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Preface

I present my master’s thesis, in which I have implemented and evaluated the shifted fracture method
(SFM), a newly proposed method for arbitrary crack propagation, and explored its application to fiber-
reinforced polymer (FRP) composites. These materials have advantageous properties, but predicting
crack propagation remains a significant challenge due to their complex failure behavior. Therefore,
this thesis investigates whether the SFM can be used as an alternative to the currently used model for
micromechanical analysis.

During my master’s studies in civil engineering, I was particularly fascinated by courses covering
complex analysis methods and simulations, especially those involving the finite element method. I have
always found the full understanding and application of such methods very engaging, particularly when
they can be used to solve real-world problems. For me, the most rewarding part of the entire process
is translating theory into practical results and simulations, as this provides valuable insights into how
cracks propagate and can be modeled in complex materials, such as FRP composites.

Like any research project, this thesis was not without its challenges. One of the biggest obstacles
was the implementation of the SFM. As the SFM is a recently published method with limited informa-
tion available, I had to base most of my implementation on a single research paper. Additionally, I was
tasked with integrating the SFM into the existing in-house finite element code. The major challenge
here was that the code was written in C++, a programming language I had never used before. However,
I was eager to take on these challenges, and through patience, asking questions, and a step-by-step
approach, I successfully implemented the method to a great extent. One of the key milestones was de-
veloping a reduced version of the SFM that achieved nearly the same results as the full implementation
but with lower computational complexity.

I could not have completed this thesis without the support of others. First, I would like to thank my
supervisors, Dr. Ir. F. P. van der Meer and Dr. Ir. O. J. Colomés Gené, for their valuable insights and
assistance in understanding the method. A special word of thanks goes to Ir. P. Hofman, my daily
supervisor. The weekly meetings helped me to stay on schedule and discover new ideas and solutions.
I appreciate the time my supervisors invested in helping me navigate the complexities of this topic.

Ultimately, I hope these insights on the SFM will lay the groundwork for future research and con-
tribute to the further development of the SFM for advanced materials, such as FRP composites.

Stijn Anton Platzer
Delft, January 2025
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Summary

Fiber-reinforced polymer (FRP) composites are used in various engineering applications due to their
many advantageous properties, but predicting failure remains challenging due to their complex fail-
ure behavior. The Computational Mechanics group at TU Delft uses an inter-element cohesive zone
method, referred to as the Ortiz model, to analyze crack propagation at the microscale. Although
the method can successfully predict complex failure processes in FRP composites, it is highly mesh-
dependent, making large-scale simulations impractical.

This research implements and evaluates the shifted fracture method (SFM) as an alternative to
reduce mesh dependency without significantly increasing computational complexity. Its effectiveness
is investigated through a step-by-step implementation to systematically investigate the importance of
its main components and compare it with the Ortiz model. The SFM introduces some key modifications,
including an area correction term in the crack boundary terms, an adapted crack propagation algorithm,
shifted weak form equations, and shifted cohesive zone conditions, which are shifted using Taylor
expansions. To explore the importance of these key components, three versions were tested: (1) the
full SFM implementation, (2) a reduced SFM with only the area correction term and crack propagation
algorithm, and (3) an extended Ortiz model with only the area correction term.

Numerical simulations show that the reduced SFM is robust, computationally efficient, and mesh-
independent in basic fracture simulations. Based on these findings, further testing was conducted
using this model instead of the full SFM. The results confirm the importance of the area correction term
in reducing mesh dependency. The extended Ortiz model, on the other hand, showed less accurate
results in predicting cracks, even though this version does correct for the effective crack surface area.
Furthermore, the criterion used to determine the crack direction, the maximum principal tensile stress,
proved unsuitable for mixed-mode fracture scenarios and led to inaccurate crack paths.

Although the reduced SFM is promising for basic fracture tests, the method, in its current form, is not
yet directly applicable to complex fracture scenarios, such as in FRP composites. To improve this, addi-
tional features, including crack initiation, merging, and termination, were implemented. These features
show promising results in basic fracture tests; however, further validation of these features and the im-
plementation of additional features are needed to make the reduced SFM suitable for FRP composites.
This research concludes that the reduced SFM is a computationally efficient and mesh-independent so-
lution for basic fracture testing, but additional refinements are needed for complex fracture scenarios.
Therefore, recommendations are made on what is needed for extending the SFM for more complex
fracture scenarios and FRP composites.
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1
Introduction

Fiber-reinforced polymer (FRP) composites are used in various engineering applications due to their
exceptional properties, such as lightweight, high strength-to-weight ratio, corrosion resistance, and
versatility. The advantageous properties of FRP composites are mainly due to their multiscale nature.
However, this multiscale nature introduces significant challenges in understanding and predicting the
failure behavior of FRP composites [1].

Failure in FRP composites often involves complex, interacting mechanisms such as densely dis-
tributed cracking caused by matrix cracking and fiber-matrix debonding. Furthermore, fiber breakage
can occur, as well as complex failure processes such as crack merging and branching. Failure analysis
of composite structures must account for all possible processes as well as their interactions. Predicting
the initiation of these failure processes alone is often not sufficient, as local damage usually does not
lead to the immediate collapse of the structure. Therefore, the failure analysis must be progressive,
which means that the progression of failure in the material must be simulated. These complex failure
behaviors make it challenging to accurately model the progressive failure behavior of FRP composites.
Mesoscale modeling offers computational efficiency by homogenizing the fibers and polymer matrix.
However, these models often fail to capture essential micromechanical interactions that are crucial for
understanding complex fracture processes [2]. On the other hand, micromechanical modeling provides
a much more detailed physics-based representation, but its high computational costs make large-scale
simulations impractical.

An ideal solution would be a fully coupled multiscale failure analysis, where detailed local simula-
tions inform the global structural response [1]. For this, there remains a huge challenge in developing
computational models at the microscale that are capable of simulating results both quickly and accu-
rately.

Over time, various computational methods have been developed to predict and analyze crack prop-
agation at the microscale. At TU Delft, the Computational Mechanics group uses an inter-element
cohesive zone method. In this method, cohesive elements are dynamically inserted along the element
boundaries when a stress-based failure criterion is met. This technique, originally introduced by Ortiz
and Camacho [3], is referred to in this research as the ”Ortiz model”. Crack initiation in the Ortiz model
starts at the middle node of edges of six-noded triangular elements by splitting the nodes and inserting
a cohesive element. To ensure a smooth response and avoid singularities, the model uses a shifted
cohesive law [4], which ensures that traction at zero crack opening matches the cohesive traction at
crack initiation.

The Ortiz model has proven successful in predicting the complex failure mechanisms observed in
FRP composites, such as densely distributed cracking, crack merging, and branching. This is achieved
by dynamically checking all mid-nodes of the elements within the mesh and allowing cracks to initiate
throughout the entire domain. Its ability to propagate multiple cracks and to simulate the interactions
between these cracks makes it well-suited for capturing complex failure behavior. However, the Ortiz
model is an inter-element cracking method, meaning that cracks can only propagate along the edges
of the finite element mesh. This creates mesh dependency since the crack path is constrained by the
mesh configuration. This dependency influences the accuracy of the results: a coarser mesh reduces
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accuracy, while a finer mesh improves accuracy but significantly increases computational costs. Fur-
thermore, cohesive zone modeling imposes requirements on element size to ensure accurate results,
further contributing to computational challenges.

These limitations highlight the need for computational models that minimize mesh dependency,
allowing for accurate results even with coarser mesh sizes. Such models can significantly lower com-
putational costs and make large-scale simulations more practical and efficient.

In this thesis, these challenges are addressed by the implementation and evaluation of the shifted frac-
ture method (SFM), a recently proposed framework for arbitrary crack growth. The SFM introduces
several key innovations to improve the accuracy of crack propagation while maintaining computational
efficiency. In this method, the fracture interface conditions are approximated using a surrogate fracture
surface, which consists of the element edges of the finite element mesh that are closest to the true frac-
ture surface. To reduce mesh dependency, the SFM shifts the fracture interface conditions using Taylor
expansions, ensuring that the interface conditions on the surrogate surface closely approximate those
on the true fracture surface. These Taylor expansions compensate for any differences between the
surrogate and true fracture representations. Unlike traditional cohesive zone models and node-release
techniques, the SFM significantly reduces mesh dependency and ensures an accurate representation
of the true fracture area. It also avoids the creation of small, irregularly shaped cells (cut cells) near
cracks, as seen in methods like XFEM, and thus avoids the complexities of stabilizing cracks within
the finite element mesh. These advantages make the SFM a promising approach for FRP composites,
where reducing mesh dependency is essential for lowering computational costs while maintaining ac-
curacy in failure predictions.

The aim of this research project is to implement and test the SFM into an in-house finite element code
for micromechanical analysis, comparing it to the Ortiz model and assessing its effectiveness for FRP
composites.

The main research question of this study is:

• How effective is the proposed method for arbitrary crack growth in predicting the propagation of
cracks in fiber-reinforced polymer composites?

To address this main research question, the following sub-questions are considered:

• What are the key components of the proposed crack growth prediction method?
• How does the proposed method compare to the existing Ortiz model in terms of accuracy and
computational efficiency?

• How does the proposed method perform under complex crack growth scenarios observed in FRP
composites?

• What are the limitations and challenges associated with the proposed method?

In this research project, the SFM is implemented step by step to systematically investigate the impor-
tance of its main components. The Ortiz model serves as the starting point for the implementation,
and gradually, key components of the SFM are introduced. Throughout the implementation, various
intermediate versions of the SFM are explored to better understand the significance of its key com-
ponents, as well as the applicability and limitations when applied to complex fracture scenarios and
FRP composites. Also, extra attention is given to challenges such as crack initialization, merging, and
termination, which play a critical role in successfully modeling FRP composites.

A series of numerical simulations are performed to evaluate the performance of the implemented
versions of the SFM in comparison to the Ortiz model. All the simulations are performed in two di-
mensions under the plane strain assumption, using the finite element method (FEM) to implicitly solve
the quasi-static equilibrium equation. The analyses are based on fracture mechanics principles, with
a particular focus on crack path accuracy in both simple and complex geometries. The research is
structured into four key phases:
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1. Implementation: developing and implementing the SFM into the in-house finite element code.
2. Verification and validation: testing the accuracy and computational efficiency through bench-

mark tests and experimental data.
3. Testing simplified approach: exploring the feasibility of a reduced-complexity version of the

SFM.
4. Application of additional features: extending the method to enhance its applicability for FRP

composites.

The structure of this thesis is organized as follows: Chapter 2 outlines the theoretical background,
covering key concepts in FRP composites, cohesive zone modeling, and the theoretical frameworks
of both the Ortiz model and the SFM. Chapter 3 details the implementation process, addressing the
challenges encountered in applying the SFM to FRP composites and the implementation of additional
features. Chapter 4 presents the results, starting with the verification and validation of the complete
SFM implementation, along with a partially implemented version on basic cases, followed by an evalua-
tion of an even further simplified version of the SFM and an analysis of the effects of crack initialization,
merging, and termination. Chapter 5 discusses the findings, limitations, and recommendations for fu-
ture work. Finally, Chapter 6 wraps up the thesis and summarizes key outcomes.



2
Theoretical Background

This chapter presents the theoretical background for this thesis. Starting with an overview of fiber-
reinforced polymer (FRP) composites, explaining their multiscale nature, failure mechanisms at the
microscale, and limitations and challenges. After that, the basics of cohesive zone modeling (CZM) are
explained. This is done because of its fundamental role in both the Ortiz model and the shifted fracture
method (SFM). After that, the Ortiz model is explained in detail, where the crack propagation process,
the shifted cohesive law, and the numerical solutions scheme are explained. Also, the limitations of
the model are discussed, such as mesh dependency and the computational challenges. To address
these challenges, the SFM is introduced, aimed at reducing mesh dependency, improving accuracy,
and enhancing computational efficiency. Finally, a theoretical comparison between the Ortiz model
and the SFM is made to establish a good starting point for the numerical implementation discussed in
the following chapter.

2.1. Fiber-reinforced polymer (FRP) composites
FRP composites consist of high-strength fibers embedded in a polymer matrix. Due to their many ad-
vantages, such as high-strength-to-weight ratio, durability, and versatility, FRP composites are used
in various engineering applications. The fibers are typically made of materials such as glass, carbon,
aramid, or basalt [5] and carry most of the load. The matrix is usually composed of thermoset or thermo-
plastic resin, which keeps the fibers in place and ensures load transfer between the fibers and matrix.
Different composite designs exist, such as woven, braided, and non-crimp fabric configurations. But,
the most commonly used design is the traditional laminate composite, which is made of unidirectional
plies. Here, the fibers are aligned in a fixed orientation within each ply, and multiple plies with varying
fiber orientations are placed on top of each other. This makes it easy to adjust the material properties
to the specific application.

The advantageous properties of FRP composites are mainly due to their multiscale nature (see
Figure 2.1), which contributes to their exceptional mechanical properties. However, the multiscale
nature also introduces significant challenges in understanding and predicting their behavior [1]. The
following section investigates themultiscale nature of FRP composites and their implications for fracture
modeling.

2.1.1. Multiscale nature of FRP composites
Laminated FRP composites have a multiscale nature, which means that the mechanical behavior can
be analyzed at different scales. These three different scales include (see Figure 2.1):

• Microscale: At this scale, the structure of the composite is detailed, where the individual fibers
and the surrounding matrix material can be distinguished. This scale will be considered in this
thesis.

• Mesoscale: In this scale, the plies within the composite are homogenized to an orthotropic ma-
terial. The fiber orientation influences the ply properties.

• Macroscale: At the largest scale, the whole laminate composite is considered as a single equiv-
alent material, with properties obtained through thickness homogenization.

4



2.1. Fiber-reinforced polymer (FRP) composites 5

Figure 2.1: Three levels of observation for a composite laminate [1].

Mesoscale modeling offers computational efficiency because the fibers and the polymer matrix are
homogenized. However, they often cannot capture critical microscale interactions, which influences
the failure behavior [2]. Micromechanical modeling, on the other hand, can provide a more detailed
representation but also requires more computational costs. This makes the application to large-scale
simulations often not possible. The ideal solution would be a fully coupled multiscale failure analysis,
where detailed local simulations dynamically inform the global structural response [1].

2.1.2. Failure mechanisms in FRP composites at the microscale
In FRP composites, there are different failure mechanisms that are all important for predicting the
behavior of composites. Failure in FRP composites usually involves multiple interacting processes. At
the microscale, these are:

• Matrix cracking: Cracks develop in the polymer matrix due to localized stress concentrations.
• Fiber breakage or kinking: Fibers may fracture under tensile loading or buckle and kink under
compressive forces.

• Fiber-matrix debonding: The interface between the fibers andmatrix detaches, disrupting stress
transfer and causing localized damage.

Usually, predicting the initiation of failure is not sufficient because failures, such as matrix cracking,
do not necessarily compromise the structural integrity of the composite. When matrix failure occurs,
the load-bearing capacity is maintained through stress redistribution to the fibers. So, to accurately
predict the behavior of composites, progressive failure modeling must be considered. This allows the
simulation of stress redistribution and the evolution of damage after initial failure [1].

2.1.3. Limitations and challenges
Despite the many advantages, the use of FRP composites in engineering practice is set back due
to challenges in understanding and modeling the failure behavior. Because of the complex failure
mechanisms, ensuring structural safety often relies on extensive and expensive experimental testing. If
reliable computational models were available, simulations could replace some physical tests, reducing
costs and enabling better optimization of materials and designs. However, this remains a key challenge
because current computational methods experience a trade-off between accuracy and computational
cost, particularly for microscale simulations [1].

So, there lies a major challenge in developing models that are capable of accurately predicting
crack propagation and are also computationally efficient. While micro-simulations can capture pro-
gressive damage and complex fiber-matrix interactions, the computational costs remain a problem. To
address this, this thesis focuses on improving microscale analysis for both accuracy and computational
efficiency in crack propagation prediction.
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2.2. Cohesive zone modelling
Cohesive zone models (CZM) are widely used in fracture mechanics for simulating material separation
and fracturing processes. This concept was first introduced by Dugdale [6] and Barenblatt [7]. In
CZMs, a thin zone that vanishes ahead of the crack tip, known as the cohesive zone, is introduced.
This cohesive zone effectively eliminates stress singularities and controls energy dissipation during
crack propagation. It consists of upper and lower surfaces referred to as cohesive surfaces, which are
held together by cohesive tractions. These tractions resist separation and are governed by a cohesive
law that relates the cohesive tractions t to the size of the displacement jump of the cohesive surfacesJuK [1]:

t = t(JuK) (2.1)

Figure 2.2 illustrates a cohesive zone ahead of a crack tip with the cohesive surfaces held together
by cohesive tractions t. Figure 2.3 shows a general cohesive law, illustrating the relationship between
cohesive traction t and the displacement jump JuK. This cohesive law can be described as follows [8]:

t = tmaxf(
JuKJuKmax

) (2.2)

where tmax is the maximum cohesive traction, JuKmax is a characteristic separation displacement, and
f is a dimensionless function describing the shape of the cohesive traction-separation curve (cohesive
curve) depending on the failure mechanism. A variety of cohesive laws exist to describe material
behavior. In this thesis, a shifted cohesive law 2.6 is used, which will be detailed in the next section.

Another important material parameter of the CZM is the fracture energy Gf [9]:

Gf =

∫ JuKmax

0

t(JuK)dJuK (2.3)

This integral represents the total energy dissipated during crack propagation, corresponding to the area
under the cohesive traction-separation curve (see Figure 2.3).

Figure 2.2: Cohesive zone ahead of a crack tip.
Modified from [8]. Figure 2.3: General cohesive law describing the

relationship between the cohesive traction and the
separation displacement. Modified from [8].

The CZM plays a key role in this thesis, as both the Ortiz model and the SFM rely on CZMs to simulate
fracture propagation. This section lays out the foundational principles of CZMs, which are essential for
understanding both the Ortiz model and the SFM.

2.3. The Ortiz model: inter-element cohesive zone method
In Section 2.1, a brief introduction was provided on fiber-reinforced polymer composites, which expe-
rience complex failure processes at the microscale. Over time, various computational methods have
been developed to predict and analyze crack propagation at this scale. The Computational Mechanics
group at TU Delft uses an inter-element cohesive zone method, referred to as the Ortiz model, in this
thesis. In this method, cohesive elements are dynamically inserted along the element boundaries when
a stress-based failure criterion is met, as originally described by Ortiz and Camacho [3].
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2.3.1. Crack propagation in the Ortiz model
Crack initiation in the Ortiz model occurs at the middle node of the edges of six-noded triangular el-
ements. When a stress-based failure criterion is met, the nodes are split, and a cohesive element is
inserted (see Figure 2.4). The stress-based failure criterion is defined as [3]:

σeff ≥ ft, where σeff =

{√
(tn)2 + θ(|ts|)2, if JuKn ≥ 0√
θ(|ts| − µ|tn|), if JuKn < 0

(2.4)

where ft is the cohesive strength, σeff the effective stress, t = (tn, ts) the traction of cohesive surface
along the normal direction and shear direction in the local n, s frame (see Figure 2.5), JuK = (JuKn, JuKs)
the displacement jump along normal and shear direction, θ a shear stress factor, and µ the friction
coefficient.

Figure 2.4: Sketch of the dynamic insertion technique of
cohesive elements

(a) (b)

Figure 2.5: (a) Mid node traction forces t. (b) Normal
and shear stresses n and τ .

Once the criterion for cohesive element insertion is met, the crack path is determined by solving the dis-
cretized quasi-static equilibrium equation, which accounts for the traction forces acting on the cohesive
edges. [10]

2.3.2. The shifted cohesive law
Cohesive elements are inserted dynamically during the simulation. To keep the results smooth and
prevent singularities, the cohesive law needs to be carefully designed. For example, if the cohesive
traction has a non-zero value at zero crack opening, directly applying this can lead to singularities under
mixed-mode loading conditions (See Figure 2.6 (left)). [11]

To address this, the shifted cohesive law is adopted. In this approach, the displacement jump JuK
across the crack is shifted by a value that depends on the magnitude of the displacement jump at crack
initiation as proposed by Hille et al. [4] (see Figure 2.6 (middle)):

JuKshifted = JuK + JuK0 (2.5)

where the shift JuK0 is defined as: JuK0 =
t0

Km
(2.6)

in which t0 is the cohesive traction at themoment of crack initiation andKm is the initial dummy stiffness.

This shift ensures that the cohesive law behaves as if it has an initially rigid response, avoiding artificial
compliance while maintaining numerical stability. As shown in Figure 2.6 (right), the traction-separation
relation is shifted such that the traction at zero crack opening matches the cohesive traction at crack
initiation.[2, 12]
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Figure 2.6: Pure mode I representation of shift in cohesive law to mimic initially rigid behavior [1].

2.3.3. Numerical solution scheme
The Ortiz model uses the Newton-Raphson method as an incremental-iterative solver for solving the
system of equations in finite element analysis [13]. This method iteratively reduces the unbalance
at each load increment to achieve equilibrium. To handle the complex equilibrium paths associated
with progressive failure in composite materials, such as snap-back behavior, the equilibrium path is
traced using a combination of displacement-control and the dissipation-based arc-length method, as
described by Gutiérrez [14]. This approach is detailed in [1], with a brief summary provided below.

Failure in composites often involves sharp snap-backs along the equilibrium path, particularly when
matrix failure occurs. Two simultaneous processes contribute to this behavior: matrix material damage
and fiber unloading. Fiber unloading releases a significant amount of elastic energy, which can exceed
the energy required to drive matrix damage, resulting in unstable damage growth, and snap-back be-
havior is observed. To address these challenges, the dissipation-based arc-length method is used. In
this method, a fixed amount of energy dissipation is prescribed per step, enabling stable progression
along the equilibrium path. Figure 2.7 illustrates how the equilibrium path is incrementally followed us-
ing equal energy dissipation steps. However, this method only works when energy dissipation occurs;
during purely elastic stages, the system becomes singular.

To overcome this limitation, a hybrid loading strategy is adopted. The simulation begins with displacement-
controlled analysis (Figure 2.8) during elastic stages and switches to dissipation-based arc-length con-
trol when damage initiates and energy dissipation becomes significant. The solver also incorporates an
adaptive increment size strategy to recover from non-convergence, ensuring continuity of the analysis.

Figure 2.7: Incremental solution of the equilibrium path
using the dissipation-based arc-length method during

damage evolution.

Figure 2.8: Incremental solution of the equilibrium path
using displacement-controlled analysis during elastic

stages.

In summary, theOrtizmodel’s numerical solution scheme combines displacement control and dissipation-
based arc-length control to trace complex equilibrium paths, including snap-back behavior and post-
failure responses. For a detailed explanation of this solution scheme, readers are referred to [1], with
further details on the dissipation-based arc-length method available in [14].
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2.3.4. Limitations of the Ortiz model
TheOrtiz model has proven to be an effectivemethod for predicting crack growth in composite materials.
Failure processes such as densely distributed cracking, crack merging, and branching can be well
simulated with this model, as it allows crack initiation throughout the entire domain. It also allows
different cracks to merge or close. However, the method also has some notable limitations, which
come from the fact that the Ortiz model is an inter-element cracking method, which means that cracks
can only grow along the element boundaries of the finite element mesh. Furthermore, the method
relies on the cohesive zone model, which introduces its own challenges. The following key limitations
highlight the method’s challenges and the improvements that are needed:

1. Mesh dependency
The Ortiz model is dependent on the mesh configuration, as cracks are constrained to grow along
the edges of the finite elements. This influences the following aspects:

• Accuracy: A coarser mesh reduces accuracy because the crack path is restricted to prede-
fined element edges, which may not align with the actual crack path.

• Computational costs: A finer mesh improves accuracy by better approximating the crack
path but significantly increases computational costs.

2. Overestimation of the fracture energy
In the Ortiz model, cracks are only allowed to grow along existing element edges, which can
lead to an overestimation of fracture energy. This can happen when the actual crack path does
not match the mesh geometry. This introduces mesh bias, which can only be compensated by
remeshing. [9]

3. Element size requirements
Robust and accurate simulations require element sizes to be several times smaller than the co-
hesive zone length. This limits the applicability of the Ortiz model to small-scale simulations, and
large-scale computations are not feasible due to rapidly escalating computational costs. [1]

These limitations demonstrate the need for a more robust computational framework that can reduce
mesh dependency, allowing cracks to develop independently of the mesh configuration. This would
reduce computational costs, which is beneficial for large-scale simulations or three-dimensional simu-
lations. To address these limitations and challenges, the following section presents a novel approach
to arbitrary crack propagation: the shifted fracture method (SFM) proposed by Li et al. [15, 16].

2.4. The shifted fracture method (SFM): a novel approach
The shifted fracture method (SFM), introduced by Li et al. [15, 16], is a novel approach for modeling
crack propagation. In this method, the true fracture surface is approximated by a surrogate fracture
surface, which consists of element edges along the crack path in the finite element mesh. To reduce
mesh dependency, the SFM shifts the fracture interface conditions using Taylor expansions, ensuring
that the interface conditions on the surrogate surface closely approximate those on the true fracture sur-
face. These Taylor expansions compensate for discrepancies between the surrogate and true fracture
representations.

2.4.1. Key features and innovations
The SFM introduces several innovative features that can improve crack modeling while maintaining
computational efficiency. The method offers simplicity and computational data structures comparable
to techniques such as node-release techniques (NRT) [17], but with the accuracy of methods like ex-
tended finite element methods (XFEM) [18] and generalized finite element methods (GFEM) [19]. This
allows for the prediction of complex crack propagation with high accuracy and without the complicated
computational structure often associated with advanced techniques. The SFM introduces the following
innovative features to improve crack modeling [15, 16]:

• Accurate representation of fracture area: The SFM correctly accounts for the area of the true
fracture. This can be observed in the variational equations, where projection terms map the
surrogate fracture surface onto the true fracture surface.
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• Reduction ofmesh dependency: Unlike classical cohesive zonemodels or node-release/element-
deletion techniques, the SFM reduces the severe mesh dependencies typically observed by shift-
ing the fracture interface conditions using Taylor expansions, ensuring that the interface condi-
tions on the surrogate surface closely approximate those on the true fracture surface. The Taylor
expansions compensate for any differences between the surrogate and true fracture representa-
tions.

• Application of Taylor expansions: Cohesive fracture models are well suited for Taylor expan-
sions, as they naturally prevent stress singularities near the fracture tip, ensuring numerical sta-
bility.

• Sharp interface modeling with simple implementation: The SFM behaves as a sharp inter-
face model, providing accuracy comparable to XFEM and GFEM while maintaining simpler data
structures and integration rules. Unlike XFEMs and GFEMs, which can create small, irregularly
shaped cells (cut cells) near cracks, the SFM avoids the creation of such cut cells. Cut cells often
need extra numerical stabilization techniques to handle small elements, which can complicate the
implementation and increase computational costs. By completely avoiding the generation of cut
cells, the SFM eliminates the need for stabilization mechanisms, leading to a simpler and more
robust numerical implementation.

• Computational efficiency: The selection of the crack propagation direction and the update of the
fracture surface in the SFM have computational complexities similar to node-release techniques
(NRT). Consequently, the necessary data structures and algorithms are comparable to those in
NRT-based methods.

2.4.2. Theoretical framework
This section presents the key theoretical foundations of the SFM. The formulation begins with the gov-
erning equations for a fracturing elastic solid, followed by their weak form representation. Fundamental
concepts such as true and surrogate cracks are introduced, forming the basis for the development of
the shifted cohesive zone conditions. Finally, the derivation of the shifted weak form equations is dis-
cussed, which plays a crucial role in the SFM framework. [15, 16]

Governing equations for a fracturing elastic solid
The basic governing equations for a fracturing elastic solid under small deformation are first introduced
[20]. Consider a domain Ω ⊂ R2 with boundary Γ ≡ ∂Ω. A single crack, denoted by Γc divides the
domain into two subdomains Ωm where m = ± such that Ω = Ω+ ∪ Ω− (see Figure 2.9). The rest of
the boundary Γ is further divided into dirichlet and neumann boundaries for each subdomain, denoted
as Γm

u and Γm
t , respectively. Before fracture, the displacement field remains continuous across Γc.

However, once a failure criterion is met, a discontinuity in the displacement field is introduced to model
crack propagation. The governing equations for this problem are:

−∇ · σm = bm, in Ωm, (2.7)
σm · nm = t

m
, on Γm

N , (2.8)
um = um, on Γm

D , (2.9)
t ≡ t+ = σ+ · n+ = −σ− · n− = −t−, on Γc, (2.10)

t = tcoh(JuK), on Γc. (2.11)

The first equality is enforcing the balance of forces, where σ is the stress tensor, ∇ is the gradient
operator, and b is the (volumetric) body force. The next two conditions are the prescribed traction and
displacement boundary conditions t

m and um, respectively. The last two conditions are associated
with the crack interface where n+ and n− are the outward unit normals to Ω+ and Ω−, respectively,
tcoh(JuK) is the cohesive traction vector to be defined by a cohesive law and JuK the displacement jump.
For elastic materials under the small strain assumption, the constitutive equation is given by:

σ = C : ε (2.12)

where the strain tensor reads ε = ∇su = 1
2 (∇u +∇Tu) defined as the symmetric gradient of the dis-

placement field u andC is the fourth-order elastic stiffness tensor. For linear isotropic elastic materials,
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the elastic stiffness tensor is written as:

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (2.13)

where λ = Eν
(1+ν)(1−2ν) and µ = E

2(1+ν) are the Lame constants, E the Young’s modulus, ν the Poisson’s
ratio and δij is the Kronecker delta tensor.

Figure 2.9: Domain with an internal interface crack.

Weak form equations
To derive the weak form equations from the equilibrium equation (Eq. 2.7), the equation is multiplied by
the test functionsw+ andw−. Integrating the resulting expression over the domain yields the following
formulation [21]:

−
2∑

m=±

∫
Ω

wm · (∇ · σm) dΩ =

2∑
m=±

∫
Ω

wm · bm dΩ ∀ wm (2.14)

Applying integration by parts or the divergence theorem yields the weak form equation:

2∑
m=±

∫
Ω

∇swm : σm dΩ =

2∑
m=±

∫
Ω

wm · bm dΩ +

2∑
m=±

∫
Γ

wm · (σm · nm) dΓ ∀ wm (2.15)

Substitution of the neumann and crack boundary conditions gives the weak form equation:

2∑
m=±

∫
Ω

∇swm : σm dΩ +

∫
Γc

w+ · (σ+ · n+) dΓ +

∫
Γc

w− · (σ− · n−) dΓ

=

2∑
m=±

∫
Ω

wm · bm dΩ +

2∑
m=±

∫
ΓN

wm · tm dΓ ∀ wm

(2.16)

This weak form equation can be rewritten in another form by using the following equality:

σ+ · n+ ·w+ + σ− · n− ·w− = JwK · {{σ}} · n+ {{w}} · JσK · n (2.17)

where the two crack boundary terms are expressed into a mean value and a jump value using the
operators {{·}} and J·K, respectively:

{{w}} =
1

2
(w+ +w−), JwK = w+ −w−,

{{σ}} · n =
1

2
(σ+ + σ−)n, JσK · n = (σ+ − σ−)n.

In this thesis, it is assumed that the material on either side of the fracture is the same, so λ-weighted
average {{x}}λ = λx+ + (1 − λ)x− is set to 1/2 in the numerical computations. This can be changed
when there are big differences in material properties or mesh sizes across the crack interface.
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Proof: on Γc we have

σ+ · n+ ·w+ + σ− · n− ·w− =σ+ · n ·w+ − σ− · n ·w− (n+ = −n− = n)

=
1

2
(σ+ · n ·w+ + σ+ · n ·w− − σ− · n ·w+ − σ− ·w−n)+

1

2
(σ+ · n ·w+ + σ− · n ·w+ − σ+ · n ·w− − σ− ·w−n)

=
1

2
(w+ +w−) · (σ+ − σ−)n+

1

2
(σ+ + σ−)n · (w+ −w−)

=JwK · {{σ}} · n+ {{w}} · JσK · n
where in the first line, the equality n+ = −n− = n is used. Substitution of equality 2.17 gives the weak
form equation:

2∑
m=±

∫
Ω

∇swm : σm dΩ +

∫
Γc

JwK · {{σ}} · n dΓ +

∫
Γc

{{w}} · JσK · n dΓ

=

2∑
m=±

∫
Ω

wm · bm dΩ +

2∑
m=±

∫
ΓN

wm · tm dΓ ∀ wm

(2.18)

By applying the identities JσK · n = 0 and {{σ}} · n = tcoh which follows from (Eq. 2.10), the weak form
equation of the Ortiz model is obtained:

2∑
m=±

∫
Ω

∇swm : σm dΩ +

∫
Γc

JwK · tcoh dΓ =

2∑
m=±

∫
Ω

wm · bm dΩ +

2∑
m=±

∫
ΓN

wm · tm dΓ ∀ wm

(2.19)

This demonstrates that the fundamental weak form equations are the same for both methods. How-
ever, in the SFM, an additional shift is introduced to modify the cohesive zone conditions. This shifted
formulation will be developed in the following sections.

The true and surrogate crack
The goal of the SFM is to shift the location where the true fracture cohesive conditions are applied Γc

to a surrogate location Γ̃c. This is done by shifting the cohesive zone conditions and the weak form
equation. The surrogate location Γ̃c is defined by the edges of the mesh that are closest to the true
crack Γc using the closest point projection, where the distance vector is defined as:

d = x− x̃ (2.20)

In Figure 2.10, an example of a finite element mesh is shown where the blue line represents the true
crack Γc, the red line the surrogate crack Γ̃c, and with black arrows the distance vector d at two locations
along Γ̃c are shown.

Figure 2.10: The true crack Γc, the surrogate crack Γ̃c and the distance vector d at two locations along Γ̃c. Modified from [15].
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Shifted cohesive zone conditions
To enforce the cohesive zonemodel on the surrogate cohesive crack Γ̃c rather than on the true cohesive
crack Γc, a first-order Taylor expansion of the displacement u and stress σ(u) is performed at the
surrogate crack Γ̃c:

u(x̃) = ũ(x̃) + (∇ũ d)(x̃) +Rũ(x̃), on Γ̃c, (2.21)
σ(x̃) = σ̃(x̃) + (∇σ̃ d)(x̃) +Rσ(x̃), on Γ̃c (2.22)

where

• u(x̃) is the approximated displacement field at the true crack Γc evaluated at point x̃ on Γ̃c,
• ũ(x̃) is the displacement field at point x̃ on Γ̃c,
• ∇ũ is the gradient of the displacement field at point x̃ on Γ̃c,
• d(x̃) is the distance vector from Γ̃c to Γc at point x̃.

the same applies to σ. Equation 2.11 can now be used to shift the cohesive zone model as:

t = tcoh(Ju(x̃)K), on Γc. (2.23)

where

Ju(x̃)K = u+(x̃)− u−(x̃) (2.24)
= (ũ+(x̃) + (∇ũ+ d)(x̃))− (ũ−(x̃) + (∇ũ− d)(x̃)) (2.25)
= (ũ+(x̃)− ũ−(x̃))︸ ︷︷ ︸

Displacement jump

+((∇ũ+ d)(x̃)− (∇ũ− d)(x̃))︸ ︷︷ ︸
Gradient displacement jump

(2.26)

In Figure 2.11, an overview is drawn of the components that are needed to shift the cohesive zone
model.

Figure 2.11: Shifting of the cohesive zone model with
Taylor expansion

Figure 2.12: Decomposition of the normal to the
surrogate crack ñ

Higher-order interpolations could also be used, but only first-order Taylor expansions are considered
in this thesis.

Shifted weak form equations
The weak form equations are shifted so that the fracture interface conditions are applied on Γ̃c rather
than Γc. Therefore, Γc is replaced with Γ̃c, and the normal of the true crack n is replaced with the
normal of the surrogate crack ñ. This results in the following weak form, where the fracture interface
conditions are applied on Γ̃c:

2∑
m=±

∫
Ω

∇swm : σm dΩ +

∫
Γ̃c

JwK · {{σ}} · ñ dΓ +

∫
Γ̃c

{{w}} · JσK · ñ dΓ

=

2∑
m=±

∫
Ω

wm · bm dΩ +

2∑
m=±

∫
ΓN

wm · tm dΓ ∀ wm

(2.27)
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The terms {{σ(u)}}ñ and Jσ(u)Kñ in equation 2.27 can be expressed in terms of shifted fracture inter-
face conditions. The surrogate normal ñ can be decomposed in terms of its components along n and
τj (see Fig. 2.12):

ñ = (ñ · n)n+ (ñ · τj)τj (2.28)

The term {{σ(u)}}ñ can be rewritten as:

{{σ(u)}}ñ = {{σ(u)}} ((ñ · n)n+ (ñ · τj) τj)
= (ñ · n) {{σ(u)}}n+ (ñ · τj){{σ(u)}}τj (2.29)
= (ñ · n)tcoh(w(u)) + {{σ(u)}}(ñ− (ñ · n)n)

where {{σ(u)}}n can be replaced by the shifted cohesive zone model (Eq. 2.23):

{{σ(u(x̃))}}n(x̃) = {{σ(u(x̃)) n(x̃)}} ≈ tcoh(Ju(x̃)K) (2.30)

Similarly, the term Jσ(u)Kñ can be rewritten as:

Jσ(u)Kñ = Jσ(u)K ((ñ · n)n+ (ñ · τj) τj)
= (ñ · n) Jσ(u)Kn+ (ñ · τj)Jσ(u)Kτj (2.31)
= Jσ(u)K(ñ− (ñ · n)n)

where the stress equilibrium condition Jσ(u)Kn = 0 applies.

Substituting (2.29) and (2.31) into (2.27), the final shifted weak form equation for the SFM can be
obtained:

2∑
m=±

∫
Ω

∇swm : σm dΩ +

∫
Γ̃c

JwK · (ñ · n)tcoh(w(u)) dΓ

+

∫
Γ̃c

JwK · {{σ(u)}}(ñ− (ñ · n)n) dΓ +

∫
Γ̃c

{{w}} · Jσ(u)K(ñ− (ñ · n)n) dΓ

=

2∑
m=±

∫
Ω

wm · bm dΩ +

2∑
m=±

∫
ΓN

wm · tm dΓ ∀ wm

(2.32)

2.4.3. Theoretical comparison with the Ortiz model
This section presents a theoretical comparison of the SFM and Ortiz models to better understand their
advantages and limitations. While the Ortiz model effectively captures complex failure behavior in FRP
composites, it relies on inter-element crack propagation and mesh-dependent behavior, which intro-
duces significant challenges. In contrast, the SFM offers a more flexible and computationally efficient
framework by reducing mesh dependency. The following subsections present the key theoretical dif-
ference between the two methods:

Fracture representation:
An important difference between the two methods is their fracture surface representation:

• Ortiz model: The crack is constrained to propagate only along the edges of the finite element
mesh, resulting in a less flexible and mesh-dependent representation of the fracture surface.

• SFM: The crack propagates along a surrogate fracture surface, which closely follows the true
crack surface. This allows the crack to grow through elements, reducing mesh dependency and
providing a more realistic representation of the fracture surface.

Cohesive zone conditions:
Another key difference between the twomethods is how interface conditions are applied along the crack
surface:

• Ortiz model: Interface conditions are directly applied along the edges of the finite element mesh.
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• SFM: Instead of applying interface conditions directly on the finite element edges, the SFM shifts
the interface conditions from the true crack onto the surrogate crack (finite element edges) using
Taylor expansions.

Weak form equations:
The final main difference is the derivation of the weak form equations, which differs significantly between
the Ortiz model and the SFM due to the introduction of shifting corrections in the SFM:

• Ortiz model: Standard weak form for fracturing elastic solid:∫
Ω

∇swm : σm dΩ +

∫
Γc

JwK · tcoh dΓ =

∫
Ω

wm · bm dΩ +

∫
ΓN

wm · tm dΓ ∀ wm

• SFM: The weak form introduces additional correction terms to account for the shifted interface
conditions. Specifically, the SFM modifies the integral over the cohesive surface to include:

– Area correction term ñ ·n and the projection of ñ on the space of tangent vectors to the true
fracture surface ñ− (ñ · n)n.

– Stress jump and stress mean terms.

The resulting weak form equation for the SFM reads (changes highlighted):∫
Ω

∇swm : σm dΩ +

∫
Γ̃c

JwK · (ñ · n) tcoh(w(u)) dΓ +

∫
Γ̃c

JwK · {{σ(u)}}(ñ− (ñ · n)n) dΓ

+

∫
Γ̃c

{{w}} · Jσ(u)K(ñ− (ñ · n)n) dΓ =

∫
Ω

wm · bm dΩ +

∫
ΓN

wm · tm dΓ ∀ wm

The additional projection and correction terms in the SFM improve the accuracy of crack propa-
gation by ensuring that the surrogate fracture surface more accurately mimics the true fracture
interface conditions.

In Table 2.1, a summary is given of the theoretical differences.

Table 2.1: Summary of theoretical differences between the Ortiz model and the shifted fracture method (SFM).

Aspect Ortiz model Shifted fracture method (SFM)
Fracture representation Crack propagates along element

edges
Crack propagates along a sur-
rogate fracture surface following
the true fracture surface

Cohesive zone conditions Applied directly on finite element
edges

Shifted from the true fracture sur-
face onto the surrogate fracture
surface using Taylor expansions

Weak form equations Standard weak form with cohe-
sive tractions

Modified weak form with addi-
tional projection and correction
terms

This theoretical comparison highlights the fundamental differences between the Ortiz model and the
SFM. While the Ortiz model provides a structured approach to crack propagation, its limitations, such
as mesh dependency and fracture energy overestimation, make it less suitable for large-scale simu-
lations. By introducing a surrogate fracture surface and applying Taylor expansions to shift interface
conditions, the SFM addresses these challenges, leading to more accurate and mesh-independent
fracture modeling.

In the next chapter, the numerical implementation of the SFM will be discussed in detail, highlighting
how these theoretical differences are incorporated into the finite element framework.



3
Methods

This chapter details the implementation and development of the shifted fracture method (SFM) into an
existing finite element code, with a particular focus on its application to fiber-reinforced polymer (FRP)
composites. The methodology is structured in a stepwise manner to systematically investigate the
significance of its key components.

The chapter begins by introducing the in-house finite element code and the Ortiz model, which form
the foundation for the implementation. Next, the crack propagation algorithm, shifting of the cohesive
zone conditions, and weak form equations are presented, which form the core components of the SFM
framework. Following this, two partially implemented versions of the method are briefly introduced.
These partial implementations are used alongside the complete implementation to analyze the impor-
tance of the main components and to gain a deeper understanding of the applicability and limitations of
the SFM when applied to complex fracture scenarios and FRP composites. The challenges associated
with applying the SFM to FRP composites are also explored. Specific attention is given to issues such
as crack merging and crack initialization, as these are critical to successfully modeling FRP composites.

3.1. Implementation of the SFM
To implement the shifted fracture method (SFM) into the existing in-house finite element code, modifi-
cations were made to key functions of the Ortiz model. This section first presents an overview of the
in-house finite element code before detailing how the differences between the twomethods, identified in
Section 2.1, are incorporated. After that, the Ortiz model will be examined, followed by an explanation
of the required modifications and additions necessary to achieve the desired functionality.

For this implementation, the terminology from the original SFM paper has been slightly adapted.
The term ’surrogate crack’ remains unchanged and refers to tilde notations (Γ̃). However, instead of
using ’true crack’ as in the original formulation, this thesis simply refers to it as ’the crack’ without a
tilde notation (Γ). This convention is used throughout this section to improve readability and prevent
confusion.

3.1.1. Overview of the in-house finite element code
The goal of this implementation is to integrate the SFM into the existing in-house finite element code
written in C++, which utilizes the Jem and Jive libraries developed by Dynaflow Research Group. This
code follows a structured framework where solution algorithms can be decoupled frommodels, ensuring
flexibility and reusability. This decoupling is implemented through the following building blocks [22]:

• Modules: Implement the solution algorithms; they determine the execution steps of the program.
• Models: Implement the equations to be solved; they specify how each step is executed.

This structure allows solution algorithms to be reused across different models, ensuring robustness and
adaptability. Both the existing finite element code and the SFM can handle snap-back behaviors in equi-
librium paths. While SFM introduces a Newton-Raphson method with crack opening arc-length control,
the existing code employs a hybrid strategy combining displacement control and a dissipation-based

16
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arc-length method (see Section 2.3.3). Since both approaches effectively track complex equilibrium
paths, the existing solution algorithm is retained, simplifying the SFM implementation.

Because solution algorithms and models are independent, implementing the SFM only requires
modifying the models while keeping the solution algorithm unchanged.
The finite element code follows a tree-like model structure, where models may contain sub-models
responsible for specific computational tasks. Figure 3.1 illustrates the structure, which includes the
following key components:

• MatrixModel: creates MatrixBuilder objects for assembling global matrices.
• MultiModel: encapsulates multiple child models, building block for constructing model trees.
• OrtizModel: implements inter-element cracks that are inserted on the fly (see Section 2.3.1).
• DispArclenModel: implements a hybrid displacement and arc-length control strategy, designed
for use with the FlexArclenModule for robust path-following solutions (see Section 2.3.3).

• LoadDispModel: Handles outputting load-displacement data for specific node groups.

MatrixModel

MultiModel

OrtizModel DispArclenModel LoadDispModel

Figure 3.1: Tree structure of models used in the finite element code.

The execution order within this structure is determined by the arrangement of child models, ensuring
that key operations are executed in the correct sequence.

From Section 2.4.3, it became evident that the key differences between the SFM and the existing finite
element framework primarily concern the Ortiz model, which governs crack propagation. Consequently,
modifications to the Ortiz model are required to integrate these differences into the finite element code.
The following subsection details the necessary adjustments to the Ortiz model for implementing the
SFM within the existing framework.

3.1.2. Starting point: The Ortiz model
From the previous subsection, it was established that the solution algorithm and other models remain
unchanged. Thus, the implementation of the SFM requires modifications only to the Ortiz model, specif-
ically within the OrtizModel.cpp file. The workflow of the Ortiz model consists of three main steps:

1. Checking failure: Identifying failure in the middle-edge nodes of triangular elements once co-
hesive strength is reached, based on a stress-based failure criterion (handled by checkCommit_,
checkFailure_, and checkFailureNstress_ functions).

2. Cohesive element insertion: Inserting new cohesive elements once cohesive strength is
reached (handled by the splitEdge_ function).

3. Assembling of stiffness matrices and force vectors Constructing matrices and force vectors
for bulk and cohesive element (handled by getMatrixBulk_ and getMatrixCoh_functions, re-
spectively).

These steps are executed through takeAction functions, which are called by modules when they need
data from a model. In the Ortiz model, two primary takeAction functions are responsible for executing
these steps:

• GET_MATRIX0 || GET_INT_VECTOR
• CHECK_COMMIT
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Each takeAction function calls specific sub-functions, which handle various computational tasks. To
implement the SFM, modifications are required within these functions. Table 3.1 provides an overview
of the takeAction functions and their corresponding sub-functions, highlighting the functions that need
modifications (light grey).

Table 3.1: Overview of the takeAction functions in the Ortiz model, highlighting the functions that need modifications (light
grey).

(a) takeAction: GET_MATRIX0 || GET_INT_VECTOR

Function Purpose Status
getMatrixBulk_ Assembles bulk stiffness matrices and

force vectors.
Same

getMatrixCoh_ Assembles cohesive element stiffness
matrices and force vectors.

Needs to be changed

getMatrixGlue_ Assembles glue stiffness matrices and
force vectors.

Same

(b) takeAction: CHECK_COMMIT

Function Purpose Status
CheckCommit_ Contains the functions CheckFailure_

and splitEdge_.
Needs to be changed

CheckFailure_ Checks failure criteria for mid nodes
and contains CheckFailureNStress_
function.

Needs to be changed

CheckFailureNStress_ Calculates failure based on stress data. Needs to be changed
splitEdge_ Splits an edge, updates node data, add

cohesive element connectivity and ini-
tialize material points.

Same

From Table 3.1, two major modifications are required:

• Modification of checkCommit_: The functions within checkCommit_ must be replaced with the
SFM crack propagation algorithm. Specifically, CheckFailure_ and CheckFailureNStress_ needs
to be changed. However, splitEdge_, which handles the insertion of cohesive elements insertion,
remains unchanged.

• Extension of getMatrixCoh_: This function must be modified to incorporate Taylor expansions
to shift the cohesive zone conditions from the crack to the surrogate crack and implement the
linearized discrete form of the shifted weak form equations.

The following sections provide a detailed explanation of these modifications, focusing on the new crack
propagation algorithm and shifting of the cohesive zone conditions and weak form equations.

3.1.3. Crack propagation algorithm
In the Ortiz model, crack propagation relies on identifying themiddle nodes of edges where the cohesive
strength is exceeded and inserting cohesive elements at those edges (see Section 2.3.1). However,
the SFM follows a different approach, where crack propagation is tracked using an iterative algorithm.
This requires computing the crack propagation direction at each step based on the maximum tensile
principal stress and incrementally extending the crack tip.

The crack propagation algorithm implemented in this thesis differs slightly from the original for-
mulation presented in [15]. These modifications were made to simplify implementation and ensure
compatibility with the existing in-house framework. Nevertheless, the key principles and computational
steps remain consistent with the original SFM method. The crack propagation algorithm consists of the
following steps:
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Step 1: Crack initialization: Based on the predefined crack tip A0, the initial surrogate crack tip Ã0

is selected as the closest boundary node.
Step 2: Checking failure: At each time step, the current crack tips are evaluated against a stress-

based failure criterion [3] to determine whether the cohesive strength has been reached. This
failure criterion is directly adopted from the Ortiz model (see Section 2.3.1), ensuring consis-
tency with the existing framework.

Step 3: Selecting the crack propagation direction: If a crack tip reaches the cohesive strength, the
crack propagation direction ec is determined. The maximum principal tensile stress criterion
is used, assuming that the crack propagates orthogonally to the maximum principal stress. To
improve accuracy near the crack tip, a weighted average of the stress is computed within a
predefined circular region of radius l (see Figure 3.2a). Within this circular region, the stresses
are calculated at the quadrature points (q1, q2, etc.) and used to compute the weighted average.
The principal stresses are determined via eigenvalue decomposition of the weighted stress
tensor σ(A) at the crack tip [23].

Step 4: Propagation of the crack: Once the crack direction is determined, the crack tip A is incre-
mented along this direction by a predefined length. A new circular region of radius r is defined
around the crack tip, guiding further propagation along ec (see Figure 3.2b).

Step 5: Selecting the surrogate edges: In this step, the surrogate crack is updated by selecting the
edges closest to the crack. This process consists of the following steps: (illustrated in Figures
3.2b, 3.2c, and 3.2d:

(a) Identify the set of nodes connected to the surrogate crack tip Ã0 (see Figure 3.2b).
(b) Define a subset of these connected nodes for which the condition ec · e(N∗) > 0 is

satisfied. This requirement ensures that the surrogate crack propagates only forward.
(c) Calculate the distance d from each node in the subset to the half-line emanating from the

crack tip in the direction ec. Select the node with the smallest distance (highlighted in red
in Figure 3.2c).

(d) Add the corresponding edge to the surrogate crack and update the surrogate crack tip to
this node (see Figure 3.2d).

(e) Repeat these steps until the selected node lies outside the predefined circular region.

Figure 3.3 shows the crack path and crack propagation circle at different stages of crack propagation
for a vertical crack path developing upwards.

To implement this crack propagation algorithm into the Ortiz model, new functions were implemented,
and some existing functions were modified. The key additions include:

• initializeCrackHistories_ (step 1):

– Initializes the crackHistory class, which tracks crack branches.
– Sets the predefined crack tip coordinates.
– Determines the initial surrogate node using getClosestNodeToCrackTip_.
– Assigns a unique crack ID to each crack branch.

• checkCrackPropagation_ (step 2):

– Evaluates stresses at the crack tip to determine whether the crack can propagate.
– Calls two primary functions:

* computeStressesInCircle_ (step 3):
∙ Computes stresses within a circular region around the crack tip using a weighted
averaging method.

∙ Determines the maximum principal tensile stress and computes the crack propaga-
tion direction orthogonal to this stress.

* crackPropagation_ (steps 4 and 5):
∙ Propagates the crack tip along the computed direction.
∙ Update the surrogate crack by selecting the closest mesh edges to the crack.
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(a) Step 3 (b) Step 4

(c) Step 5 (d) Step 6

Figure 3.2: Visualization of the crack propagation strategy of a two-dimensional fracture. The approximated crack is plotted in
blue, and the shifted (surrogate) crack path is plotted in red.

Figure 3.3: Crack path and crack propagation circle at different stages of the fracture propagation. The approximated crack is
plotted in blue, and the shifted (surrogate) crack path is plotted in red for different loading stages.
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In Section 3.1.2, it was identified that the checkCommit_ function must be modified to integrate the new
crack propagation algorithm. To achieve this:

• The new functions described in this section were implemented into checkCommit_.
• The previous Ortiz model functions responsible for crack propagation (CheckFailure_ and

CheckFailureNStress_) were removed.

3.1.4. Shifting of the cohesive zone conditions and weak form equations
The shifting of the cohesive zone conditions and weak form equations, based on Taylor expansions,
was detailed in Section 2.4.2. This section focuses on the numerical implementation of these principles
within the getMatrixCoh_ function of the Ortiz model. This function assembles element stiffness ma-
trices and force vectors for cohesive elements by computing cohesive tractions from the displacement
jump and cohesive law, then updating the global stiffness matrix and force vector. To incorporate the
shifted cohesive zone conditions and weak form equations, the following modifications and new func-
tions were implemented:

Shifting the cohesive zone conditions (displacement jump)
The displacement jump is shifted via a first-order Taylor expansion (Equation 2.31). This process re-
quired the implementation of the following new functions:

• getMapping_

– Computes closest distance from integration point of a cohesive element to the crack path.
– Returns the closest distance and the normal vector of the crack path at the closest point.
(Detailed calculations and visualization are provided in Section 2.4.2)

• gradientJump_

– Assembles the displacement gradients of adjacent bulk elements at the integration point.
– Computes the gradient of the displacement jump by subtracting the displacement gradients
(see Figure 2.11).

• taylorShift_

– Uses the distance from getMapping_, the computed gradient from gradientJump_, and the
original displacement jump to apply the first-order Taylor expansion and compute the shifted
displacement jump.

The cohesive zone model remains the same, and the shifted displacement jump is applied to the exist-
ing cohesive law for traction calculations. For details on the cohesive zone model, see Section 2.2. The
SFM is designed to be compatible with any cohesive law. To maintain consistency with the Ortiz model,
the shifted cohesive law is adopted (see Section 2.3.2). This choice ensures that cohesive forces are
represented in a manner consistent with the existing framework, simplifying the implementation of the
SFM into the finite element code.

Implementing shifted weak form equations
In Section 2.4.3, the differences between the weak form equations of the Ortiz model and the SFM
were highlighted. The key differences include:

• The area correction term: n · ñ
• Additional correction terms on the crack boundary, namely:

– The stress jump term: Jσ(u)Kñ.
– The mean stress term: {{σ(u)}}ñ.

To implement these additional crack boundary terms, their linearized discrete formsmust first be derived.
A detailed derivation of their contributions to the element force vector and tangent stiffness matrix is
provided in Appendix A.
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The area correction term is implemented into the linearized discrete formulation of the weak form equa-
tions, where the normal vectors are obtained as follows:

• ñ (the normal vector of the surrogate edge) is obtained using getNormals (already implemented).
• n (the normal vector of the crack path) is computed using getMapping_.

As discussed in Section 2.4.3, this term is multiplied by the contributions associated with the crack
boundary.

The additional correction terms, the stress jump and stress mean, are implemented by incorporating
their respective element force vector contributions. However, during testing, the contributions to the tan-
gent stiffness matrix did not perform as expected, likely due to an error in the derivation. Consequently,
all SFM simulations were conducted using the force vector contributions of these terms while omitting
their tangent stiffness contributions. Although this resulted in slightly slower convergence, the method
remained functional. The functions described in this section were implemented into the getMatixCoh_
function.

3.1.5. Partially implemented versions
To better understand the key components of the SFM, two partially implemented versions of the method
are tested alongside the full implementation. This also helps evaluate the applicability and limitations
of the method when applied to complex fracture scenarios and FRP composites.

From Section 2.1, it is shown that in the shifted weak form equations, the crack boundary terms are
multiplied by an area correction term (n · ñ). This term corrects the difference between the surrogate
crack surfaces in the discrete mesh and the true crack surface in the continuum, ensuring that the
effective crack surface area is accurately accounted for in the computations. The primary purpose of
this correction term is to reduce mesh dependency. By applying the area correction term, the actual
contribution of the cohesive forces along the crack is computed more accurately, regardless of the
chosen mesh.

Since mesh dependency is a known issue in the Ortiz model, it is interesting to investigate how
the area correction term affects the model’s performance. To this end, two alternative versions are
developed and tested alongside the full implementation:

• Reduced SFM (Ortiz + Area + Propagation): This version builds upon the Ortiz model by adding
the area correction term and the crack propagation algorithm. However, it excludes the shifted in-
terface conditions and the two additional correction terms in the shifted weak form equations. By
leaving out the Taylor expansions and additional correction terms, this reduced implementation
achieves lower computational complexity. The goal is to investigate the importance of the com-
bination of the area correction term and the crack propagation algorithm in improving accuracy
and reducing mesh dependency.

• Extended Ortiz model (Ortiz + Area): This version extends the Ortiz model by only adding the
area correction term. The crack propagation algorithm, the shifted interface conditions, and the
two additional correction terms in the shifted weak form equations are not included. The goal of
this version is to evaluate whether the area correction term alone can improve mesh dependency
and overall accuracy without the crack propagation algorithm. While theOrtiz model has been suc-
cessful in predicting cracks in FRP composites, its results remain highly mesh-dependent. This
version investigates whether mesh dependency can be reduced without significantly increasing
the complexity of the original model.

Testing these two versions provides valuable insights into which components are critical for reducing
mesh dependency and predicting accurate results.
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3.1.6. Summary of the implementation
To conclude this section, Table 3.2 provides an overview of the new andmodified functions implemented
during the integration of the SFM into the Ortiz model. The table highlights each function’s purpose
and whether it was newly implemented or modified from the existing code. Additionally, Table 3.3
provides an overview of the different models used during the testing phase. The table outlines which
key components of the SFM are included or excluded in each version, providing a clear overview of
the tested configurations.

Table 3.2: Overview of implemented and modified functions.

Function Purpose Status
checkCommit Modified to crack propagation algorithm of

the SFM.
Modified

checkCrackPropagation_ Checks fail value of crack tips. Newly implemented
computeStressesInCircle_ Calculates stresses and crack direction. Newly implemented
crackPropagation_ Propagates the crack along the computed di-

rection.
Newly implemented

getClosestNodeToCrackTip_ Identifies the closest node to the crack tip. Newly implemented
getMapping_ Computes distance and normal vector from

the surrogate to the crack.
Newly implemented

getMatrixCoh_ Added Taylor expansion, area correction
terms, and correction terms.

Modified

gradientJump_ Computes the gradient of the displacement
jump.

Newly implemented

initializeCrackHistories_ Initializes crack history and assigns crack
IDs.

Newly implemented

writeCrackPath_ Outputs crack tips for postprocessing. Newly implemented

Table 3.3: Overview of the tested models and their key components from the SFM.

Model Area correction
term

Crack
propagation
algorithm

Shifted
interface
conditions

Additional
correction
terms

Ortiz model × × × ×
Extended Ortiz Model ✓ × × ×
Reduced SFM ✓ ✓ × ×
Full SFM ✓ ✓ ✓ ✓
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3.2. Challenges in applying the SFM to FRP composites
FRP composites are complex materials composed of densely packed fibers embedded in a polymer
matrix. Both experimental studies and numerical simulations have frequently reported the phenomenon
of densely distributed cracking, which ultimately coalesces into a single dominant crack [2, 12]. On the
microscale, FRP composites are primarily characterized by matrix-fiber debonding and matrix cracking,
as the fibers have significantly higher cohesive strength and typically remain intact. When analyzing
a finite element mesh of an FRP composite (see Figure 3.4), it quickly becomes evident that the SFM
cannot be directly applied without significant modifications. This section discusses the primary chal-
lenges associated with applying the SFM to FRP composites.

Challenges

1. Cracks form in multiple, unpredictable locations Cracks in composites can initiate in random
locations, making them difficult to predict. However, the current SFM methodology works with
predefined crack tips or multiple predefined crack tips fromwhich cracks propagate. This presents
a significant limitation for composites, as new cracks cannot spontaneously emerge during a
simulation. To address this issue, the method should be capable of initiating cracks based on
stress control across the entire domain. With such a dynamic approach, it would become possible
to better model the distributed cracking behavior of composites.

2. Crack propagation into fibers In the current implementation of the SFM, the crack direction
is determined by the maximum principal tensile stress. When a crack tip reaches the cohesive
strength, the crack propagates a predefined distance in that direction. However, if the crack tip
enters a fiber, the higher cohesive strength of the fiber prevents further crack growth. This would
lead to inaccurate and unrealistic results in the simulation. A possible solution would be to halt
propagation once a crack reaches the boundary of a fiber, ensuring that cracks remain within the
matrix.

3. Crack propagation along fiber boundaries When a crack tip reaches the edge of a fiber, the
crack should propagate along the curved surface of the fiber rather than simply following the di-
rection of maximum principal tensile stress. This requires a new algorithm to account for such
situations. The current SFM does not support this functionality, even though it is crucial for accu-
rately modeling matrix-fiber debonding, a typical phenomenon in composites.

4. Cracks along curved paths Matrix-fiber debonding often partially follows the curved edges of
fibers, as the cohesive strength at the matrix-fiber interface is lower than within the matrix it-
self. Accurately simulating this process poses a challenge, as the current SFM does not support
curved crack paths. Although small incremental steps may provide a workaround, a more ro-
bust approach would involve developing a new algorithm that allows for the tracking of curved or
circular paths.

5. Formation of a dominant crack In composites, it is common for multiple cracks to merge and
evolve into a single dominant crack. To realistically simulate this process, mechanisms are re-
quired that allow for the merging and branching of cracks. Without such functionalities, the SFM
cannot accurately represent the natural progression of a dominant crack.

6. Cracks that close or become inactive In certain cases, cracks may close or become inactive,
for example, when they merge with other cracks or reach a boundary. The current implementation
of the SFM does not account for such scenarios. Modifications are needed to ensure that closed
or inactive cracks are properly tracked and deactivated.

The challenges outlined above highlight the need for significant improvements tomake the SFM suitable
for application to FRP composites. The following section will explain how the challenges related to crack
initiation, as well as crack merging and termination at boundaries, are addressed, as these aspects are
essential for successfully modeling composite behavior.



3.3. Implementation of additional features 25

Figure 3.4: Snapshot of the finite element mesh of a fiber-reinforced polymer (FRP) composite with the observed crack
distribution. The fibers are shown in grey, the matrix in white, and the crack distribution in blue.

3.3. Implementation of additional features
To address the challenges encountered in modeling FRP composites, this section focuses on the im-
plementation of two key features. The first is crack initialization, which enables the method to initiate
cracks dynamically based on stress control across the entire domain. The second is crack merging and
termination at boundaries, which ensures that multiple cracks can either combine into a single dominant
crack or terminate naturally upon reaching the edges of the domain. These additional features have
been implemented by modifying the crack propagation algorithm of the SFM. Elements from the Ortiz
model, along with newly developed features, have been incorporated to accurately predict the unique
behavior of composites.

3.3.1. Stress-based crack initialization
Crack initialization plays a critical role in accurately simulating the densely distributed cracking observed
in FRP composites. In the Ortiz model, crack initiation is determined by a stress-based failure criterion,
implemented through the CheckFailure_ and CheckFailureNstress_ functions. These functions eval-
uate the middle nodes of triangular elements for cohesive strength failure, allowing cracks to initiate
at appropriate locations across the domain. While the original SFM crack propagation algorithm (see
Section 3.1.3) included predefined crack initialization. However, this approach is insufficient for FRP
composites, where cracks emerge dynamically throughout the material. To address this limitation, a
stress-based approach was implemented, following these steps:

1. The CheckFailure_ and CheckFailureNstress_ functions were reintroduced into the checkCommit
function, ensuring that failure criteria are evaluated before crack propagation occurs.

2. When failure is detected at a middle node, this location is stored as a crack tip and passed to the
initializeCrackHistories_ function.

3. A new crack branch is created and tracked in the CrackHistory class, allowing the crack to
propagate in the correct direction using the existing propagation functions in checkCommit.

These modifications enabled dynamic crack initialization throughout the domain, ensuring that SFM
accurately captures the distributed cracking behavior characteristic of FRP composites.
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3.3.2. Crack merging and termination at boundaries
Crack merging and crack termination at boundaries are essential processes for accurately simulating
the behavior of FRP composites. Crack merging focuses on the coalescence of multiple cracks into
a single dominant crack path, a phenomenon commonly observed in FRP composites. On the other
hand, crack termination at boundaries addresses the scenario where a crack ends upon reaching the
edge of the domain. Both processes were implemented by modifying step 5 of the crack propagation
algorithm, where surrogate edges are selected (see Section 3.1.3).

To incorporate these processes, the following criteria were introduced after identifying the set of
nodes connected to the current surrogate crack tip:

1. Crack termination at boundaries: The node lies on the boundary of the mesh (see Figure 3.5b).
2. Crack merging: The node is part of another crack branch (see Figure 3.6b).

if either of these conditions is met, the node is designated as the endpoint of the crack, and the crack is
extended to this location. For boundary termination, this behavior is illustrated in Figure 3.5. For merg-
ing, the crack merges with an adjacent branch, as shown in Figure 3.6. Once the process is complete,
the current crack branch is marked as inactive and stored in an inactiveCrackHistory list within the
CrackHistory class, preventing further propagation of the terminated or merged branch.

(a) (b) (c)

Figure 3.5: Crack termination at the boundary of the mesh.

(a) (b) (c)

Figure 3.6: Crack merging with another crack branch.



4
Results

This chapter presents the results of a series of numerical simulations performed to evaluate the perfor-
mance of the newly proposed shifted fracture method (SFM) in comparison to the Ortiz model. Along-
side the full implementation of the SFM, two alternative versions are evaluated, the reduced SFM (Ortiz
+ Area + Propagation) and the extended Ortiz model (Ortiz + Area). All simulations are performed in
two dimensions under the plane strain assumption, with the primary focus on the accuracy of crack
path prediction in both simple and complex geometries.

Section 4.1 presents a verification and validation study comparing the full SFM implementation and
the reduced SFM against the Ortiz model. Where applicable, the results are also compared to those
presented in the original SFM paper [15]. Section 4.2 examines the extended Ortiz Model separately,
focusing on how the area correction term alone impacts accuracy and mesh dependency. Finally,
Section 4.3 investigates the effectiveness of the implemented additional features in addressing specific
challenges related to crack path prediction in fiber-reinforced polymer (FRP) composites.

4.1. Verification and validation of the SFM
This section presents a verification and validation study of the full SFM and the reduced SFM imple-
mentation, as described in Section 3.1.5. Three numerical tests are conducted to assess the methods’
ability to predict crack paths, comparing their results with those of the Ortiz model and, where applicable,
benchmarks from the original SFM publication.

In the numerical experiments, three different test configurations are considered: a compact tension
(CT) test that involves crack propagation along a straight crack path; an L-shape panel test, where the
crack follows a curved crack path in a complex geometry; and a four-point bending test (FPBT), which
also examines a curved crack path but in a more moderately complex geometry. Since the CT test is
not included in the original SFM publication, its results are compared exclusively with those of the Ortiz
model. For both the L-shape panel test and the FPBT, results are also compared with those reported
in the original SFM paper.

Key evaluation metrics include load-displacement curves, mesh size dependence, and the conver-
gence of dissipated energy. These metrics provide a comprehensive assessment of SFM’s accuracy,
reliability, and robustness in predicting crack paths across a range of scenarios.

4.1.1. Compact tension (CT) test
The geometry of the CT specimen is shown in Figure 4.1. It consists of a rectangular beam with a
height of b = 30 mm, a length of l = 50 mm, and a centrally located notch on the bottom edge with
a height of bn = 10 mm and a width of ln = 2 mm. The material properties are defined as follows:
Young’s modulus E = 40 GPa, Poisson’s ratio ν = 0.2, normal critical stress tcr = 20MPa, and fracture
energy GF = 200 N/m. The specimen is simply supported along its bottom edge. To prevent rigid body
rotation, constraints are applied in the x-direction at both the bottom-left and bottom-right corners. A
displacement u is imposed on the second half of the bottom edge, as illustrated in Figure 4.1.

27
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Four computational grids (denoted as Mesh 1, Mesh 2, Mesh 3, and Mesh 4) were used in the
numerical simulations, as summarized in Table 4.1. The average mesh sizes near the crack path were
h = 2 mm, h = 1 mm, h = 0.5 mm, and h = 0.25 mm, respectively. To enhance computational
efficiency, the mesh was coarsened in regions further from the crack path.

Figure 4.1: Geometry and setup of the CT specimen.

Table 4.1: Mesh properties for the CT specimen.

Meshes Number of
DOFs

Element
size h

Mesh 1 5,908 2.0 mm
Mesh 2 8,810 1.0 mm
Mesh 3 19,150 0.5 mm
Mesh 4 33,196 0.25 mm

As the displacement u increases, the top of the notch is the first location where the principal stress
reaches the normal critical stress tcr, initiating crack propagation along a vertical path. Since the crack
path is known in advance, the true load-displacement curve can be determined using the Ortiz model by
aligning element edges along the predefined vertical crack path. This load-displacement curve serves
as a reference for evaluating the accuracy of other methods.

Figure 4.2 compares the crack paths computed using the full SFM (magenta line), reduced SFM
(blue line), the Ortiz model (green line), and the reference solution (black dotted line) for all four mesh
configurations. Figures 4.3a, 4.3b, 4.3c, and 4.3d present the load-displacement curves for the refer-
ence solution, the full SFM, reduced SFM, and the Ortiz model across all mesh sizes. The same color
scheme is used for the load-displacement curves as for the crack paths, as indicated in the legend.

Mesh 1 Mesh 2 Mesh 3 Mesh 4

Figure 4.2: Comparison of crack paths across four meshes for the full SFM (magenta line), reduced SFM (blue line), the Ortiz
model (green line), and the reference solution (black dotted line).

As shown in Figure 4.2, the Ortiz model exhibits strong mesh dependence, where the predicted crack
paths are constrained by the finite element mesh and can only propagate along element edges. For
coarser meshes, significant deviations from the reference crack path are observed. As the mesh is
refined, the crack paths gradually converge toward the vertical reference crack path. In contrast, both
the full SFM and the reduced SFM implementation accurately predict the reference crack path, even
for the coarsest mesh, and the crack path remains consistent as the mesh is further refined.
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Figures 4.3a through 4.3d present the load-displacement curves, which exhibit a ductile material
response. The Ortiz model demonstrates clear mesh dependency; for the coarsest mesh (Mesh 1), the
peak load is approximately 10 N higher than that of the reference solution. As the mesh is refined, this
difference decreases, and for the finest mesh (Mesh 4), the peak load matches the reference solution,
indicating improved accuracy with finer mesh sizes. Both the full SFM and reduced SFM implementa-
tions produce load-displacement curves that closely follow the reference solution, even for the coarsest
mesh. Unlike the Ortiz model, the SFM methods do not exhibit significant mesh dependency, as the
results remain consistent across all mesh sizes.

In the Ortiz model and the reduced SFM, sharp unloading effects are observed in the coarser
meshes (Meshes 1 and 2) when a new cohesive element is inserted. This effect diminishes as the
mesh is refined and is no longer visible in finer meshes (Meshes 3 and 4). For the full SFM imple-
mentation, a different behavior is observed: instead of unloading, the equilibrium path exhibits sudden
vertical drops. Similar to the unloading effects, these vertical drops disappear as the mesh is refined.
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(a) Mesh 1, h = 2 mm
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(b) Mesh 2, h = 1 mm
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(c) Mesh 3, h = 0.5 mm
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(d) Mesh 4, h = 0.25 mm

Figure 4.3: Load-displacement curves for the full SFM (magenta line), reduced SFM (blue line), the Ortiz model (green line),
and the reference solution (black line)
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Figure 4.4 presents the dissipated energy error ε for the CT test, comparing the reduced SFM (blue
curve) and the Ortiz model (green curve). The error is computed for each mesh as follows:

ε =
|Ereference − Ei|

Ereference
(4.1)

where ε represents the dissipated energy error, Ei denotes the total dissipated energy for a given
mesh, and Ereference corresponds to the total dissipated energy obtained from the reference solution.
The error is plotted as a function of the total number of degrees of freedom (DOFs) to illustrate the
convergence behavior. The results show that the Ortiz model converges at a first-order rate with respect
to the dissipated energy error. In contrast, the reduced SFM achieves significantly faster convergence,
demonstrating quadratic or higher-order accuracy as the mesh is refined.
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Figure 4.4: Dissipated fracture energy ε for the CT test, comparing the reduced SFM (blue curve) and the Ortiz model (green
curve).

In the next sections and subsections, the reduced SFM will be used instead of the full SFM implemen-
tation. This decision is based on the observation that the reduced SFM, which includes only the crack
propagation algorithm and the area correction term, produced highly accurate results in the CT test.
While the full SFM implementation also achieved highly accurate results, the tangent stiffness matrix
contributions in this implementation did not perform as expected. Consequently, these contributions
were omitted from the final implementation, which, in turn, resulted in slower convergence. Given the
slower convergence of the full implementation and the strong performance of the reduced SFM, the
latter was chosen for further testing.

4.1.2. L-shape panel test
To further verify and validate the reduced SFM, a numerical example involving a curved crack path
is analyzed using an L-shape panel test. The geometry of the L-shape panel specimen is shown in
Figure 4.5, with dimensions a = 250 mm, b = 220 mm, and a thickness of t = 10 mm. The material
properties are defined as follows: Young’s modulus E = 20 GPa, Poisson’s ratio ν = 0.18, fracture
energy GF = 100 N/m, normal critical stress tcr = 20 MPa, and shear effect parameter β = 1.5. Two
computational grids (denoted as Mesh 1 and Mesh 2) are used in the numerical simulations, as sum-
marized in Table 4.2.

This numerical example has been widely studied in the literature, both experimentally and numerically.
Previous studies include investigations using the SFM [15, 16], XFEM numerical results [24, 25], and
experimental findings by Winkler [26].

Figure 4.6 presents the computed crack paths and load-displacement curves for the L-shape panel
test, comparing the reduced SFM implementation (blue) and the Ortiz model (green) across both mesh
sizes. Additionally, the figure includes the SFM results from Li et al. [16] (red), which use the stress
intensity factor (SIF) criterion for selecting the crack propagation direction, and the experimental results
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from Winkler, represented by uncertainty brackets as a gray shaded area. For the reduced SFM imple-
mentation, the maximum principal tensile stress criterion was used to determine the crack propagation
direction.

Figure 4.5: Geometry and setup of the L-shape panel specimen.

Table 4.2: Mesh properties for L-shape panel
specimen.

Meshes Number of
DOFs

Element
size h

Mesh 1 22,578 5.0 mm
Mesh 2 41,030 2.5 mm

Experiment
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Li.K, SFM

(a) Crack paths, mesh 1
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(b) Load-displacement curves, mesh 1
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(c) Crack paths, mesh 2
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(d) Load-displacement curves, mesh 2

Figure 4.6: Comparison of crack paths and load-displacement curves for the reduced SFM implementation (blue curves), the
Ortiz model (green curves), the SFM results from Li et al. (red curves), and the experimental results from Winkler (gray shaded

area) across two different mesh sizes.
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Figure 4.7 presents the crack paths and load-displacement curves of the reduced SFM implementation,
comparing its results for both mesh sizes with the XFEM simulations by Dumstorff and Meschke [24],
which also applied themaximum principal tensile stress criterion. The experimental results fromWinkler
are again included as a reference, represented by the gray shaded area.
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(b) Comparison of load-displacement curves

Figure 4.7: Comparison of crack paths and load-displacement curves for the reduced SFM implementation (blue curves)
across two different mesh sizes, the XFEM simulations by Dumstorff and Meschke [24] (orange curves), and the experimental

results from Winkler [26] (gray shaded area)

Figures 4.6a and 4.6c illustrate that the Ortiz model initially follows a crack path similar to that reported in
the SFM papers 4.7a. However, as the crack propagates, significant deviations occur. The finer mesh
provides a closer approximation but still deviates considerably from the results presented in the SFM
paper and does not fall within the experimental uncertainty bracket of the experiments conducted by
Winkler. A similar trend is observed for the reduced SFM, where both mesh sizes initially follow a crack
path comparable to the results in the SFM paper. However, at approximately halfway along the crack
path, convergence issues arise, ultimately causing the simulation to terminate prematurely. In contrast,
the results in the SFM papers, where crack propagation was determined using the stress intensity factor
(SIF) criterion, do not exhibit these issues. The crack path in their study remains stable throughout the
simulation, aligns well with reference results, and falls within the experimental uncertainty bracket of
Winkler’s experiments.

Figures 4.6b and 4.6d show that theOrtiz model exhibits mesh dependency in the load-displacement
curves. The coarser mesh produces a higher peak load than the reference results, while the finer mesh
provides a closer match. For the reduced SFM model, the load-displacement curves for both mesh
sizes are nearly identical. However, the curves terminate shortly after reaching the peak load.

Figure 4.7 shows that the results of the reduced SFM model for both mesh sizes align with the
findings reported by Dumstorff and Meschke [24], where the same criterion, the maximum principal
tensile stress, was used to determine the crack propagation direction. Their study found that the com-
puted crack path deviated significantly from the experimental range, with a sharp deviation occurring
shortly after the peak load was reached. Following this deviation, the numerical results were no longer
considered reliable. This closely matches the behavior observed in the reduced SFM results.

4.1.3. Four-point bending test (FPBT)
Finally, an FPBT is performed to further assess the SFM’s ability to predict curved crack propagation.
Figure 4.8 illustrates the geometry and setup of the test. The specimen has the following geometrical
properties: height b = 200 mm, length l = 800 mm, a = 80, and a centrally located notch on the top
edge with length ln = 40mm. The material properties are defined as follows: Young’s modulus E = 28
GPa, Poisson’s ratio ν = 0.1, normal critical stress tcr = 1.75 MPa, and fracture energy GF = 100
N/m. The specimen is supported at two locations and is loaded by two forces, F1 and F2, which are
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distributed over a strip of length 20 mm, as depicted in Figure 4.8. A single computational grid is used
in the numerical simulations, with an average mesh size h = 5 mm in the region surrounding the crack
path.

Figure 4.8: Geometry and setup of the four-point bending specimen test.

The four-point bending test has been extensively studied in the literature, both experimentally and nu-
merically. Previous research includes investigations using the SFM method [15, 16], XFEM numerical
simulations [27], and experimental findings reported in [28].

Figures 4.9a and 4.9b present a comparison of the computed crack paths and load-displacement
curves, respectively, for the FPBT. The crack paths in Figure 4.9a include results from the reduced SFM
implementation (blue), the SFM results by Li et al. [15] (red), and the experimental results reported by
[28] (black). Figure 4.9b shows the load-displacement curves, illustrating both F1 and F2 as defined
in the experimental setup. The reduced SFM is again compared to the results from Li et al. and the
experimental data.
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Figure 4.9: Comparison of crack paths and load-displacement curves for the four-point bending test (FPBT), including results
from the reduced SFM (blue), the SFM by Li et al. [15] (red), and the experimental results [28] (black).

From Figure 4.9, it can be observed that both the crack path and the load-displacement curve pre-
dicted by the reduced SFM closely align with the numerical results reported in the SFM paper and the
experimental results. In Figure 4.9b, the most notable observation is the occurrence of very severe
snap-back behavior under the load F1, which is also evident in the results presented in the SFM paper.
Additionally, an attempt was made to test the Ortiz model. However, the simulations failed to converge
in every instance. Consequently, no results could be generated for the Ortiz model in this study.
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4.2. Results of the extended Ortiz model
This section evaluates the performance of the extended Ortiz model developed to further simplify the
SFM approach and evaluate whether the area correction term alone can improve mesh dependency
by excluding all other key components of the SFM. The extended Ortiz model retains only the area
correction term from the original SFM, combined with key elements of the Ortiz model, to reduce com-
plexity while aiming for effective crack path prediction (see Section 3.1.5). This version specifically
investigates whether mesh dependency can be reduced without significantly increasing the complexity
of the Ortiz model.

To assess the extended Ortiz model, the CT test is considered, where the expected crack path fol-
lows a straight line. Two mesh configurations are considered: mesh 1 (h = 2 mm) and mesh 3 (h = 0.5
mm). The geometrical and material properties are described in Section 4.1.1.

Figure 4.10 presents the crack paths and load-displacement curves for both meshes. The results
include the extended Ortiz model (blue), the Ortiz model (green), and the reference solution (black) for
both the crack paths and load-displacement curves.

(a) Crack paths, mesh 1
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(d) Load-displacement curves, mesh 3

Figure 4.10: Comparison of crack paths and load-displacement curves for the CT test. The left column shows the crack paths
and the right column shows the load-displacement curves. The top row represents the results for mesh 1, and the bottom row
represents mesh 3. The models include the extended Ortiz model (blue), the Ortiz model (green), and the reference solution

(black).
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Figures 4.10a and 4.10c, which depict the crack paths for both mesh sizes, clearly show that the
extended Ortiz model significantly deviates from the reference crack path. The figures also include the
crack paths from the Ortiz model. For the coarser mesh, the results of the Ortiz model and the simplified
model are approximately similar. However, for a finer mesh, the Ortiz model provides significantly better
results, while the extended Ortiz model continues to show considerable deviations, even in a refined
mesh.

Figures 4.10b and 4.10d illustrate the load-displacement curves for the extended Ortiz model. While
the curves do not exhibit extreme deviations from the reference solution, they do not follow the reference
trend as closely as observed in the full SFM and reduced SFM implementations. The Ortiz model is
also included for comparison, demonstrating clear mesh dependency. Additionally, for mesh 1, the
extended Ortiz model terminates prematurely due to convergence issues.

4.3. Results of additional features
This section evaluates the additional features implemented in the reduced SFM, including stress-based
initialization, crack merging, and crack termination at boundaries, as described in Section 3.3. These
features are tested using two simple test cases to validate their functionality and explore their potential
for enhancing the robustness of the SFM in future applications. The first test case is the compact ten-
sion (CT) test, which was previously introduced and tested in Section 4.1.1. The second test case is the
double-edge notched tension (DENT) test, which introduces a more complex scenario involving inter-
acting cracks. By comparing the results with known crack path behavior, this section demonstrates the
potential of these features to address specific challenges in crack path prediction and lay the ground-
work for their application to more complex materials, such as FRP composites.

CT test
The features are tested using the CT test. For the geometrical and material properties, see Section
4.1.1. In this test, only mesh 1 is used, with an average element size around the crack path of h = 2
mm. Figure 4.11 shows the results of the crack path of the reduced SFM with the implemented features.
The crack is shown in blue, the surrogate crack in red, and the reference solution in black.

Figure 4.11: Results of the CT test for the reduced SFM with the implemented features. On the left, the crack (blue curve) and
the surrogate crack (red curve) path are shown, while the right-side images present two zoomed-in views. The top-right image

illustrates crack merging at the boundary of the mesh, while the bottom-right image highlights crack initiation.
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From the left side of Figure 4.11, it can be seen that the crack path closely follows the reference so-
lution, consistent with the results obtained without the additional features. On the right side of Figure
4.11, two zoomed-in areas from the left-side figure highlight the newly implemented features. The top-
right zoomed view illustrates that when the crack reaches the boundary of the mesh, both the crack
and surrogate crack are halted, demonstrating the implementation of crack termination at boundaries
and preventing further propagation. The bottom-right zoomed view highlights the crack initiation pro-
cess. Instead of predefining crack tips, the cracks are initialized based on the method originally used
in the Ortiz model, where all the mid-nodes of six-noded triangular elements are checked. This figure
demonstrates that the crack starts propagating from amiddle node, though not exactly at the theoretical
starting point of the crack.

DENT test
The second test is a DENT test. The geometry and boundary conditions are illustrated in Figure 4.12
(left). The specimen has the following geometrical properties: height b = 150 mm, length l = 50 mm,
and a notch length of ln = 1mm for both centrally located notches. The material properties are defined
as follows: Young’s modulus E = 40 GPa, Poisson’s ratio ν = 0.2, normal critical stress tcr = 20.0
MPa, and fracture energy GF = 200 N/m. The specimen is supported at the bottom edge in both the x-
and y-directions and is loaded on the top edge.

Figure 4.12 (middle) shows the crack (blue) and surrogate crack (red) paths for the reduced SFM.
Additionally, Figure 4.12 (right) illustrates the crack paths at different loading stages of the simulation.

Figure 4.12: Results of the DENT test for the reduced SFM with the implemented additional features. On the left, the geometry
and setup of the DENT test are shown. The middle presents the crack (blue) and surrogate crack (red) paths, while the right

shows the crack paths at different loading stages of the simulation.

From Figure 4.12, it can be observed that the crack path follows a perfectly horizontal line. The crack
propagation during different loading stages is shown on the right side of the figure. The simulation
results indicate that two crack tips initiate simultaneously at the tips of both notches. As the loading
increases, the cracks propagate towards each other, with the crack on the right side propagating slightly
earlier than the crack on the left side. Eventually, the crack tips are close enough to merge, forming a
single final crack.
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Discussion

The results of this study show that the shifted fracture method (SFM) significantly improves the predic-
tion of crack propagation in basic test cases compared to the Ortiz model. However, some challenges
remain in applying the SFM to complex materials such as fiber-reinforced polymer (FRP) composites.
The reduced SFM implementation, which builds upon the Ortiz model by only adding the area correc-
tion term and crack propagation algorithm from the SFM framework, showed very accurate results in
the compact tension (CT) test, while the mesh dependency was reduced. Therefore, this model was
preferred over the use of the full SFM implementation for subsequent evaluations, also because of
the convergence issues regarding the full SFM. In curved crack path scenarios, the four-point bend-
ing test (FPBT) showed that the reduced SFM could successfully predict crack propagation. However,
in the L-shape panel test, the same model led to convergence issues. While other studies using the
stress intensity factor (SIF) criterion obtained stable results. To fully investigate whether the area cor-
rection term alone can improve mesh dependency and overall accuracy an extended Ortiz model was
tested. This version extends the Ortiz model by only adding the area correction term. Unfortunately,
this model appeared to be inaccurate and led to premature termination of the simulation. To address the
challenges in applying the SFM to FRP composites, additional features were implemented. These fea-
tures showed promising results in enhancing the SFM’s applicability to FRP composites. Overall, this
research shows that the reduced SFM implementation provides a robust, computationally efficient, and
mesh-independent alternative to the Ortiz model in basic test cases. However, further improvements
are needed to enhance its performance in complex geometries and FRP composites.

5.1. Interpretation of findings
5.1.1. Verification and validation of the SFM
Three numerical tests were performed to verify and validate the SFM: the CT test, the L-shape panel
test, and the FPBT.With these tests, the full SFM, the reduced SFM, and theOrtiz model were evaluated
on the ability to accurately predict crack propagation.

The CT test provided insights into mesh dependency, convergence behavior, and numerical accu-
racy. The full SFM showed highly accurate results with almost no mesh dependency, even for coarser
meshes. Also, the load-displacement curves were consistent across the different mesh sizes, further
supporting this conclusion. The observed high convergence of dissipated energy error aligns well with
findings from the original SFM paper [15, 16]. This shows that the SFM can provide stable and ac-
curate crack propagation predictions even with coarser meshes, reducing computational costs while
maintaining accuracy.

Interestingly, the reduced SFM produced nearly identical results to the full SFM despite the fact
that certain correction terms were left out. This suggests that for simpler crack paths (such as the CT
test), the area correction term and the crack propagation algorithm alone are sufficient to correct mesh
dependency issues. This also aligns with the findings of the SFM literature on the area correction
term, which emphasizes that an accurate representation of the true fracture surface area is a key
factor in reducing mesh dependency. However, the similarity observed between the reduced SFM to
the full SFM raises an important question: under what conditions are the additional correction terms

37
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necessary? While the tests show that they may not be necessary for simple test cases, maybe they
are important for more complex scenarios.

The Ortiz model showed severe mesh dependency in both the crack paths and load-displacement
curves. Because the model is an inter-element cracking method, cracks can only propagate along
the element boundaries of the finite element mesh. For coarser mesh sizes, this leads to inaccurate
results. This behavior is well-documented in literature [10], and the results reaffirm this. The Ortiz
model requires finer meshes to achieve accurate results, which significantly increases computational
cost.

One unexpected observation in the CT test was the unloading effects in the Ortiz model and the
reduced SFM at coarse mesh sizes, whereas the full SFM experienced sudden vertical jumps in the
equilibrium path. Since these effects disappeared with mesh refinement, it is likely that the coarse
mesh did not sufficiently resolve the cohesive zone [1], leading to instability in equilibrium iterations. In
literature, [25] similar staircase-like trends have been reported for cohesive zone modeling with coarser
meshes, which supports this explanation. These results suggest that even though the SFM improves
mesh independence, very coarse meshes may still introduce numerical artifacts, which should be con-
sidered in practical applications.

The L-shape panel test introduces a curved crack path, which adds complexity to the evaluation of
crack propagation accuracy. The reduced SFM was able to accurately predict the initial stage of crack
propagation in both mesh sizes, confirming that the area correction term effectively reduces mesh de-
pendency, as observed in previous tests. However, after propagating a certain distance, convergence
issues led to premature termination. The XFEM simulations by Dumstorff and Meschke [24], which
also used the maximum principal tensile stress criterion for selecting the crack propagation direction,
produced nearly identical results. This indicates that the criterion for crack propagation direction is prob-
ably the problem. However, the SFM implementation in the original paper used a stress intensity factor
(SIF) criterion and successfully predicted crack paths. This highlights the importance of the choice of
crack propagation direction.

This behavior can be explained as follows: In the L-shape panel test, there is a strong difference
in stress distribution between the upper and lower regions of the material parallel to the crack. This
leads to incorrect averaged stresses, which in turn affects the predicted crack direction [25]. The test
highlights significant Mode II components, which explains why the maximum principal tensile stress
criterion does not perform well. Because the criterion propagates perpendicular to the highest tensile
stress and works therefore effectively when Mode I is dominant. Consequently, the criterion fails in
this case because it neglects the shear stresses that influence crack propagation [15]. Future research
should explore whether adopting the SIF criterion or alternative crack propagation criteria could resolve
the observed issues.

The Ortiz model showed again mesh dependency in the L-shape panel test. The deviation from
the reference crack path, particularly for the coarse mesh, shows the limitation of accurately predicting
crack propagation in coarse meshes. The load-displacement curves further highlight this limitation, as
peak loads in coarse meshes deviate substantially from reference solutions.

The FPBT, which also produces a curved crack path, showed that the reduced SFM produced highly
accurate results in both the crack path and load-displacement curves. This shows that the reduced
SFM can perform well for curved crack paths. However, unlike in the L-shape panel test, the reduced
SFM failed to simulate crack propagation. This can likely be explained by the fact that the FPBT is
primarily driven by Mode I fracture, with minimal shear (Mode II) effects. The stress field in the FPBT
is more symmetric, reducing stress variations parallel to the crack and making the maximum principal
tensile stress criterion more suitable for this case.

5.1.2. Performance of the extended Ortiz model
The results of the extended Ortiz model (Ortiz model + area correction term) showed that the model
was ineffective in accurately predicting crack paths. It was observed that the crack paths of both mesh
sizes, coarse and fine, deviated from the reference solution. The Ortiz model was also plotted for com-
parison, which was accurate for the fine mesh but inaccurate for the coarse mesh. The only difference
between the two models is the addition of the area correction term implemented in the extended Ortiz
model. This suggests that while the area correction term helps mitigate mesh dependency by improving
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energy conservation [15], it alone does not sufficiently control crack propagation. Additional corrective
mechanisms, such as the crack propagation algorithm included in the reduced SFM, are necessary to
achieve accurate results.

However, another possible explanation for this issue could be that the area correction term is in-
correctly calculated. Specifically, the normal vector to the crack direction is only calculated once at
the initiation of a particular cohesive element and remains unchanged throughout the entire simulation.
When a middle edge node of an element reaches the cohesive strength, the normal vector to the crack
direction is calculated by using the maximum principal tensile stress criterion for that specific node. If
this calculation is wrong, it can result in systematic inaccuracies in crack propagation. Therefore, this
issue will not disappear with mesh refinement.

Despite these limitations, the potential of this approach remains promising. The reduced SFM
already showed high accuracy with the area correction term, suggesting that improvements in its im-
plementation could enhance the performance of the extended Ortiz model. Also, the extended Ortiz
model has the same computational complexity as the Ortiz model but with the potential to be mesh-
independent. Future research should investigate potential refinements in this method.

5.1.3. Impact of additional features
In Section 3.2, it became clear that several challenges exist in applying the SFM to FRP composites.
To address these challenges, the following features were implemented in the reduced SFM: crack
initialization, crack merging, and crack termination at boundaries. However, additional challenges, such
as crack branching, cracking along curved paths, and others, remain open for future research.

Both the CT test and the DENT test demonstrated that the implemented features in the reduced
SFM yielded accurate results in basic test cases. This suggests that the reduced SFM and also the full
SFM have the potential for a more comprehensive implementation, making it suitable for more complex
materials such as FRP composites.

Two important observations could be observed from the results. First, regarding the location of
crack initialization. For simplicity, the Ortiz model’s crack initialization approach was adopted and im-
plemented in the reduced SFM. However, this approach is restricted to middle edge nodes of triangular
elements. This resulted in an initial crack tip that did not correspond to the theoretical initial crack tip.
Future studies could explore alternative criteria that allow crack initiation across the entire domain to
enhance the method’s flexibility. Nonetheless, the results indicate that the Ortiz model’s crack initializa-
tion approach is compatible with the SFM framework. The second observation regards the DENT test.
It was observed that the crack on the right side of the specimen propagated faster than the crack on
the left side. A possible explanation for this asymmetry is that the mesh was not identical on both sides,
resulting in slight differences in stress distribution. This caused one crack tip to reach the cohesive
strength earlier than the other.

5.2. Limitations
As with any research, the results can be affected by certain limitations. Below, the main limitations are
discussed, along with their impact on the study and possible solutions.

• Complexity and limited documentation of the SFM: The SFM introduces several new con-
cepts, which initially took some time to fully understand and implement the method. The method
itself was not overly complex in terms of computational structures, but the lack of detailed docu-
mentation, such as the absence of the discretized form of the variational equations, led to chal-
lenges. As a result, certain components, such as the tangential stiffness matrix contributions of
the additional correction terms, were excluded from the implementation. While this omission did
not affect the accuracy of the results, it increased the computational cost due to slower conver-
gence.

• Computational costs and hardware limitations: Computational costs formed a major limita-
tion in this study. In particular, performing simulations with complex fracture scenarios required
more computational power than the available hardware could provide. Due to the limited com-
puting power, it was impossible to execute even more complex fracture scenarios or large-scale
simulations. Although sufficient results were obtained to draw valuable conclusions, this limits
the breadth of validation and makes the conclusions less robust. For future research, this could
easily be addressed by using more powerful computing resources.
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• Sensitivity of the crack direction criterion: In this study, the maximum principal tensile stress
criterion was chosen to determine the crack direction. This criterion is easy to implement and
computationally efficient but has its limitations. In some simulations, such as the L-shaped panel
test, which involves a mixed-mode fracture scenario, the criterion led to premature termination
of the simulation. On the other hand, it performed well in the FPBT test, where mode I crack
propagation is dominant. The original SFM paper suggested using the stress intensity factor
(SIF) criterion for such cases, but its implementation was beyond the scope of this study due to
time constraints and its computational complexity. This limitation indicates that the accuracy of
the reduced SFM is influenced by the fracture mode, and future work should explore more robust
criteria.

• Challenges with the extended Ortiz model: The idea of the extended Ortiz model was to de-
velop a model with similar computational complexity as the Ortiz model but with reduced mesh
dependency due to the implementation of the area correction term. However, errors in the cal-
culation of this correction term led to inaccurate results. As a result, a decision had to be made:
either dedicate more time to debugging the extended Ortiz model or shift focus back to the re-
duced SFM to address the challenges related to FRP composites. Eventually, the latter approach
was chosen, which led to valuable insights, but at the cost of missing certain findings that could
have been obtained from the extended Ortiz model.

• Applicability of the reduced SFM to FRP composites: The proposed SFM framework is cur-
rently only suitable for basic test scenarios and cannot be directly applied to complex structures
such as FRP composites. Section 3.2 discusses the challenges that must be addressed to make
the model suitable for such applications. Although some of these challenges were successfully
addressed in this study, many others remain unresolved. As a result, the main research question,
“How effective is the proposed method for arbitrary crack growth in predicting the propagation of
cracks in fiber-reinforced polymer composites?” could not be fully answered. Future research
will need to focus on addressing and validating these challenges.

5.3. Recommendations and future research
The results and limitations of this research provide valuable insights that can be used to further improve
and expand the research. This section first presents recommendations aimed at directly improving the
method and its implementation. Subsequently, broader directions for future research are discussed,
focusing on realizing the full potential of the SFM and addressing the central research question.

5.3.1. Recommendations
Based on the results and limitations of this study, the following recommendations are made:

• Choice of crack direction criterium: The use of the maximum principal stress criterion is rec-
ommended for scenarios where mode I fracture is dominant. For mixed-mode crack scenarios, it
is advisable to use a different criterion that also accounts for shear stresses, such as the stress
intensity factor (SIF), as proposed in the original SFM publication [15]. This could significantly
improve the reliability of the results in such cases.

• Revisiting the extended Ortiz model: It is recommended to reevaluate the implementation of
the extendedOrtizmodel. The focus should be on determining whether the observed inaccuracies
are due to implementation errors or fundamental limitations of the method. This model has the
same computational complexity as the original Ortiz model but offers the potential to reduce mesh
dependency. This could contribute to lower computational costs for coarser meshes, making
large-scale simulations more accessible.

• Refining the implemented additional features: It is important to further validate and refine the
additional features of the reduced SFM that were designed for FRP composites. Although these
features have been successfully tested in simple scenarios, they also need to be examined in
more complex crack situations. Additionally, the crack initiation feature, which is currently limited
to middle edge nodes or elements, could be adapted to allow cracks to initiate anywhere in the
domain. This could enhance the flexibility and applicability of the model.
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• Full implementation of the tangential stiffness matrices: The proper implementation of the
tangential stiffness matrix contributions is essential for the full implementation of the SFM. This
would not only enable faster convergence but also make larger and more complex test cases
feasible. While the current study worked with the reduced SFM, which is not affected by this, fully
implementing these contributions would further strengthen and validate the full SFM implementa-
tion.

5.3.2. Future research
In addition to the recommendations, this study offers some directions for future research that can further
develop the potential of the SFM:

• Further development of the reduced SFM for FRP composites: The potential of the reduced
SFM is promising, especially in combination with an improved crack propagation algorithm. If the
remaining challenges in applying the SFM to FRP composites are addressed, the method could
evolve into a computationally efficient, mesh-independent solution for predicting crack growth in
FRP composites. This is particularly relevant given the multiscale nature of FRP composites,
where microscale simulations are essential for understanding fiber-matrix interactions and pro-
gressive failure behavior.

• Integration into a multiscale fracture analysis framework: An important long-term goal would
be to integrate the reduced SFM into a fully coupled multiscale fracture analysis framework [1].
This framework would enable simulations that link microscale failure mechanisms to structural be-
havior at the macroscopic level. This could significantly improve both the accuracy of predictions
and computational efficiency.

• Fully addressing the main research question: With the aforementioned recommendations
and improvements, it should be possible to fully address the main research question of this study,
“How effective is the proposed method for arbitrary crack growth in predicting the propagation of
cracks in fiber-reinforced polymer composites?”. This would provide a valuable contribution to
the field and enable practical applications for FRP composites.



6
Conclusion

The objective of this research project was to implement and evaluate the shifted fracture method (SFM),
compare it with the Ortiz model, and assess its effectiveness for fiber-reinforced polymer (FRP) com-
posites. The results show that the SFM, particularly the reduced SFM, provides several advantageous
improvements over the Ortiz model for predicting crack propagation. The reduced SFM has proven to
be a robust, computationally efficient, and mesh-independent alternative in basic fracture tests. How-
ever, its effectiveness in accurately predicting complex fracture processes in FRP composites remains
a challenge.

The most important finding of this research is the importance of the area correction term in reducing
mesh dependency. The results of the reduced SFM, which builds on the Ortiz model and implements
only the area correction term and crack propagation algorithm while omitting other elements of the full
SFM, emphasize this importance. This was also shown in both the compact tension (CT) test and
the four-point bending tests (FPBT). The L-shaped panel test showed a limitation in the used crack
direction criterion, the maximum principal stress criterion. This criterion failed to predict accurate crack
paths under mixed-mode fracture conditions. This highlights the need for a more reliable crack direction
criterion for mixed-mode fracture problems.

The extended Ortiz model, which includes only the area correction term in combination with the
Ortiz model, was also tested. Although it couldn’t accurately predict crack propagation, it demonstrated
potential due to the high accuracy of the area correction term and the reduced complexity of the model.
This indicates that further refinement of this model could be promising.

The newly implemented features for applying the SFM to FRP composites have shown promising
results in basic fracture tests. Nevertheless, additional validation and improvement are required to com-
prehensively evaluate the SFM’s applicability in complex fracture situations involving FRP composites.
A fully developed, mesh-independent SFM framework could significantly reduce computational costs
while maintaining accuracy in crack propagation predictions. If this could be successfully integrated into
a multiscale modeling framework, the SFM could be a useful tool for fracture analysis in engineering
applications.

This research has clearly demonstrated the strengths and weaknesses of the SFM. It has shown,
in particular, that the method effectively reduces mesh dependency, making it a very promising and
computationally efficient method as a fracture framework. It also showed that the reduced SFM, which
has lower computational complexity than the full SFM, can be used for accurate prediction of arbitrary
crack propagation. However, the study also indicates that improvements are needed in the selection
of the crack direction criterion and in the validation of more complex fracture scenarios. These insights
provide a solid foundation for future research to enhance the SFM and make it applicable to more
advanced materials, such as FRP composites.
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A
Linearized discrete form of the SFM

To implement the shifted fracture method (SFM) into the in-house finite element code, the derived
shifted weak form equations (see section 2.4.2) must be rewritten to a linearized discrete form. This
can be done by a reinterpretation of the left-hand side of the discrete form as an equilibrium between
internal and external forces. [21]

The starting point is the expression for the shifted weak form derived in Section 2.4.2 (Eq. 2.32):∫
Ω

∇sw : σ dΩ +

∫
Γ̃c

JwK · (ñ · n)tcoh(w(u)) dΓ

+

∫
Γ̃c

JwK · {{σ(u)}}(ñ− (ñ · n)n) dΓ +

∫
Γ̃c

{{w}} · Jσ(u)K(ñ− (ñ · n)n) dΓ

=

∫
Ω

w · b dΩ +

∫
ΓN

w · t dΓ ∀ w

(A.1)

The same weak form can also be derived by using the virtual work principle, which can be obtained
by substituting w for a virtual displacement δu. By doing this, the weak form can be divided into two
terms with clear physical interpretation, in which the gradient of a virtual displacement can be seen as
a virtual strain ∇sδu = δε: ∫

Ω

∇sδu : σ(u) dΩ +

∫
Γ̃c

JδuK · (ñ · n) · tcoh(w(u+∇u d)) dΓ︸ ︷︷ ︸
Wint

+

∫
Γ̃c

JδuK · {{σ(u)}} · (ñ− (ñ · n)n) dΓ +

∫
Γ̃c

{{δu}} · Jσ(u)K · (ñ− (ñ · n)n) dΓ︸ ︷︷ ︸
Wint

−
∫
Ω

δu · b dΩ−
∫
ΓN

δu · t dΓ︸ ︷︷ ︸
Wext

= 0, ∀ δu

(A.2)

The above equation can be seen as a balance between internal work driven through deformation and
external work related to the loads applied to the body. To obtain the discrete form, the following approx-
imations can be introduced:

δu = Nδa, JδuK = δu+ − δu− = Nint(δa+ − δa−),

δε = Bδa, {{δu}} =
1

2
(δu+ + δu−) =

1

2
Nint(δa+ + δa−).

whereNint is the matrix of the interface shape functions, andN is the matrix of the bulk element shape
functions. Using the linear algebra operation (AB)T = BTAT to remove δa from the integrals, the
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discrete form of the weak form can be obtained: ∫
Ω

BTσ(u) dΩ︸ ︷︷ ︸
fint

+

∫
Γ̃c

(Nint)T(ñ · n)tcoh(w(u+∇ud))dΓ−
∫
Γ̃c

(Nint)T(ñ · n)tcoh(w(u+∇ud))dΓ︸ ︷︷ ︸
fint

+

∫
Γ̃c

(Nint)T {{σ(u)}} (ñ− (ñ · n)n) dΓ−
∫
Γ̃c

(Nint)T {{σ(u)}} (ñ− (ñ · n)n) dΓ︸ ︷︷ ︸
fint

+

∫
Γ̃c

(Nint)TJσ(u)K(ñ− (ñ · n)n) dΓ +

∫
Γ̃c

(Nint)TJσ(u)K(ñ− (ñ · n)n) dΓ︸ ︷︷ ︸
fint

=

∫
Ω

NTb dΩ +

∫
ΓN

NTt dΓ︸ ︷︷ ︸
fext

(A.3)

From the definition of work, these terms must correspond to internal forces and external forces. The
above equation represents the following system of equations:

fext − fint,bulk(a)− fint,crack(a) = 0 (A.4)

where fext is the external force vector, fint the internal force vector, which is composed of two parts,
fint,bulk from the bulk elements and fint,crack from the crack interface which consist of three terms.

fint,bulk =

∫
Ω

BTσ(u) dΩ (A.5)

fint,crack,1 =

∫
Γ̃c

(Nint)T(ñ · n)tcoh(w(u+∇ud))dΓ−
∫
Γ̃c

(Nint)T(ñ · n)tcoh(w(u+∇ud))dΓ

(A.6)

fint,crack,2 =

∫
Γ̃c

(Nint)T {{σ(u)}} (ñ− (ñ · n)n) dΓ−
∫
Γ̃c

(Nint)T {{σ(u)}} (ñ− (ñ · n)n) dΓ (A.7)

fint,crack,3 =

∫
Γ̃c

(Nint)TJσ(u)K(ñ− (ñ · n)n) dΓ +

∫
Γ̃c

(Nint)TJσ(u)K(ñ− (ñ · n)n) dΓ (A.8)

fext =

∫
Ω

NTb dΩ +

∫
ΓN

NTt dΓ (A.9)

The nonlinear equations are solved with a Newton-Raphson method, which requires linearization of
the terms in equation A.3 except the external force vector, which is independent of the displacements.
The linearized form is:

f̃int(a) = fint(a0) +
∂fint
∂a

(a− a0) (A.10)

where ∂fint

∂a is the tangent stiffness matrix K. Linearization of the internal force vector terms leads to
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the following tangent stiffness matrices:

Kbulk =

∫
Ω

BTCB dΩ (A.11)

Kcrack,1 =

∫
Ω

(Nint)TRT ∂t

∂JuKRNint(ñ · n) dΓ−
∫
Ω

(Nint)TRT ∂t

∂JuKRNint(ñ · n) dΓ (A.12)

Kcrack,2 =

∫
Ω

(Nint)T
1

2
(D1B1 +D2B2)(ñ− (ñ · n)n) dΓ

−
∫
Ω

(Nint)T
1

2
(D1B1 +D2B2)(ñ− (ñ · n)n) dΓ (A.13)

Kcrack,3 =

∫
Ω

1

2
(Nint)T(D1B1 −D2B2)(ñ− (ñ · n)n) dΓ

+

∫
Ω

1

2
(Nint)T(D1B1 −D2B2)(ñ− (ñ · n)n) dΓ (A.14)
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