. Several columns require altering of the data to ensure consistency of the data types
amongst variables. Neighborhoods that have zero inhabitants, or less than five households, are removed from
the dataset. Neighborhoods with zero inhabitants are not relevant for the study purpose, and neighborhoods
with less than five households have a large share of missing values due to data privacy. To limit the volume
of the analysis, from the 95 socioeconomic variables, a selection is made for further analysis. The variables
covering the themes income, population, residencies, energy consumption, education, and vehicles are selected
given these themes are most relevant for the study purpose, based on the insights from the literature review in
Chapter 4. In order to properly compare neighborhoods, variables that represent counts are transformed into
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percentages of the number of citizens.

First, the data distributions are explored to get an idea of the characteristics of the neighborhoods in the study
area. All plotted distributions are shown in Appendix A.3. In 2021, most neighborhoods have 0-10 households
with solar panels (see figure 21), and 0-0.02 solar panels per citizen (figure 74).

Figure 21: Distribution of PV installations per neighborhood in 2021

The distribution of the number of households is spread more evenly, meaning that the number of households
highly varies between different neighborhoods. This emphasizes the need to analyze the number of PVs per
household instead of the absolute number of PV installations. The percentage of residencies with a housing
corporation widely varies, where most neighborhoods have 0-60% of housing corporation residencies. However,
neighborhoods exist where all residencies are connected to a housing corporation.

When looking at the distribution of the percentage of households with a low income in figure 22a and figure 22b
, an average of 11.2% low-income households is observed. To compute the variable "percentage of households
with a low income", CBS standardized the households’ incomes and redistributed them to the price level of
2000. A low income is defined as a maximum income of the 1979 welfare benefit of 9249 euros. Although most
neighborhoods have an average low-income household percentage between 0-20%, there are some outliers that
have more than 30% of low-income households. The average of 11.2% in Amsterdam is above the average in
the Netherlands. Only the municipality of Rotterdam has a higher percentage of low-income households (CBS,
2021).

The standardized average household income (figure 79a and figure 79b in Appendix A.3) has an average of
AC34.000. A majority of the households have an average standardized income between AC20.000 and AC40.000
euros, with a dozen of households that score above average.
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(a) (b)

Figure 22: Distribution of the percentage of households with a low income for each neighborhood in 2021

The percentage of multi-household residential buildings represents the percentage of households that share the
building their residence is situated in, with other residencies. Notably, many neighborhoods have high percent-
ages of multi-household residencies, with even several neighborhoods that only have multi-household residencies
(see figure 77 in Appendix A.3). Looking at the city of Amsterdam, this is expected given the high number of
apartments in the city centre and flats in outer neighborhoods.

Looking at the percentage of rental properties in figure 23, a majority of the neighborhoods have at least 50%
rental properties compared to owned properties.

Figure 23: Distribution of the percentage rental properties for each neighborhood in 2021

Average woz values, in figure 78, are mostly between 250.000 and AC600.000, which is quite a wide range. Few
outliers exist with an average woz value of above AC1.000.000.

The characteristics of the neighborhoods are important to take into account in any further analysis. The most
notable characteristic of the municipality is the number of multi-household residencies and the high share of
rental properties. Besides, there is relatively a high percentage of low-income households in the municipality,
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especially when comparing the numbers on a country level.

6.5.2 Comparing low and high PV adoption neighborhoods

It is useful to understand whether neighborhoods with high or low adoption rates differ from each other in terms
of socioeconomic characteristics. To analyze this, the neighborhoods are categorized into groups based on their
adoption intensity, specifically, the PV per citizen.

To allow comparison between neighborhoods regardless of the number of inhabitants, several new variables are
computed:

• For all neighborhoods and for each year, the average "PV per household" and "PV per citizen" are
computed, to enable comparison between neighborhoods regardless of the number of inhabitants.

• The "yearly growth percentage" per neighborhood is computed for each year in the dataset

• The "absolute yearly growth" per neighborhood is computed for each year in the dataset. Growth rates
vary from 1731 new PV adopters in 2017 to 3501 new adopters in 2021.

• Adoption rates are computed for each neighborhood and each year. The adoption rate is defined as the
number of households that have adopted PV in a certain year as a percentage of the total number of
households in that neighborhood. The yearly adoption rates vary between 0.22% in 2016-2017 to 0.52%
in 2020-2021.

Neighborhoods are then categorized into four groups based on their PV adoption: very low PV adoption, low
PV adoption, medium PV adoption, and high PV adoption. The categories are formed using the 0.25, 0.5, and
0.75 quantiles, resulting in equal groups for analysis. Given there are 444 neighborhoods in the cleaned dataset,
each group contains 111 neighborhoods.

To test whether the categorized PV adoption groups significantly differ from each other based on the socioeco-
nomic variables, one-way ANOVA tests are performed for each of the variables. A one-way ANOVA (analysis
of variance) compares the means of two or more groups for one dependent variable. A one-way ANOVA is a
suitable test when the study includes more than two groups (in this study, there are four groups). There is one
independent variable and one dependent variable. The assumption of a normal distribution is not required but
the sample data does require equally sized groups, independently observed sample, and continuous dependent
variables (Ross & Willson, 2017). The data meets these requirements, thus a one-way ANOVA test can be
performed.

ANOVA tests are hypothesis based. By default, ANOVA assumes all the sample groups’ means are equal (the
null hypothesis). The statistical tests evaluate whether the null hypothesis can be accepted. If not, one or
more groups’ means differ from the others (the alternative hypothesis) (Zubair, 2022). The hypothesis is tested
based on the F-value, which represents the variation between sample means divided by the variation within the
samples. The higher the F-value, the higher the variation between sample means relative to the variation within
the samples. Based on the F-value, the ANOVA test calculates a p-value (Feldman, 2018). The ANOVA tests
are performed and the null hypothesis is rejected when the p-value is below the 0.05 significance level.

Many of the socioeconomic variables present significant p-values, and thus a significant difference in the sample
means between the PV adoption groups. Insignificant differences were found for the percentage mortality, the
percentage of citizens from Morocco and the percentage of citizens from Turkey, the average gas consumption,
the average number of citizens with an AO benefit (invalidity benefit), the average number of vehicles, and
the average number of Wmo-client (social security benefit clients). For the significant variables, although the
difference in means per group might be significant, the absolute difference can be small. What is most interesting,
is what variables present the highest difference in the means between groups. This can be derived from the
F-value. The following variables have the highest difference in means per group:

• Population density (number of citizens per km2)

• Percentage of citizens between the years 0-14 (%)

• Percentage of citizens between the years 25-44 (%)

• Percentage of married and unmarried citizens (%)
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• Percentage of single-citizen households (%)

• Percentage of households with children (%)

• Average household size (# of citizens per household)

• Percentage of citizens with a Western European migration background (%)

• Percentage of single-household residencies and percentage multi-household residencies (%)

• Percentage rental properties and percentage owned properties (%)

• Percentage of households with a low income and percentage of households with a high income (%)

• The average electricity consumption per household (%)

• And the percentage of highly-educated citizens (%).

A significant difference in the means of groups does not necessarily mean that the difference is linked or corre-
lated with PV adoption. The actual distributions of the significant variables with a high F-value are therefore
visually inspected using distribution plots. The distribution plots are included in Appendix A.4. Some examples
are highlighted below.

When inspecting the population density, for example, the ANOVA test revealed a significant difference between
the groups. Visual inspection of the distributions of this variable however reveals that the variable is likely not
linked to a certain adoption rate (figure 86).

For several of the variables, visual inspection leads to presume there might be a (linear) correlation between
the socioeconomic variable and PV adoption. From the distribution graphs, it appears that :

• High-adoption neighborhoods on average have a higher average electricity consumption, average household
size, percentage of children, and percentage of married citizens compared to low-adoption neighborhoods.

• High-adoption neighborhoods on average have a lower share of multi-household residences, rental proper-
ties, citizens between the ages 25-44, low-income households, highly educated citizens, and citizens with
a western-European migration background, compared to low-adoption neighborhoods.

• The population density does not seem to be logically related to PV adoption.

(a) The percentage of low-income households (%) (b) The percentage of rental properties (%)

Figure 24: Distributions per PV adoption category

To be able to draw more conclusions on the relationship between variables and their direction, a regression and
correlation analysis is performed.
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6.5.3 Regression and correlation analysis

Both a regression and correlation analysis is performed on the individual socioeconomic factors in the study
to examine not only the explanatory ability of these variables but also their relative weight. All variables are
included, not only the significant variables from the prior ANOVA analysis, to be able to compare results be-
tween the two.

First, given the large set of independent variables, multicollinearity amongst the indicators is investigated. A
preliminary correlation analysis was run on the data using all indicators. A correlation plot is computed and
for each of the variables, a variance inflation factor (VIF) is calculated. VIF measures the ratio between the
variance for a given regression coefficient with only that variable in the model versus the variance for a given
regression coefficient with all variables in the model (Forthofer et al., 2007). A higher VIF means the more
correlated a predictor is with the other predictors. The multicollinearity analysis revealed that many indicators
are correlated with each other. This multicollinearity is expected and caused by the fact that many variables
are somewhat each other’s opposites or complementary variables, such as the percentage of households with a
low income and the percentage of households with a high income. Or, the percentage of households with low
buying power and the percentage of households with low income, and the percentage of married vs the percent-
age of unmarried residents. To eliminate multicollinearity, a selection of the variables is used for further analysis.

An ordinary least squares (OLS) multiple regression model for solar adoption was run on the data using all
indicators. The OLS model is run with both PVs per citizen and PVs per household as the dependent variable,
to test the performance for both possible dependent variables. For both dependent variables, several of the
predictors variables including the WOZ value, the percentage of households with a low income, the percentage
of households with a high income, and the average income per citizen were found to be statistically significant
at the p < 0.05 level. The dependent variable PV per household had a slightly larger R-squared error of 0.82
compared to PV per citizen of 0.78. This means that the degree of variance in PV adoption can be explained
for 82% and 78% respectively by the independent variables.

While the regression analysis allows controlling for confounding effects between the explanatory variables, it
does not provide clear information about the relative influence of each of the predictor variables on solar adop-
tion rates (Lukanov & Krieger, 2019). Therefore, a more detailed correlation analysis is performed based on the
results of the previous analysis. The Spearman’s rank correlation coefficients between residential PV adoption
(PV per citizen and PV per household) and the independent variables per theme (income, population, residen-
cies, energy consumption, education, and vehicles) are computed. As the underlying data contains outliers and
not all variables are normally distributed, Spearman correlation is chosen as the correlation metric. This metric
deals well with rank-ordered data and outliers (de Winter et al., 2016). The analysis is performed per theme to
limit the extent of the data per analysis.

Given the large amount of independent variables, even when the dataset is divided into multiple variable themes,
a Bonferroni correction is performed for each of the variables. The Bonferroni correction is a multiple-comparison
correction used when several dependent or independent statistical tests are being performed simultaneously
(Weisstein, 2023). The reason for performing a Bonferroni adjustment is that while a given alpha value may
be appropriate for each individual comparison, it is not appropriate for the set of all comparisons. In order to
eliminate multiple spurious positives, the alpha value needs to be lowered to account for the number of com-
parisons being performed (Hayes, 2021). Therefore, for each variable, the adjusted p-value is computed which
is equal to its alpha divided by the number of variables.

An overview of the investigated variables and their explanation is found in Appendix A.1. The results for each
theme are discussed below.

Income
The theme income includes 18 variables. The 18 income-related variables contain several similar, opposites,
or complementary variables (e.g. % households with low income and % households with low buying power).
Therefore, a selection of the income variables is chosen for further analysis. Of the complementary or opposing
variables, only one variable is chosen. In the original dataset, separate variables are included for four different
types of social benefit schemes (AO, WW, AOW, and social assistance). These are combined into one variable
representing the total amount of citizens receiving social benefits in a neighborhood. The results of the correla-
tion matrix of the selected variables are summarized in figure 25, where Spearman’s rank correlation coefficients
for every pair of variables are displayed on the right side of the diagonal. The full overview of correlations is
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presented in Appendix A.5. Histogram distributions of the variables are shown along the diagonal, revealing
non-normal distributions for all variables. Left of the diagonal is scatter plots with fitted trend lines, which are
generally non-linear.

Figure 25: Correlation matrix for residential solar adoption (PV per citizen) and income-related variables.
Spearman correlation coefficients are displayed to the right of the diagonal. Histogram distributions are displayed
on the diagonal, and scatterplots with fitted lines are left of the diagonal.

Of the five predictors, four are statistically significant in explaining variations in residential solar adoption, at
at least the p < 0.05 significance level. Only the number of citizens with a social benefit is not statistically
significant. Of the significant variables, the percentage of households with a low income is most strongly corre-
lated with PV adoption (-0.42), followed by the percentage of households with a high income (0.37), the median
household income (0.37), the percentage of households with low buying power (-0.34) and the average home
value (0.10). The first four variables have similar weights but also represent similar variables, which explains
why these variables are all similarly correlated and significant.

Population
The theme population includes 29 variables, covering amongst others age, marital status, population density,
household characteristics, and cultural backgrounds. For the full list, see Appendix A.1. All variables are
tested for correlation significance with the dependent variable PV installations per citizen. Of the 29 variables,
21 are statistically significant. The full overview of significance values and correlation coefficients is shown in
Appendix A.6. To summarize the results, it appears that the most correlated variables are age, marital status,
and household composition. Figures 26 and figure 27 highlight some of these correlations.

When looking at age, a high percentage of children (citizens from 0 until 14 years old) positively correlates
with a high PV adoption rate (0.48), and a high percentage of citizens between 25 and 44 years old negatively
correlates with the PV adoption rate (-0.38). The age group 25-44 years includes groups such as students and
job starters that possibly do not have a stable salary or the capital to invest in solar panels, are saving for other
matters such as buying a house, or have not settled yet and are frequent movers. Sovacool et al. (2022), who
also noted a lagging adoption among young adults and middle-aged people, investigated the causes and found
that young children, mortgages, being a student, or renting properties before being able to afford to buy one
were the main reasons for this.

Considering household composition, the household size most strongly correlates (0.59) with PV adoption, fol-
lowed by the percentage of single-person households (-0.58) and the percentage of households with children
(0.54). For marital status, the percentage of married citizens positively correlates with PV adoption (0.52), and
correspondingly the percentage of unmarried citizens correlates negatively (-0.43).
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Figure 26: Correlation matrix for residential solar adoption (PV per citizen) and age-related variables. Spearman
correlation coefficients are displayed to the right of the diagonal. Histogram distributions are displayed on the
diagonal, and scatterplots with fitted lines are left of the diagonal.

Figure 27: Correlation matrix for residential solar adoption (PV per citizen) and household-related variables.
Spearman correlation coefficients are displayed to the right of the diagonal. Histogram distributions are displayed
on the diagonal, and scatterplots with fitted lines are left of the diagonal.

Residencies
The theme residencies includes 11 variables. All 11 variables are tested for correlation significance with the

59



dependent variable PV installations per citizen. Of the 11 variables, 10 are statistically significant. The full
overview of significance values and correlation coefficients is shown in Appendix A.7. To summarize the results,
it appears that the most correlated variables are the percentage of single-family homes (-0.79), the percentage
of owned properties (+0.62) versus rental properties (-0.62), and the woz-value (+0.17). Figure 28 highlights
the strongest correlations.

Figure 28: Correlation matrix for residential solar adoption (PV per citizen) and residence related variables.
Spearman correlation coefficients are displayed to the right of the diagonal. Histogram distributions are displayed
on the diagonal, and scatterplots with fitted lines are left of the diagonal.

Education
The theme education includes six variables in the original dataset. As the variables for "highly education
citizens", "Secondary educated citizens" and "lower educated citizens" are absolute numbers per neighborhood,
these variables are transformed into percentages by dividing the values by the number of citizens. One new
variable is added: the total percentage of educated citizens. For all seven variables, the Spearman correlations are
computed. Of the seven variables, all variables are significant at the 0.05 level except for the variable "Percentage
secondary educated citizens". Figure 29 shows the visualized correlations of the four most significant variables.
Although the variables significantly correlate with the dependent variable, the correlation coefficients exhibit a
relatively weak association between the indicators and the dependent variable.
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Figure 29: Correlation matrix for residential solar adoption (PV per citizen) and education-related variables.
Spearman correlation coefficients are displayed to the right of the diagonal. Histogram distributions are displayed
on the diagonal, and scatterplots with fitted lines are left of the diagonal.

Vehicles
The vehicle theme contains six variables, of which three relevant variables are selected: passenger vehicles per
household, vehicles with gasoline fuel, and vehicles with other fuel. For the variables "vehicles with gasoline fuel"
and "vehicles with other fuel" the percentage values are computed. The Spearman correlations are presented
in Appendix A.10. Of the variables, only the number of passenger vehicles per household is significant (+0.59),
meaning that in neighborhoods with high adoption rates, there is on average also a high number of vehicles per
household. The correlation is shown in figure 30.
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Figure 30: Correlation matrix for residential solar adoption (PV per citizen) and the number of passenger
vehicles per household. Spearman correlation coefficients are displayed to the right of the diagonal. Histogram
distributions are displayed on the diagonal, and scatterplots with fitted lines are left of the diagonal.

6.5.4 Unused potential

When a neighborhood has low adoption rates, this does not necessarily mean that the adoption rate can be im-
proved in this neighborhood. Possibly the neighborhood has a low number of suitable rooftops. To incorporate
this, the variable "unused potential" is analyzed. This variable represents the residencies with a suitable roof
but without PV installed as a percentage of the total number of residencies.

The unused potential per neighborhood is strongly correlated with the number of PVs per household: on aver-
age, when the number of PVs per household in a neighborhood is low, the unused potential in that neighborhood
is high (coefficient: -0.72, p-value: 0.00). The distributions- and ANOVA tests from Section 6.5.1 and Section
6.5.2 have been repeated for the unused potential variable by, again, creating groups based on the percentage
of unused potential. The results of the two analyses are very similar. The most significant difference is that
for the "unused potential", the number of vehicles is statistically significant between the two groups, which was
not the case when exploring the ANOVA results of the adoption-based groups, and the average F-values for the
"unused potential" groups are slightly lower. This means that roughly, neighborhoods with a low adoption rate
also have much-unused potential.

6.5.5 Investigating the adoption gap

The results of the spatial and socioeconomic analysis so far lead us to think that a distinction can be made
between several neighborhoods based on PV adoption rates and socioeconomic factors. The results show that
there is a significant difference between the means of multiple socioeconomic indicators between groups with
very low, low, medium, or high adoption rates or unused potential. In other words: neighborhoods that have
high adoption rates significantly differ from neighborhoods with low adoption rates.

In Part 2 of the Design artifact, PV adoption evolution between socioeconomic groups will be further analyzed.
To formulate these groups, the outcomes of the analysis in this Section are used. Not all variables can be
included. It is chosen to focus on three variables that seem to significantly differ between adoption groups
(as investigated in the ANOVA analysis) and that strongly correlate with PV adoption (as investigated in the
correlation analysis). The three chosen variables are the percentage of rental properties, the percent-
age of multi-household residencies, and the percentage of low-income households. These variables
strongly correlate with PV adoption rates (coefficients of -0.62, -0.71, and -0.43 respectively) and significantly
differed between the PV adoption categories from the ANOVA tests (with F-values of 167.8 for the percentage
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multi-household residencies, 28.3 for the percentage low-income households and 52.1 for the percentage rental
properties).

Therefore, the neighborhoods in Amsterdam have been clustered according to their scores for these three factors,
to create sub-populations of neighborhoods to investigate in the system-dynamics model. The neighborhoods
are clustered using the k-means clustering method in Python. Clustering methods partition data points into
groups, or clusters, based on their similar attributes. Clusters are defined as groups of data objects that are
more similar to another object in their cluster than they are to data objects in other clusters (Arvai, 2020).
Thus, the clustering method allows to create groups of similar neighborhoods in Amsterdam.

The k-means clustering method is an unsupervised machine learning technique used to identify clusters of data
objects in a dataset (Arvai, 2020). There are many different types of clustering methods, but k-means is one of
the oldest and most approachable. The technique requires a few steps, presented in figure 31.

Figure 31: Steps of the k-means algorithm for clustering. Source: (Arvai, 2020)

The clustering method is used to create similar groups of neighborhoods based on their percentage of low-income
households, their percentage of multi-household residencies, and their percentage of rental properties. The
optimal number of groups is determined using the elbow method and resulted in three clusters. A visualization
of the categorization of the neighborhoods is shown in figures 32, 33 and 34, plotting each neighborhood’s value
for the percentage of low-income households, the percentage multi-household residencies and the percentage of
rental properties.

Figure 32: Correlation plot showing the classification of the three clusters, with the percentage of households
with a low income and percentage of rental properties per neighborhood
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Figure 33: Correlation plot showing the classification of the three clusters, with the percentage of multi-
household properties and percentage of rental properties per neighborhood

Figure 34: Correlation plot showing the classification of the three clusters, with the percentage of multi-
household properties and percentage of rental properties per neighborhood

The three clusters of neighborhoods each have varying adoption rates, historic adoption patterns, and socioe-
conomic characteristics. For each of the clusters, the number of citizens, the number of households per cluster,
and the socioeconomic variables that have been used for clustering are shown in Table 2. The yearly growth of
the number of PV installations per citizen is shown in figure 35.

Group number Average percentage of rental properties (%) Average percentage of low-income households (%) Average percentage of multi-household properties (%) Number of households Number of citizens

High % rental properties, high % multi-household properties and high % low-income households 1 83% 16% 96% 234.055 414915
Low % rental properties, Low % multi-household properties and low % low-income households 2 42% 6% 23% 45680 104595
Medium % rental properties, high % multi-household properties and medium % low-income households 3 60% 8% 92% 188890 343415

Table 2: Descriptive statistics for the three neighborhood clusters
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Figure 35: Growth of the number of PV installations per citizen for each of the neighborhood clusters, from the
years 2016-2021

6.6 Main conclusions Chapter 6
This chapter aimed to answer research question 3:

What is the potential for residential solar energy generation in Amsterdam and how are observed adoption
patterns correlated with various socioeconomic indicators to explain adoption disparity?

To answer this question, an assessment of the rooftop potential for solar panels is conducted and the relationship
between socioeconomic factors and spatial adoption patterns is investigated. The rooftop suitability assessment
showed that PV adoption is spread disparately amongst the neighborhoods of Amsterdam. Contrary, the po-
tential electricity yield per citizen for rooftop solar generation is spread rather equally, with a few outliers of
high potential per citizen.

The study revealed that in 2021, approximately 4% of households in Amsterdam have solar panels installed on
their roof. From an ANOVA analysis it was found that, for multiple socioeconomic indicators, neighborhoods
with the highest adoption rates significantly differ from neighborhoods with the lowest adoption rates. The
strongest differences between neighborhoods based on adoption rates include:

• The percentage of multi-household versus single-household properties (F=167.8, p=0.0)

• The percentage of rental properties versus owned properties (F=53.75, p=0.0)

• The percentage of households with a low income versus a high income (28.5, p=0.0)

• The average electricity consumption (F=52.98, p=0.0)

• The average household size (F=84.07, p=0.0)

• The percentage of households with children (F=75.34, p=0.0)

• The percentage of single-person households (F=68.65, p=0.0)

A correlation analysis revealed that many variables correlate significantly with the adoption rate in a neighbor-
hood. The strongest correlations found are:

• The percentage of low-income households (-0.43, p=0.0).
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• The percentage of children of 0-14 years (+0.48, p=0.00)

• The percentage of single-person households (-0.58, p =0.00)

• The average household size (+0.59, p=0.00)

• The percentage of single-household residencies (+0.62, p=0.00)

• The percentage rental properties (-0.79, p=0.0)

The percentage of rental properties, the percentage of multi-household residencies, and household income have
come forward during the interviews as important possible barriers to PV adoption (AMS1, NH2). Notably, these
factors have also come forward as important correlating factors with PV adoption rates in this Section. Several
of the outcomes in this study are in line with findings from other studies. The importance of home ownership,
age, income, and property-sharing also came forward as important determinants during the literature study in
section 4. These findings are in line with some of the findings by (Sommerfeld et al., 2017), (Balta-Ozkan et al.,
2015), (Vasseur & Kemp, 2015b). Balta-Ozkan et al. (2015). Where Margolis et al. (2017) found the number of
rooms and house age to be key influential variables, this study did not reveal the significance of these variables.
Besides, Balta-Ozkan et al. (2015) found the number of households to be a significant variable, but this study
had contrary results for this variable. The varying results between different studies highlight the local char-
acteristics of PV adoption patterns and the care that should be taken when generalizing results to other regions.

It should be noted that correlations do not necessarily imply causation. There are numerous confounding de-
mographic and socioeconomic factors that can influence the rates of rooftop solar adoption that were not taken
into account in this study. Some of these include linguistic isolation or housing burden (Lukanov & Krieger,
2019). The studied variables are meant for exploration and are not conclusive. The correlations examined
in this study, however, do highlight areas where more attention may be needed and where barriers to solar
adoption might exist. The results also show that there is a significant difference between PV adopters and
non-adopters. The type of household property, income, type of ownership, and household composition are ob-
served to be the most significant socioeconomic factors when comparing the results of the two statistical studies.
These results will be used for further investigation of the evolution of adoption patterns in Part II of the artifact.
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7 Design artifact part II: System Dynamics Approach
This chapter describes the PV adoption system dynamics model and its structure. The model is conceptualized
based on the theoretical understanding of the problem, local case study data, and stakeholder input. First,
in Section 7.1, the model objective and requirements are discussed, and in Section 7.2.2, the system boundary
is outlined. Section 7.2.5 - 7.2.7 give an overview of the conceptual model, the model components, and the
model assumptions. In Section 7.3, the model formalization is described. In Section 7.4 the model is validated
using structural and behavior-oriented tests, and finally in Section 8 experiments are conducted and results are
discussed.

7.1 Model objective and requirements
The purpose of the model is to study the dynamics of PV adoption (amongst different socioeconomic neighbor-
hoods), under the presence of several policy levers. The model aims to analyze the extent, speed, and disparity
of PV adoption over time. The model requirements are defined by the model objectives, complemented by the
insights from the relevance and rigor cycle. In short, the model should:

• Allow analysis of the extent, speed, and disparity of PV adoption

• Be able to investigate dynamics over a specified time

• Be able to capture relevant adoption dynamics as given by the previous research phases

• Be able to incorporate both socioeconomic and geographic insights from the previous research phases into
the model

• Evaluate scenarios based on external developments and under different policy measures

In short, a model is needed that is flexible enough to allow experimentation and the analysis of potential policy
interventions. Additionally, the model should be able to dynamically describe PV adoption development over
the long term. On the other hand, the model must be general enough that the model is applicable to other
municipalities (with their own data).

The model outcomes of interest are presented in table 3.

Category KPI Unit

Social indicators Adoption percentage overall % of total households
Adoption percentage per socio-
economic group %

Used potential of suitable
rooftops %

Energy bill PV vs. non PV AC/household/month
Energy bill as percentage of
spendable income %

Solar / climate goal indicators Installed residential PV capacity MW (MegaWatt)/citizen
Installed capacity per socio-
economic group MW/citizen

Table 3: Model outcomes of interest

Uncertainty regarding model parameter values and model structure is not explicitly modeled in the system
dynamics approach (Kelly et al., 2013). This makes it necessary to execute a scenario and sensitivity analysis,
to explore the impacts of uncertainties on model behavior and incorporate them in a policy (intervention)
analysis (J. Sterman, 2000) (Pruyt, 2013).

7.2 Model design
7.2.1 Method

In SD models, links between parameters and variables represent direct causal relations. This allows SD models
to be used to explore the complex behavior of the interaction between structures to gain insights, in order to
transform the structure of the system into more desirable behaviors (Pruyt, 2013). Thus, one needs to be able
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to perceive, identify or assume direct causal relations.

First, a conceptual model is made in the form of a Causal Loop Diagram (CLD) to identify the main rela-
tionships, factors, and subsystems affecting the system. Afterward, a detailed stock-flow diagram (SFD) is
developed to model the system of adoption, followed by the formulation of the model equations.

SD simulation models are mostly displayed/constructed using Stock-Flow Diagrams. An example is shown in
figure 36. The diagrams consist of boxes (stocks) and arrows (inflows or outflows), auxiliary variables, causal
links between variables, and causal links with delay signs. The stock variable accumulates: it integrates flows
over time. Shadow variables are used in SD models to include a variable in a sub-model that is elsewhere
defined. Shadow variables are shown in between brackets in grey: <Shadow variable>.

Two common uses of SD modeling are (i) to explore plausible futures, and (ii) to study the implications of
different policies. Another common use of SD modeling is to learn about a system and the link between system
structure and behavior (Pruyt, 2013).

Figure 36: Example of a stock-and-flow system. Source: author.

Figure 37 shows the used model components and their visual representation. Sensitivity variables (purple boxes)
are included in the model to allow conduction a sensitivity analysis.

Figure 37: Model components of the System Dynamics model

7.2.2 Model boundaries

It is very important to carefully delimit system and model boundaries. All (potentially) important elements
which influence other parts of the system and are also significantly influenced by elements of the system, should
be modeled as endogenous variables. Endogenous variables thus are variables that are determined by other
variables within the model. All elements that (could) seriously impact the system –but that are not sufficiently
influenced by the system– become exogenous variables. All other elements omitted (Pruyt, 2013). Table 4
describes the boundaries of this study.
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The model studies grid-connected rooftop PV adoption by households. Thus, only the residential sector is
in the scope of this study. Besides variable boundaries, the model has a distinct geographic boundary: PV
adoption in the municipality of Amsterdam is studied. The SD model retains this geographic boundary, similar
to the previous analysis in, as this allows to use case study data obtained in the analysis, and study adoption
dynamics between socioeconomic neighborhood groups in this municipality. Several factors are not limited to
the boundaries of the municipality of Amsterdam, such as electricity prices and PV installation costs, which
are national.

Endogenous Exogenous Excluded

Thoroughly modelled endogenous variables PV installation costs PV battery technology development and adoption
Households installing rooftop solar Inflation (national) PV capacity expansion

PV payback times Geopolitical developments Change in grid costs and load losses due
to rooftop solar

Energy bills PV and non-PV Fixed distribution and transmission costs Annual PV system degradation
Market electricity price (national) PV installations at business or public buildings

Superficially modelled endogenous variables Population growth in Amsterdam Grid defection by households

Addition in energy supplier margin due to rooftop solar Household electricity demand in Amsterdam Increase in PV capacity due to
technological advancements

Electricity generation Grid capacity
Average MWs installed per rooftop solar adopter
Time to install rooftop solar
Expected annual kWhs produced per
kW of solar in the Netherlands
Shortage of technicians and materials
Energy tax tariffs
PV self-consumption rate
Percentage of suitable roof surface

Table 4: The endogenous, exogenous, and excluded model variables, indicating model boundaries

The annual PV system degradation rate is a year-to-year decline in the DPV system’s output due to, for
example, the aging of equipment over time. This factor is not considered in this study, as the model does not
allow the modeling of individual PV systems and their lifetime.

7.2.3 External influences

The XLRM diagram presented in Section 5 is used as input for setting model boundaries. Several external
factors have been identified in Chapter 3 that impact the PV adoption system, but are not influenced by the
system itself. These are presented as the external factors in the XLRM diagram. The external factors can be
included in the model as exogenous factors. Not all external factors are included. The modeled external factors
are the price of PVs (driven by technical innovations), the energy prices (driven by geopolitical developments),
the PV efficiency, and the shortage of materials and technicians. It has deliberately been chosen to leave public
awareness and solar radiation out of the simulation model, to reduce model complexity and uncertainty. The
impact of the solar radiation level is limited in the face of the current modeling objectives. The causal effects of
public awareness on adoption patterns in Amsterdam are unknown and difficult to determine and are therefore
also left out of scope. The factors of geopolitical developments, inflation, and technicians and materials shortages
and their incorporation into the model are explained in more detail below.
Geopolitical developments have caused turbulent developments in energy prices over the past years. Where
initially gas prices increased significantly, electricity prices followed accordingly. The future development of
these prices is highly uncertain. Electricity prices here indicate the market price (wholesale price) for electricity.
The CPB estimates that electricity wholesale prices remain dependent on gas prices, and assume that the
electricity prices will increase similar to the tariffs for gas (CPB, 2022b) in the future. Given the uncertain
nature of this variable, scenarios are included in the modeling process. The CPB developed three scenarios for
price developments. These scenarios are adopted in this study, to account for the uncertain development of this
variable. The scenarios cover a base case, a low-price scenario, and a high-price scenario, shown in figure 38.
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Figure 38: Plausible scenarios for wholesale electricity prices used in this study, and developed by the CPB

A distinction is made between geopolitical developments and inflation. Geopolitical developments are included
as a separate scenario here because these developments specifically have impacted the energy market severely
over the past years. While these developments also caused inflation in other sectors through increased energy
prices, the macroeconomics of geopolitical developments and inflation are complex, and thus the inflation factor
is modeled separately in the model. This also allows analyzing increased prices of for example PV modules
separately. For inflation, three scenarios are included: low inflation, a base case, and high inflation scenario.
In the base case, there is no inflation. In the low inflation scenario, inflation decreases to 85% and in the high
inflation scenario, inflation increased to 115%.
The shortage in technicians and materials, which impacted the PV industry over the past years, mainly
affects the time to install PV in this model. This creates a shorter or extended delay in the flow from potential
PV adopters to PV adopters. For this variable, there are two scenarios: a base case and an increased shortage in
technicians and materials. In the base case, the delay in installations of PV systems is 6 months, in the increased
shortage scenario, this delay is 12 months. Besides, it is assumed that the delay causes a slight decrease of 10%
in the adoption rate, as households might refrain from adopting PV when waiting times are so long.

7.2.4 Policy interventions

The impact of several policy measures is simulated in the system dynamics study. This section describes the
included policy measures. The current existing policies have been identified in Section 3.1. These include the
current netting scheme, the proposed netting scheme, the price cap, the zero-interest loan for lower incomes,
the tax deduction on PV installations, and the feed-in tariff (after 2030).
Two additional policy options are included in the model. Almost all of the existing policy measures are general
policies, not targeting specific groups of citizens. The additional policies are leveling policies that aim to
stimulate PV adoption in under-served groups and thus aim to shrink the adoption gap. These are included
to explore the effect of leveling, targeted policies, and have been identified through literature research and
interviews.
First, a subsidy for lower-income (LI) households is introduced. Currently, the only form of active subsidy is a
tax for all citizens. Previous research has shown that low- or middle-income specific financial incentives work
significantly more effectively than general financial incentives (O’Shaughnessy et al., 2020b).
Second, an extended netting-scheme is proposed for LI households. This policy measure can be used when the
proposed netting scheme is in place. The proposed netting scheme is expected to increase payback times for
PV investments, making the purchase less viable for low-income households. An extended netting-scheme for
low-income households allows these adopters to profit from the current netting scheme for the first years after
investment until the investment is earned back. This duration should be set by the government based on actual
average payback times.
The third additional investigated policy measure is a sustainability mandate for landlords, OAs, and housing
corporations. Interviews with stakeholders revealed that one of the barriers to adoption includes the complicated
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Policy Explanation Currently in place?

General policies Netting scheme
(current and proposed)

Allows deducting (a percentage of) the power that households feed
back to the grid, from the amount of power that it consumes from the grid

Current scheme in place, proposed scheme
active from 2025 onwards

Subsidies A tax rebate that removes the VAT tax of 21% of a PV-installation purchase Yes

Feed-in tariff
(after 2030)

Excess electricity fed back to the grid and that exceeds one’s consumption
is sold to the utility for a feed-in tariff

Yes. For the proposed netting scheme, the
minimum feed-in tariff is set to be 80%
of the retail tariff.

Renewable energy loan For renewable energy investments, households can request a loan
with low interest rates Yes

Price cap A maximum electricity tariff of AC0,40/kWh for households,
under a specified consumption limit In the year 2023

Leveling policies Subsidy for LI-households Subsidy for PV-installation purchase for LI-households No, for investigation purpose in this study
Zero-interest loans for
LI-households Zero-interest loans for renewable energy purchases by LI-households Yes, in the municipality of Amsterdam

specifically
Extended netting scheme
for LI-households

Allowing LI-households to profit from the netting-scheme when
purchasing a new installation, up untill the investment is paid back No, for investigation purpose in this study

Mandate sustainability plan Mandate a sustainability plan for OA’s and housing corporations No, for investigation purpose in this study

Table 5: Current and studied policies

decision-making process of residents of OA’s and housing corporation residencies. This policy measure entails
mandating a sustainability plan for these parties, lifting some of the barriers that exist in these cases.
An overview of the policy measures included in the system dynamics model is presented in table 5.

7.2.5 Conceptual model

A conceptual model, representing the main factors and relationships in the system, is created in the form of a
Causal Loop Diagram (CLD). This section describes the main model elements through the CLD presentation.
A detailed description of model dynamics follows in Section 7.2.6 and 7.3. CLDs contain variables and the direct
causal relationship between them. Relationships are either positive or negative. A positive relationship between
variables A and B means that (i) an increase in A causes B to rise above what it would have been otherwise and
(ii) a decrease in A causes B to fall below what it would have been otherwise. A negative relationship between
variables A and B means that (i) an increase in A causes B to fall below the value would have had otherwise
and (ii) a decrease in A causes B to rise above what it would have been otherwise (J. Sterman, 2000).

The conceptual model is shown in figure 39. Inputs, policy interventions and external factors are shown respec-
tively on the left, top and bottom of the CLD. The policy interventions are explained in more detail in Section
7.2.4.

The purple stock-flow diagram represents the PV adoption by households. Although the adoption-decision
process is complex, and besides financial motivations other socioeconomic factors and psychographic factors
play a role, the final decision is often made based on a financial metric such as the payback time. Therefore,
in this model the flow from potential household adopters to household adopters is represented by the adoption
rate, which is in turn determined by the payback period of rooftop solar. Rai and Sigrin (2012) investigated
the economics behind PV adoption decision-making, and found that PV adopters generally use the expected
payback period as the financial decision making criterion, and not other metrics such as the Net Present Value.
Therefore, the payback period is used in this simulation. The socioeconomic factors influencing adoption choices
are embedded in the empirical adoption rates used in the model, further described in Section 7.2.6.
The population of potential household adopters grows according to the population growth in the municipality,
and depends on the percentage of available suitable rooftop (the technical potential). The expected savings
from rooftop solar and the price of a PV system make up the payback period of rooftop solar. The expected
savings from rooftop solar depend on the system efficiency, the financial incentives posed by the Netting Scheme
policy, the self-consumption rate, the interest on a sustainability loan and the subsidies on PV installation costs.

The netting policy is an important factor in determining the expected savings from rooftop solar, as it impacts
the expected savings in two ways. First, through the amount of generated electricity one is allowed to deduct
from the consumption on the energy bill. Second, the netting scheme influences the self-consumption rate of
consumers. When all generated electricity can be deducted from the consumption, there is little incentive to use
one’s own generated electricity (ST2, ST3,AL1). When the netting scheme becomes less financially attractive,
consumers will likely adjust their self-consumption. The feed-in-tarrif plays a role here aswell, as it determines
the worth of the injected electricity to the grid, dependent of what netting scheme policy is in place. Currently,
only the amount exceeding consumption is compensated using the feed-in tariff. Under the proposed netting
scheme, a higher percentage of injected electricity will be compensated with a fixed feed-in tariff.
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The orange arrows indicate a feed-back loop that represents the death spiral hypothesis (Castaneda, Franco,
et al., 2017; Costello & Hemphill, 2014; Felder & Athawale, 2014; Grace, 2018; Meehan, 2015). The death
spiral hypothesis, as described in Section 5, represents the vicious cycle where increased PV adoption results
in increased costs for utilities, who in turn raise their tariffs, thus increasing the attractiveness of solar panels
compared to grid electricity, which in turn results in more PV adoption. For every household installing rooftop
solar, utilities lose some revenue. Depending on the netting scheme policy in place, the utility company is
obligated to pay a tariff for the injected electricity by households, and the generated electricity by households
replaces some or all of the kWhs of electricity they would have otherwise bought from the utility. As such,
the utility makes less sales and experiences reduces revenues. Utilities respond, under the principle of cost
recovery, by increasing their electricity rates, which impacts the expected savings from rooftop solar, making
the technology more attractive. This results in more households who are willing to install rooftop solar, creating
a reinforcing loop.

Figure 39: Causal Loop Diagram representing the main variables and relations in the System Dynamics model

7.2.6 Main model dynamics

PV adoption
Modelling PV adoption - the flow from potential adopters to adopters - is not straightforward. Chapter 4
describes that PV adoption depends of several factors, including technical potential, socioeconomic factors and
psycho-graphic factors. In renewable-technology diffusion studies, different methods to model technology adop-
tion are available.

One of the most widely adopted methods is the Bass-Diffusion model, which is a mathematical model used to
depict the spread of an innovation, as a function of information-related technology such as advertising and word
of mouth (Morcillo et al., 2022). The Bass model is a general model, used to depict many different types of
innovation diffusion such as innovation diffusion in retail service, industrial technology, agriculture, and the ed-
ucational, pharmaceutical and consumer-durables markets (Mahajan et al., 1993). In the case of PV adoption,
the Bass model considers how information is disseminated through potential households to convert them to PV
system adopters.
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The Bass model is applied in this study to account for the adoptions through the factors of imitation (word-
of-mouth) and innovation. These factors are included to replicate the phenomenon that over time, adoption
increases even though the product price might remain constant. This independent increase in adoption is gener-
ated by the fact that households imitate adoption behavior (the word-of-mouth effect) and technology products
increase in popularity (the innovation effect) (Mahajan et al., 1993).

To determine the fraction of households adopting based on financial motivations, empirical data is used to
compose an adoption curve. Given the rich amount of data available for this study, adoption rates can be
determined for each neighborhood for the past six years. Therefore, it is chosen to model product diffusion
based on empirical data of adoption rates at given years and payback periods. The data from Chapter 6 can be
used to derive the historic adoption rates. This method allows capturing more adoption mechanics, as product
price and adoption barriers are embedded in the actual perceived adoption rates. Besides, this allows to model
the impact of policy interventions on product diffusion more adequately and to distinguish different groups of
customers by using multiple adoption rates from the empirical data.

All together, the adoption rate (flow from potential adopters to rooftop solar adopters) is thus determined by
the adoption curve that estimates adoption rates at certain payback times, a word-of-mouth effect, and an
innovation effect.

The utility death spiral
The utility death spiral, which has often been the topic of investigation in previous renewable integration SD
studies, results from the utilities’ need to increase tariffs to compensate for the reduction in electricity demand.
The increased tariffs further promote PV adoption, resulting in an increased fall in demand, causing a reinforc-
ing cycle.

Distributed PV impacts utility revenue in multiple ways. First of all, it generates gross utility revenue loss
through self-consumption of PV-generated electricity and through grid-injection of PV-generated electricity
(Castaneda, Franco, et al., 2017):

• Self-consumption of generated electricity by consumers reduces retail sales for utilities, directly decreasing
their revenue. Any distributed PV generation that is used to supply the customer directly with electricity
for consumption is said to be self-consumed. Self-consumption allows PV owners to reduce or eliminate
the variable utility charge portion of their electricity bills. The amount of self-consumed electricity by PV
adopters is no longer taken from utilities, reducing their sales and marginal electricity price (Castaneda,
Franco, et al., 2017).

• Grid injection of PV-generated electricity increases costs for utilities as they have a purchase obligation for
the injected electricity. If the PV system generates more electricity than the consumption of the consumer
at that moment, the PV customer essentially "sells" the energy to the energy supplier. This can happen
in multiple ways, such as net metering or net billing. In the Netherlands, this currently happens through
both schemes, working towards only net billing after 2030. From the utility viewpoint, these payments
for PV grid injections are additional expenditures. However, there are also reduced expenditures as these
grid injections offset purchasing or generating wholesale electricity. Thus, the difference between the sell
rate for grid injections and the utility’s avoided costs, driven in large part by the wholesale electricity
price, is a key driver of distribution utility financial impacts.

Second, distributed PV also results in avoided costs including reduced wholesale electricity purchase costs or
avoided energy generation costs and avoided distribution line losses. For a utility, the self-consumption of dis-
tributed PV generation leads to reduced expenditures related to purchasing or generating wholesale electricity
and, in some cases, may reduce some future fixed capital and associated operations and maintenance costs. In
most cases, under pre-existing tariff designs, this may still lead to an under-recovery of distribution system fixed
costs because utilities often recover a (sometimes substantial) portion of the fixed costs incurred for maintaining
the network from the volumetric energy charge component of their retail tariff.

Utilities adjust their retail tariff to their changed revenue. The change in tariff thus depends on the extent of
distributed PV deployment, the reduced utility sales and revenue due to PV, and the extent to which utilities
pass through reduced revenue to consumers. To decide on the pass-through rate, utilities formulate future
revenue requirements. The impact of distributed PV on utility rates is not easy to assess and differs per utility
company. However, many studies on the utility death spiral have successfully used SD to assess these effects in
a simplified manner, such as (Castaneda, Franco, et al., 2017), (Morcillo et al., 2022) and (Castaneda, Jimenez,
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et al., 2017). All studies showed that increased penetration of distributed residential PV, at different degrees of
penetration, led to a moderate increase in utility rates due to lost revenues, meaning that the revenue losses were
on average larger than the revenue increases due to rooftop PV. The tariff increase was found to be higher at
higher degrees of PV penetration. Morcillo et al. (2022) estimates that electricity prices for households without
PV will increase by about 20% by 2035 .

Distributed PV also impacts grid operators, as has been described in Section 3.4, mainly in the form of voltage
issues. Interviews with grid operators revealed that although PV-related problems are expected to increase in
the future, distributed PV-related cost increases will remain minimal for consumers due to several reasons:

• Grid operators can acquire low-interest loans with long depreciation periods. Therefore the growth of
investments by grid operators is not equal to the growth in fixed grid costs paid by consumers.

• Wholesale customers pay relatively more than small consumers such as households.

• Grid losses currently are much more driving the increased costs for consumers than investment costs.
These costs are more directly passed on to consumers. The increased grid losses are caused by the high
energy prices.

• Grid investments for expansion often occur because new customers are connected to the grid, which
results in more customers who pay a grid contribution. Replacement or reinforcement of the grid does
result in increased rates for consumers, however, many investments are planned regardless of increased PV
integration. Grid operator Liander (operating in Amsterdam) is already planning to replace all low-voltage
cables nonetheless of the PV adoption rates.

In this study, the impact of PV adoption and electricity demand on electricity tariffs will be included but modeled
in a simplified manner. In reality, the tariff determination is complex, and different utility companies handle in
different manners. However, literature shows that the general effect of PV adoption on utility electricity tariffs
is known, and similar dynamics are observed in all studies.
Given the geographic extent of the SD model in this study, it is difficult to model national pricing mechanics.
Not only PV adoption in Amsterdam impacts utility revenues, but PV adoption in the whole country. Therefore,
a simplification is made that electricity retail prices increase according to the extent of PV adoption increase
and based on findings in the studies by (Castaneda, Franco, et al., 2017), (Morcillo et al., 2022) and (Castaneda,
Jimenez, et al., 2017).

7.2.7 Model assumptions

System dynamics models are highly aggregated and simplified representations of reality. Most SD models thus
contain many assumptions, aggregations, simplifications, and uncertainties (Pruyt, 2013). These are often
necessary and justifiable, based on either the need for simplicity or the lack of available data/knowledge on the
relationship. The list below describes and justifies the assumptions upon which this model was based:

• Households with PV systems do not require battery support for the storage of energy and thus remain
grid connected. Grid defection in the Netherlands requires extensive energy storage solutions to store
electricity from summer to winter. Given that battery solutions remain expensive, especially solutions
that have the capacity to store energy from summer to winter, grid defection by households is therefore
deemed unfeasible and is not incorporated into the model. Some studies acknowledge that grid defection
is not yet an economically feasible option (Sabadini & Madlener, 2021). Solar-battery systems are not
considered in this model.

• PV system sizes adopted by households are the same for each household and remain constant during
simulations. The system size is fixed at 10 solar panels per installation with a capacity of 350 kWp
(van der Wilt, 2022) , which is a good representative of the average solar panel on the market in the
Netherlands. PV system efficiency is also assumed to be constant for each household and throughout the
simulation period. PV efficiency is defined as the ratio of energy output from the solar cell to input energy
from the sun. In addition to reflecting the performance of the solar cell itself, the efficiency depends on
the spectrum and intensity of the sunlight and the temperature of the solar cell (PVEducation, n.d.). The
PV efficiency is set at 85%, which is an accepted average for the Netherlands (Verheij et al., 2020b).

• Energy consumption is assumed to be equal for all households. The average for households in Amsterdam is
used in the model, which is 233 kWh per month and 2800 kWh per year (Planbureau voor de Leefomgeving
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& van Polen, 2021). It is assumed that electricity consumption gradually decreases until 2030, in line with
projections of the Netherlands Bureau for Economic Policy Analysis (Planbureau voor de Leefomgeving
& van Polen, 2021), of which one of the reasons is the stricter energy efficiency requirements for electric
devices. Any other external influences that might impact the average energy consumption are left out of
scope.

• The simulation period is 30 years, starting in 2019. The model starts in 2019 so that the years 2019-2022
can be simulated and model outcomes can be compared with actual observed data from these years, to
validate the model outcomes.

• It is assumed that households purchase PV installations using a low-interest loan provided by Dutch
national government, with a yearly rent of 3,5% with a duration of 10 years (Nationaal Warmtefonds,
2022).

• For simplicity, no difference between distribution utilities is considered. This entails that electricity prices
are equal for all households in the simulation. No distinction is made between different types of contracts.

• As the modelled case study includes only the municipality of Amsterdam, the case study area is too small
to properly and extensively model the effects of a possible death-spiral, which happens mostly at national
level. Therefore, the death-spiral effect is modeled in a simplified way, informed by previous research on
the dynamics of the death-spiral.

• Considering the death-spiral effects, this model includes the impact of rooftop PV on the variable electricity
costs, as interviews with grid operators revealed the impact on the fixed grid costs are marginal, and are
expected to rise nonetheless (AL3).

• The effects of rooftop solar diffusion on the utility’s grid costs are thus not taken into account in this
model. Besides that it is not expected that these costs will directly impact consumers (AL3), it also
appears that there does not yet exist a proper method of analysis for quantifying the large-scale impact of
PV on the grid, voltage issues and the change in grid costs attributable to rooftop solar diffusion for the
region of Amsterdam. Any estimations made in literature could be used as proxies, however grid impact
is highly region-specific, depending on the quality and age of the grid, and thus proxies would create high
uncertainty in the results. Given the impact is not necessary to model PV adoption, it is chosen to leave
this variable out of scope.

• Newly built residencies more often come equipped with PV installations. Thus, possibly, amongst new
households in the study area, several households might already be equipped with solar panels. However,
the magnitude of this relationship is unknown. This mechanic is therefore, for simplicity, not included in
the model.

• An assumption is made for the sake of simplicity that there are no birth, death or migration processes
between the sub-populations

• The impact PV adoption has on electricity tariffs is difficult to determine, as the exact impact of PV
on company revenue has to be assessed, and every utility company has its own policy to deal with such
tariff impacts. The tariff impact also depends on the extent to which utilities pass revenue loss caused by
distributed PV on to ratepayers versus absorbed by the company, and on the mechanism through which
the rate adjustment is passed (every 3 months, every year, etc.).

• The lifetime of rooftop solar systems, and thus the need to replace a system, is not taken into account to
avoid the complexity of the model.

• For the income-based leveling policies, the "low-income definition" of the municipality of Amsterdam
is adopted. Under this definition, a household with a collective income below AC30.000 is considered a
low-income household. This requirement is used in the further analysis for the eligibility of LI-subsidies.

7.3 Model implementation
This section describes the implementation of the model by elaborately discussing each sub-model.
The simulation model
The model has a time unit of 1 month and a time-step of 1. This allows to model the monthly fluctuations of
PV generation. The model starts simulation at the initial time t=0, which corresponds to the year 2019. The
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model simulates 360 months, corresponding to 30 years, resulting in a simulation period from 2019 to 2049.

The model is divided into several submodels. Each of these submodels will be explained in this section. A list
of additional formulas is included in Appendix C.0.1.

Population and PV adoption sub-model
The population and PV adoption sub-model contain the main stock and flow simulation. This Stock and Flow
model simulates the whole population of the municipality of Amsterdam. The simulation of the sub-populations
(neighborhood groups) is detailed later on in this section.

The sub-model, shown in figure 40, contains a stock for the population (number of citizens) in Amsterdam,
which increases with a net rate of 1% each year. The net increase has been calculated using the yearly popula-
tion statistics from the CBS (CBS, 2022a). To transpose the population to a total number of households (grid
users), the population is divided by the average people by household in Amsterdam of 1,8.

The potential rooftop solar adopters are the percentage of the total household population with a suitable rooftop.
This stock grows according to population growth. The percentage of households with a suitable rooftop is de-
termined by the author during the spatial analysis in ArcGIS in Section 6 , and is set at 60%.

Figure 40: PV adoption sub-model

The flow from the stock of potential rooftop solar adopters to rooftop solar adopters, the households installing
rooftop solar, is determined by the adoption fraction, the innovation effect, and the WOM effect. The adoption
rate is divided by 12 as the model uses one-month timesteps, while the adoption rates are yearly. The flow is
delayed by the time to install rooftop solar (initially set at six months), which is affected by a possible shortage
of technicians and materials.

Households installing rooftop solar = DELAY1( (((Potential rooftop solar adopters*(Adoption fraction*Adoption
sensitivity variable))+WOM effect+Innovation effect)/12, 6)

Based on the payback period of PV systems, a certain fraction of the potential rooftop solar adopters will
install a PV system each year. The adoption fraction is determined by a graphical function (figure 41), which is
calibrated against the available empirical data analyzed in Chapter 6. As the empirical data includes adoption
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fractions from the years 2016 - 2021 with average payback times from 7,5 to 6 years, some data points are
missing from the function. These have been informed by the shape of similar graphical functions revealed in
other studies on PV adoption rates (Maximillian, 2018) (Grace, 2018), and adapted to the empirical data in
this study. The final adoption fraction is determined by the fraction willing to adopt and the payback time
under different formulations of the netting scheme policy.

Figure 41: Graphical representation of the average willingness to adopt for households in Amsterdam

Additionally, the adoption rate is also affected by a ’word-of-mouth’ (WOM) effect and an innovation effect.
The WOM effect represents the fact that rooftop solar adopters will spread the word about their investment to
friends, family, and neighbors through a ’contact rate’, some of whom will then become adopters themselves.
Such an effect is often included in models looking to replicate the diffusion of technology (Morcillo et al., 2022),
(Castaneda, Jimenez, et al., 2017), (Castaneda, Franco, et al., 2017) (J. Palmer et al., 2013), and is part of
the Bass diffusion model. The innovation effect represents the effect that technological products increase in
popularity over time, due to mass-media attention and advertising, and thus result in more adoption (Mahajan
et al., 1993).

The contact rate of the WOM effect represents the number of contacts per year that each solar adopter would
have with a potential solar adopter. A certain fraction of these contacts will result in the potential adopter
becoming an actual adopter. The same goes for the innovation effect. Accepted values for the adoption from
WOM and the adoption from innovation are 0,02. The structure of the WOM effect and innovation effect have
been informed by Bass (1969) and J. D. Sterman (2002).

PV attractiveness sub-model
The PV attractiveness sub-model calculates payback times for PV installations under different Netting Scheme
formulations: the current netting scheme, the proposed netting scheme, and no netting scheme. The calculations
for the payback periods have been adapted from Verheij et al. (2020b), who previously published research on
payback periods for PV installations. payback periods are calculated assuming that the Netting Scheme variant
in place remains the same for the remainder of the simulation.
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Figure 42: PV attractiveness sub-model

An investment in solar panels is earned back by avoided expenses and generated income. The general payback
period is defined using the following formula:

initial investment in PV system∑
yearly avoided expenses and income for electricity generation

The calculation does not take maintenance costs into account. Interest rates on loans are embedded in the PV
installation costs.

The avoided expenses are costs for consuming electricity from the grid when own-generated electricity is not
consumed directly. The income results from the feeding-back of electricity to the grid when it is not directly
used by the consumer. This latter factor can be divided into a share that can be netted (as of 2031 this is not
possible anymore) and a share that cannot be netted. For this share, the consumer receives a feed-in tariff.

Under the current netting scheme, the electricity that is fed back to the grid can be fully offset against the
number of kWh the small consumer uses at another time up to and including the amount of the total annual
offtake. Therefore, under the current netting scheme, the income from feeding electricity to the grid is equal to
the avoided costs from direct self-consumption.

The payback period for PV installations bought under the current netting scheme is calculated using the saved
costs (own consumption), the income of net metering, and the PV installation costs. The payback period
when no netting scheme is in place, depends on the PV installation costs and the saved costs from direct self-
consumption. The payback period of the proposed netting scheme depends on the PV installation costs, the
saved costs through direct self-consumption, and the income from net metering. The latter factor includes a
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complicated calculation for this case, as each year a different percentage of generated electricity can be netted.
payback periods thus strongly depend on the year in which the system is bought. To simplify the model calcu-
lations, the estimated income per year under the proposed netting scheme is derived from an investigation by
TNO TNO2020. The income from net metering depends on the variable transmission costs, or on the price cap
when this policy measure is in place.

It is assumed that households purchase PV installations using a low-interest loan provided by the Dutch na-
tional government. The PV installation costs consist of several factors: a flat system price, the paid interest,
and a tax rate. PV system costs decline on average by 3,5% per year (Verheij et al., 2020b). The interest rate
is currently on average 3,5% (Warmtefonds, n.d.). The tax rate on PV installations is currently 0%, instead of
21%. The calculation of the PV installation costs is then as follows:

PV installation cost lookup(Time)*Tax rate*Inflation)*((1+Interest rate)10)

Electricity costs sub-model
This sub-model simulates the electricity costs for consumers. The submodel is shown in figure 43.

Figure 43: Electricity price submodel

The electricity costs for consumers (the components of an electricity bill) consist of:

• Fixed distribution costs. The costs paid to the energy supplier for delivering energy.

• Fixed transport costs. These are the costs paid for being attached to and receiving energy through the
electricity grid. The costs are paid by consumers to the energy supplier, which in turn transfers the
payments to the grid operator. The costs are monitored and fixed each year by the Authority Consumer
and Market (ACM).

– Capacity tariff

– Meter rate

– Grid connection fee

• An energy tax reduction. This is a fixed amount that consumers receive back from their paid energy taxes.
The Dutch government sees part of the energy consumption as a basic necessity, thus no taxes have to be
paid for that amount (Rijksoverheid, 2023).

• Variable costs:

– Costs for consumption (electricity tariff in AC/kWh * consumption in kWh): the retail electricity price

– Energy tax

– Renewable Energy Raise (ODE) ("Opslag Duurzame Energie") until 2022. From 2023 onwards, the
ODE is combined with the Energy tax (Rijksoverheid, 2023).

– VAT
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The electricity bill components are shown in orange boxes in the systems diagram.
The retail electricity price consists of a market spot price, the price for which the utility company purchased
the energy, and a risk and profit margin (ACM, 2017), (de Boer & Stet, 2022). The variable transmission costs
paid by consumers consist of the retail electricity price and (energy) taxes. The composition of the variable
costs paid by consumers in the Netherlands is shown in figure 45.

Figure 44: Composition of the variable electricity tariff paid by households in the Netherlands. Source: author.

In Section 7.2.3, it is explained that the development of the average market spot price is uncertain, partially
due to possible geopolitical developments. Thus, three scenarios are used to model the average market spot
price: a low, medium, and high scenario. For the ODE and the energy tax, the projections by the Planbureau
voor de Leefomgeving (2019) are adopted. The energy supplier margin has an initial value of AC0,02/kWh. The
energy supplier margin is expected to slightly increase in the future, mainly due to the energy transition (ACM,
2020). The margin increases according to the factor Margin increase, which is determined in the capacity &
utility impact sub-model.
The fixed transmission costs are set at AC70/year, which is the current average, and increase according to the
inflation rate. The fixed distribution costs have an initial value of AC257, and are expected to increase to over
AC600 over the coming 30 years. The distribution costs, which are exogenous in this model, are expected to
increase significantly in the future due to increased investment and maintenance costs of grid operators. The
cost increase is adopted from projections by research institutes that forecast the growth of distribution costs
(Planbureau voor de Leefomgeving & van Polen, 2021), (PWC, 2021).
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Figure 45: The projected growth of the fixed distribution costs. Source: Author, based on (Planbureau voor
de Leefomgeving & van Polen, 2021; PWC, 2021).

The variable transmission costs are then a sum of the tax tariffs (energy tax and until 2023 the ODE), the
average market spot price for the chosen scenario, and the energy supplier margin, multiplied by the VAT
percentage of 21% and the inflation factor:

Variable transmission costs = (((Average market spot price *scenario*(Time)+Energy supplier margin)*Inflation)+Tax
tariffs)*(1+VAT)

Energy bill sub-model
The energy bill for PV adopters and non-adopters is calculated in this sub-model. The sub-model is presented
in figure 46.

Figure 46: Energy bill sub-model

The energy bill for non-adopters consists of the fixed transmission costs in that year, the fixed distribution
costs in that year, the variable transmission costs in that year multiplied by the consumption from the grid,
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and a tax reduction. The tax reduction for the years 2019-2023 is known, however, the future values are not.
Therefore, it is assumed that the tax reduction amount for the remaining simulation period is equal to the
value in 2023, which is AC493,27. Besides, in the year 2023, there is a price cap in place on variable electricity
costs. Up until a certain consumption limit and when regular variable transmission costs exceed the price cap
value, the electricity price is limited to the AC0,40/kWh. For this simulation, it is assumed that average con-
sumption remains below the price cap consumption limit. The energy bill for non-adopters is then calculated by:

Electricity bill non-adopter = IF THEN ELSE( Time>=48 :AND: Time<=60 :AND: Variable transmission
costs>0.4, (Average yearly consumption*Price cap)-Tax reduction(Time)+Fixed yearly energy costs, (Average
yearly consumption*Variable transmission costs)-Tax reduction(Time)+Fixed yearly energy costs )

The energy bill for PV adopters is slightly more complicated. The bill depends on the type of netting scheme
in place, the feed-in tariffs, the direct self-consumption, and the height of consumption vs generation. For
simplicity, it is a justifiable assumption to assume that on average, yearly electricity generation exceeds yearly
electricity consumption.

Under the current netting-scheme, the energy bill of a PV adopter consists of the fixed yearly energy costs, the
difference between yearly generation and yearly consumption multiplied by the feed-in tariff, and a tax reduction:

PV adopter electricity bill under current netting scheme = Fixed yearly energy costs-((Yearly residential micro
PV generation per household-(Average yearly consumption))*"Feed-in tariff")-Tax reduction(Time))

Under no netting scheme, a household receives a fixed amount per kWh for the electricity injected into the grid
(the feed-in tariff) and pays for the electricity they do not generate at the same time as consumption and thus
consume from the grid. The calculation for the bill then is:
Electricity bill PV-adopter, no netting scheme = (Average yearly consumption-(Yearly residential micro PV
generation per household*"Self-consumption rate")) * Variable transmission costs + Yearly residential micro
PV generation per household*(1-"Self-consumption rate" )*"Feed-in tariff"))
Under the proposed netting scheme, the electricity bill highly depends on the allowed feed-in percentage in
that year. A netto feed-in and netto consumption are calculated to be able to incorporate the yearly degrading
feed-in percentage.

Netto feed-in =((Yearly residential PV generation per household-"Yearly direct self-consumption")*(1-"Feed-in
percentage"))

Netto consumption = Average yearly consumption-((Yearly residential PV generation per household-"Yearly di-
rect self-consumption")*"Feed-in percentage" )

The electricity bill under the proposed netting scheme is then calculated as follows:
Electricity bill PV-adopter, proposed netting scheme = ((Netto consumption*Variable transmission costs)+Fixed
yearly energy costs)-("Netto feed-in"*"Feed-in tariff after 2030")-Tax reduction(Time)

For the calculation of the energy bill of PV adopters, the electricity price cap is also taken into account, meaning
that a conditional statement is included first: Time>=48 :AND: Time<=60 :AND: Variable transmission
costs>0.4. This means that in the year 2023, the consumers pay the price-cap price when the market electricity
price exceeds AC0.40/kWh.
To monitor the height of the energy bill compared to the average income of low-income households, the yearly
energy bill of non-adopters is transposed to a monthly average. Then, the ratio is calculated using the average
income for low-income households adjusted for inflation.

Demand and generation sub-model
The demand and generation sub-model simulates monthly and yearly electricity generation by adopters, the
rate of self-consumption versus grid-fed electricity, and the average consumption of households in Amsterdam.
The sub-model contains several other measures simulating grid demand and grid-fed electricity. Not all are used
for further analysis in this study but can be used when extending the model to further analyze grid-impact.
The relevant variables are explained below.
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Figure 47: Demand and generation sub-model

The yearly residential PV generation per household is calculated using the PV system size in a number of panels,
the performance ratio, and the capacity of the panels. The average capacity for PV systems currently on the
market is 3.5 kW peak or 350 watt peak (Verheij et al., 2020b), the average system size is 10 panels (Verheij
et al., 2020b), and the performance ratio for the Netherlands is 85% (A. Walker & Desai, 2021). The average
yearly residential electricity generation is then calculated using:
Average yearly residential electricity generation = Size PV system*Performance ratio*(Average PV capac-
ity*100)

The average yearly electricity generation in reality is not spread equally over the year. In summer months, more
electricity is generated due to higher solar radiation levels. The average yearly electricity generation is converted
to a monthly generation pattern using the percentage spread of total generation over the year. For example, in
August, 20% of the total yearly amount is generated. The percentage spread over the year is calculated for the
Netherlands and adopted from Milieucentraal (n.d.). The formula for the generation per month is:
Monthly generation per household = (Percentage generation per month(Month of year)/100)*Yearly residential
PV generation per household

What percentage of generated electricity households consume themselves or feed back to the grid, is determined
by the self-consumption rate. Any PV generation that is used to supply the customer directly with electricity
for instantaneous consumption is said to be “self-consumed.” Self-consumption allows DPV system owners to
reduce or eliminate the variable utility charge portion of their electricity bills, as consumption from the grid is
replaced by consumption from their DPV system (Zinaman & Darghouth, 2020).

The netting scheme policy impacts the self-consumption rate. The self-consumption rate in the Netherlands is
estimated at 30% (Verheij et al., 2020b) under the current netting scheme. The policy removes the incentive to
use one’s generated electricity instantaneously given the financial benefits of feeding electricity back to the grid
(AL1, ST3). As long as 100% of the generated electricity can be netted, direct self-consumption and feeding back
will deliver the same savings on energy consumption. This will likely change when the netting scheme changes.
The impact on the self-consumption rate under the proposed netting scheme, or under no netting scheme, is
however unknown. The percentage of self-consumption can only increase a certain amount, as most households
consume most of their electricity in the evenings when there is no sun. The change in self-consumption behavior
is expected to be limited (AL3), therefore the assumed self-consumption under the proposed netting scheme or
no netting scheme is a maximum of 40%, in line with the variable boundaries set by Verheij et al. (2020b).

To calculate the average yearly electricity surplus, the amount of kWh generated by PV adopters that exceeds
the consumption of households, the following variable is simulated:
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Average monthly electricity surplus = Monthly generation per household-Average monthly residential consump-
tion per household
This variable is relevant to calculate the amount of generated electricity that households receive a feed-in tariff
for, under the current netting scheme.

The average monthly yearly consumption by households currently is 233 kWh/month, and is expected to slightly
decrease over the coming years (Planbureau voor de Leefomgeving & van Polen, 2021). The development of
consumption is shown in figure 48.

Figure 48: Average monthly consumption per household. Source: author, based on (Planbureau voor de
Leefomgeving & van Polen, 2021)

Installed capacity & utility impact sub-model
The total installed residential capacity is modeled using a stock and flow diagram. The yearly capacity growth
is calculated by multiplying the yearly increase in PV adopters with the average capacity of a PV system of 3.5
kW. To compute the residential installed capacity in MW, the residential capacity in kW is divided by 1000.

As discussed in Section 7.2.6, PV generation by households affects utility revenues through the concept of the
utility-death spiral. To approach that effect in this simulation, the two main cost drivers of revenue loss are
simulated: the direct loss of sales and the increased costs for imbalance. Many previous studies have simulated
the utility death spiral, mostly focusing on the lost revenue due to decreased sales (Castaneda, Jimenez, et al.,
2017), (Castaneda, Franco, et al., 2017), (Grace, 2018). Few studies also included the saved generation costs
by utilities, given the decreased demand. This factor is left out of scope in this research. Imbalance costs are
included in this research as well, given the severity of the problem as understood from the performed interviews.

The electricity tariff is thus expected to increase as PV penetration increases (Costello & Hemphill, 2014),
(Felder & Athawale, 2014). Given the geographic extent of the SD model in this study, it is difficult to model
national pricing mechanics. Not only PV adoption in Amsterdam impacts utility revenues, but PV adoption
in the whole country. Therefore, a simplification is made that electricity retail prices increase according to the
extent of PV adoption costs increase and based on findings in the studies by (Castaneda, Franco, et al., 2017),
(Morcillo et al., 2022), and (Castaneda, Jimenez, et al., 2017).

Imbalance costs increase as the generation by distributed PV increases. The imbalance costs are estimated in
several studies and range from 0,6 euro cent to 2 euro cents per kWh. The estimation from the Dutch PBL is
followed, which uses a value of 1,3 euro cent per kWh (Koelemeijer & Bart, 2021).

The revenue loss by utilities depends on the netting scheme in place. Under the current netting scheme, it can
be assumed that the revenue loss is equal to the MWhs produced by solar adopters (Meehan, 2015). Utilities
also pay a fixed feed-in tariff for the surplus of electricity. The monthly revenue loss increase is then equal to:
Monthly revenue loss under the current netting scheme = (Average monthly residential consumption per house-
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hold*Rooftop solar adopters*Variable transmission costs ) + (Average yearly electricity surplus*Rooftop solar
adopters*"Feed-in tariff").

Under no netting scheme, the revenue loss is equal to the monthly self-consumption by PV adopters, which is
the amount these consumers no longer purchase from the utility:
Monthly revenue loss without netting scheme = Total monthly direct self-consumption*Rooftop solar adopters*Variable
transmission costs.

Under the proposed netting scheme, the revenue loss gradually decreases as the net-metering percentage de-
creases. The revenue loss depends on the net consumption per PV adopter (the percentage of consumption they
are not allowed to deduct from the energy bill), the net feed-in per PV adopter, the total number of adopters,
and the feed-in tariff after 2030:
Monthly revenue loss under the proposed netting scheme = (Average monthly residential consumption per
household-Net consumption)*Variable transmission costs+("Net feed-in"*Rooftop solar adopters*"Feed-in tariff
after 2030")

It is assumed that utilities adjust their margin for expected losses. Therefore, in the simulation model, the mar-
gin increase is determined by the average and expected growth of the imbalance cost increase and the revenue
loss through a SMOOTH function:
Margin increase = (SMOOTH(Growth imbalance costs, 120)+SMOOTH( Growth revenue loss, 120))

Figure 49: Installed capacity and utility impact sub-model

Sub-population adoption simulations
To explore the perceived adoption gap as described in the results of 6 and the plausible future developments of
this gap, the PV adoption is simulated for sub-populations of neighborhoods of the municipality of Amsterdam.
The sub-populations simulated in this study are taken from the adoption disparity analysis in Section 6.5.5.
In this section, neighborhoods have been clustered based on the attributes "percentage rental properties", the
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"percentage multi-family properties" and the "percentage households with a low income", given that these three
factors are important correlating factors with PV adoption. In this sub-model, the PV adoption disparity and
future development between these groups are explored.

The neighborhood clustering resulted in three neighborhood groups, of which the two most deviating groups
are modeled:

• The group with a high percentage of rental properties, a high percentage of low-income households, and
a high percentage of multi-household residencies: Group 1

• The group with a low percentage of rental properties, a low percentage of low-income households, and a
low percentage of multi-household residencies: Group 2

For each of these groups, the PV adoption process is modeled separately. Although not only the percentage
of rental properties, multi-household properties, and household income determine PV adoption, the groups
based on these attributes are used to demonstrate how PV adoption might evolve within two different groups
of neighborhoods that have had diverging adoption rates in the past.

The sub-models for the two groups are shown in figure 50 and 51. Similar to the overall PV adoption sub-model,
the historic adoption rates for the sub-groups are extracted to construct a graphical function that represents
the adoption rate at a given payback period. The stocks for "potential rooftop solar adopters" and "rooftop
solar adopters" now represent the two groups respectively including the corresponding number of households
and the initial number of PV adopters.

The sub-models include the PV adoption stock and flow and the residential PV capacity stock and flow. For
each of the groups, the adoption fraction is computed based on the payback period, which increases the rooftop
solar adopters in that group with the "customers installing rooftop solar" flow. For the rooftop solar adopters,
a maximum of adopters is built in based on the percentage of suitable rooftop that is available (60% for both
groups). The sub-populations grow according to the overall population growth and are proportional to the
percentage of households in that group from the total number of households. Group 1 initially contains 234.055
households, which is 23% of the total initial households. Of the yearly household growth, 23% is thus assigned
to this group. Group 2 initially contains 45.680 households, which is approximately 10% of the total initial
households.

For both groups, the adoption fraction can increase with the "policy impact sustainability plan", representing
the impact that the "mandate sustainability plan" policy would have on the adoption rate. When this policy
is in place, the adoption curve moves right, meaning that at a given payback time, a higher fraction of the
population will adopt solar panels. The effects of these policies are estimated, based on the percentage of rental
properties and multi-household properties in a group (and thus the extent to which rental properties and shared
roof ownership currently form a barrier to adoption). For Group 2 this effect is estimated at a 30% increased
adoption rate, given a shared-property percentage of 80%. For Group 1, this effect is estimated at a 15%
increased adoption rate, given a shared-property percentage of 40%.

To simulate the leveling policies "LI-subsidy" and "LI-netting scheme", the PV adoption sub-model for Group
1 is extended. The PV installation costs for this group are calculated separately, as it should be able to incor-
porate the effect of a low-income subsidy on the payback period, and thus on the adoption fraction. Besides,
low-income groups can acquire a loan with a zero interest rate. The LI-subsidy variable has an initial value of
AC0, meaning no subsidy is in place, and has a value of AC1000 when the LI-subsidy is activated. It can however
be adjusted easily. The PV-installation costs for Group 1 are then calculated using the following formula:

PV installation cost Group 1 = ((PV installation cost lookup(Time)+(PV installation cost lookup(Time)*Interest
rate Low Income*10))*Subsidies)-"LI-subsidy"

The payback periods are then calculated the same way as in the main PV adoption sub-model.

When the proposed netting scheme is in place and the LI-netting scheme policy is activated, households with
a low income can extend the duration of the current netting scheme instead of shifting towards the proposed
netting scheme. Therefore, when the LI-netting scheme is in place, the adoption fraction of this group is calcu-
lated using the payback period of the current netting scheme, instead of the proposed netting scheme payback
period. To simulate this, a second variable for adoption fraction is built in "adoption fraction Group 1-2", which
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takes the adoption fraction under the LI-netting scheme as input when this policy is in place, and the regular
adoption fraction from "adoption fraction Group 1" when this policy is not in place.

In the simulation, it is assumed that the leveling policies for lower-income households only affect Group 1, and
that 50% of the households in this category can make use of the LI-subsidy and loan. This assumption is based
on requirements for the low-income loan eligibility, and the average standardized household income of AC30.000
in this neighborhood group. Although in reality, it could be the case that there are some households with a low
income in Group 2, this simulation represents averages of population groups.

Figure 50: Sub-model for the neighborhoods in Group 1

Figure 51: Sub-model for the neighborhoods in Group 2
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7.4 Model evaluation
Before starting to interpret the behavior of a model and/or performing policy analyses with the model, one
first needs to turn to model testing. Model testing is a process to uncover errors, improve models, learn, and
build confidence in the usefulness of models for particular purposes and in the recommendations that follow
from modeling studies (Pruyt, 2013). Model testing is not about whether the model is ’right’, but rather if the
model serves its purpose (J. Sterman, 2000). As stated by Forrester and Senge (1980), the ultimate objective of
validation is to obtain confidence in a model’s soundness and usefulness as a policy tool. Valid models/modeling
are therefore models/modeling that are believed to be useful for their intended purpose.

An important reason for SD model testing is to test whether SD models generate the right outputs for the
right reasons, for SD models are supposed to be operational causal models. That is, all model variables need
to correspond to system elements and each relation is assumed to be causal. However, the most important
purposes are to learn and to build confidence in the model and its usefulness for the intended purpose (Pruyt,
2013). With the model purpose in mind, several validation procedures have been conducted to gain insight into
the model’s behavior, usefulness, and limitations.

Validation methods in System Dynamics can roughly be divided into two main categories: structural validation
and behavioral validation. Structural validation tests if the model structure and parameters correctly present
real-world structures and values. Behavioral validation tests whether the model outcomes are plausible. This
study adopts a series of validation methods as described in literature by Forrester and Senge (1980) and J.
Sterman (2000).

7.4.1 Direct structure tests for structural validity

Direct structure tests are used to check whether the relations and assumptions in the model are based on ac-
cepted theories and that all important variables are included in the model. It is also important to check whether
the equations and model hold under extreme conditions (Pruyt, 2013).

1. Boundary adequacy test
The boundary adequacy test assesses whether the model boundaries and submodels are accurately chosen and
aligned with the intended purpose of the model. It involves a comparison of the actual structure of the real
world with the structure of the model to determine if important concepts are represented accurately within the
model. To conduct this evaluation, a qualitative comparison is made between the CLD diagram (as shown in
Figure 39) and the input parameters of the model with the components of the actual hydrogen supply chain.
Although the list of variables and subsystems that are excluded from the model may be endless, the importance
lies at the relevance of the included and excluded concepts with respect to the intended purpose of the model.

All of the chosen key performance indicators are products of the endogenously modeled variables. A variable
that is modeled as exogenous, but could also have been included endogenously is the PV prices. Several studies
model the PV prices as endogenous using a "learning curve", meaning that technology prices decrease over time
due to a higher demand combined with increased competition and technological advancements. It is deliber-
ately chosen to model this variable as exogenous as the geographic scope of the study is too narrow to properly
model the price-decline effect on PV systems, and numerous projections of PV price declines were available in
literature to use instead.

Likewise, grid distribution costs are modeled exogenous and based upon projected future developments adopted
from literature. This variable could be modeled endogenously when the geographic scope of the model is ex-
tended to the national level. However, modeling the impact of PV on distribution grid costs and investments is
highly complicated and probably out of scope given the intended model purpose.

2. Structure verification
Structural validation examines the aggregation level of the model compared to reality. Several high-level aggre-
gations of the model are compared to real-world results or other projections in literature.

To start with, the population and household growth for 2019-2023 is compared with actual data. On January
1st, 2022, Amsterdam counted 881.933 citizens. The modeled value at this date is 882.156. In 2049, the mod-
eled population is 1.069.670, compared to the expected population in 2050 by the municipality of 1.070.000
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(Gemeente Amsterdam, 2022a). These projections versus real-world values are aligned.

Adoption percentages are compared to other literature studies. Although limited are available, few are found
that are suitable for comparison. The Dutch PBL estimates an adoption percentage of 30% in 2030. This is
in the same order of magnitude as the projected percentages in this study, under the current netting scheme.
Under the proposed netting scheme, the simulation model projects lower adoption percentages, however, the
PBL study appears to be based on the current netting scheme as well. Van Westering et al. (2016) simulated
three scenarios for residential PV adoption until 2050 and resulted in a minimum adoption percentage of 10%,
a base case percentage of 30%, and an upper bound of 50%. These estimations are also in line with the modeled
results in this study in base case circumstances.

Lastly, the development of electricity bill prices is compared to projections of the PBL. They projected an
increase in energy bills ranging from 1.300 to 1.900 in 2030. The simulation model on average computes an
electricity bill of 1000 for the year 2030. This is lower than the PBL projection but in the same order of
magnitude. The PBL projection however also includes gas costs and is executed before the significant increase
in electricity prices in 2022.

3. Dimensional consistency
Vensim offers a built-in unit check tool that allows to automatically test the dimensional consistency. No unit
errors are presented, meaning that for each equation the units match on both sides of the equation.

4. Parameter verification
Parametric validity evaluates the value and the meaning of each model parameter. For example, whether the
parameter has a clear, real life counterpart (J. Sterman, 2000). Through translating real world concepts into
simplified mathematical variables and equations, the use of fabricated parameters or variables is inevitable.

The "fraction willing to adopt" variable attempts to capture the adoption behavior of households based on their
willingness-to-pay and payback times. The variable reflects a simplification of an intangible real world concept.
Although empirical data is used, it is impossible to accurately predict adoption behavior by households. How-
ever, given the embedded validation of diffusion models in literature, the method is an accepted approach.

Likewise, the policy impact of the sustainability plan mandate is a nonphysical factor that is embedded in the
model to account for the effect this policy has on adoption rates. The shortage in technicians and materials
variable is also represents an intangible, real world concept which represents the effect that a shortage in tech-
nicians and materials in real-life has on adoption rates and speed.The significance and implications of the value
for these parameters is further discussed in Section 9.2.

7.4.2 Structural behavior tests for behavioral validity

Structure-oriented behavior tests are used to test whether the modes of behavior, frequencies and mechanisms
causing the behavior and other characteristics correspond to what one would expect (Pruyt, 2013). Unexpected
results and responses to extreme conditions are then explored in detail. Sensitivity analysis is a very impor-
tant structure-oriented behavior test for identifying parts of the model to which model behavior is particularly
in/sensitive. For example, parameters, functions or structures that have a minor/major influence on the behav-
ior when slightly changed.

5. Extreme conditions test
The extreme condition test evaluates the behavior of the system under extreme circumstances for a number
of input parameters. The test reveals possible faults in model equations because the modeler can check the
credibility of the model outcomes under extreme conditions and compare them to real-world expected behavior
(Forrester & Senge, 1980). This way, the test reveals the model’s ability to behave outside normal or expected
patters. The extreme condition test is evaluated for several model variables: the adoption percentage, the
installed capacity, the energy bill and the pay-back period. The table with inputs for the extreme condition
tests is displayed in table 6. The visualisations of the outcomes are displayed in Appendix B.3. The tests are
performed for the proposed netting scheme. The results of all the named variables are assessed and included in
the appendix, but main results are summarized below.
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Tested parameters Base case value Low extreme High extreme

Electricity price Lookup function (AC/kWh) -400% +400%
PV installation costs AC4800 in 2019 AC500 in 2019 AC13.000 in 2019
Self-consumption rate 40% under the proposed netting scheme 0% 100%

Table 6: Setup for the extreme conditions test

The extreme conditions are tested for the electricity price, the PV-installation costs and the self-consumption
rate. The extreme settings for electricity prices are expected to lead to very high or very low adoption rate. Very
high electricity prices are expected to lead to high adoption rates, given the high attractiveness of PV-generated
electricity compared to grid electricity. Contrary, low grid electricity prices are expected to lead to very low
adoption rates, as PV-installation costs do not create enough financial benefits for many households to acquire
a PV-system. For the PV installation costs, again, the extreme settings are expected to lead to very high
or very low adoption rates, where high installation costs lead to low adoption rates and vice-versa. Similarly
to the electricity price, the PV installation costs impact the attractiveness of PV electricity compared to grid
electricity. Considering the self-consumption rate, an extremely low self-consumption rate is expected to lead
to a low adoption rate, and an extremely high self-consumption rate is expected to lead to an extremely high
adoption rate.
The outcomes are collected in figures in Appendix B.3. The following behavior is detected:

• An extremely high electricity price results in a very high adoption percentage (40%, equal to 98% of suitable
rooftops), and an extremely low electricity price results in low adoption rates (only a few percentage points
increase compared to the beginning of simulation). The high prices result in a payback time of on average
9 years, compared to 6 years in the base case. Extremely low electricity prices result in an average payback
time of 4 years.

• Extremely low PV installation costs result in a very high overall adoption percentage (43%) and a 100%
adoption of suitable rooftops, and very high installation costs result in very low adoption rates (no increase
compared to the beginning of simulation time). The payback time under high installation costs increases
to approximately 15 years, compared to 1 year under low installation costs.

• An extremely high self-consumption rate leads to an overall adoption percentage of 39% and adoption of
suitable rooftops of 98%, and an extremely low self-consumption rate results in a very low adoption (no
increase). The payback period of PV increases to approximately 30 years under a low self-consumption
rate and decreases to 3 years under a high self-consumption rate.

The model behavior from the extreme condition tests corresponds with the expected behavior of the real-world
system. Even under extreme conditions, the model remains stable and the outputs react accordingly. The
test also provides useful preliminary insights into the model behavior. For example, a high self-consumption
rate seems to have a proportionally higher impact on the payback time of PV installations than a lower self-
consumption rate. Besides, the results show where barriers to diffusion exist, as both the PV installation costs
and electricity prices significantly impact the adoption rates. Surprisingly, the self-consumption rate also signif-
icantly impacts the adoption percentage. This is due to the lower financial benefits of PV-generated electricity
compared to grid electricity.

6. Sensitivity Analysis
Sensitivity Analysis is the computation of the effect of changes in input values or assumptions (including bound-
aries and model functional form) on the outputs’ ((morgan-1990), p39). Defined like this, Sensitivity Analysis
(SA) refers to the analysis of the effect of relatively small changes to values of parameters and functions on the
behavior (behavioral sensitivity) or preference for a particular policy (policy sensitivity), starting from a base
case (Pruyt, 2013).

The aim of the sensitivity analysis is to detect which parameters are most strongly moving the model. From
there, it provides insight into which model parameters are most important and demands thorough attention of
the modeler (J. Sterman, 2000).

In SD, it is not common to include policies in the sensitivity analysis, because the response of the system to
policies is investigated in the policy testing phase of modeling (J. Sterman, 2000). The sensitivity analysis
is deducted for the parameters shown in table 7. These variables are chosen as they represent some form of
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uncertainty about their development in the future. For the distribution costs, PV installation costs, and elec-
tricity market prices, projections from multiple studies are used. The percentage of suitable rooftops is derived
from this study, however as computations of suitability might differ, this variable includes uncertainty. For the
imbalance costs, estimations vary in literature and a best estimate is used in the simulation. All variables are
tested for a base case input with a range of plus and minus 20%. The range is kept constant for each parameter
to allow comparing the influence of individual variables. The sensitivity analysis is performed under both the
current and proposed netting scheme policies, to be able to analyze sensitivities in both situations.

Tested model variables Base value Lower Upper
Imbalance costs per kWh AC0.0013 per kWh AC0.0008 AC0.0018
Distribution costs Increasing from AC257/year to AC640/year -20% +20%
Inflation 0% -20% +20%
Market spot price Stabilizing towards AC0.18/kWh -20% +20%
PV cost AC5400 declining to AC2700 -20% +20%
Adoption intensity (see figure 38) -20% +20%
Percentage of suitable rooftops 60& -20% +20%

Table 7: Sensitivity analysis input variables, base values and upper and lower tested limits

First, a univariate sensitivity analysis is executed. All output graphs are displayed in Appendix B.4. The results
show that the model is most sensitive toward the electricity market spot price, inflation, and PV installation
costs. These sensitivities seem to be in accordance with the real-world system. The model is least sensitive
toward the imbalance of costs and utility margin. This implies that varying the parameters does not have
a significant influence on the model. This can be explained by the fact that the cost increase per kWh for
imbalance is minimal in the model, and mainly come to play at the national level.

Second, a multivariate sensitivity analysis is performed, with the input of all parameters for a range of +/-
20%. The multivariate sensitivity analysis evaluates the sensitivity of the adoption percentage, the number of
PV adopters, and the installed PV capacity to a combined set of input parameters over the sensitivity space.
Given that the output variables are similar and depend on each other in the simulation model, results will
not deviate significantly between these output variables. The multivariate analysis is performed for both the
current and the proposed netting scheme. All results of the multivariate analysis can be found in Appendix B.4.3.

Figure 52 shows the multivariate sensitivity of the adoption percentage for the current netting scheme. Figure
53 shows this for the proposed netting scheme. Despite the complexity of the system, its behavior is some
variation of linear growth, which can be accelerated or slowed down depending on adoption rates, external
factors, or applied interventions.

The results show no unexpected behavior. For the proposed netting scheme, the lower boundaries of adoption
show that under certain circumstances, the adoption rate is significantly low that there is barely any increase
in adoption. The results also show that it is useful to thoroughly investigate the parameters during the experi-
ments as these seem to influence adoption rates significantly under both policy schemes. The results also show
the model is sensitive to the netting scheme policy in place, as results widely differ for the adoption rates under
both scheme’s.
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Figure 52: Multivariate sensitivity analysis of the adoption percentage under the current netting scheme

Figure 53: Multivariate sensitivity analysis of the adoption percentage under the proposed netting scheme

7.4.3 Validation conclusions and implications for model experimenting

The structural and behavioral tests provided the confidence that the SD model can be used for further experi-
mentation. The model boundaries were adequately chosen for the purpose, aggregation level, and scope of this
study. Parameters and their projections have been adopted from reliable sources and are always embedded
in multiple sources. The dimensions of all units are correct, and the model shows reasonable behavior under
the sensitivity tests. The model outcomes are comparable to other PV adoption projections, although limited
is available. The extreme condition tests revealed expected model behavior, even under extreme conditions.
The sensitivity test revealed the models’ sensitivity towards inflation and PV installation costs. This will be
adequately dealt with in further analysis, and scenarios will be conducted using the inflation and PV installation
costs.

7.5 Main conclusions Chapter 7
In this section, a system dynamics model is developed and described that allows to simulate PV adoption
behavior of the population as a whole and of sub-groups and allows for experimenting with policy levers and
external scenarios. This way, the model generates insights in the extent, speed and disparity of PV adoption
over time. The model measures the overall adoption percentage and that of two subgroups: group 1 with a
high percentage of rental properties, a high percentage of low-income households, and a high percentage of
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multi-household residencies, and an opposite group 2. The model allows for analyzing policy impact of several
general policies (including the netting scheme) and several leveling policies (including a low-income subsidy, a
low-income netting scheme and a sustainability plan mandate).

The model is thoroughly validated using direct structure tests, to test structural validity, and structural behavior
tests, to test behavioral validity. The validation tests provided the confidence that the SD model can be used
for further experimentation. The sensitivity test revealed the models’ sensitivity towards inflation and PV
installation costs, which will be adequately dealt with during experimentation and interpretation of results. In
Section 8, the model will be used for experimentation.
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8 Design artifact part II: Experimental Design and Results
In this chapter the system dynamics model developed in Section 7 is used for simulation. This is done by
performing experiments on the model. This way, this section aims to answer research questions 4,
How might solar panel adoption disparity develop in the future?
and 5,

What are effective interventions for increasing residential PV adoption and narrowing down the adoption gap?

The experimental design involves varying policies and external developments as well as critical assumptions
concerning household adoption rates. Given that the adoption rates are based on empirical data, but not all
data points were available, missing data points have been estimated based on existing studies (Dharshing, 2017;
Maximillian, 2018; J. Palmer et al., 2013). To deal with the uncertainty this poses, the adoption rates are
varied using a bandwidth of 20%. Each experiment represents a combination between a scenario and a policy.
According to Kwakkel (2018): “a scenario is understood as a point in the uncertainty space, while a policy is a
point in the decision space". The uncertainty space is a multi-dimensional space bounded by the value ranges
of the uncertain factors in the simulation. A scenario is any point within this space. The decision space is a
multi-dimensional space bounded by the value ranges of the policy options. Each experiment represents a dif-
ferent combination of two points in the uncertainty space and in the decision space. This way, each experiment
will yield a different simulation result.

The output variables are identified in Table 3. The simulation is run for 30 years - 360 - months using the
experiments outlined in Section 8.1. In Sections 8.2-8.4, the experiments are conducted and results are discussed.

8.1 Experimental setup
Table 8 presents the policy levers and external factors that will be adjusted for experiments during the simulation
study. Not all policies presented in Section 7.2.4 are included in the experimental setup. To limit the number of
experiments, the value for the feed-in tariff (under the current and proposed netting scheme) and the price cap
(only active in 2023) remain constant during all simulations. Besides, it is assumed that the renewable energy
loan with low interest and the tax rebate stay in place.

Type Variable Possible values
Policies Netting scheme No, current, new

LI subsidy AC0, AC500, AC1000
Sustainability-plan mandate Not active, active
LI netting scheme Not active, active

External factors Geopolitical developments Low, base case, high scenario
Inflation Low (-15%), base case, high (+15%)
Shortage of technicians and materials None, shortage

Table 8: Policies and external factors used for the experimental setup

The experiments are split into three groups. The first set of experiments tests the different netting scheme poli-
cies and different calibrations of the adoption rate. The second set of experiments tests the proposed netting
scheme under different external influences. The sensitivity analysis revealed that the model is most sensitive
toward electricity market spot prices, PV installation costs, and inflation. These variables have therefore been
included in the scenario testing. The geopolitical development scenarios represent the impact of the electricity
market spot price on the system. The inflation scenarios cover both the impact of PV installation costs and
inflation. The last set of scenarios tests the leveling policies to investigate how to close the adoption gap. For
the second and third sets of experiments, the proposed netting scheme is used as a policy measure, given the
fact that at the time of writing, it is highly likely the policy will indeed go into effect. Table 20 in Appendix
B.5 shows the full list of combinations of variable values that make up the experiments. In the sections below
the experiments are discussed per set.

The most important results are discussed below. Appendix C.0.2 provides extra visualizations of the experi-
mental results.
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8.2 Netting-scheme experiments
In the netting scheme experiments, the model is simulated under the three different variants of the netting
scheme policy and using different calibrations for the adoption ratio (see table 9). Scenarios 1, 1.2, and 1.3
reflect the current policy regulation in the Netherlands. The results are plotted for the adoption percentage,
installed residential PV capacity, and the adoption percentage of suitable rooftops.

Experiment Netting
scheme LI subsidy

Sustainability
plan (SP)
mandate

LI-netting
scheme

Geopolitical
developments (GD) Inflation

Shortage of
technicians
and materials
(t&m)

Adoption rate

1 Current - - - Base case Base case Base case Base case
1.2 Current - - - Base case Base case Base case Low adoption
1.3 Current - - - Base case Base case Base case High adoption
1.4 Current - - - Low Low Base case Base case
1.5 Current - - - High High Base case Base case
1.6 Current - - - Low Low Base case Low
1.7 Current - - - Low Low Base case High
1.8 Current - - - High High Base case Low
1.9 Current - - - High High Base case High
2 Proposed - - - Base case Base case Base case Base case
2.2 Proposed - - - Base case Base case Base case Low adoption
2.3 Proposed - - - Base case Base case Base case High adoption
3 None - - - Base case Base case Base case Base case
3.2 None - - - Base case Base case Base case Low adoption
3.3 None - - - Base case Base case Base case High adoption

Table 9: Experiments varying different netting-scheme options, external influences and adoption rates

The adoption percentage at the start of the simulation, in 2019, is 3,5%. Currently, in 2023, the adoption
percentage is approximately 5% (see Section 6). The graphs in figures 54, 104, and 103 show the adoption
percentage, installed capacity in MW and the adoption percentage of suitable rooftops respectively. Adoption
under the proposed netting scheme is significantly lower compared to the current netting scheme. This is caused
by the higher payback period of PV under the latter policy (see figure 55). Under the current netting scheme,
the payback period is expected to decline from approximately 7 years in 2019 to 2,5 years when purchased in
2049. Under the proposed netting scheme, the payback period is expected to increase from 2022 to 2030 to
a maximum of 8,7 years, followed by a steady decrease to about 5,2 years when purchased in 2049. Under
no netting scheme, the payback period swiftly increases to more than 16 years, and then gradually declines to
about 6 years at the end of the simulation. The steady decrease in payback time under all of the three policy
options is caused by a simultaneous decrease in PV installation costs and increased grid-electricity costs. While
net savings from PV gradually increase over the years, as electricity prices rise, the decrease in PV installation
costs plays the largest role in the decline of the PV payback time.

Figure 54: Overall adoption percentage for experiments 1-3
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Figure 55: Payback periods for PV installations under the current, proposed and no netting scheme

The same outputs under varied adoption rates are shown in figure 56 until figure 106 and show that under the
current netting scheme, the adoption percentage increases towards approximately 30-35% (see figure 56). Under
the proposed netting scheme, the adoption percentage increases towards 11-13%. Under no netting scheme, the
adoption percentage increases towards 8-10%.

Considering the adoption percentage of households with suitable rooftops, in figure 105, this adoption rate
increases towards 54-58% under the current netting-scheme, 18-22% percent under the proposed netting scheme
and 16-18% under no netting scheme. The initial installed capacity in 2019 is 52MW (CBS, 2020). For the
current netting scheme, installed capacity increases towards 620-700 MW in 30 years, compared to 210-230 MW
under the proposed netting scheme and 180-200 MW under no netting scheme (figure 104-2).

Figure 56: Adoption results for experiments 1-3 under different adoption rates

96



Looking at the two sub-population groups, the neighborhoods with a low percentage of rental properties and a
low percentage of low-income households (group 2), vs. the neighborhoods with a very high percentage of rental
properties and a very high percentage of low-income households (group 1), the adoption patterns significantly
diverge. Under the current netting scheme, adoption percentages rise to 44-46% for the group 2 neighborhoods,
and to 20-26% for the group 1 neighborhoods. Under the proposed netting scheme, where adoption for the group
2 neighborhoods rises to approximately 25%, and for group 1 neighborhoods to 4-8%. Under no netting scheme,
adoption achieves a maximum of around 20% for group 2 neighborhoods and 5% for group 1 neighborhoods.

Figure 57

Figure 58

To analyze the payback periods under the netting scheme policies in more detail, extra experiments are run for
the current and proposed netting scheme under different scenarios (scenarios 1.5 and 1.6 for the current netting
scheme). Using scenarios 1 until 1.6 and 2-2.3, 9, and 10, the payback periods for different scenarios can be
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compared. These are shown in figure ?? and ??.

Under the current netting scheme, payback times decline from 6.8 years in 2019 to 2-3 years in 2049, depending
on external influences. Payback time is highest when there are low geopolitical developments and low inflation,
as electricity prices are low, making PV less attractive compared to high energy prices. Although inflation is
high, geopolitical developments seem to influence the payback time more strongly. Similarly, payback time is
lowest when there are high geopolitical developments and high inflation, where PV is now a more attractive
alternative compared to grid electricity.

Under the proposed netting scheme, the payback period starts at 7.2 years in 2019 and decreases towards 4-5.5
years in 2049. The decline is strongest under the high GD, high inflation scenario (scenario 10), and weakest
under the low GD low inflation scenario, similar to the payback period of the current netting scheme.

Figure 59: Payback times of the current and proposed netting scheme under different scenarios

8.3 External influence scenarios
Table 10 presents the experiments covering the external influence scenarios. The experiments explore the devel-
opment of the KPIs under different scenarios for geopolitical development, inflation, or combinations of both.
The netting scheme is kept constant for all experiments with the proposed scheme. The results of the experi-
ments are shown in figures 60 - 62 and in Appendix C.
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Experiment Netting
scheme LI subsidy

Sustainability
plan (SP)
mandate

LI-netting
scheme

Geopolitical
developments
(GD)

Inflation

Shortage of
technicians
and materials
(t&m)

Adoption rate

4 Proposed - - - Low Base case Base case Base case
5 Proposed - - - High Base case Base case Base case
6 Proposed - - - Base case Low Base case Base case
7 Proposed - - - Base case High Base case Base case
8 Proposed - - - Base case Base case High Base case
9 Proposed - - - Low Low Base case Base case
10 Proposed - - - High High High Base case

Table 10: Experiments covering geopolitical developments and inflation scenarios

The adoption percentages under different geopolitical and inflation scenarios different quite nominative, where
the minimum adoption percentage is 9% at the end of the simulation period, versus the highest percentage
being 16,5% at the end of the simulation period. For scenarios with low geopolitical developments (meaning
low electricity prices, scenario 4), high inflation (scenario 7), and a high shortage of technicians and materials
(scenario 8), adoption percentages remain the lowest.

The low electricity prices in scenario 4 result in a less attractive investment in PV systems, given that prices
for consuming electricity from the grid are not very high. Savings from PV compared to non-PV are thus lower
and the payback period for PV systems is higher compared to a scenario with higher electricity prices.

A shortage in technicians and materials decreases the willingness to adopt and creates a longer delay in the
adoption rate. This decreases and postpones adoption. High inflation causes PV installation costs to increase.
This increase (and decrease at low inflation) is shown in figure ??. The increased costs for PV installations
result in a longer payback period, and thus a less attractive investment. Although electricity prices (fixed and
variable) also increase under high inflation, the impact of the increased payback period is more important in
determining the PV adoption rates.

High adoption scenarios can be perceived under the high geopolitical developments scenario (scenario 5), high
geopolitical developments and high inflation (scenario 10), and the low inflation scenario (6). The sharp increase
in adoption that can be perceived under high electricity prices and high inflation (scenarios 5 and 10), reflects
what can be perceived in the Netherlands nowadays. Many households feel the need for independence from
utilities and market energy prices (van de Weijer, 2022). Increased geopolitical unrest, combined with increased
electricity prices, enlarges the wish of many citizens to become more independent. Scenario 6 increases adoption
rates by significantly decreasing the cost for PV installations, and thus the payback period of PV installment.

It should be noted that the study’s scenarios are now evaluated separately. However, in reality, it could well
be that several external influences impact each other. In the past, for example, geopolitical developments sur-
rounding the war in Ukraine sparked not only energy prices but prices in many other sectors. The geopolitical
developments, mainly those surrounding Ukraine, have however been severely significant for the energy industry,
much more so than inflation, that it is chosen to model this variable separately.
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Figure 60: Results of experiments 4-10: overall adoption percentage

Figure 61: Results of experiments 4-10: overall adoption percentage Group 1
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Figure 62: Results of experiments 4-10: overall adoption percentage Group 2

8.4 Leveling policy implementation scenarios
Experiments 11 - 26 (see table 11) cover the different configurations possible with the leveling policies "LI-
netting scheme", "LI-subsidy" and "Sustainability plan mandate". The results are discussed per the policy
below.

Experiment Netting
scheme LI subsidy

Sustainability
plan (SP)
mandate

LI-netting
scheme

Geopolitical
developments
(GD)

Inflation

Shortage of
technicians
and materials
(t&m)

Adoption rate

11 Proposed AC500 - - Base case Base case Base case Base case
12 Proposed AC1000 - - Base case Base case Base case Base case
13 Proposed AC500 - - Low Low Base case Base case
14 Proposed AC500 - - High High High Base case
15 Proposed AC1000 - - Low Low Base case Base case
16 Proposed AC1000 - - High High High Base case
17 Proposed - Yes - Base case Base case Base case Base case
18 Proposed - Yes - Low Low Base case Base case
19 Proposed - Yes - High High High Base case
20 Proposed - - Yes Base case Base case Base case Base case
21 Proposed - - Yes Low Low Base case Base case
22 Proposed - - Yes High High Base case Base case
23 Proposed - Yes Yes Base case Base case Base case Base case
24 Proposed AC1000 Yes - Base case Base case Base case Base case
25 Proposed AC1000 Yes Base case Base case Base case Base case
26 Proposed AC1000 Yes Yes Base case Base case Base case Base case

Table 11: Experiments covering leveling policies

Low-income subsidy
The low-income subsidy is a fixed amount that low-income households can request back from the government
after a PV-installation purchase. Two amounts of 500 and 1000 euros are chosen for the simulation. The two
variants are simulated under different scenarios. The results are shown in figure 63.
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Figure 63: Adoption percentages for the neighborhoods in group 1 under different configurations of the LI-
subsidy

As expected, all experiments with a subsidy policy in place achieve better results than no subsidy in place (sce-
nario 2). Besides, also as expected, a subsidy of 1000 euros achieves better results than a subsidy of 500 euros.
The best results are achieved when there are high electricity prices and inflation. The adoption percentage
then increases from 4% to about 14%, which is still far below the average of the group 2 neighborhoods, which
reach an adoption of 35-40% in this scenario. The high electricity prices make PV more attractive than grid
electricity, and the inflation impacts the households in this category less as the price for a PV system is kept
low with the subsidy allowance.

Sustainability plan mandate for OAs and housing corporations
The sustainability plan (SP) mandate requires landlords, OAs, and housing corporations to come up with a
sustainability plan, of which installing solar panels is a possible inclusion. The SP mandate shifts the adoption
curve to the right, resulting in a higher adoption percentage for the same payback period, because adoption
barriers related to rented properties are now partially lifted. For the simulation, a 30% increase in the adoption
rate is tested. The results show that a maximum increase of 9% can be reached, under the high geopolitical
developments, high inflation, and high shortage of technicians and materials, followed close by the low geopolit-
ical developments and low inflation scenario. Both scenarios make PV more attractive, one by increasing grid
electricity prices and one by decreasing PV installation rates. Inflation seems to be the smaller influence in this
case, as the effect of inflation is smaller than the effect of high electricity prices due to geopolitical developments.
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Figure 64: Adoption percentages for the neighborhoods in group 1 under different configurations of the Sus-
tainability Plan mandate

Low-income netting scheme allowance
The low-income netting scheme allows LI-households to profit from the current netting scheme benefits for as
long as the PV installment has not yet paid itself back. The LI-netting scheme works similarly to the base case
scenario, where the current netting scheme is also in place. Under this policy measure, an adoption percentage of
17% is achieved at the end of the simulation (see figure 121), which is the highest achieved adoption percentage
of all leveling policies.

Figure 65: Adoption percentages for the neighborhoods in group 1 under different configurations of the LI-
netting scheme

Combination of leveling policy measures
Each stand-alone policy achieves improvement in PV adoption, however, a combination of policies might be
more effective. These combinations make up experiments 23-26. The results of these experiments are shown in
figure 66 and in Appendix C.
As expected, a combination of all three policy measures works best for increasing PV adoption rates of group 1
neighborhoods. A combination of three policies however could be unrealistic given the unfairness towards other
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socioeconomic groups. The two best scoring combinations are a combination of a AC1000 subsidy and an SP
mandate, achieving an adoption percentage of approximately 27%, closely followed by a combination of the LI
scheme and an SP mandate, achieving an adoption percentage of approximately 26%. Notably, experiments 23,
25, and 26 achieve better adoption rates than the current netting scheme in place.

The achieved results are compared with the adoption percentage and the installed capacity per citizen of group
2 under the base case scenario. The comparison of results is shown in figures 66 and 122. Under the proposed
netting scheme, group 2 achieves an adoption of about 30%. With a combination of leveling policies, this
adoption rate can be closely approached. Deploying all three leveling policies achieves an adoption rate of 36%,
which encompasses the adoption rates in group 2.

Figure 66: Adoption percentages for the neighborhoods in group 1 under different combinations of leveling
policy measures, compared with the adoption percentage of group 2 in the base case

8.5 Consumer electricity costs development
For both solar adopters and non-adopters, the electricity costs per month are computed to allow a comparison
of the monthly energy cost burdens. Besides, the energy burden of electricity costs of an average low-income
household is computed. This allows to relate the energy costs to the concept of energy poverty.

Figure 67 shows a comparison of the monthly electricity costs for adopters versus non-adopters under the
proposed netting scheme. The graph shows that for adopters, the costs are significantly higher compared to
non-adopters, and at some point are even negative, meaning they receive money back from the energy supplier.
Due to the increasing costs of grid operators, for both groups, the electricity costs will steadily decrease over time.
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Figure 67: Energy bill for PV adopters and non-adopters under different netting scheme options

Figure 68 shows the monthly electricity bill for non-adopters as a percentage of the average low-income house-
hold in the Netherlands. The average low income is adapted from the CPB Netherlands Bureau for Economic
Policy Analysis (CPB, 2022a). It should be noted that for the definition of energy poverty, an energy quota (the
percentage of income spent on energy) of 10% is used, but this percentage is based on a total of the electricity
and gas costs. This study only includes electricity costs. Nonetheless, the figure shows that during 2022, when
electricity prices are extremely high, the energy quota rises to 12%, which indicates energy poverty for the aver-
age low-income household. The figure also shows that under the high inflation, high geopolitical developments,
and a high shortage of technicians, the share of energy costs of the total average low-income increases to above
10%. This percentage would only be higher if gas costs were to be included. The results clearly point towards
an increasing chance of energy poverty for low-income households under the steadily increasing electricity prices
and show that monthly electricity costs for adopters are significantly higher than for PV adopters.
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Figure 68: Energy bill as a percentage of the average low-income for non-adopters under different netting scheme
options

8.6 Main conclusions Chapter 8
This section aimed to answer research questions 4 and 5. To start with research question 4: how might solar
panel adoption disparity develop in the future?. Adoption appears to be highly affected by the netting scheme
policy in place. For the current netting scheme policy, adoption percentages of 37-49% can be achieved in 30
years time, depending on adoption rates and external developments. For the proposed netting scheme, the sim-
ulated adoption percentages achieved 9,5-17,5%, depending on adoption rates and external developments. This
difference is caused by the large difference between payback times for both netting schemes. For the current
netting scheme, the payback time decreases to 2-3 years, while for the proposed netting scheme, the payback
time decreases to 4-5.5 years.

The difference between the adoption of group 1 and group 2 neighborhoods is large under both the current
and the proposed netting scheme. Under the current netting scheme, group 1 neighborhoods still achieve an
adoption percentage of 18-31%, which is significantly lower than the group 2 neighborhoods which achieve 42-
52% adoption. Under the proposed netting scheme, the adoption rates are 5-9% for group 1 neighborhoods
compared to 24-28% for group 2 neighborhoods at the end of the simulation period. It is notable that for
both socioeconomic groups and the overall adoption rate, the adoption under the proposed netting scheme is
significantly lower than under the current netting scheme.

Most remarkable is the extremely low adoption rate for group 1 neighborhoods under the proposed netting
scheme. Under this policy lever, the payback period does not decrease significantly enough over the years to
stimulate a high adoption rate for group 1 neighborhoods. However in the group 2 neighborhoods, the adoption
percentage under the proposed netting scheme is still high enough to reach an adoption rate of almost four
times higher.

To answer research question 5 - What are effective interventions for increasing residential PV adoption and nar-
rowing down the adoption gap? - experiments are conducted with leveling policies. The "LI-netting scheme"
and the "LI-subsidy" policies had the most promising results. Compared to the proposed scheme base case, the
"LI-netting scheme" can increase adoption percentages from 5,5% to approximately 17%. Under high geopolit-
ical developments and inflation, the LI-subsidy achieves an adoption percentage of 11,5%.

It is likely that a tailored made combination of policies is most effective. Combining the three policy levers
could achieve an adoption percentage of 35%, which thereby approaches the adoption percentage of the group
2 neighborhoods of also 35% under the proposed scheme. A policy combination including all three policies
is however questioned given the large economic advantages awarded to group 1 neighborhoods. The policy
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results can however guide future policy-making as it aids in understanding what policy measures could be used
and what their impact could be. The policies can then possibly be combined with other, not modeled policy
solutions to increase success. Further suggestions are discussed in Section 10.

It should be noted that SD models are simplifications of reality, and are most suitable for studying (changes in)
model behavior. Thus, given the nature of System Dynamics modeling, the modeling results are perceived to be
most useful for comparing the relative performance of policy levers and scenarios, instead of absolute achieved
adoption percentages.
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9 Discussion
This section reflects on the methodology and discusses the limitations of the model and the policy analysis and
the implications of these limitations. Furthermore, this section provides suggestions for further research.

9.1 Reflection on the methodology
9.1.1 GIS-based rooftop suitability assessment

The GIS-based rooftop suitability approach proved to be appropriate for the study purpose. The method
provides the desired outputs for examining rooftop suitability in a municipality, allows for altering suitability
assumptions to fit different geographic locations, and enables the use of own data sources as well as directly
imported data from the ArcGIS environment.

A limitation of the methodology is that GIS-based methods are time-intensive and computer-resource intensive.
Solar radiation calculation is computationally demanding, and the computation time for solar radiation mapping
in ArcGIS significantly increases for larger study areas. For the municipality of Amsterdam, which has a surface
of 219,49 km² of which 165,50 km² land, the surface had to be split into seven sections to reduce the computation
time of the individual runs. For all seven sections together, computation time added up to 160 hours. Though
computation time also depends on the study area, data quality, data granularity, simulation period (a month,
a year, etc.), and computer capacity, other studies that have applied similar methods also experienced similar
computation times (Marešová, 2014), (Wolfs, 2017). When there is a wish for reduced computation time, one
could consider other approaches such as machine learning, however, proper skills are needed to be able to apply
such methods. Besides, extensive and high-quality data is needed for accurate assessments.
Another limitation of the GIS-based approach in ArcGIS is the relatively complicated validation process. Mostly
manual validation is required to verify the correctness of roof classifications, which is time-consuming. Besides,
validation is complex as the GIS-based computation requires several assumptions on roof suitability, which
might differ in other studies and thus requires care when comparing. This limitation is dealt with by carefully
examining the assumptions and methods used by studies that have been used for comparison.

A final limitation of the ArcGIS approach is the need for detailed surface area data. For this study, height
data at a resolution of 0.5m² is used. For all municipalities in the Netherlands, this data is freely available.
Possibly in other countries worldwide, however, this data might be more challenging to obtain. Alternatively,
less fine-grained data could be used, which reduces the accuracy of the computations.

9.1.2 socioeconomic data analysis approach

An advantage of the statistical data-analysis approach is that the used methods (i.e. ANOVA analysis, corre-
lation analysis) are generally well-grounded in literature, assumptions of the methods are known, and results
can be easily interpreted and visualized. A pitfall of the method is that it requires sufficient data, high data
quality, extensive data pre-processing, and compliance with several statistical assumptions that vary per statis-
tical method. A limitation of correlation analysis is that results should be interpreted with caution. It might be
natural to assume casual relationships, while correlation does not imply causation. Besides, correlation analysis
cannot be used to explore the presence or effect of other variables outside of the two being explored. Finally,
the range of observations influences the correlation coefficient. These limitations have been dealt with carefully
during the research. Overall, the method was found suitable for the intended purpose.

9.1.3 System dynamics approach

System dynamics has been demonstrated to be an appropriate method for modeling the diffusion of solar panel
adoption amongst households for several reasons. SD allowed for making the complex system behavior visible
and understandable in a transparent and quantitative manner. As SD provides insight into the entire system
mechanism, the method fits the exploratory characteristic of this research. Besides, the method enabled sim-
plification of a complex system, while still maintaining trust in the validity of the model outcomes. This way,
the application of SD appeared to be appropriate for the level of aggregation of this research. The method
allows modeling PV adoption disparity amongst different socioeconomic groups while allowing both local and
country-level policy testing. The method also allowed modeling the decision-making of a neighborhood group
as a whole. Finally, the problem contained a number of mechanisms for which SD has previously proven to be
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a suitable modeling method, such as the technology diffusion process.

A limitation of the use of system dynamics for this research is the lack of possibility to include geographic
or spatial analysis. Part 1 of the designed artifact included a geographic perspective on PV adoption, where
disparity could be easily visualized. Translating the outputs of the SD model back to geographic developments
is not simple as the method does not allow for a spatial representation of modeling results. In the future, other
methods for SD modeling could be explored, such as Python.

9.2 Discussion of limitations
9.2.1 Limitations of the rooftop suitability analysis in ArcGIS

1. Potential electricity yield.
Electricity yield strongly depends on the type of solar panels. In ArcGIS, estimations for potential
electricity yield are based on average system efficiency. In reality, electricity yield can deviate. However,
for the purpose of estimating rooftop suitability and thus solar panel potential, this estimation is deemed
justifiable.

2. Suitability definition.
In this study, it was chosen to consider rooftop suitability from a household perspective, meaning a PV
installation should economically be viable. In ArcGIS, the minimum available roof surface for solar panels
is defined as 20m². This minimum is set because smaller roof surfaces likely do not yield enough electricity
for a PV-system investment to be profitable. Some other studies use less strict minimum surface areas
such as 15m². Using a minimum suitable surface area is not conclusive, as electricity yield depends on
system size and efficiency. Using a lower minimum suitable surface will increase the number of suitable
rooftops.

3. Exclusion of suitability factors.
The rooftop suitability assessment does not consider a number of elements that fall outside of the scope of
the study, such as the accessibility of roofs, roof material (defining the carry capacity for PV installations),
and monumental buildings. In future research, these could be included in the analysis, though these factors
limiting roof suitability are considered exception cases. The factors that have been included in this study
are perceived to be well representative of the general suitability of rooftops for PV and have been shown
to reproduce accurate results in other studies (Margolis et al., 2017), (Wolfs, 2017), (Dahal et al., 2021).

9.2.2 Limitations of the socioeconomic data analysis

1. Level of analysis and data granularity.
The analysis of socioeconomic indicators and PV adoption is performed at the neighborhood level. A
neighborhood statistic represents the average of a neighborhood. For this analysis, it is assumed that
households and residencies within neighborhoods are somewhat alike. Of course, , averages might not be
representative of the whole neighborhood population. The purpose of the study however is to identify
socioeconomic and spatial PV disparity, for which neighborhood-level data is found to be the most suitable
and available data source. Besides, when using the results of the study, targeted policy measures can
be formulated at the neighborhood level. Besides, in the socioeconomic data set, the financial-related
indicators exclude students. This means that this population group is not represented in the financial
indicators.

2. Correlation does not imply causation.
That two factors correlate does not necessarily mean that one causes the other. The fact that correlation
does not imply causation, is one of the most important cautions in correlation statistics (Green, 2012).
Human preconceptions about the way things work might tempt one to think of causation when sometimes
there is merely correlation. Correlation between two factors can be caused by a third factor, a con-founder
effect. In this study, it is therefore clearly noted that the studied correlation effects do not imply causation.
The results are merely used to be able to evaluate adoption disparity amongst different socioeconomic
sub-populations. The study does not intend to explicate the exact causes of adoption disparity. This
should be kept in mind when interpreting the results of the study.

3. Multicollinearity amongst indicators.
The study included a wide range and extensive amount of socioeconomic factors. Although in this study
each of these are treated as distinct, they are in fact deeply interconnected. Different types of inequities
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or inequalities can compound each other. Besides, several socioeconomic factors might in fact be in-
trinsically correlated to income. In future studies, this could be explored by correcting neighborhood
indicators, such as education or ethnic background, for income differences in neighborhoods. The wide
amount of socioeconomic indicators that might be interconnected can result in multicollinearity effects.
Multicollinearity has been assessed in this study to account for the effects in the further interpretation of
the results. The effect is mitigated by including a Bonferroni correction. A more extensive analysis of the
deep interconnectedness of socioeconomic factors could add to the results of this study.

9.2.3 Limitations of the System Dynamics Analysis

1. Simplification of the PV adoption diffusion process
The adoption behavior of solar panels is complex. Many variables come into play that influences one’s
willingness or ability to adopt solar panels. This model adopts economic, social, and regulatory drivers for
the diffusion of solar panels. These drivers are represented by exogenous price variables, policy levers, and
adoption rates. The socioeconomic characteristics of a population are captured in the adoption function:
given a certain technology price, a (sub)population with specific socioeconomic characteristics shows a cer-
tain adoption behavior. Other drivers for PV adoption are not modeled, such as psychographic indicators,
environmental drivers, and technology popularity. For example, Vasseur and Kemp (2015a) state that
psychographic features impact the choice for PV adoption. Morcillo et al. (2022), included an advertising
factor in their PV-diffusion model. This model excluded these factors. Psychographic features and envi-
ronmental drivers are factors that are difficult to abstract into model variables, and data on these features
at the neighborhood level lack. Attempting to include these would increase model uncertainty, but could
also provide a more holistic view of the diffusion process. Since this model uses empirical adoption rates,
it could be argued that any psychographic population behavior is embedded into the empirical adoption
rates, however, this would also imply that these factors do not change over time.

Low or high adoption rates (within neighborhoods) are most often probably not caused by one socioe-
conomic indicator or adoption barrier. In fact, a low adoption rate within a neighborhood is likely to
be caused by a combination of rooftop suitability, socioeconomic factors, adoption barriers, and psycho-
graphic factors. This should be taken into account when interpreting the results of the simulation study.
Within both the studied neighborhood groups and the population as a whole, other factors play a role in
determining adoption behavior. Some of these factors have been identified in this study. The study mostly
shows, regardless of the complex factors behind PV adoption, how the system might behave in the future
and that there is a significant gap in adoption between societal groups which both creates inequities and
limits renewable climate goals.

The study examines adoption patterns for two different neighborhood groups, that have been categorized
based on the percentage of rental properties, the percentage of multi-household residencies, and the per-
centage of households with a low income. These indicators came forward during the analysis in Chapter 6,
and have therefore been chosen for further, detailed analysis in the system dynamics study. However, the
socioeconomic study revealed other indicators that significantly correlate with high or low adoption rates
in neighborhoods. Given the limited time, it was chosen to focus on these two factors that were observed
to be highly significant from both the relevance, rigor cycle and socioeconomic analysis. No other societal
groups have been studied yet.

2. Simplification of the adoption evolution process
modeling the effect of policy levers on the system behavior can bring uncertainty in the outcomes. For
financial-incentive-related policies, the effect is more straightforward to model given the quantifiable im-
pact of the policy on the payback time of PV installations. The effect of the "sustainability plan mandate"
policy is more complex to evaluate, given there is no empirical data on the impact of this policy to date.
The effect of this policy is therefore estimated based on the characteristics of the neighborhood groups.
When considering the implementation of such a targeted policy lever, it is advised to perform additional
research on the effects of this policy on adoption behavior.

The model uses average monthly adoption rates and average system sizes. The effect that multi-household
residencies for example might have larger PV systems installed, is not modelled. Besides, for the whole
simulation, socioeconomic neighborhood data from the year 2021 is used. To reduce model complexity, it
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is assumed that these indicators remain constant over the period of analysis.

3. Local versus national modeled dynamics.
Several dynamics in the model are simulated at the local level, while other dynamics require modeling
at the national level. PV adoption is modeled locally, as local case-study data is used. It is desired
and even necessary to model such processes at a local level using local case-study data, given the role of
specific case-study characteristics on PV adoption disparity. Other mechanisms in the simulation model
are however national. For PV pricing, this is not problematic. When one, however, wants to incorporate a
"learning by doing" feedback loop, where PV installation prices decrease due to increased adoption of the
technology and technological innovation, this national process is difficult to match with the small-scale and
locally modeled PV adoption. PV adoption in the case-study area only (the municipality of Amsterdam)
is too limited to impact PV prices on a national level. When one wants to include such national dynamics,
an estimation of national impact needs to be incorporated.

The same accounts for the modeling of electricity price and margin increase effects. These require mod-
eling at a larger scale in order to properly assess the effect of PV adoption on utility costs and electricity
prices. In this study, estimations are therefore made to replicate this effect. More suitable to include in
local modeling of PV adoption is the impact of adoption on voltage issues on the local electricity grid.
This could be used to estimate local PV adoption increases and in combination with grid quality infor-
mation, assess weak spots on the grid that might need prioritization for expansion. To do so, one can use
neighborhood adoption evolution from the SD model and translate this to real-life neighborhoods.

Incorporating an agent-based modeling perspective could be useful for generating additional insights into
the technology diffusion process, as this allows modeling individual household (agent) behavior. This
approach needs estimations or generalizations of individual household behavior, but these can be based
on the analyzed adoption rates and socioeconomic neighborhood data as discussed in this study. In agent-
based modeling, it is however more difficult to trace back the chain of events causing the results of the
simulation. Besides, agent-based modeling is focusing on the micro-level decision-making structures of
actors. To model this, a different modeling process for adoption and additional data sources are necessary.

4. Exclusion of PV-system size and expansion
Unit scaling as an effect of cumulative adoption is not regarded in the model. The PV-system capacity
is normalized in the model, and therefore the system size is a constant factor in the model. Expansion
of existing PV installations, e.g. adding an extra four panels to ten already installed panels, is not modeled.

5. Simplification of the Utility Death Spiral effect
The utility death spiral is a well-investigated phenomenon in literature. The exact extent of the effects of
this phenomenon is debated in the literature. Therefore, this phenomenon is modeled with caution in this
study and the effects on the model are validated using research sources. Future research could expand the
model by detailing this effect.

6. System dynamics modeling caution
It should be noted that the diffusion process of PV amongst the municipality of Amsterdam, and its
disparity amongst different socioeconomic groups, remains an abstraction of the modelers’ vision of the
real-world system. Although bias in the model construction is inevitable in system dynamics modeling
(J. Sterman, 2000), this is limited as much as possible through careful data selection and construction
of the model components. Input data such as parameter assumptions are adopted from reliable sources
and validated by comparing multiple other studies or sources. Similarly, the final SD model structure is
a result of different sources from literature about the technology diffusion process, electricity generation
through PV systems, and PV adoption market effects. Besides, the model is tested with accepted methods
for SD validation.

Nevertheless, caution should be paid when using the model and interpreting its results. The model is
not validated by experts. An expert opinion could provide a new perspective on the model structure,
assumptions, and bias. Besides, when interpreting the model and its results, it should be kept in mind
that the model is a simplification of reality, and aims to provide insights into the dynamics of the system
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as a whole. Therefore, the model can be used to provide insights into system behavior, but the results
should be interpreted with the described model limitations in mind.

7. Limited scenario testing opportunities
System Dynamics is a valuable tool for investigating system behavior and testing model and policy sen-
sitivity. However, its usefulness for policy analysis is limited due to the constraints on extended model
exploration and policy analysis options. The required manual input is time-consuming, which restricts the
number of model analysis runs that can be conducted. To address this issue, this study analyzed three
exogenous scenarios (geopolitical developments, inflation, and shortage of technicians and materials) and
four policy scenarios in different, selected combinations, resulting in 26 tested combinations. While this
approach provided insights into the effects of policy severity and timing within the system’s legitimate
boundaries, its limitations include the difficulty of searching for plausible scenarios and quantifying other
scenarios that could trigger diffusion acceleration.

8. Uncertainty in the model.
During the System Dynamics modeling and experimenting process, the uncertainty space is thoroughly
explored using sensitivity analysis and scenario exploration. There however remains uncertainty about
whether the selected uncertainty and decision spaces are an accurate and complete representation of
plausible future developments. This uncertainty is inherent to system dynamics modeling and could be
reduced by using a robust policy search method (see Section 9.3).

9. Incorporation of energy poverty and energy injustices.
In the system dynamics model, the electricity bill as a percentage of the average low-income household is
calculated. This calculation is based on the average expenditure on electricity of a Dutch household. En-
ergy poverty can be caused by a high expenditure, a low income of a poorly isolated residence. Households
with poorly isolated residencies often have higher energy expenses, thus it is expected that a larger share
of the households with energy poverty will have high expenditures than the average used in the model.
Besides, the model only includes electricity costs, while the assessment of energy poverty usually includes
both electricity and gas costs. Therefore, the energy quota calculated in this model is an approach of
the share of energy costs of the average low-income households (the energy burden), instead of an exact
assessment of energy poverty.

9.3 Recommendations for future research
• The study adopted a newly developed approach to assessing PV adoption equity and evolution in a

structured, integrated manner. The approach consists of multiple steps, of which each step has been
individually validated during the study. Future research could build upon the developed approach as a
whole and perform a more extensive validation of the scalability and robustness of the approach and the
validity of the policy outcomes. A suggestion would be to evaluate the approach with experts in the
field of energy policy-making and energy justice, and with other relevant actors that could use the policy
outcomes, such as municipalities and governments.

• This study applied a social perspective on the PV adoption process. Other perspectives on PV adoption
are useful to investigate. One suggestion is that of grid operators, in the form of a grid impact analysis.
In this study, it is suggested that PV adoption impacts the capacity and voltage issues on the grid and
that clustering of PV adoption can increase these effects. Though an expert interview revealed that grid
investments costs due to PV are likely not the reason for increased costs for consumers (thus decreasing
the chance of socialization of these costs to non-adopters), assessment of the impact on the grid is useful
for grid operators aiming to pro-actively act upon plausible future adoption behavior. This study revealed
that adoption patterns are different between neighborhoods and that there is a risk of clustering of PV
installations. According to experts, clustering of PV can increase grid issues, but the impacts need to be
further explored.

Assessing the grid impact of distributed renewable energy generation however is highly complex, and
exceeds the abilities of the methodologies used in this study. No suitable proxy for assessing grid impact
has been found in literature so far, that was suitable for including in the system dynamics structure.
Further research could be done on ways to incorporate grid impact into the study.
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• The developed model in this study could be deployed for the investigation of other sub-populations by
using different socioeconomic factors to construct neighborhood groups. This study used the socioeco-
nomic indicators that came forward as some of the most correlated with PV adoption. However, other
variables came forward as important correlated indicators, and other studies might also reveal socioeco-
nomic indicators worth investigating. Following from this research, other suggestions are racial differences
and educational backgrounds and following from other studies, linguistic isolation and housing burden
(Lukanov & Krieger, 2019).

• Several studies in the literature suggest that there are clear distributive and equity impacts of PV support
policies such as net metering and that the benefits of PV adoption are largely bypassing less-advantaged
communities (Keady et al., 2021; Lukanov & Krieger, 2019; O’Shaughnessy, 2021; Si & Stephens, 2021;
Sovacool et al., 2022). Accordingly, this study has identified several forms of injustice that are prevalent in
the solar energy landscape, either through the literature research, interview process, or modeling process.
The modeling process mainly touched upon notices of distributional justice: socioeconomic inequities in
adoption are identified and modeled through future developments. Future research could focus more on
the other forms of energy justice that are prevalent in the residential solar panel adoption landscape in
the Netherlands: procedural justice, recognition justice, and transformative justice. Generally, future
research could ground the perceived possible injustices by empirically evaluating citizens’ perceptions
of injustice, for example through field research and interviews with citizens in Amsterdam. Kieskamp
(2023)investigated justice perceptions regarding energy policy in the Dutch city of Tilburg, and found that
the interviewees’ perceptions of injustice regarding distribution and procedures could oftentimes be traced
back to a lack of recognition for their distinct needs and vulnerabilities in the first place. It is useful to
investigate the perceptions of justice in the municipality of Amsterdam accordingly. As another example,
this study slightly touches upon procedural justice in the conclusion section regarding the recommended
policy steps, however, a more detailed assessment of the policy steps in light of procedural justice would
increase decision-making equity even more. Another example is that future research could focus on the
quantification of inequalities or injustices caused by PV-related policy, such as the socialization or cross-
subsidization of netting-scheme costs and increased utility and grid costs. Such a study could serve as an
explication of the socialization of grid investments and utility revenue losses.

• To extend the system dynamics model, several dynamics could be added or extended based on the current
study:

– The impact of renewable energy adoption on utilities could be further explored. PV adoption impacts
utilities financially by increasing balancing costs and reducing revenue. The impact on electricity
tariffs is simplified in this study but could be further investigated.

– A feedback loop that is excluded from this analysis but could be included in future research is the
impact of PV adoption on PV system prices. This could for example be done through incorporating
learning curve effects (Morcillo et al., 2022).

• This study implied translating a spatial analysis (part 1 of the artifact) to a non-spatial analysis (part 2
of the artifact). To still incorporate the spatial element of adoption disparity, sub-populations of neigh-
borhoods are investigated. However, future research could translate the system dynamics outcomes back
to spatial insights, by visualizing simulated adoption patterns on a map of the municipality.

• To deal with the limited scenario testing opportunities presented by the system dynamics approach, a
robust policy search and deep-uncertainty assessment could be adopted. The Exploratory Modeling &
Analysis (EMA) workbench, developed by (Kwakkel, 2017), could provide a suitable methodology. The
workbench is an open-source toolkit for supporting decision-making under deep uncertainty. The method
can be used to subject the system dynamics model in this study to an optimization algorithm which will
yield a list of robust policies.

The sensitivity analysis in this study revealed the model is most sensitive towards changes in the market
electricity prices, PV installation costs, and inflation. These variables have been used for scenario testing
in this study but would be suitable to study in a robust policy search and deep-uncertainty assessment
for further analysis. Contrary to exploring the most suitable policy combinations by hand, the EMA
workbench allows one to search the decision space to find optimal policy combinations and best or worst
scenario’s based on these external factors. Besides, a search in the decision space of the possible combi-
nations of leveling policy options under the many possible values for external factors could significantly
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improve the robustness of the leveling policy options. In short, though this study included scenario test-
ing of external factors and uncertainties, a robust policy search and deep-uncertainty assessment could
improve insights into the robustness of policies, where the focus should be on the market electricity prices,
PV installation costs, and inflation.

• Earlier in this study, it is suggested that PV adoption behavior and socioeconomic trends behind this
behavior are highly local. It would be interesting to apply the artifact in this study to another municipality
in the Netherlands or abroad to be able to compare model outcomes and validate the scalability of the
approach towards other geographic regions.

• The simulation model in this study investigates the system behavior of residential solar panel adoption
based on the assumption PV systems are bought through a one-time investment using a loan. Other
financing options could be investigated, such as the effect of leasing schemes.

• The case-study area in this research is a highly urban environment. It might be interesting to explore
possible differences with rural areas. A hypothesis could be that in rural areas, the share of multi-household
properties is lower, thus other adoption barriers have a more prominent role. Vasseur and Kemp (2015b)
in their study on adoption and non-adoption in the Netherlands found that a majority of the group of
adopters lives in a village, while the group of non-adopters lives in a city. Under non-adopters in rural
areas, other adoption barriers and diffusion behavior might be visible.
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10 Conclusion and recommendations
This final chapter will draw conclusions on the results presented in this study. First, in section 10.1 an overview of
the main research findings will be given and the main research question is answered. The research contributions
will be discussed in section 10.2. Finally, recommendations for policymakers will be given in section 10.3.

10.1 Overview of the main research findings
The purpose of this study was to gain quantitative insight into the dynamics of solar-panel diffusion and as-
sess the impact of policies and external developments on the disparity of adoption. Through a Design Science
Research approach, an artifact was designed that enables to achieve the research objective in two main steps.
The analysis was performed for the municipality of Amsterdam. The local analysis allowed for incorporating
detailed case-study data on the adoption patterns of different neighborhood groups.

The study started with a thorough analysis of the system at hand during the environment phase of the Design
Science methodology. The current technological, political, social, and economic context for PV adoption in the
Netherlands was examined. Next, in the knowledge base phase, the factors determining the potential for PV
adoption were set out. During the operationalization, the outputs of the relevance and rigor cycle are concep-
tualized into an artifact design. The designed artifact is a research approach enabling an integrated analysis
of the solar panel adoption landscape in a municipality, with two main purposes. First, it enables assessment
of the equity of solar panel distribution amongst the municipality. Second, it aids in policy testing, scenario
evaluation, and policy-making on the solar panel system within the municipality. In this research, the artifact
has been developed while simultaneously testing and demonstrating it for the municipality of Amsterdam.

Part I of the artifact includes conducting a rooftop suitability assessment that maps the potential for residential
solar energy generation by adopting a GIS-based approach. Next, a socioeconomic analysis is performed, which
allows investigating of the correlation of socioeconomic factors with PV adoption and the disparity of adop-
tion possibly leading towards a so-called "adoption gap". This statistical data analysis deploys ANOVA- and
correlation analysis on empirical adoption data. The most significant socioeconomic determinants for adoption
are then used in a clustering method to create groups of similar neighborhoods, which can be studied in part
II of the artifact. Performing part I of the artifact results in a clear assessment of the adoption disparity, the
used and the unused potential, and the factors that can aid in explaining this. The outcomes are used to assess
socioeconomic adoption inequalities and energy justice implications.

Part II of the artifact deploys a system dynamics modeling approach to simulate the adoption of solar panels
from a system perspective. The context of residential PV adoption was further conceptualized from a system
perspective with a causal loop diagram and then quantified through mathematical equations and parameters.
During the conceptualization and model formulation, the output of Part I of the artifact, such as the adoption
rates and the neighborhood groups, is used. After testing the model, scenarios and policies analysis leads to
understanding the system behavior and exploring the impact of policy measures on diffusion speed and diffusion
disparity. This way, the model provides an understanding of the structural dynamics and behavior of solar panel
diffusion amongst different groups of neighborhoods and the possibility to experiment with policy levers and
external developments.

Combining both artifact parts results in a set of tools that can aid more structural assessment of adoption
and adoption disparity, and gauging scenarios for policy-making purposes. Demonstrating the artifact on the
municipality of Amsterdam resulted in a set of findings that were used to answer the main research question:

How could distributed solar panel adoption speed and disparity develop in the future and under
different policy measures?

To answer this question, the developed artifact is demonstrated for the municipality of Amsterdam. First,
the current state of PV adoption is described (artifact part I). From there, plausible future developments are
evaluated (artifact part II). The answers to the sub-research questions are included in each of the chapters’
conclusions.

The main findings from part I of the artifact:
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• PV adoption is unevenly spread among neighborhoods. A smaller group of neighborhoods has high adop-
tion rates, compared with a larger group of neighborhoods with lower adoption rates. Several neighborhood
clusters with high adoption rates are detected. Thus, a high disparity in adoption is observed.

• Rooftop suitability is spread relatively equally amongst neighborhoods. When looking at the potential
electricity yield per citizen, the potential is rather evenly distributed with the exception of several outliers
that have an above-average potential electricity yield per citizen.

• The correlations and group differences examined in this study highlight areas where more attention may be
needed and where barriers to solar adoption might exist. The results also show that there is a significant
difference between PV adopters and non-adopters. The type of household property, income, type of
ownership and household composition are observed to be the most significant socioeconomic factors when
comparing the results of the two statistical studies. These factors are identified as possibly the most
significant adoption barriers. The inequities in adoption perceived in the neighborhood analysis point the
way toward specific, targeted policy mechanisms that can tackle, mitigate, or minimize possible injustices
caused by adoption disparity.

– When comparing neighborhoods with low and high adoption rates, it is observed that neighborhoods
with low adoption rates significantly differ from neighborhoods with high adoption rates. Many sta-
tistically significant variables explained this difference, including citizen age, household composition,
type of property, property ownership and income.

– The correlation analysis revealed many statistically significant variables correlating with the level of
PV adoption in a neighborhood. These factors include the percentage of low-income households, the
percentage of children, the percentage of single-person households, the percentage of rental properties,
and the percentage of multi-household properties.

– Many of these studies are in line with These findings are in line with some of the findings by (Sommer-
feld et al., 2017), (Balta-Ozkan et al., 2015), (Vasseur & Kemp, 2015b). Balta-Ozkan et al. (2015).
Where Margolis et al. (2017) found the number of rooms and house age to be key influential vari-
ables, this study did not reveal the significance of these variables. Besides, Balta-Ozkan et al. (2015)
found the number of households to be a significant variable, but this study had contrary results for
this variable. The varying results between different studies highlight the local characteristics of PV
adoption patterns and the care that should be taken when generalizing results to other regions.

• The results show that the adoption of solar panels in Amsterdam over the past years has not occurred
equitably across socioeconomic groups. The disparity in adoption, both from a spatial and socioeconomic
perspective, points towards demographic inequalities in solar panel adoption. These demographic adoption
inequalities can result in distributive justice issues. Solar adoption has been driven strongly by government
incentives (Si & Stephens, 2021). The incentives provided generally apply only to those who buy a
PV system outright. The incentive programs, therefore, have ended up targeting only a selection of
socioeconomic groups: middle- and high-income households, homeowners, and households with roof access.
Households without solar panels cannot profit from the benefits of the scheme, and experience burdens
by the socialization of program and utility costs. For some households, non-adoption is voluntary, for
others, it can be due to financial inability, the lack of decision-making power over their roof (renters), the
unsuitability of their roof, or the lack of access to a roof. This implicates unequal access to the benefits
of incentive schemes, an important notion within the concept of distributive energy justice.

• Moving towards part II of the artifact design, a clustering algorithm was used to automatically divide
neighborhoods into similar groups based on the percentage of rental properties, the percentage of multi-
household residencies, and the percentage of low-income households. These are used to study the devel-
opment of PV adoption under several policy levers and external drivers.

The main findings from part II of the artifact:

• An adoption gap is perceived that is expected to further widen in the future under all netting-scheme
regulations. Under the current netting scheme, group 1 neighborhoods achieve an adoption percentage
of 20%, whereas group 2 neighborhoods achieve an adoption percentage of 42%. Under the proposed
netting scheme, group 2 neighborhoods achieve a marginal adoption rate of approximately 5%, and group
2 neighborhoods of approximately 25%. Given the adoption percentages in 2019 are 1% for group 1 and
13% for group 2, the model shows the adoption gap will widen over time.
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• It can be concluded from the policy and scenario analyses that without adequate policy interventions, the
average future PV diffusion will continue to grow only moderately. The simulation with differing netting-
scheme policies demonstrates the considerate difference in adoption extent and speed under no netting
scheme, the current, and the proposed netting scheme. Solar panel diffusion thus appears to be highly
impacted by the netting scheme policy in place. The difference is caused by the diverging payback times
of PV under the policy options. The lack of policies thus intensifies the financial barriers to adoption.

• A gap in adoption is observed when comparing the diffusion of PV in two neighborhood groups with low
(group 1) and high (group 2) percentages of rental properties, low-income households, and multi-household
properties. Without intervention, the adoption gap widens over time. Under the proposed netting scheme,
neighborhoods in group 1 experience minimal adoption rates. The payback time for PV does not decrease
significantly enough over time to stimulate higher PV adoption rates in this group. Several other studies
conclude that general incentives - such as the netting scheme - are ineffective at increasing adoption equity
(Brown et al., 2020; Vaishnav et al., 2017).

• The analysis of the leveling policies revealed several insights. First, all policies individually yield better
results, regardless of the external scenarios. The "low-income netting scheme" and the "low-income subsidy
of AC1000" policies had the most promising individual results. Through these policy levers, adoption
percentages in 30 years’ time could be increased from approximately 6% in the base case to approximately
17% and 11,5% respectively (equal to 40% and 35% respectively of the suitable rooftops).

• The analyses of separate policies compared to combined policies reveal two insights. First, given that
the individual policy levers do not succeed in closing the adoption gap, it is likely that a tailor-made
combination of policies is most effective. A combination of a AC1000 low-income subsidy, low-income
netting scheme, and sustainability plan mandate can level the adoption percentage of group 1 to the
adoption levels in group 2, reaching approximately 35% of the total number of households. This means
the adoption gap is reduced to almost zero. The best two-policy combination is the low-income netting
scheme combined with the low-income subsidy of AC1000, or a combination of the low-income subsidy with
the sustainability plan mandate, which enables approaching an adoption percentage of approximately
27%.

• Of the observed external drivers, geopolitical developments (representing the market electricity price)
significantly impact the speed and extent of PV diffusion. High geopolitical unrest, which has in the
past increased energy uncertainty and energy prices, increases the attractiveness of PV adoption and thus
drives increased adoption rates. Inflation rates have a significant but much lower impact on adoption
rates. These results suggest that energy prices are a stronger driver of PV adoption than PV installation
costs.

• The exploration of policy options and their impact of PV diffusion is perceived to be most useful when
comparing the relative performance (how different policy levers perform compared to one another) of the
options at hand, instead of absolute performance (exact achieved adoption percentages).

• Though many studies assess the impact of net metering on adoption rates, few other studies combine policy
impact and adoption equity or assess targeted policy levers. O’Shaughnessy et al. (2020a) investigated the
impact of policies and business models on income equity in rooftop solar adoption and found that targeted
incentives at low-and-middle incomes were effective in increasing adoption equity. The study also found
positive results for PV leasing and low-income loans, of which the first was not included in this study and
the second is already in place in the Netherlands at the time of writing.

Several main conclusions can be drawn from the study. First, a gap in adoption is observed: solar deployment
in Amsterdam over the last years has not occurred equitably across socioeconomic groups. There is a significant
difference between neighborhoods with high and low adoption when it comes to socioeconomic characteristics
such as income, home ownership, and roof access. This points toward demographic inequalities in solar panel
adoption. Accordingly, policy levers to stimulate PV adoption currently benefit a small portion of households.
Solar adoption has been driven strongly by such government incentives (Si & Stephens, 2021). The incentive
programs therefore have ended up targeting only a selection of socioeconomic groups: middle- and high-income
households, homeowners and households with roof access. Households without solar panels cannot profit from
the benefits of the scheme, and experience burdens by the socialization of program and utility costs. For some
households, non-adoption is voluntary, for others, it can be due to financial inability, the lack of decision-making
power over their roof (renters), the unsuitability of their roof or the lack of access to a roof. This implicates
unequal access to the benefits of incentive schemes, an important notion within the concept of distributive
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energy justice.

Second, the current netting scheme is beneficial to adoption rates, but increases adoption rates mostly within
several societal groups. The proposed netting scheme, planned to be introduced in 2025, will only modestly in-
crease adoption rates compared to a lacking netting-scheme policy. Besides, without target policy interventions,
the adoption gap between high and low-adoption neighborhoods will widen over time, thus increasing demo-
graphic adoption inequities and distributive justice issues. Additionally, the electricity costs for non-adopters
will continue to be significantly higher than that of PV adopters, with a risk of socialized costs by governments,
grid operators, and energy suppliers - though the latter is included in the model to a limited extent. The energy
burden for non-adopters will significantly increase, and very low-income households reach an energy quota of
4-12% of their income. The leveling policies have been shown to reduce the adoption gap, where a combination
of policies achieves the best results. The results emphasize that more policy attention is necessary, especially
when the proposed netting scheme comes into place. Under-served and under-represented communities should
be identified and acknowledged. Targeted policies are needed to close the adoption gap, where there is a need
for a combination of all three leveling policies to narrow down the gap to a minimum.

Considering the different energy justice principles, this study mostly touches upon distributive justice implica-
tions. The analysis of socioeconomic neighborhood groups allowed for assessing the inequality of the distribution
of adoption and thus the spread of benefits and burdens of energy policy amongst society - the main principle
of distributive justice. Although not explicitly touched upon in this study, it is important to recognize the
implications of other forms of energy justice. Procedural justice implications should be taken into account when
further evaluating the policy levers presented in this study - the policies should be implemented granting equal
chances at participation in the decision-making processes. Specifically, attention should be paid to including the
under-served communities, e.g. the neighborhoods with low incomes, high shares of rental properties, and high
shares of multi-household properties. Besides, to address citizens’ perceptions of injustice, a multi-dimensional
approach is required that addresses both socio-demographic inequalities through for example leveling policy
levers (to improve distributional justice), integrating extended participation procedures (to improve procedural
justice), and integrating recognition into energy policy (to improve recognition justice). The latter injustice is
often overlooked but covers a central challenge to address citizens’ more fundamental sense of misrecognition
and build trust with citizens.

Although the outcomes of socioeconomic variables and their relation to adoption patterns differ within the lit-
erature, due to geographic differences, the overall adoption equity findings are in line with multiple studies that
investigated adoption disparity and inequalities outside of the Netherlands (Lan et al., 2021; O’Shaughnessy
et al., 2020a; Si & Stephens, 2021; Sovacool et al., 2022). Sovacool et al. (2022) for example clearly document de-
mographic inequity and disparities in ownership in the UK and even state solar energy adoption can exacerbate
these inequalities. Lukanov and Krieger (2019), who evaluated adoption equity in California, also conclude that
there are clear distributive and equity impacts of PV support policies (e.g. net metering) and that benefits of
PV adoption are largely accruing within less-advantaged communities. The authors identify economic burdens
- such as housing burden and poverty rates - as significant barriers to solar adoption, which is in line with the
significance of household income in this study. The authors however also indicate linguistic isolation and low
education levels as important adoption barriers, which have not been tested or found significant in this study. It
should be noted that the studies named above all follow different methodologies, and no other system dynamics
approach was available for comparison.

Closing the adoption gap is an important step in tackling the justice implications that current adoption in-
centives oppose. However, tackling these justice implications requires a multifaceted approach, covering both
local and national policy, the socialization of costs by governments, grid operators, and utilities, and adoption
barriers such as income and roof access. This study aimed to gather insights on both the observed inequities
and the policy levers at hand to achieve more equal adoption patterns, aiding in a justifiable road map towards
renewable energy for all. The study resulted in a set of tools that, while not perfect yet, form an artifact
that can be used to facilitate a more fine-grained insight into these justice issues and their possible routes for
resolution.

The performed research steps have been evaluated using multiple evaluation methods including sensitivity anal-
ysis and direct structure tests. The used methods - GIS modeling, statistical data analysis, and system dynamics
modeling - have been demonstrated to be appropriate methods within the artifact and to answer the main re-
search question. The methods present several limitations that need to be taken into account when interpreting
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the results. Several important limitations follow. First, caution is needed when interpreting correlation results,
as correlating factors do not imply causation. Second, the adoption diffusion process is simplified and probably
does not include a perfect representation of adoption factors in real life. Third, several loops are simplified, such
as the utility death spiral. These limitations could be addressed in further research, to increase the robustness
and usability of the artifact design. Finally, further evaluation of the artifact as a method to assess adoption
inequities and policy impacts is needed. A more extensive validation should be performed to assess the robust-
ness and scalability of the approach and the validity of the policy outcomes. This can establish the approach
as a well-grounded and universally applicable method to assessing adoption equity and evolution across the
Netherlands and abroad.

10.2 Contributions of this research
The contributions of this research are two folded. On the one hand, the study generated new insights into the
diffusion of solar panel technology in Amsterdam, contributing to societal relevance. On the other hand, the
study developed an approach that adds to the existing literature base and that can be applied in other case
studies. Both contributions will be discussed below.

10.2.1 Scientific contributions

This study made several scientific contributions. First of all, the study adds to the existing knowledge base by
presenting a data-driven, integrated, and scalable approach for investigating solar panel adoption patterns and
future developments. That, though it needs additional validation to establish it as a grounded approach, can
serve as an inspiration for other studies. The approach uniquely combines multiple research methods - GIS-
modelling, statistical data analysis, and System Dynamics - to create overarching insights into the behavior
and dynamics of the system and the possible inequities it presents. Other studies found in the literature that
investigate adoption behavior and equity most often deployed either one of the approaches - an assessment of
socioeconomic factors and their relation to adoption rates (Darghouth et al., 2022; Lan et al., 2021; Lukanov
& Krieger, 2019; Sovacool et al., 2017; Vasseur & Kemp, 2015a) or an assessment of adoption evolution and
policy impact (Hsu, 2012; Meehan, 2015; O’Shaughnessy, 2021; Palm, 2017) - where this study uniquely com-
bined both. Many existing system dynamics studies on solar panel adoption focus on the impact of the netting
scheme, or the utility-death spiral effect (Castaneda, Jimenez, et al., 2017; Grace, 2018; Meehan, 2015), where
this study adopted a focus on adoption disparity and leveling policies specifically.

Second, this study added to the existing knowledge base by studying solar panel diffusion amongst sub-
populations. Previous solar panel diffusion studies examined case-study populations as a whole (Castaneda,
Jimenez, et al., 2017; Grace, 2018; Meehan, 2015), and did not allow for studying sub-groups. Therefore,
general adoption curves were used to estimate the effect of policies such as the netting scheme, while in reality,
different consumers react differently to such changes in the political landscape and external drivers. Besides,
few previous solar panel diffusion studies assessed the impact of targeted policies instead of general policies, or
the impact of numerous external developments. Most in line with this study, O’Shaughnessy (2021) assessed
the impact of policies on income equity in rooftop solar adoption, including several leveling policies. Similarly,
they find that financial leveling policies increased adoption equity in the past. This study added to the existing
knowledge by investigating additional measures - such as the low-income netting scheme - and by simulating
adoption disparity into the future under different external scenarios.

Finally, the developed method allowed for studying local adoption characteristics, which is deemed necessary
for a proper analysis of adoption behavior, while also incorporating both local and national policy levers. Up
to date, no approach existed that used local insights into adoption patterns to study the effects of both general
and leveling policies at the local case-study level.

10.2.2 Societal relevance

The research aimed to fill an existing gap of knowledge on solar panel adoption in Amsterdam. The research
touched upon several lacking pieces of knowledge. First of all, there was a lack of knowledge on the current
adoption patterns in Amsterdam, specifically how adoption is distributed geographically and socioeconomically,
and what socioeconomic factors are linked to explain these observed adoption patterns. In the literature base,
several studies on solar panel adoption and socioeconomic factors exist, however, none covered regions within
the Netherlands, and none covered such a broad range of socioeconomic factors all at once. Besides, no previ-
ous study combined adoption patterns and socioeconomic data with the potential for solar energy generation,
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to incorporate the potential for adoption in the analysis. Incorporating this factor allowed for understanding
whether perceived adoption patterns could also be caused by unequally distributed potential, where this study
showed that potential is rather equally distributed geographically, while adoption is not.

Where Lan et al. (2021) used a machine learning approach to understand the regional disparity of solar panel
adoption in Australia by investigating numerous socioeconomic factors, this study adopted a statistical data
analysis approach. Nonetheless the different adopted methods and geographic focus, the results of the studies
corroborate in the sense that both identified household income as an important determinant for adoption rates.
Contrary, Lan et al. (2021), who investigated 18 socioeconomic indicators compared to more than 80 in this
study, emphasize the role of population density, which is less significant in this study given the high average
density of the whole study area. Other studies investigating socioeconomic factors had several similar and
several contradicting results, such as similar findings in the importance of home-ownership, age, income, and
property-sharing (Sommerfeld et al., 2017), (Balta-Ozkan et al., 2015), (Vasseur & Kemp, 2015b). Balta-Ozkan
et al. (2015), but contradicting findings in the importance of the number of rooms, house age, and number of
households (Balta-Ozkan et al., 2015; Margolis et al., 2017). These differences highlight the local characteristics
of PV adoption patterns and that the effects of socioeconomic characteristics on adoption should be understood
regionally, where this study added to the knowledge base by generating additional insights into the adoption
characteristics of the Netherlands specifically.

Second, insights into the possible future developments of solar panel adoption and adoption disparity lacked.
Specifically, what the evolution of solar panel adoption might look like under different policy levers and external
drivers. Given the proposed new netting-scheme policy, planning to go into action in 2025, insights into the
impact of this new policy on the diffusion and disparity of solar panel adoption can aid in assessing what the
impact of this political change is on reaching solar climate goals. Besides, several leveling policies are studied,
that aim to narrow down the adoption disparity amongst socioeconomic groups. Currently and to the best
knowledge of the author, no studies exist that examine the impact of such leveling policies.

Finally, the study contributed in the fact that it made some observations of the inequalities and justice impli-
cations that exist within the residential solar panel adoption landscape. Whilst this study did not thoroughly
analyze all possible forms of injustice, our analysis nevertheless clearly demonstrates some forms of distributive
injustices and points to measures that can be taken within policy and strategy for PV to improve the just-
ness of future deployments. The study highlights several adoption barriers and several geographic areas and
socioeconomic sub-populations that are under-served in terms of solar panel deployment and may need more
targeted policy measures to fully utilize the potential for solar energy, and to overcome unequal distribution of
the benefits and burdens of solar energy policy. The results of this study provide a reference for governmental
bodies to consider the regional difference and make more sophisticated policies and incentives.

10.2.3 Scalability of the designed artifact

For this study, the designed artifact was used to provide local insights into the system behavior of solar panel
adoption. Results and conclusions drawn from this specific case study are therefore not directly generalizable
to other locations. The designed artifact is however an integrated, scalable approach that can be applied for
analysis in other municipalities or regions. The designed artifact hereby serves as an approach to tackle similar
study objectives or problem statements. The artifact is meant to set out a strategy for an inclusive approach to
assessing adoption, adoption disparity, and plausible future developments in a case study area, thereby provid-
ing guidelines on possible policy interventions. Perhaps, the methodologies named in this study can be altered
to appropriately suit a local case study.

For replication of the artifact as described in this study, local case-study data is required. For part I of the
artifact, this includes adoption data, socioeconomic neighborhood data, building data, solar radiation data, and
LiDAR data. For all municipalities in the Netherlands, this data can be freely obtained. For part II of the
artifact, several additional data are needed for model parameters. These include electricity prices, feed-in-tariffs,
fixed energy costs, average PV prices, average PV capacity, and the average system performance ratio, all of
which can easily be adjusted in the SD model.

The artifact is most directly usable for municipalities in the Netherlands, given that the System Dynamics model
is constructed based on the Dutch electricity system (i.e. the composition of energy bills) and the Dutch policy
landscape. The model can however be altered to fit other policy or electricity contexts. When considering
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replication of the artifact, it is stressed that the limitations of the methodologies discussed in Section 9 are
carefully considered.

10.3 Recommendations for policy-makers
The identified adoption inequities and the expected widening of the adoption gap over time resulting from this
study emphasize the need for appropriate attention by policymakers toward equal PV adoption. Besides the
prevalent justice implications, the under-utilization of rooftop space in under-served neighborhoods could reduce
or at least decelerate the realization of the benefits of rooftop PVs as a clean energy resource by reducing PV
market potential. Thus, complicating the achievement of local renewable energy goals. The study yields several
recommendations for policymakers:

• The first recommendation is to identify and acknowledge under-served and under-represented communities
and the presence of distributive justice implications. This study has aimed to contribute to this, however,
it is the policymakers that can act upon it. Addressing the perceived disparities and inequities within
a municipality is an important step in diminishing justice implications, and benefits both socioeconomic
equalities and renewable energy generation. It is advised to further investigate the perceptions of citizens
regarding the forms of injustice described in this paper, and other possible energy justice conceptions. A
study that can serve as inspiration for such an assessment of citizen perception is that of Kieskamp (2023),
who explored this in the region of Tilburg, the Netherlands. Besides, addressing these inequalities can
have a self-sustaining effect. By shifting adoption into under-served neighborhoods, the presented policy
levers could catalyze peer effects in those regions, which may generate self-sustaining increases in adoption
in those areas (Balta-Ozkan et al., 2021).

• Adopt a targeted, tailor-made approach. PV adoption target groups can be complex. Numerous adoption
barriers, socioeconomic variables psychographic variables can contribute to adoption behavior. Different
adoption barriers need different solutions. It is advised to adopt a tailored approach for different target
groups, focusing on three large target groups that have under-served markets: low-income households,
rental-property households, and shared-property households. Suggestions for approaches are included
below.

• The generated insights into socioeconomic characteristics and their relation to adoption patterns highlight
the areas where more attention is needed and where barriers to solar adoption might exist. At a local,
or municipal level, these insights can be used for targeted policy measures or campaigns. It is advised to
further investigate the (solutions to) adoption barriers in under-served neighborhoods through collabora-
tion with citizens, landlords, and housing corporations. Such explorations can reveal possible underlying
mechanisms or barriers or structural societal inequities that go beyond adoption inequity, that could be
tackled to improve justice on a much broader spectrum.

• Explore additional measures to go hand-in-hand with the possible policy levers, to accelerate and reinforce
results. It is advised to adopt a multi-dimensional approach, consisting of not only policy levers but also
including local initiatives and campaigns to actively mobilize stakeholders such as households, OA’s,
landlords, and housing corporations. Other studies show that authority support and coordination can
benefit PV adoption and aid in mobilizing households (2018).

• The low adoption rates in neighborhoods with low property ownership and high shared property suggest
it is worthwhile to further explore closer collaboration with owner associations, landlords, and housing
corporations. The socioeconomic analysis in part I of the artifact design made clear that renters, non-
homeowners, and property-sharers are more excluded from solar PV deployment due to housing tenure and
ownership type. A sustainability-plan mandate, as explored in this study, could be further investigated
to address this target group.

• The low adoption rates in neighborhoods with a high share of low-income households suggest exploring
other financing options. The financial incentive policies in this study have shown to increase adoption
rates, but other options are possible. It is advised to explore the deployment and promotion of a leasing-
contract or shared-ownership-business models (2022) for PV as an alternative for low-income households
and owners of rental properties. Other than the (local) loan options currently in place, a leasing option
removes the high upfront investment costs of a solar panel system purchase. To utilize the positive effects
lease constructions could possibly bring, these constructions should be structured such that market players
can profit but to the extent that the leasing option still benefits (low-income) households enough to be
able to make use of the option.
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On the other hand, the study provided insights in the system behavior of PV adoption and the effectiveness
of policy levers. Broadly, our results suggest that policymakers can increase adoption equity through measures
that address specific barriers to adoption and shift PV deployment patterns into previously under-served areas.
Local pilot studies can be used to increase practical knowledge on the suitability of these policy options. The
results that can be achieved through the deployment of policy levers can be accelerated through local engage-
ment programs and community initiatives.

Another suggestion at the local scale is to investigate options to make use of suitable small-surface roof space.
When aiming to utilize most of the potential at rooftops in Amsterdam, it might be useful to investigate ways
in which municipalities can place small PV installations on suitable rooftop areas, that would not be financially
attractive enough for consumers to invest in themselves. Given that the final decision for PV purchasing is
mostly determined by financial motives such as payback time, these smaller suitable roof areas might remain
unused.
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A Appendix: Artifact part I

A.1 Included socio-economic variables

Theme Variable Unit

Population Number of inhabitants #
Men #
Women #
Percentage of people 0 to 15 years %
Percentage of people 15 to 25 years %
Percentage of people 25 to 45 years %
Percentage of people aged 45 to 65 %
Percentage of people aged 65 and over %
Percentage of people unmarried %
Percentage of people married %
percentage divorced %
Percentage married %
Birth total #
Birth relative #
Total mortality #
Mortality relative #
Population density inhabitants per km2 # / km2
Number of households #
Percentage of single-person households %
Percentage of households without children %
Percentage of households with children %
Average household size # citizens / household
Percentage of persons with western migration background %
Percentage of persons from non-western migration background %
Percentage of people from Morocco %
Percentage from the Netherlands Antilles and Aruba %
percentage from Suriname %
percentage from Turkey %
Percentage of other persons with a non-western migration background %

Residencies WOZ value € x 1000
Percentage single-family homes %
Percentage multiple-family homes %
Percentage inhabited %
Percentage owned properties %
Percentage rental properties %
Percentage housing corporation %
Percentage other landlords %
Percentage ownership unkown %
Percentage construction year from 2000 %
Percentage construction year until 2000 %

Table 12: Variables used for detailed analysis

131

www.nrel.gov/publications.
https://towardsdatascience.com/statistical-comparison-among-multiple-groups-with-anova-d4ac27f6e59e
https://towardsdatascience.com/statistical-comparison-among-multiple-groups-with-anova-d4ac27f6e59e


Income Number of income recipients #

Percentage of persons with lowest income %
Percentage of persons with highest income %
Percentage of households with lowest income %
Percentage of households with highest income %
Households below social minimum %
Percentage of households with low income %
Households up to 110 percent of social minimum %
Households up to 120 percent of social minimum %
Median wealth of private household € / year
Average property value € x 1000
Number of inhabitants #
Total unemployment benefits #
AO benefits total #
Total general social assistance benefits #
Number of people with AOW benefits total #
Average income per income recipient € / year
Average income per inhabitant € / year
Average standardized income of households € / year
Median assets of private households €
Total benefits #

Energy Average gas consumption m3 / year
Average gas consumption rental properties m3 / year
Average gas consumption owned properties m3 / year
Average electricity consumption kWh / year
Average electricity consumption rental properties kWh / year
Average electricity consumption owned properties kWh / year

Education Net employment rate %
Percentage employed %
Percentage self-employed %
Percentage highly educated citizens %
Percentage secondary educated citizens %
Percentage lower educated citizens %

Vehicles Passenger vehicles per household %
Percentage of vehicles with gasoline fuel %
Percentage of vehicles with other fuel %
Percentage housing corporation %
Percentage other landlords %
Percentage ownership unkown %
Percentage construction year from 2000 %
Percentage construction year until 2000 %

Table 13: Variables used for detailed analysis
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A.2 Spatial analysis results

Figure 69: PV installations per citizen in each neighborhood

Figure 70: Usable rooftop surface in potential electricity yield (MWh)
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Figure 71: Unused potential residential rooftops, as a percentage of the total residential rooftops in a neighbor-
hood

Figure 72: Suitable residential rooftops per neighborhood
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A.3 Data exploration and distributions

Figure 73: Distribution of PV installations per neighborhood in 2021

Figure 74: Distribution of PV installations per citizen for each neighborhood in 2021
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Figure 75: Distribution of the number of households per neighborhood in 2021

Figure 76: Distribution of the percentage of residencies under a housing corporation for each neighborhood in
2021
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Figure 77: Distribution of the percentage multi-household residential buildings for each neighborhood in 2021

Figure 78: Distribution of average woz values for each neighborhood in 2021
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(a) (b)

Figure 79: Distribution of the standardized household income for each neighborhood in 2021

A.4 Group comparison distributions

(a) Distribution of the average electricity consumption
(kWh) per household per PV adoption category

(b) Distribution of the average household size per PV
adoption category

Figure 80: Group comparison distributions

(a) Distribution of the percentage low-income house-
holds per PV adoption category

(b) Distribution of the percentage rental properties per
PV adoption category

Figure 81: Group comparison distributions
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(a) Distribution of the percentage children per PV
adoption category

(b) Distribution of the percentage married citizens per
PV adoption category

Figure 82: Group comparison distributions

(a) Distribution of the percentage multi-household res-
idencies per PV adoption category

(b) Distribution of the percentage rental properties per
PV adoption category

Figure 83: Group comparison distributions

(a) Distribution of the percentage 24-44 year old citi-
zens per PV adoption category

(b) Distribution of the percentage 0-14 year old citizens
per PV adoption category

Figure 84: Group comparison distributions
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(a) Distribution of the percentage high-educated citi-
zens

(b) Distribution of the percentage citizens with a
western-European migration background

Figure 85: Group comparison distributions

Figure 86: Distribution of the population density per PV adoption category
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A.5 Socio-economic analysis - income correlation results

Variable p_value coefficient Adjusted p-value Significant?

Number of income recipients 0.01 0.13 0.21 FALSE
Percentage of persons with lowest income 0.00 -0.18 0.01 TRUE
Percentage of persons with highest income 0.00 0.15 0.06 FALSE
Percentage of households with lowest income 0.00 -0.45 0.00 TRUE
Percentage of households with highest income 0.00 0.40 0.00 TRUE
Households below social minimum 0.00 -0.33 0.00 TRUE
Percentage of households with low income 0.00 -0.34 0.00 TRUE
Households up to 110 percent of social minimum 0.00 -0.31 0.00 TRUE
Households up to 120 percent of social minimum 0.00 -0.30 0.00 TRUE
Median wealth of private household 0.00 0.35 0.00 TRUE
Average property value 0.00 0.16 0.05 FALSE
Number of inhabitants 0.00 0.14 0.06 FALSE
Total unemployment benefits 0.36 0.04 9.68 FALSE
AO benefits total 0.11 0.08 3.03 FALSE
Total general social assistance benefits 0.07 -0.09 1.85 FALSE
Number of people with AOW benefits total 0.00 0.14 0.09 FALSE
Average income per income recipient 0.04 0.10 1.00 FALSE
Average income per inhabitant 0.51 0.03 13.86 FALSE
Average standardized income of households 0.00 0.39 0.00 TRUE
Median assets of private households 0.00 0.23 0.00 TRUE
Total benefits 0.12 0.08 3.24 FALSE

Table 14: Significance values, Spearman coefficients and Bonferroni adjusted p-values for the income related
variables

A.6 Socio-economic analysis - population correlation results

Variable p_value coefficient Adjusted p-value Significant?

Number of inhabitants 0,00 0,14 0,03 TRUE
Men 0,00 0,14 0,04 TRUE
Women 0,00 0,15 0,02 TRUE
Percentage of people 0 to 15 years 0,00 0,48 0,00 TRUE
Percentage of people 15 to 25 years 0,86 0,01 11,16 FALSE
Percentage of people 25 to 45 years 0,00 -0,38 0,00 TRUE
Percentage of people aged 45 to 65 0,00 0,20 0,00 TRUE
Percentage of people aged 65 and over 0,00 0,15 0,02 TRUE
Percentage of people unmarried 0,00 -0,44 0,00 TRUE
Percentage of people married 0,00 0,52 0,00 TRUE
percentage divorced 0,00 -0,15 0,02 TRUE
Percentage married 0,00 0,25 0,00 TRUE
Birth total 0,00 0,16 0,01 TRUE
Birth relative 0,00 0,18 0,00 TRUE
Total mortality 0,07 0,09 0,92 FALSE
Mortality relative 0,43 0,04 5,62 FALSE
Population density inhabitants per km2 0,00 -0,18 0,00 TRUE
Number of households 0,49 0,03 6,40 FALSE
Percentage of single-person households 0,00 -0,58 0,00 TRUE
Percentage of households without children 0,00 0,23 0,00 TRUE
Percentage of households with children 0,00 0,54 0,00 TRUE
Average household size 0,00 0,59 0,00 TRUE
Percentage of persons with western migration background 0,00 -0,33 0,00 TRUE
Percentage of persons from non-western migration background 0,24 -0,06 3,08 FALSE
Percentage of people from Morocco 0,18 0,07 2,39 FALSE
Percentage from the Netherlands Antilles and Aruba 0,03 -0,11 0,37 FALSE
percentage from Suriname 0,19 0,06 2,46 FALSE
percentage from Turkey 0,19 0,06 2,53 FALSE
Percentage of other persons with a non-western migration background 0,00 -0,27 0,00 TRUE

Table 15: Significance values, Spearman coefficients and Bonferroni adjusted p-values for the population related
variables
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A.7 Socio-economic analysis - residency correlation results

Variable p-value Coefficient Adjusted p-value Significant?

PV per citizen 2021 0,00 1,00 0,00 TRUE
PV per household 2021 0,00 1,00 0,00 TRUE
WOZ value 0,00 0,15 0,03 TRUE
Percentage single-family homes 0,00 0,74 0,00 TRUE
Percentage multiple-family homes 0,00 -0,74 0,00 TRUE
Percentage inhabited 0,00 0,18 0,00 TRUE
Percentage owned properties 0,00 0,49 0,00 TRUE
Percentage rental properties 0,00 -0,49 0,00 TRUE
Percentage housing corporation 0,00 -0,23 0,00 TRUE
Percentage other landlords 0,00 -0,22 0,00 TRUE
Percentage ownership unkown 0,05 -0,10 0,60 FALSE
Percentage construction year from 2000 0,00 -0,14 0,05 FALSE
Percentage construction year until 2000 0,00 0,14 0,05 FALSE

Table 16: Significance values, Spearman coefficients and Bonferroni adjusted p-values for the residence related
variables

A.8 Socio-economic analysis - energy correlation results

Variable p value Coefficient Adjusted p-value Significant?

Average gas consumption 0,00 0,27 0,00 TRUE
Average gas consumption rental properties 0,00 0,19 0,00 TRUE
Average gas consumption owned properties 0,00 0,31 0,00 TRUE
Average electricity consumption 0,00 0,49 0,00 TRUE
Average electricity consumption rental properties 0,00 0,43 0,00 TRUE
Average electricity consumption owned properties 0,00 0,50 0,00 TRUE

Table 17: Significance values and Spearman coefficients for the energy related variables

A.9 Socio-economic analysis - education correlation results

Variable p_value coefficient p_value_new Significant?

Net employment rate 0,01 0,12 0,13 FALSE
Percentage employed 0,02 -0,11 0,22 FALSE
Percentage self-employed 0,02 0,11 0,22 FALSE
Percentage highly educated citizens 0,00 0,16 0,01 TRUE
Percentage secondary educated citizens 0,02 0,11 0,21 FALSE
Percentage lower educated citizens 0,00 -0,15 0,03 TRUE

Table 18: Significance values and Spearman coefficients for the education related variables

A.10 Socio-economic analysis - vehicle correlation results

Variable p_value coefficient p_value_new Significant?

Passenger vehicles per household 0,00 0,56 0,00 TRUE
Percentage of vehicles with gasoline fuel 0,49 0,03 1,95 FALSE
Percentage of vehicles with other fuel 0,20 -0,06 0,78 FALSE

Table 19: Significance values and Spearman coefficients for the vehicle related variables
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B Appendix: Artifact part II - System Dynamics model

B.1 Model parameters
A table with all parameters, their modelled values and the corresponding source will be included.

B.2 Model variables
A table with all model variables, their value range and units will be included.

B.3 Extreme Conditions Test
Electricity price

(a) (b)

Figure 87: Extreme condition test results for the electricity price

(a) (b)

Figure 88: Extreme condition test results for the electricity price

PV installation costs
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(a) Overall adoption percentage (b) Adoption percentage of suitable rooftops

Figure 89: Extreme condition test results for the PV installation costs

(a) Installed capacity (b) Variable transmission costs

Figure 90: Extreme condition test results for the PV installation costs

(a) payback period

Figure 91: Extreme condition test results for the PV installation costs

Self-consumption rate
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(a) Overall adoption percentage (b) Payback period

Figure 92: Extreme condition test results for the self-consumption rate

(a) Adoption percentage of suitable rooftops (b) Installed capacity

Figure 93: Extreme condition test results for the self-consumption rate

(a) Energy bill PV adopter (b) Energy bill non-PV adopter

Figure 94: Extreme condition test results for the self-consumption rate
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B.4 Sensitivity Analysis
B.4.1 Univariate analysis under the proposed netting scheme

(a) Univariate sensitivity analysis for the imbalance
costs per kWh

(b) Univariate sensitivity analysis for the distribution
costs

Figure 95: Univariate sensitivity test results

(a) Univariate sensitivity analysis for the inflation fac-
tor

(b) Univariate sensitivity analysis for the market spot
price

Figure 96: Univariate sensitivity test results

(a) Univariate sensitivity analysis for the PV installa-
tion cost (b) Univariate sensitivity analysis for the adoption rate

Figure 97: Univariate sensitivity test results
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Figure 98: Univariate sensitivity analysis for the percentage of suitable rooftops

B.4.2 Multivariate sensitivity analysis under the current netting scheme

(a) Multivariate sensitivity analysis of the number of
adopters under the current netting scheme

(b) Multivariate sensitivity analysis of the installed
residential capacity under the current netting scheme

Figure 99: Multivariate sensitivity test results

(a) Multivariate sensitivity analysis of the adoption
percentage under the current netting scheme
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B.4.3 Multivariate sensitivity analysis under the proposed netting scheme

(a) Multivariate sensitivity analysis of the number of
adopters under the proposed netting scheme

(b) Multivariate sensitivity analysis of the installed
residential capacity under the proposed netting scheme

Figure 101: Multivariate sensitivity test results

(a) Multivariate sensitivity analysis of the adoption
percentage under the proposed netting scheme
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B.5 Full experimental setup

Experiment Netting-
scheme LI subsidy

Sustain-
ability plan (SP)
mandate

LI-netting
scheme

Geopolitical
developments
(GD)

Inflation

Shortage of
technicians
and materials
(t&m)

Adoption rate

1 Current - - - Base case Base case Base case Base case
1.2 Current - - - Base case Base case Base case Low adoption
1.3 Current - - - Base case Base case Base case High adoption
1.4 Current - - - Low Low Base case Base case
1.5 Current - - - High High Base case Base case
1.6 Current - - - Low Low Base case Low
1.7 Current - - - Low Low Base case High
1.8 Current - - - High High Base case Low
1.9 Current - - - High High Base case High
2 Proposed - - - Base case Base case Base case Base case
2.2 Proposed - - - Base case Base case Base case Low adoption
2.3 Proposed - - - Base case Base case Base case High adoption
3 None - - - Base case Base case Base case Base case
3.2 None - - - Base case Base case Base case Low adoption
3.3 None - - - Base case Base case Base case High adoption
4 Proposed - - - Low Base case Base case Base case
5 Proposed - - - High Base case Base case Base case
6 Proposed - - - Base case Low Base case Base case
7 Proposed - - - Base case High Base case Base case
8 Proposed - - - Base case Base case High Base case
9 Proposed - - - Low Low Base case Base case
10 Proposed - - - High High High Base case
11 Proposed €500 - - Base case Base case Base case Base case
12 Proposed €1000 - - Base case Base case Base case Base case
13 Proposed €500 - - Low Low Base case Base case
14 Proposed €500 - - High High High Base case
15 Proposed €1000 - - Low Low Base case Base case
16 Proposed €1000 - - High High High Base case
17 Proposed - Yes - Base case Base case Base case Base case
18 Proposed - Yes - Low Low Base case Base case
19 Proposed - Yes - High High High Base case
20 Proposed - - Yes Base case Base case Base case Base case
21 Proposed - - Yes Low Low Base case Base case
22 Proposed - - Yes High High Base case Base case
23 Proposed - Yes Yes Base case Base case Base case Base case
24 Proposed €1000 Yes - Base case Base case Base case Base case
25 Proposed €1000 Yes Base case Base case Base case Base case
26 Proposed €1000 Yes Yes Base case Base case Base case Base case

Table 20: Full experimental setup
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C Appendix: Artifact part II - System Dynamics modeling and re-
sults

The most important model equations that are not included in the main text are included in this appendix. For
the sub-models, some equations are equal to those in the mail model. In that case, the equation is only included
once, for the main model.

C.0.1 Model equations

Main model

Adoption fraction = IF THEN ELSE( Netting scheme policy=1, ((Fraction willing to adopt("Pay-back pe-
riod current netting scheme"))/100)*"Effect of shortage in tm on adoption", IF THEN ELSE( Netting scheme
policy=2, ((Fraction willing to adopt("Pay-back period proposed netting scheme"))/100)*"Effect of shortage in
tm on adoption", ((Fraction willing to adopt("Pay-back period no netting scheme"))/100)*"Effect of shortage
in tm on adoption"))

WOM effect = ((Potential rooftop solar adopters*Rooftop solar adopters*Contact rate*Adoption from WOM
fraction)/(Potential rooftop solar adopters+Rooftop solar adopters))/12

Innovation effect = ((Potential rooftop solar adopters*Rooftop solar adopters*Adoption from innovation)/(Potential
rooftop solar adopters+Rooftop solar adopters))/12

Adoption percentage of suitable rooftops = MIN( (Rooftop solar adopters/("Total households / total grid
users"*Percent suitable rooftop))*100, 100)

PV installation costs = (PV installation cost lookup(Time)*PV cost sensitivity variable*Tax rate*Inflation)*((1+Interest
rate)1̂0)

Self-consumption rate = IF THEN ELSE(Netting scheme policy=1, 0.3*"Self-consumption rate sensitivity vari-
able", IF THEN ELSE(Netting scheme policy=2, 0.4*"Self-consumption rate sensitivity variable" , 0.45*"Self-
consumption rate sensitivity variable" ))

Neighborhood subgroups
Customers installing rooftop solar group1 = ((((Potential rooftop solar adopters Group1*(Adoption fraction
Group1 LI 2)*0.7)*Adoption sensitivity variable)+((Potential rooftop solar adopters Group1*(Adoption frac-
tion Group1)*0.3)*Adoption sensitivity variable)++WOM effect Group1+ Innovation effect Group1)/Time to
install rooftop solar)/12

Customers installing rooftop solar group2 = (((Potential rooftop solar adopters Group2*(Adoption fraction
Group2*Adoption sensitivity variable))+WOM effect Group2+Innovation effect Group2)/Time to install rooftop
solar)/12

Adoption fraction group1 - 2 = IF THEN ELSE( "LI-netting scheme"=1, ((Adoption rate Group1("Pay-back pe-
riod current netting scheme LI"))/100)*Policy impact sustainability plan Group1, Adoption fraction Group1 LI)

Adoption fraction group1 - 1 = IF THEN ELSE( Netting scheme policy=1, ((Adoption rate Group1("Pay-back
period current netting scheme LI")))/100*Policy impact sustainability plan Group1, IF THEN ELSE( Netting
scheme policy=2, ((Adoption rate Group1("Pay-back period proposed netting scheme LI")) )/100*Policy impact
sustainability plan Group1, ((Adoption rate Group1("Pay-back period no netting scheme LI")))/100*Policy im-
pact sustainability plan Group1))

PV installation cost group1 = ((PV installation cost lookup(Time)*Inflation+(PV installation cost lookup(Time)*Inflation*Interest
rate Low Income*10))*Subsidies)-"LI-subsidy"
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C.0.2 Simulation results

Experiments 1, 2, 3

Figure 103: Adoption percentage of suitable rooftops for experiments 1-3

Figure 104: Total installed capacity for experiments 1-3
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Experiments 1, 2, and 3 with varying adoption rates

Figure 105: Adoption results for experiments 1-3 under different adoption rates

Figure 106: Installed capacity results for experiments 1-3 under different adoption rates
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Experiments 1, 2, and 3 with varying adoption rates, for subgroups 1 and 2

Figure 107: Adoption percentage of suitable rooftops for group 1

Figure 108: Adoption percentage of suitable rooftops for group 2
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Figure 109: Installed capacity per citizen for group 1

Figure 110: Installed capacity per citizen for group 2
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Payback periods under different netting scheme options and scenario’s

Figure 111: Payback times of the current and proposed netting scheme under different scenario’s

Figure 112: Payback times of the current and proposed netting scheme under different scenario’s
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Results of experiments 4-10: External influence scenario’s

Figure 113: Results of experiments 4-10: adoption percentage of suitable rooftops

Figure 114: Results of experiments 4-10: installed capacity per citizen
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Figure 115: Results of experiments 4-10: overall adoption percentage of suitable rooftops in Group 1

Figure 116: Results of experiments 4-10: overall adoption percentage of suitable rooftops in Group 2
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Figure 117: Results of experiments 4-10: installed capacity per citizen in Group 1

Figure 118: Results of experiments 4-10: overall adoption percentage of suitable rooftops in Group 2
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PV installation costs under different scenario’s

Figure 119: Average PV installation costs under different scenario’s

Leveling policy experiments - Sustainability plan mandate

Figure 120: Adoption percentages of the suitable rooftops for the neighborhoods in group 1 under different
configurations of the Sustainability Plan mandate
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Leveling policy experiments - Low-income netting scheme allowance

Figure 121: Adoption percentages for the neighborhoods in group 1 under different configurations of the LI-
netting scheme

Figure 122: Installed capacity of group 1 neighborhoods under different combinations of leveling policy measures,
compared with the installed capacity of group 2 in the base case
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