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Abstract: Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM),
having controllable geometrical features and preferable mechanical properties, have been developed
as a class of biomaterials that hold promising potential for bone repair. However, the inherent
bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to
stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive
coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis
ability. Mesoporous bioactive glasses (MBGs) coating was applied on the strut surfaces of the
SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that
the coating could maintain the characteristic mesoporous structure and chemical composition of
MBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength
and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results
obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation,
and differentiation of human bone marrow stromal cells (hBMSCs) on the MBG-coated Ti-6Al-4V
scaffolds were improved as compared with those on the conventional bioactive glass (BG)-coated
Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG
coating by using the spinning coating method could be an effective approach to achieving enhanced
surface biofunctionalization for SLM Ti-6Al-4V scaffolds.

Keywords: selective laser melting; titanium; scaffold; mesoporous bioactive glass; spin coating;
in vitro bioactivity

1. Introduction

Three-dimensional (3D) Ti alloy-based scaffolds fabricated by means of selective laser melting
(SLM) have attracted extensive interest in the field of orthopedics [1]. As compared with conventionally
fabricated scaffolds that typically contain a vast number of randomly-shaped pores, SLM Ti alloy-based
scaffolds have controllable 3D hierarchical porous structures [2–4], which not only ensures pore
interconnectivity that is essential for cell ingrowth and nutrient transport, but also allows for the
modulation of mechanical properties, especially Young’s modulus, to minimize stress shielding [5–8].
However, due to the inherent bio-inertness of titanium alloys, titanium alloy scaffolds can barely
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promote bone regeneration, which may significantly hinder their applications in certain orthopedic
treatments, for example, in the repair of segmental bone defect [9].

The application of a bioactive coating on the strut surfaces of titanium alloy scaffolds has been
proven to be an efficient strategy to improve the surface bioactivity of the metallic substrate [10,11].
For example, hydroxyapatite and bioactive glass coatings have been applied on the strut surfaces of
titanium alloy scaffolds, which lead to changes in surface chemical composition and, thus, improved
osteointegration and osteogenesis [12–14]. In fact, besides the chemical composition, the nanostructure
of the surface plays an important role in promoting bone formation. It has been demonstrated that
nanostructured surfaces can lead to rapid protein adsorption at the early stage of implantation,
which subsequently mediates cellular responses, such as cell attachment and proliferation [15–17].
In recent years, mesoporous bioactive glasses (MBGs) have been developed as a new class of bioactive
materials, and the most attractive feature is that they present an ordered mesoporous channel structure
which, together with the chemical composition, leads to superior bioactivity to conventional bioactive
glasses (BGs) [18–23]. In our previous study, MBG coating was successfully applied on the strut surfaces
of calcium phosphate bioceramic scaffolds by using the spin coating technique. It was demonstrated
that the presence of an MBG coating layer led to enhanced osteogenic differentiation of cells, as well as
in vivo bone formation and bone growth into the scaffolds [22]. Based on this result, we hypothesized
that MBG would also be an effective bioactive coating material to improve the osteogenic activity of Ti
alloy scaffolds.

The aim of our present study was to apply MBG coating by means of spin coating on the strut
surfaces of SLM Ti alloy scaffolds to improve their surface bioactivity. The surface morphology and
chemical composition of the coating, as well as the effect of the coating on the mechanical strength and
porosity of the scaffolds were investigated. In addition, cell adhesion, proliferation and osteogenesis
differentiation on the MBG-coated SLM Ti-6Al-4V scaffolds were evaluated and compared with those
on the BG-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds.

2. Results

2.1. Structural Characteristics of the Scaffolds

Figure 1a is a top view and a front view of the cylindrical Ti-6Al-4V scaffolds (d = 10 mm
and h = 10 mm) fabricated by means of SLM machine (Realizer, SLM-125, Borchen, Germany).
The low-magnification scanning electron microscopy (SEM; Hitachi S-4800, Tokyo, Japan) image
of the scaffolds (Figure 1b) shows the surface morphology of struts. It is clear that the scaffolds, indeed,
have a highly porous structure, and the diagonal length of the square pore is about 0.5 mm. The SEM
image at a higher magnification (inset in Figure 1b) shows the presence of semi-attached Ti-6Al-4V
microspheres on strut surfaces. The surface morphologies of Ti-6Al-4V, BG-coated Ti-6Al-4V and
MBG-coated Ti-6Al-4V scaffold struts are presented in Figure 1c–e, respectively. It can be clearly seen
that both the BG layer and MBG layer are composed of nanoscale particles.

The cross-section morphology of the strut after MBG coating is shown in Figure 2a. The red
dotted lines in the figure outline the matrix, SiO2 interlayer and MBG layer. The MBG coating layer is
about 1 µm thick and it contains no pores, cracks, or other obvious defects at the interface between the
coating layer, interlayer, and metallic substrate. Energy dispersive spectrometer (EDS; Hitachi S-4800,
Tokyo, Japan) line scan analysis was performed from the coating to the substrate (the white line in
Figure 2a, where the red dot and blue dot represent the starting point and ending point, respectively).
From Figure 2b, it can be seen that interdiffusion of elements occurred between the coating and
substrate, as evidenced by the decreases in Ti content from the substrate to the coating and the
increases in Si content from the substrate to the coating. It was noticed that in Figure 2b the second
maximum of the EDS profile of Si appeared at exactly the same spot as a maximum of the EDS profile
of Ti, suggesting that Si and Ti atomic interdifussion took place between the coating and substrate [24].
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Figure 1. Overview of Ti-6Al-4V scaffolds (a); low-magnification view of scaffold struts showing 
macro pore sizes around 0.5 mm (b) together with an inserted high-magnification SEM image of the 
surface morphology of Ti-6Al-4V scaffold struts (c); BG-coated Ti-6Al-4V scaffold struts (d) and 
MBG-coated Ti-6Al-4V scaffold struts (e). 

 
Figure 2. Cross-section morphology (a) of MBG-coated Ti-6Al-4V scaffold strut showing an 
interlayer and the MBG coating layer with a thickness of about 1 μm and EDS line scan analysis 
(from the red dot to the blue dot) showing interdiffusion of Si (b) and Ti (c) across the interlayer 
between the coating layer and substrate. 
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Figure 1. Overview of Ti-6Al-4V scaffolds (a); low-magnification view of scaffold struts showing macro
pore sizes around 0.5 mm (b) together with an inserted high-magnification SEM image of the surface
morphology of Ti-6Al-4V scaffold struts (c); BG-coated Ti-6Al-4V scaffold struts (d) and MBG-coated
Ti-6Al-4V scaffold struts (e).
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Figure 2. Cross-section morphology (a) of MBG-coated Ti-6Al-4V scaffold strut showing an interlayer
and the MBG coating layer with a thickness of about 1 µm and EDS line scan analysis (from the red dot
to the blue dot) showing interdiffusion of Si (b) and Ti (c) across the interlayer between the coating
layer and substrate.
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The grazing incidence X-ray diffraction (GIXRD; Geigerflex, Rigaku Co., Tokyo, Japan) pattern of
the MBG-coated Ti-6Al-4V scaffolds confirmed the presence of the mesoporous structure, as evidenced
by the diffraction peaks over a 2θ range of 0◦–2◦ (Figure 3a). Nitrogen adsorption−desorption analysis
of the MBG powder revealed a typical IV isotherm pattern with hysteresis loops of H1 type associated
with the characteristic of cylindrical pores, in accordance with the p6mm mesostructure of MBG
materials (Figure 3b). Figure 3c shows a pore size distribution extracted from the N2 adsorption
isotherms of the MBG powder, indirectly confirming that the MBG coating had pore sizes around 4 nm,
the calculated BET surface area was ~300 m2/g. Transmission electron microscopy (TEM; 2100F, JEOL,
Tokyo, Japan) analysis clearly showed the typical well-ordered channels of MBG coated on Ti-6Al-4V
scaffold strut surfaces (Figure 3d,e).

Materials 2017, 10, 1244  4 of 14 

 

The grazing incidence X-ray diffraction (GIXRD; Geigerflex, Rigaku Co., Tokyo, Japan) pattern 
of the MBG-coated Ti-6Al-4V scaffolds confirmed the presence of the mesoporous structure, as 
evidenced by the diffraction peaks over a 2θ range of 0°–2° (Figure 3a). Nitrogen 
adsorption−desorption analysis of the MBG powder revealed a typical IV isotherm pattern with 
hysteresis loops of H1 type associated with the characteristic of cylindrical pores, in accordance with 
the p6mm mesostructure of MBG materials (Figure 3b). Figure 3c shows a pore size distribution 
extracted from the N2 adsorption isotherms of the MBG powder, indirectly confirming that the MBG 
coating had pore sizes around 4 nm, the calculated BET surface area was ~300 m2/g. Transmission 
electron microscopy (TEM; 2100F, JEOL, Tokyo, Japan) analysis clearly showed the typical 
well-ordered channels of MBG coated on Ti-6Al-4V scaffold strut surfaces (Figure 3d,e). 

 

Figure 3. Grazing incidence X-ray diffraction (GIXRD) pattern of the MBG-coated Ti-6Al-4V 
scaffolds (a); nitrogen adsorption−desorption isotherms of the MBG powder (b); pore size 
distribution extracted from the N2 adsorption isotherms of the MBG powder (c); and TEM images 
for the MBG-coated Ti-6Al-4V scaffolds (d,e) with a well-ordered mesopore channel structure. 

2.2. Mechanical Properties and Porosity of the Scaffolds 

Figure 4a shows the compressive strengths of the bare-metal Ti-6Al-4V, BG-coated and 
MBG-coated Ti-6Al-4V scaffolds. It was found that there were no statistically significant differences 
between the compressive strengths of the three groups. 

A comparison in open porosity between the BG-coated and MBG-coated scaffolds and 
bare-metal scaffolds is shown in Figure 4b. The presence of the BG coating or MBG coating did not 
cause a significant change in open porosity. 

2.3. Apatite Mineralization Ability of the MBG-Coated Ti-6Al-4V Scaffolds in SBF 

In vitro surface bioactivity of the MBG-coated scaffolds was evaluated in terms of 
hydroxyapatite (HA) mineralization during the immersion in simulated body fluid (SBF). Figure 5 
shows the morphology of MBG-coated Ti-6Al-4V scaffold strut surface after the scaffolds were 
immersed in SBF for seven days. It can be seen that agglomerates of crystals with a flaky structure 
were formed on the surface, which is characteristic of HA. EDS analysis (Figure 5c) of the flaky 
structure revealed a Ca/P atomic ratio of 1.67. 

1.2 

8,500,000 

d e 

a b c 

Figure 3. Grazing incidence X-ray diffraction (GIXRD) pattern of the MBG-coated Ti-6Al-4V scaffolds
(a); nitrogen adsorption−desorption isotherms of the MBG powder (b); pore size distribution extracted
from the N2 adsorption isotherms of the MBG powder (c); and TEM images for the MBG-coated
Ti-6Al-4V scaffolds (d,e) with a well-ordered mesopore channel structure.

2.2. Mechanical Properties and Porosity of the Scaffolds

Figure 4a shows the compressive strengths of the bare-metal Ti-6Al-4V, BG-coated and
MBG-coated Ti-6Al-4V scaffolds. It was found that there were no statistically significant differences
between the compressive strengths of the three groups.

A comparison in open porosity between the BG-coated and MBG-coated scaffolds and bare-metal
scaffolds is shown in Figure 4b. The presence of the BG coating or MBG coating did not cause a
significant change in open porosity.

2.3. Apatite Mineralization Ability of the MBG-Coated Ti-6Al-4V Scaffolds in SBF

In vitro surface bioactivity of the MBG-coated scaffolds was evaluated in terms of hydroxyapatite
(HA) mineralization during the immersion in simulated body fluid (SBF). Figure 5 shows the
morphology of MBG-coated Ti-6Al-4V scaffold strut surface after the scaffolds were immersed in SBF
for seven days. It can be seen that agglomerates of crystals with a flaky structure were formed on the
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surface, which is characteristic of HA. EDS analysis (Figure 5c) of the flaky structure revealed a Ca/P
atomic ratio of 1.67.Materials 2017, 10, 1244  5 of 14 
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Figure 5. SEM surface morphology (a,b) of the MBG-coated Ti-6Al-4V scaffolds soaked in SBF for
seven days and EDS analysis (c) of the flaky structure.

2.4. Ion Release from the Scaffolds to the Tris-HCl Buffer Solution

Figure 6 shows the changes of the concentration of Ca and Si ions from the three groups of
scaffolds in the Tris-HCl buffer solution after various soaking periods. The MBG-coated Ti-6Al-4V and
BG-coated Ti-6Al-4V scaffolds released significant amounts of Si on day 1, and the amounts reduced in
the following three, five, and seven days. The MBG-coated Ti-6Al-4V scaffolds released the largest
amount of Ca on day 1 and the Ca ion release decreased abruptly, and then gradually, in the following
days. For the bare-metal Ti-6Al-4V scaffolds and BG-coated Ti-6Al-4V scaffolds, however, the release
profiles were very different; they largely remained flat from day 1 to day 7. It is worth noting that
the MBG-coated Ti-6Al-4V scaffolds released the largest amounts of Ca and Si ions among the three
groups, reaching 60 and 120 ppm on day 1, respectively.
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2.5. In Vitro Osteogenesis of hBMSCs Cultured with the Scaffolds

2.5.1. Cell Adhesion and Proliferation on the Scaffolds

HBMSCs were fluorescently stained to investigate their adhesion behavior. Figure 7 shows
confocal images of hBMSCs after culturing on strut surfaces for one day and seven days. It can be seen
that the hBMSCs spread well and showed numerous filopodia on the strut surfaces of all the groups of
the scaffolds. On day 7, the BG-coated Ti-6Al-4V and MBG-coated Ti-6Al-4V scaffolds showed distinct
and well-defined microfilaments as well as cytoskeleton, and a more spreading and active morphology
than those on day 1.
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HBMSCs were cultured on the three groups of the scaffolds for one, three, and seven days to
investigate cell proliferation behavior. The proliferation of hBMSCs on the strut surfaces, determined
by the CCK-8 assay, is shown in Figure 8. It can be seen that none of the groups showed cytotoxicity
and there were no significant differences in cell proliferation rate between the three groups on day 1
or day 3. On day 7, however, the MBG-coated Ti-6Al-4V and BG-coated Ti-6Al-4V scaffold groups
showed more pronounced cell proliferation than the bare-metal Ti-6Al-4V scaffold group.
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2.5.2. Osteogenic Differentiation of hBMSCs on the Scaffolds

From Figure 9, it can be seen that on day 7, as compared with the bare-metal Ti-6Al-4V scaffolds,
the BG-coated Ti-6Al-4V scaffolds showed no significant difference in terms of ALP activity expression.
However, the MBG-coated Ti-6Al-4V scaffolds showed the highest ALP activity as compared with
the bare-metal Ti-6Al-4V and BG-coated Ti-6Al-4V scaffold groups, indicating the greatest potential
of osteogenesis.
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3. Discussion

It has been repeatedly demonstrated that Ti-6Al-4V scaffolds fabricated by means of SLM possess
controllable geometrical features and preferable mechanical properties, both of which are desirable
for orthopedic applications [2,4,6]. It is, however, well known that the strut surfaces of such scaffolds
lack desirable features for biofunctionalization, such as bioactive elements and nanoscale cues to
actively stimulate bone ingrowth and regeneration, when the scaffolds are implanted in the human
body. Numerous studies have confirmed that surface chemical composition and nanostructures are the
important factors affecting the biological effects of scaffold materials. Additionally, some studies have
even confirmed that there is a synergistic effect between these two factors [15,16]. Therefore, in the
present study, the strategy we adopted was to realize the multi-level combination of macroporosity,
surface chemical composition and mesoporous structure by applying MBG coating on the strut surfaces
of SLM Ti-6Al-4V scaffolds [25,26]. In our preliminary experiments, it was found that the heat treatment
that was essential for the formation of mesoporous structure of MBG could lead to a detrimental
interface reaction between the Ti-based substrate and MBG coating, thereby resulting in a destroyed
microstructure of the MBG coating. In addition to the interface reaction, the difference in thermal
expansion coefficient between the metal substrate and amorphous MBG coating might cause damage
to the MBG coating during the heat treatment [27]. Therefore, in the present study, we designed and
developed a SiO2 interlayer as a transition layer to ensure that the MBG coating maintained its structure
and composition—an approach that has been used between the substrate and functional coating of
other materials [28–32]. By using this approach, a 1 µm thick dense nano-structured MBG layer was
uniformly deposited on the strut surfaces of the Ti-6Al-4V scaffolds. The MBG coating showed no
obvious cracks and appeared to adhere well to the substrate through the interlayer. We deemed that
the addition of the SiO2 interlayer could have promoted the adhesion between the amorphous MBG
layer and the metal substrate. Obviously, a good interface strength is of vital importance for the
scaffolds, especially for load-bearing applications, because if fracture and even exfoliation of the MBG
layer occur, the internal structure of the scaffold would not be completely covered and as a result the
bioactivity would not be uniform throughout the scaffold.

In this study, we found that the mesoporous structure and composition of MBG were well
maintained and these characteristics would ensure the biological properties expected of mesoporous
glass [33–35].

Mechanical strength and porosity are important mechanical and physical features of Ti alloy
scaffolds, which represent the load bearing capacity and the opportunity of cell ingrowth, respectively.
Therefore, it is of great importance that processing for scaffold surface bioactivation should not
negatively affect these features. Our results demonstrated that the MBG coating did not markedly
change the compressive strength and porosity of the original scaffolds, which means that the original
mechanical performance of the Ti-6Al-4V scaffolds could be maintained. Considering the fact that the
pore size and strut size were in the range of hundreds of micrometers whereas the thickness of the
coating was merely one micrometer, the negligible decrease in porosity as a result of the addition of the
coating layer on the strut surfaces would not cause significant changes to the biological performance
of the scaffolds, except enhanced bioactivity. The uniform, thin coating layer on the struts of the
scaffolds could be attributed to the spin coating process used. During the process, the centrifugal force
could help the precursor solution evenly distribute inside the scaffolds and prevent the precursor from
clogging [36,37].

In vitro bioactivity can be assessed by HA formed on the surface of the sample in SBF [18,38–40].
For pure titanium, there have been a number of studies, all demonstrating that the pure metal surface
lacks the ability to induce HA deposition, which results in a lack of good bonding between the implant
surface and the surrounding bone tissue [15,41]. Our results demonstrated that the MBG-coated
Ti-6Al-4V scaffolds possessed a good apatite mineralization ability, which could be due to the excellent
ability of mesoporous glass to induce apatite deposition on its surface [18,40]. The surface apatite
mineralization of biomaterials is expected to contribute to the osteogenic activity of the materials.
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In our study, we found that hydroxyapatite was deposited on the MBG coating of the scaffolds after one
day of soaking, and the amount of deposition increased significantly after seven days. Such a result is
consistent with that reported in previous studies, which demonstrated that a large surface area of MBG
promoted the deposition of Ca and P ions, which is essential for hydroxyapatite formation [42–44].
It is, thus, believed that the coating developed in this study can maintain the bioactive features of the
MBG powder. Thus, the enhanced biological activity of the coating can be expected.

The ability to support cell attachment and proliferation is important for the surface
biocompatibility of an implant [45]. As shown in our study, hBMSCs on the MBG-coated Ti-6Al-4V
scaffolds showed a more spread morphology and a larger quantity than those on the bare-metal
Ti-6Al-4V and BG-coated Ti-6Al-4V scaffolds, indicating the superior surface biocompatibility of the
MBG-coated scaffolds. Moreover, we found that the MBG-coated Ti-6Al-4V scaffolds exhibited the
highest ALP activity of hBMSCs, which is commonly considered to be a key marker of early-stage
mineralization and osteogenic differentiation, indicating a stronger osteogenesis ability [46,47].
The observed differences in ALP activity may be due to ion release and mesoporous structures,
as the superior ability of MBG to enhance osteogenic differentiation of hBMSCs is partly attributed to
the more efficient release of Ca and Si ions, as compared with BG. The mesoporous structure is also
an important contributor to promoting osteogenic differentiation, as it has been confirmed that the
mesoporous structure can enhance protein adsorption [22,25,33,48]. Our results confirmed the superior
bioactivity of the MBG-coated Ti-6Al-4V scaffolds to that of the BG-coated Ti-6Al-4V and bare-metal
Ti-6Al-4V scaffolds, indicating that the MBG-coated scaffolds are worth further in vivo evaluation in
terms of bone regeneration ability.

In conclusion, we have successfully applied MBG coating on the strut surfaces of the
SLM Ti-6Al-4V scaffolds by means of spin coating. The characteristic mesoporous structure and
chemical composition of MBG were maintained. The compressive strength, pore dimensions, and
pore interconnectivity of the scaffolds were not compromised by adding a thin coating layer.
Moreover, the results from the in vitro cell culture experiments demonstrated that the attachment,
proliferation, and differentiation of hBMSCs on the MBG-coated Ti-6Al-4V scaffolds were much
improved, as compared with those on the BG-coated and bare-metal Ti-6Al-4V scaffolds. Our results
demonstrated that the developed MBG coating could be an effective approach to achieving enhanced
surface bio-functionalization for SLM Ti-6Al-4V scaffolds.

4. Materials and Methods

4.1. Preparation of the MBG-Coated Ti-6Al-4V Scaffolds and Coating Precursor Solutions

A medical-grade Ti-6Al-4V powder (grade 23) supplied by Advanced Powders and Coatings
(AP&C, Boisbriand, QC, Canada) with a median particle size of 31.6 µm and a spherical morphology
was used to produce cylindrical scaffold samples. Its chemical composition is given in Table 1.
Cylindrical scaffolds with a diameter of 10 mm and a height of 10 mm were 3D printed in the axial
direction by using an SLM machine (Realizer, SLM-125, Borchen, Germany) with a YLM-400-AC
ytterbium fiber laser (IPG Photonics Corporation, Oxford, MA, United States) under an inert
atmosphere (argon) with an oxygen content below 0.2%. The layer thickness was 50 µm. The scaffolds
had a diamond lattice structure with a strut thickness of 300 µm, corresponding to a porosity value of
68% (design value). No post-SLM processing was performed.

Table 1. Chemical composition of the powder used in this research (by weight percent).

Element C O N H Fe Al V Ti

Content (wt %) 0.02 0.10 0.02 0.0017 0.19 6.4 4.0 Balance
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Prior to the application of MGB coating, a SiO2 interlayer was deposited on the strut surface
with the intention to avoid a severe reaction between the substrate and MBG coating, which might
lead to a changed chemical composition and destroyed mesoporous structure of MBG. A SiO2

precursor solution was prepared by hydrolyzing 20.1 g tetraethyl orthosilicate (TEOS) in 180 g ethanol
solution, using 0.5 M HCl as catalyzer. An MBG precursor solution was prepared according to the
procedure developed in a previous study [18]. First, 12 g of nonionic block copolymer EO20PO70EO20
(P123, Sigma-Aldrich, St. Louis, MO, USA ) was dissolved in 180 g ethanol and the solution was stirred
to achieve clarification. Then, 20.1 g TEOS, 4.2 g Ca(NO3)2·4H2O, 2.19 g triethyl phosphate (TEP, 99.8%)
and 3 g 0.5 M HCl were added to the ethanol P123 solution, TEOS, Ca(NO3)2·4H2O, TEP and HCl with
AR grade were purchased from Sinopharm Chemical Reagent Co., Ltd, Shanghai, China. The Si/Ca/P
molar ratio was set to be 80:15:5. The mixture solution was then stirred for 24 h. The obtained SiO2

precursor solution was deposited on the strut surfaces of the Ti-6Al-4V scaffolds by spin coating four
times, and rotational speed was set at 500 rpm for the first 10 s and 2000 rpm for the following 20 s.
Between the two coating runs, the scaffolds were kept in a fume hood for 8 h to allow the volatile
components to evaporate. Then the MBG precursor solution was used to coat the scaffolds, following
the same procedure. Dried gel was obtained by using the evaporation-induced self-assembly (EISA)
method. Finally, the coated scaffolds were heated at a rate of 1 ◦C min−1 to 650 ◦C and held at 650 ◦C
for 5 h to remove organic compounds and form the mesoporous structure. For comparison purposes,
the conventional bioactive glass (BG) was applied to the strut surfaces of the Ti-6Al-4V scaffolds.
The SiO2 precursor was the same as that applied to the BMG-coated scaffolds. In the BG precursor no
P123 was added during preparation.

4.2. Surface Characterization of the MBG-Coated Ti-6Al-4V Scaffolds

Grazing incidence X-ray diffraction (GIXRD) was used to analyze MBG phase compositions.
The surface morphology and the chemical composition changes from the MBG coating to the
strut interior of the scaffolds were characterized by using scanning electron microscopy (SEM)
and energy dispersive spectrometry (EDS), respectively. To evaluate the adhesion between the
coating and substrate, the sample was cut into two pieces, embedded in resin, and then polished
to expose the substrate-coating interface, which was then observed by using SEM. The mesoporous
structure of the MBG coating was ascertained by using transmission electron microscopy (TEM).
The Barrett-Emmett-Teller (BET) method was used to determine the pore type and calculate the specific
surface area (S) of the coating.

4.3. Mechanical and Porosity Tests of the Scaffolds

The BG-coated and MBG-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds (d = 10 mm
and h = 10 mm) were subjected to compression tests and porosity tests. The compression tests were
carried out using a computer-controlled universal testing machine (Instron-5592, Boston, MA, USA)
and the crosshead speed was set at 0.2 mm min−1. The porosity values of the coated and non-coated
scaffolds were determined using a multi-function porosity and density tester (ET-320VP). For each
group, six samples were used in order to ensure repeatability.

4.4. Immersion Tests of the Scaffolds

To evaluate the in vitro bone-like hydroxyapatite formation ability, the scaffolds were immersed in
simulated body fluid (SBF) in a shaker at 37 ◦C. SBF was prepared according to the method described
by Kokubo et al. [28]. All the chemical reagents involved in the preparation of SBF were purchased
from Sinopharm Chemical Reagent Co., Ltd, Shanghai, China. The ratio of the volume of SBF to the
weight of the sample was set at 50 mL/g, and the immersion medium in 50 mL centrifuge tube was
refreshed once every two days. After one and seven days of immersion, the scaffolds were taken out of
the SBF solution, gently rinsed with distilled water and dried at 60 ◦C overnight. The microstructure
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and chemical composition of the surface layer on the struts of the scaffolds were then characterized by
using SEM and EDS, respectively.

The ion release behaviors of the Ti-6Al-4V, BG-coated Ti-6Al-4V and MBG-coated Ti-6Al-4V
scaffolds were characterized by performing immersion tests in a Tris-HCl buffered solution in a
shaker at 37 ◦C and the ratio of the volume of the Tris-HCl buffered solution volume to the weight
of the scaffold was set at 4 mL/g. The soaking medium in 4 mL polyethylene bottle was refreshed
once every two days. After one, three, five, and seven days of immersion, the soaking medium was
collected, and the concentrations of Ca and Si ions in the collected solution were determined by using
inductively-coupled plasma atomic emission spectrometry (ICP-AES) (Varian Co., Palo Alto, CA, USA).
Three samples of each group in the immersion solution were tested.

4.5. In Vitro Biocompatibility and Osteogenic Ability of the Scaffolds

4.5.1. Cell Adhesion and Proliferation

Human bone marrow stromal cells (hBMSCs) were purchased from Cyagen Biosciences. 1 × 104 of
hBMSCs (at passage 4) were added to the bare-metal Ti-6Al-4V, BG-coated Ti-6Al-4V and MBG-coated
Ti-6Al-4V scaffolds (n = 3) in 48-well culture plates. The hBMSCs were incubated for one, three, five,
and seven days in human mesenchymal stem cell basal medium supplemented with 10% human
mesenchymal stem cell-qualified fetal bovine serum, 5% penicillin-streptomycin and 5% glutamine
(Cyagen Biosciences, Santa Clara, CA, USA) under a 5% CO2 atmosphere at 37 ◦C. Confocal laser
scanning microscopy (CLSM, Leica TCS SP8, Wetzlar, Germany) was used to observe the morphology
of hBMSCs cultured on the three groups. Cellular samples were fixed with 2.5% glutaraldehyde
for 20 min, followed by washing three times to remove excess glutaraldehyde, then the fixed cell
cytoskeletons were stained with fluorescein isothiocyanate labeled phalloidin (FITC, Sigma-Aldrich,
St. Louis, MO, USA), followed by washing three times with PBS to remove the nonspecific background,
and cell nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich, USA),
following the same procedure. Argon laser line of 405 nm (DAPI channel, blue) and 488 nm
(FITC channel, green) were used to capture the image. For cell proliferation assays, the relative
cell proliferation rate was studied using Cell Counting Kit-8 (CCK-8, Dojindo, Rockville, MD, USA).
Briefly, at each time point, samples were refreshed with a 10% CCK-8 and 90% hBMSCs basal medium
mixed solution and incubated at 37 ◦C for 2 h. Then, 100 µL of the reaction solution was transferred
into a new 96-well plate and the optical density was measured at 450 nm by a microplate reader
(Epoch Microplate Spectrophotometer, BioTek Instruments, Winooski, VT, USA).

4.5.2. Alkaline Phosphate (ALP) Activity Tests

To determine the early differentiation of hBMSCs stimulated by the three groups of the scaffolds,
hBMSCs (1 × 104 cells/well) were seeded on the bare-metal Ti-6Al-4V, BG-coated Ti-6Al-4V and
MBG-coated Ti-6Al-4V scaffolds (n = 3). At day 7, the cells were permeabilized in 0.1% Triton X-100
for 10 min and then washed with PBS for three times. The lysates were centrifuged at 14,000 rpm
for 15 min. 50 mL of supernatant was mixed with 150 mL of ALP assay working solution according
to the manufacturer’s protocol (QuantiChromt Alkaline Phosphatase Assay Kit, BioAssay Systems,
Hayward, CA, USA). The OD values were measured at 405 nm using a spectrophotometer. The relative
ALP activity was expressed as the changed OD value divided by the reaction time and the total protein
content was measured by the bicinchoninic acid protein assay kit (BCA, Sigma-Aldrich, USA).

4.6. Statistical Analysis

The experimental data were averaged and expressed as the mean ± standard deviation.
Significant differences between different films were determined using the t-test, for which p < 0.05 was
considered statistically significant.
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