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There are eight possible Pin groups that can be used to describe the transformation behavior of fermions
under parity and time reversal. We show that only two of these are compatible with general relativity, in the
sense that the configuration space of fermions coupled to gravity transforms appropriately under the space-
time diffeomorphism group.
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I. INTRODUCTION

For bosons, the space-time transformation behavior is
governed by the Lorentz group Oð3; 1Þ, which comprises
four connected components. Rotations and boosts are
contained in the connected component of unity, the proper
orthochronous Lorentz group SO↑ð3; 1Þ. Parity (P) and time
reversal (T) are encoded in the other three connected
components of the Lorentz group, the translates of
SO↑ð3; 1Þ by P, T and PT.
For fermions, the space-time transformation behavior is

governed by a double cover of Oð3; 1Þ. Rotations and
boosts are described by the unique simply connected
double cover of SO↑ð3; 1Þ, the spin group Spin↑ð3; 1Þ.
However, in order to account for parity and time reversal,
one needs to extend this cover from SO↑ð3; 1Þ to the full
Lorentz group Oð3; 1Þ.
This extension is by no means unique. There are no less

than eight distinct double covers of Oð3; 1Þ that agree
with Spin↑ð3; 1Þ over SO↑ð3; 1Þ. They are the Pin groups
Pinabc, characterized by the property that the elements ΛP

and ΛT covering P and T satisfy Λ2
P ¼ −a, Λ2

T ¼ b and
ðΛPΛTÞ2 ¼ −c, wherea,b andc are either 1 or−1 (cf. [1,2]).
In this paper, we show that the consistent description of

fermions in the presence of general relativity (GR) imposes
severe restrictions on the choice of Pin group. In fact, we
find that only two of the eight Pin groups are admissible:
the group Pinþ ¼ Pinþþ− and the group Pin− ¼ Pin−−−.
The source of these restrictions is the double cover of the
frame bundle, which, in the context of GR, is needed in
order to obtain an infinitesimal action of the space-time
diffeomorphism group on the configuration space of
fermions coupled to gravity.

We derive these restrictions in the “universal spinor
bundle approach” for fermions coupled to gravity, as
developed in [3–5] for the Riemannian and in [6–9] for
the Lorentzian case. However, our results remain valid in
other formulations that are covariant under infinitesimal
space-time diffeomorphisms, such as the “global” approach
of [2,10–12]. To underline this point, we highlight the role
of the space-time diffeomorphism group in restricting the
admissible Pin groups.
Selecting the correct Pin groups is important from a

fundamental point of view—it determines the transforma-
tion behavior of fermionic fields under reflections—but also
because the Pin group can affect observable quantities such
as currents [13–15]. Due to their transparent definition in
terms of Clifford algebras, the “Cliffordian” Pin groups
Pinð3; 1Þ ¼ Pinþ−þ and Pinð1; 3Þ ¼ Pin−þþ have attracted
much attention [13,16–19]. Remarkably, the two Pin groups
Pinþ and Pin− that are compatible with GR are not the
widely used Cliffordian Pin groups Pinð3; 1Þ and Pinð1; 3Þ.

II. THE LORENTZIAN METRIC

In order to establish notation, we briefly recall the frame
or vierbein formalism for a Lorentzian metric g on a four-
dimensional space-time manifold M.
A frame ex based at x is a basis e

μ
a∂μ of the tangent space

TxM, with basis vectors labeled by a ¼ 0, 1, 2, 3. The space
FðMÞ of all frames (with arbitrary x) is called the frame
bundle, and we denote by FxðMÞ the set of frames with
base point x. Note that the group Glð4;RÞ of invertible
4 × 4 matrices Aa

b acts from the right on FxðMÞ, sending ex
to the frame e0x ¼ exA with e0μa ¼ eμbA

b
a. This action is free

and transitive; any two frames ex and e0x over the same point
x are related by e0x ¼ exA for a unique matrix Aa

b.
For a given Lorentzian metric g, the orthonormal frame

bundle OgðMÞ ⊂ FðMÞ is the space of all orthonormal
frames eμa, satisfying gμνe

μ
aeνb ¼ ηab. Since two orthonormal

frames ex and e0x over the same point x differ by a Lorentz
transformation Λ, e0x ¼ exΛ, the Lorentz group Oð3; 1Þ acts
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freely and transitively on the set Og
xðMÞ ⊂ FxðMÞ of

orthonormal frames based at x.
Specifying a metric g at x is equivalent to specifying the

set Og
xðMÞ of orthonormal frames. Since Og

xðMÞ ⊂ FxðMÞ
is an orbit under the action of the Lorentz group Oð3; 1Þ on
FxðMÞ, specifying the metric at x is equivalent to picking a
point in the orbit space RxðMÞ ¼ FxðMÞ=Oð3; 1Þ. This is
the set of equivalence classes ½ex� of frames at x, where two
frames ex and e0x are deemed equivalent if they differ by a
Lorentz transformation Λ, e0x ¼ exΛ. We denote the bundle
of all equivalence classes ½ex� (with arbitrary x) by RðMÞ.
To describe fermions in the presence of GR, it will be

convenient to view a metric g onM as a section ofRðMÞ; a
smooth map g∶M → RðMÞ that takes a point x to an
equivalence class ½ex� of frames at x. The configuration
space [20] of general relativity can thus be seen as the space
ΓðRðMÞÞ of sections of the bundle RðMÞ.

III. FERMIONIC FIELDS
IN A FIXED BACKGROUND

We start by describing fermionic fields on M in the
presence of a fixed background metric g. In order to do this,
a number of choices have to be made, especially if we wish
to keep track of the transformation behavior of spinors
under parity and time reversal.
The local transformation behavior is fixed by choosing

one out of the eight possible Pin groups Pinabc, together
with a (not necessarily C-linear) representation V that
extends the spinor representation of Spin↑ð3; 1Þ ⊂ Pinabc.
For example, V consists of n copies of C4 in the case of n
Dirac fermions, and it consists ofm copies of C2 in the case
of m Majorana fermions [21].
Once a Pin group has been selected, the second choice

one has to make is a choice of Pin structure. A Pin structure
is a twofold cover u∶ Qg → OgðMÞ of the orthonormal
frame bundle, equipped with a Pinabc-action that is com-
patible with the action of the Lorentz group onOgðMÞ. The
compatibility entails that if Λ̃ ∈ Pinabc covers Λ ∈ Oð3; 1Þ,
then uðqxΛ̃Þ ¼ uðqxÞΛ for all pin frames qx in Qg. A pin
frame qx is based at the same point as its image, the frame
uðqxÞ. We denote by Qg

x the set of pin frames based at x.
For a given manifold M and a given Pin group Pinabc, a

Pin structure may or may not exist, and if it does, it need not
be unique. The obstruction theory for this problem has been
completely solved for the Cliffordian Pin groups in [22],
and for the general case in [1].
Once a Pin structure Qg has been chosen, one can

construct the associated bundle Sg ¼ ðQg × VÞ=Pinabc of
spinors. A spinor ψx ¼ ½qx; v⃗� at x is thus an equivalence
class of a pin frame qx ∈ Qg

x and a vector v⃗ ∈ V, where
ðqxΛ̃; v⃗Þ is identified with ðqx; Λ̃ v⃗Þ for every element Λ̃ of
the Pin group Pinabc.
For a given background metric g, the fermionic fields are

then described by sections of the spinor bundle Sg, that is,

by smooth maps ψ∶M → Sg that assign to each space-time
point x a spinor ψx based at x. The configuration space for
the fermionic fields at a fixed metric g is thus the space
ΓðSgÞ of sections of the spinor bundle Sg.

IV. FERMIONIC FIELDS COUPLED TO GR

We now wish to describe the configuration space for
fermionic fields coupled to gravity. This is not simply the
product of the configuration space of general relativity and
that of a fermionic field; the main difficulty here is that the
very space Sg where the spinor field ψ takes values depends
on the metric g. A solution to this problem was proposed
in [3,4] for the Riemannian case, and in [6–9] for metrics of
Lorentzian signature. In order to handle reflections, we
need to adapt this procedure as follows.
First, we choose a twofold cover of Glð4;RÞ that agrees

with the universal cover G̃lþð4;RÞ over Glþð4;RÞ. In
Sec. V we show that there are only two such covers, which,
for want of a better name, we will call Ginþ and Gin−.
Having made our choice of Gin�, we choose what one may
call a Gin structure; a twofold cover u∶ Q̂ → FðMÞ with a
Gin�-action that is compatible with the Glð4;RÞ-action on
FðMÞ. Corresponding to every (not necessarily orthogonal)
frame ex, there are thus two gin frames q̂x and q̂0x. If
Ã ∈ Gin� covers A ∈ Glð4;RÞ, then the two gin frames
corresponding to exA are q̂xÃ and q̂0xÃ.
We denote by Pin� the twofold cover of Oð3; 1Þ inside

Gin�. Choosing a Gin structure Q̂ for the group Gin� is
equivalent to choosing a Pin structureQg for the group Pin�.
Indeed, for every Gin� structure Q̂, the preimageQg ⊂ Q̂ of
OgðMÞ ⊂ FðMÞ under the map u∶ Q̂ → FðMÞ is a Pin�-
structure, since the restriction ug∶ Qg → OgðMÞ of u to Qg

intertwines the Pin�-action on Qg with the action of the
Lorentz group Oð3; 1Þ on OgðMÞ. Conversely, every Pin�-
structure u∶ Qg → OgðMÞ gives rise to the associatedGin�-
structure Q̂ ¼ ðQg × Gin�Þ=Pin�. This is the space of
equivalence classes ½qx; Ã�, where ðqxΛ̃; ÃÞ is identified
with ðqx; Λ̃ ÃÞ for every Λ̃ in Pin�. The obstruction theory
for Gin�-structures therefore reduces to the obstruction
theory for Pin�-structures,which has beenworkedout in [1].
Using the Gin structure Q̂, one constructs the universal

spinor bundle Σ ¼ ðQ̂ × VÞ=Pin� in analogy with [9]. A
universal spinor Ψx ¼ ½q̂x; v⃗� at x is an equivalence class of
a gin frame q̂x ∈ Q̂x and a vector v⃗ ∈ V, where ðq̂xΛ̃; v⃗Þ is
identified with ðq̂x; Λ̃ v⃗Þ for every Λ̃ in Pin�. Note that a
universal spinor Ψx in Σ ¼ ðQ̂ × VÞ=Pin� defines a metric
gμν at x, together with a spinor ψx in the spinor bundle
Sg ¼ ðQg × VÞ=Pin� that corresponds with the metric gμν
induced by Ψx.
Indeed, since the covering map u∶ Q̂ → FðMÞ inter-

twines the Pin�-action on Q̂ with the Glð4;RÞ-action on
FðMÞ, it identifies the quotient of Q̂ by Pin� with the
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quotient of FðMÞ by Oð3; 1Þ, which is the orbit space
RðMÞ. From a universal spinor Ψx ¼ ½q̂x; v⃗� at x, we thus
obtain an equivalence class ½uðq̂xÞ� in RxðMÞ, and hence a
metric gμν at the point x.
To obtain not only the metric gμν but also the spinor ψx,

recall that the Pin structure Qg corresponding to gμν is the
preimage ofOgðMÞ under the double cover u∶ Q̂ → FðMÞ.
Since Qg ⊂ Q̂ contains the gin frame q̂x, the equivalence
class Ψx ¼ ½q̂x; v⃗� in Σ ¼ ðQ̂ × VÞ=Pin� yields an equiv-
alence class ψx ¼ ½qx; v⃗� in the spinor bundle Sg ¼
ðQg × VÞ=Pin� by setting qx ¼ q̂x. Here, Sg is the spinor
bundle derived from the metric gμν that is induced by Ψ.
We conclude that both the metric g and the fermionic

field ψ are described by a single section Ψ∶M → Σ, a
smooth map assigning to each point x of space-time a
universal spinor Ψx based at x. The configuration space of
fermionic fields coupled to gravity is thus the space ΓðΣÞ of
sections of the universal spinor bundle Σ.

V. COVERING GROUPS

Out of the eight Pin groups covering Oð3; 1Þ, the only
two that are compatible with this formalism are the twofold
cover Pinþ of Oð3; 1Þ inside Ginþ, and the twofold cover
Pin− of Oð3; 1Þ inside Gin−. We show that their coefficients
in the sense of Sec. I are ða; b; cÞ ¼ ðþ;þ;−Þ and
ða; b; cÞ ¼ ð−;−;−Þ.
First we show that there are only two double covers of

Glð4;RÞ that reduce to the universal cover over Glþð4;RÞ.
Assume thatG is such a cover. If ΛT is an element ofG that
covers the time reversal operator T ∈ Glð4;RÞ, then the
automorphism AdΛT

ðÃÞ ≔ ΛTÃΛ−1
T of G̃lþð4;RÞ covers

the automorphism AdTðAÞ ≔ TAT−1 of Glþð4;RÞ. By the
universal covering property, ΛTÃΛ−1

T is uniquely deter-
mined by Ã, and it depends neither on the choice of G, nor
on the choice of ΛT inside G. Since every element of G can
be written as either Ã or B̃ΛT, there are four types of
products, namely those of the form ÃÃ0, ÃðB̃ΛTÞ, ðB̃ΛTÞÃ
and ðB̃ΛTÞðB̃0ΛTÞ, where Ã; Ã0; B̃; B̃0 are in G̃lþð4;RÞ.
Products of the first 2 types are determined by the group
structure on G̃lþð4;RÞ. This is true for the third type as
well, since ðB̃ΛTÞÃ ¼ B̃ðΛTÃΛ−1

T ÞΛT , and ΛTÃΛ−1
T is

independent of G. As ðB̃ΛTÞðB̃0ΛTÞ ¼ ðB̃ðΛTB̃0Λ−1
T ÞÞΛ2

T ,
the only choice in the product structure onG lies in the sign
of Λ2

T ¼ �1, yielding the two groups Gin�. The twofold
cover Pinþ of Oð3; 1Þ inside Ginþ thus has b ¼ þ1,
whereas the twofold cover Pin− inside Gin− has b ¼ −1.
To establish that both Pinþ and Pin− satisfy c ¼ −1, note

that although the central element PT¼diagð−1;−1;−1;−1Þ
does not lie in the connected component of unity for the
Lorentz group Oð3; 1Þ, it does lie in the connected sub-
group SOð4Þ of Glþð4;RÞ. As the inverse image of
SOð4Þ under the universal cover G̃lþð4;RÞ → Glþð4;RÞ

is its universal cover Spin↑ð4Þ, the square of ΛPΛT inside
G̃lþð4;RÞ equals its square in Spin↑ð4Þ. Here, the elements
�iγ5 ¼∓ γ0γ1γ2γ3 that cover PT square to þ1, as one
easily derives using the Clifford relations fγμ; γνg ¼ 2δμν
for the Euclidean gamma matrices γμ. It follows that
ðΛPΛTÞ2 ¼ 1, and hence c ¼ −1.
It remains to show that a ¼ b. For this, note that the

restriction of the automorphism AdΛT
of G̃lþð4;RÞ to the

simply connected subgroup Spin↑ð4Þ ⊂ G̃lþð4;RÞ is
uniquely determined by its induced Lie algebra automor-
phism. On Spin↑ð4Þ, we thus have AdΛT

ðuÞ ¼ γ0uγ−10 . As
γ0ðiγ5Þγ−10 ¼ −iγ5, we find that ΛTΛP ¼ AdΛT

ðΛPΛTÞ ¼
−ΛPΛT . As we already established that ðΛPΛTÞ2 ¼ 1, it
follows that Λ2

PΛ2
T ¼ −1, and hence that a ¼ −Λ2

P is equal
to b ¼ Λ2

T . We thus conclude that ða; b; cÞ ¼ ðþ;þ;−Þ for
Pinþ, and ða; b; cÞ ¼ ð−;−;−Þ for Pin−.
The groups Pinþ and Pin− are therefore not isomorphic

to the Cliffordian Pin groups Pinð3; 1Þ and Pinð1; 3Þ.
These are generated by the Clifford elements vμγ̃μ with
ημνvμvν ¼ �1, where the Lorentzian gamma matrices γ̃μ
satisfy fγ̃μ; γ̃νg ¼ 2ημν for Pinð3; 1Þ, and fγ̃μ; γ̃νg ¼ −2ημν
for Pinð1; 3Þ. Since the group elements covering P and T
are ΛP ¼ γ̃1γ̃2γ̃3 and ΛT ¼ γ̃0, one readily verifies that
ða; b; cÞ ¼ ðþ;−;þÞ for Pinð3; 1Þ, and that ða; b; cÞ ¼
ð−;þ;þÞ for Pinð1; 3Þ (cf. [1,2]).
In particular, we conclude that the two Pin groups Pin�

compatible with GR are not the widely used Cliffordian Pin
groups Pinð3; 1Þ and Pinð1; 3Þ.

VI. TRANSFORMATION UNDER
DIFFEOMORPHISMS

In the above derivation of the two admissible Pin groups,
a crucial role is played by the continuous covering map
u∶ Q̂ → FðMÞ. This map has physical significance, since it
induces an infinitesimal action of the space-time diffeo-
morphism group DiffðMÞ on the configuration space of
fermions coupled to gravity (cf. [3,8]). This allows one to
formulate a theory which is (up to sign) covariant under
general coordinate transformations (cf. [3,11]), and to
construct a stress-energy-momentum tensor via Noether’s
theorem (cf. [23,24], and cf. [[6], Sec. 6] for an approach
using variation of the metric).
To construct the infinitesimal action, note thatDiffðMÞ acts

by automorphisms on the frame bundle FðMÞ, a diffeo-
morphism ϕ maps ex ∈ FxðMÞ to DϕðexÞ ≔ ∂ μ̄ϕ

μeμ̄a in
FϕðxÞðMÞ. A one-parameter group ϕε of diffeomorphisms
thus yields a one-parameter groupDϕε of automorphisms of
FðMÞ. Since u∶ Q̂ → FðMÞ is a double cover, this lifts to a
uniqueone-parameter groupDϕ̂ε of automorphismsof Q̂. On
the universal spinor bundle Σ ¼ ðQ̂ × VÞ=Pin�, we define
the lift by Dϕ̂ε½q̂x; v⃗� ¼ ½Dϕ̂εðq̂xÞ; v⃗�. For the infinitesimal
variation of the universal spinor field Ψ∶ M → Σ along ϕε,
this yields δΨx ¼ d

dε j0Dϕ̂εðΨϕ−1
ε ðxÞÞ.
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VII. THE ROLE OF DIFFEOMORPHISMS IN
RESTRICTING THE PIN GROUPS

We stress that the above restrictions on the Pin groups are
not needed to construct the configuration space for fer-
mions coupled to gravity, but to ensure that it transforms
appropriately under space-time diffeomorphisms.
Indeed, to construct the configuration space, one could

simply choose any principal Pinabc-bundle P → RðMÞ (for
example the trivial one), and construct the universal spinor
bundle Σ ¼ ðP × VÞ=Pinabc as in Sec. IV. Its sections
Ψ ∈ ΓðΣÞ can be interpreted as a fermionic field ψ together
with a metric g, so ΓðΣÞmay serve as a configuration space.
This requires no restrictions on the Pin groups, nor on the
topology of M.
However, this simple construction leaves the space-time

transformation behavior undetermined. We show that the
restrictions on the Pin groups are recovered by imposing
appropriate transformation behavior on ΓðΣÞ. Compatibility
with the Lorentz group leads to the familiar restrictions on
the topology of M, compatibility with infinitesimal diffeo-
morphisms leads to Pin groups with c ¼ −1, and compat-
ibility with a double cover of the diffeomorphism group
requires Pin groups with a ¼ b as well as c ¼ −1.

A. Lorentz transformations

The pullback of a bundle E → Y along a map f∶ X → Y
is the bundle f�E → X with ðf�EÞx ≔ EfðxÞ. Starting from
the principal bundle P → RðMÞ, one thus obtains for every
metric g∶ M → RðMÞ a principal Pinabc-bundle g�P → M.
Its fibre g�Px at x is the fibre PgðxÞ of P at gðxÞ ∈ RðMÞ.
The bundle g�P is not quite a Pin structure, since the action
of Pinabc on g�P is as yet unrelated to the action of Oð3; 1Þ
on OgðMÞ. To define the transformation behavior of Ψ
under infinitesimal isometries, we need to choose a Pin
structure on each of the bundles g�P. That is, for any
possible metric g ∈ ΓðRðMÞÞ, we need to choose a double
cover ug∶ g�P → OgðMÞ that intertwines the action of
Pinabc on g�P with the action of Oð3; 1Þ on OgðMÞ.
This is where the restrictions on the topology of M arise:
if the conditions in [1] are met, then it is possible to endow
every single bundle g�P → M with a double covering map
ug∶ g�P → OgðMÞ, making it into a Pin structure.

B. Infinitesimal diffeomorphisms

The problem is that, in general, these covering maps ug

do not depend continuously on the metric g. If we require
this to be the case, then we recover the infinitesimal action
of the diffeomorphism group on the configuration space, as
well as the restriction c ¼ −1 on the Pin groups. This
already excludes the “Cliffordian” Pin groups Pinð3; 1Þ
and Pinð1; 3Þ.
If we pull back P→RðMÞ along the evaluation map ev∶

M × ΓðRðMÞÞ → RðMÞ, defined as evðx; gÞ ≔ gðxÞ, we
obtain the principal Pinabc-bundle ev�P → M × ΓðRðMÞÞ.

It consists of all pairs ðp; gÞ ∈ P × ΓðRðMÞÞ where p lies
in g�P. The maps ug for the different metrics g ∈ ΓðRðMÞÞ
then combine to a single map u∶ ev�P → FðMÞ, defined
by uðp; gÞ ≔ ugðpÞ. We say that ug depends continuously
on g if the map u∶ ev�P → FðMÞ is continuous.
If ug depends continuously on g, then we obtain an

infinitesimal action of DiffðMÞ on the configuration space
ΓðΣÞ of fermions coupled to gravity. Since the (left) action
of DiffðMÞ on FðMÞ commutes with the (right) action
of Glð4;RÞ, we have an action of DiffðMÞ on RðMÞ,
yielding the usual space-time transformation behavior
gx ↦ Dϕgϕ−1ðxÞ on the space ΓðRðMÞÞ of metrics. To
obtain the transformation behavior of spinors coupled to
gravity, note that since u∶ ev�P → FðMÞ is continuous, it
induces a double cover from ev�P to ev�FðMÞ, the space of
all pairs ðex; gÞ ∈ FðMÞ × ΓðRðMÞÞ with ex ∈ OgðMÞ.
Since DiffðMÞ acts on ev�FðMÞ, it has an infinitesimal
action on the double cover ev�P. This yields an infinitesi-
mal action on ev�Σ → M × ΓðRðMÞÞ, the space of all pairs
ð½q̂x; v�; gÞ ∈ Σ × ΓðRðMÞÞ where q̂x is in g�P. This yields
an infinitesimal action on ΓðΣÞ, since a section Ψ ∈ ΓðΣÞ
can be viewed as a map fromM to ev�Σ, sending x ∈ M to
the pair ðΨx; gÞ, where g is the metric obtained from the
section Ψ.
To recover the restriction c ¼ −1, consider the case

M ¼ R4. Since Glð4;RÞ is a subgroup of DiffðR4Þ, it acts
from the left on FðR4Þ, and hence on RðR4Þ. Since only
the Lorentz group Oð3; 1Þ leaves the Minkowski metric η
invariant, we obtain an injective, continuous map
σ∶Glð4;RÞ=Oð3;1Þ→R4×ΓðRðR4ÞÞ by σð½A�Þ≔ð0;AηÞ.
The pullback bundle σ�ev�P is a principal Pinabc-bundle
over Glð4;RÞ=Oð3; 1Þ. Note that ev ∘ σ is a diffeomor-
phism from Glð4;RÞ=Oð3; 1Þ to R0ðR4Þ, the space of all
Lorentzian metrics on the tangent space T0R4 at the origin,
so σ�ev�P ¼ ðev ∘ σÞ�P can be identified with the restric-
tion P0 of P to R0ðR4Þ. Since the image of the pullback
map σ�u∶ σ�ev�P → FðR4Þ is the set F0ðR4Þ ≃ Glð4;RÞ
of frames at the origin, we obtain a continuous double cover
P0 → Glð4;RÞ. As this double cover intertwines the (right)
Pinabc-action on P0 with the (right) Oð3; 1Þ-action on
F0ðR4Þ ≃ Glð4;RÞ, the preimage Pþ

0 of Glð4;RÞþ is the
universal covering group eGlð4;RÞþ, and the orientation-
preserving subgroup of Pinabc coincides with the subgroup
of eGlð4;RÞþ that covers SOð3; 1Þ. Since ðΛPΛTÞ2 ¼ 1 in
eGlð4;RÞþ, we recover the restriction c ¼ −1 of Sec. V.

C. Double cover of the diffeomorphism group

In the above line of reasoning, the group structure on Pþ
0

stems from its identification with the universal cover of the
connected Lie group Glð4;RÞþ. Since we lack a group
structure on the disconnected space P0, we cannot directly
infer that a ¼ b. This does, however, follow from the
slightly stronger assumption that the DiffðMÞ-action on
ev�FðMÞ lifts to an action by automorphisms of a double
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cover dDiffðMÞ on ev�P. This yields an action of dDiffðMÞ
on ev�Σ, and by identifying Ψ ∈ ΓðΣÞ with a map from M

to ev�Σ as before, one obtains an action of dDiffðMÞ
on ΓðΣÞ. Explicitly, ϕ ∈ DiffðMÞ acts on ev�FðMÞ by
taking ðex; gÞ to ðDϕðexÞ; Dϕ ∘ g ∘ ϕ−1Þ. If this lifts
to an automorphism Dϕ̂ of ev�Σ, then Dϕ̂ maps Ψ ∈
ΓðΣÞ to the unique Ψ0 ∈ ΓðΣÞ with ðΨ0

x; Dϕ ∘ g ∘ ϕ−1Þ ¼
Dϕ̂ðΨϕ−1ðxÞ; gÞ.
To see that this yields the restriction a ¼ b, consider the

case M ¼ R4. Then Glð4;RÞ is a subgroup of DiffðR4Þ,
and its preimage in dDiffðR4Þ is one of the two Gin groups
Gin�. The (left) action of Gin� by automorphisms on ev�P
covers the (left) action of Glð4;RÞ by automorphisms
on ev�FðMÞ, so in particular, the (left) action of Gin�
on σ�ev�P ¼ P0 covers the (left) action of Glð4;RÞ on
σ�ev�FðR4Þ ¼ F0ðR4Þ. This intertwines the (right) action
of Pinabc on P0 with the (right) action of Oð3; 1Þ on
F0ðR4Þ. Since all these actions are free, we can identify
Pinabc with a subgroup of Gin� that covers the Lorentz
group Oð3; 1Þ. Following the line of reasoning in Sec. V, we
thus find a ¼ b as well as c ¼ −1.
We conclude that although an infinitesimal action of the

space-time diffeomorphism group on the configuration
space of fermions coupled to gravity requires c ¼ −1, an
action of a double cover of the diffeomorphism group can
only be achieved if the Pin group additionally satisfies the
relation a ¼ b.

VIII. DISCUSSION

The conclusion that only two of the eight Pin groups are
compatible with general relativity, appears to be quite
robust. It is based on the elementary observation that the
twofold spin cover of the orthonormal frame bundleOgðMÞ
is compatible with a twofold cover of the full frame
bundle FðMÞ. Although we derived this from the setting
outlined in Sec. IV (going back to [3–5] in the Riemannian
and [6–9] in the Lorentzian case), the use of double covers
of the full frame bundle—and hence our conclusion
that only two Pin groups are admissible—is common to
many other approaches, such as the more “global” formal-
ism developed in [2,10–12]. In fact, the restrictions on
the Pin groups are closely linked to the transformation
behavior of fermions coupled to gravity under space-time
diffeomorphisms.
Since any principal bundle with an infinitesimal action of

the space-time diffeomorphism group is associated to a
discrete cover of a (higher order) frame bundle [7,8],
we expect that our restrictions on the Pin group are not
an artefact of the particular description that we have
adopted.
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