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Real-Time Ground Fault Detection for Inverter-Based Microgrid Systems

Jingwei Dong , Yucheng Liao, Haiwei Xie , Graduate Student Member, IEEE,
Jochen Cremer , Member, IEEE, and Peyman Mohajerin Esfahani

Abstract— Ground fault detection in inverter-based micro-
grid (IBM) systems is challenging, particularly in a real-time
setting, as the fault current deviates slightly from the nominal
value. This difficulty is reinforced when there are partially
decoupled disturbances and modeling uncertainties. The con-
ventional solution of installing more relays to obtain additional
measurements is costly and also increases the complexity of the
system. In this brief, we propose a data-assisted diagnosis scheme
based on an optimization-based fault detection filter with the
output current as the only measurement. Modeling the microgrid
dynamics and the diagnosis filter, we formulate the filter design
as a quadratic programming (QP) problem that accounts for
decoupling partial disturbances, robustness to nondecoupled
disturbances and modeling uncertainties by training with data,
and ensuring fault sensitivity simultaneously. To ease the com-
putational effort, we also provide an approximate but analytical
solution to this QP. Additionally, we use classical statistical results
to provide a thresholding mechanism that enjoys probabilistic
false-alarm guarantees. Finally, we implement the IBM system
with Simulink and real-time digital simulator (RTDS) to verify
the effectiveness of the proposed method through simulations.

Index Terms— Differential-algebraic systems, fault detection,
high-fidelity simulator, smart grid.

I. INTRODUCTION

IN THE past decade, inverter-based microgrid (IBM) sys-
tems have gained popularity as power systems become

increasingly complex and rely more on renewable energy
sources [1]. These microgrid systems help integrate renewable
energy sources into power systems and regulate the amount
of power supplied to customers to provide high-quality power
and reduce energy costs. They can also operate independently
and allow for local control of distributed generation, for
example, when the main grid is unavailable due to blackouts
or storms [2]. This greatly increases the reliability of power
systems.

Although IBM systems offer many benefits, they are sus-
ceptible to faults that can pose safety risks and damage
equipment. However, the conventional protection strategy for
power systems, such as overcurrent detection, is inefficient
in detecting faults in IBM systems [3]. This is because the
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fault current only slightly deviates from the nominal value
due to a fault current limiter (FCL) embedded in the inverter
controller [4]. The fault detection problem is more difficult
when considering disturbances that cannot be completely
decoupled and modeling uncertainties. Therefore, developing
an effective fault detection scheme for IBM systems in the
presence of partially decoupled disturbances and modeling
uncertainties remains a challenge, particularly when the output
current is the only measurement. In this brief, we focus on the
detection of ground faults as they are the most common and
problematic type of faults in IBM systems [5].

To address the fault detection problem for microgrid sys-
tems, researchers have developed several differential methods
that rely on communication infrastructure between relays.
These methods measure differences in the current symmetrical
components [6], the energy content of current [7], the instan-
taneous current with comparative voltage [8], and the traveling
wave polarities [9] to detect faults. Though these methods
have shown effectiveness, relying on communication devices
can reduce the reliability of systems, and it can be expensive
and time-consuming to implement and maintain new equip-
ment. Most recently, to detect ground faults, Pirani et al. [10]
provided an optimal input design method ensuring that the
output sets of normal and faulty modes of an IBM system are
separated with probabilistic guarantees. However, the injected
input can degrade system performance, and it is unsuitable for
online monitoring due to the intensive computation required
for generating the input sequence.

In contrast to differential methods, fault detection methods
based on residual generation are less-dependent on the com-
munication infrastructure and additional sensors. Moreover,
residual generation-based methods are more suitable for online
monitoring than active input design because they do not
require continuous updates and have no impact on system
performance. In the fault detection field, residual generators
are generally constructed using observer-based or parity-space
methods [11]. Researchers employ optimization techniques to
determine the parameters of residual generators, such that the
residuals are sensitive to faults while being robust against
disturbances and uncertainties. Alternatively, decomposition
techniques such as unknown input observers (UIOs) [12] can
be utilized to decouple disturbances from residuals. However,
we found that the UIO approach could fail to satisfy the
detectability condition when applied to IBM systems with a
limited number of measurements.

Nyberg and Frisk [13] proposed a parity-space-like
approach to designing residual generators in the framework
of linear differential-algebraic equations (DAEs). The derived
residual generators can have a lower order than that of the sys-
tem, thus reducing the computational complexity when dealing
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with large-scale systems. In addition, this framework provides
design freedom in the sense that one can transform the design
of residual generators into different optimization problems to
obtain desired solutions based on specific requirements. For
example, Mohajerin Esfahani and Lygeros [14] reformulated
the robust fault detection filter design for nonlinear systems
as a quadratic programming (QP) problem to decouple distur-
bances and minimize the effects of nonlinearity on residuals.
Based on this, results for attack detection [15], diagnosis of
switched systems [16], and multiple fault estimation [17] have
been developed in the DAE framework as well. We would like
to emphasize that these methods [14], [15], [16], [17] rely on
an accurate system model and all consider disturbances that
can be completely decoupled. However, in reality, modeling
uncertainties are unavoidable and disturbances generally can-
not be completely decoupled, all of which pose challenges to
fault diagnosis tasks.

Main Contributions: In this work, we take advantage of the
DAE framework to design filters for ground fault detection
in the IBM system. To the best of authors’ knowledge, this
is the first attempt to design fault detection filters within the
DAE framework that enables real-time monitoring of ground
faults in the IBM system with partially decoupled disturbances
and modeling uncertainties. The contributions of this brief are
summarized as follows.

1) Dynamic System Modeling: We develop a unified
state-space model for the IBM system in both normal
mode and the presence of ground faults (Sections II-B
and II-C). This model is further formulated in the DAE
framework, which facilitates the design of robust fault
detection filters.

2) Data-Assisted Disturbance and Uncertainty Rejection:
To address partially decoupled disturbances and uncer-
tainties, we borrow the idea from [14, Approach (II)] to
reframe filter design as a QP problem. The reformulation
enables us to decouple partial disturbances, mitigate
the effects of nondecoupled disturbances and modeling
uncertainties by training with data, and ensure fault sen-
sitivity (Theorem 3.1). Inspiring from [18, Corollary 1],
we also obtain an approximate analytical solution to
this QP problem with arbitrary accuracy (Corollary 3.3),
allowing for online updates of filter parameters.

3) Probabilistic False Alarm Certificate: Leveraging the
classical Markov inequality, we further propose a
threshold determination method along with probabilistic
false-alarm guarantees (Proposition 3.7).

4) Validation Through a High-Fidelity Simulator: To vali-
date the effectiveness of the proposed diagnosis scheme,
we test it on an IBM system constructed using Simulink
and real-time digital simulator (RTDS), which can effec-
tively simulate the practical characteristics of smart
grids.

The rest of this brief is organized as follows. The modeling
of an IBM system and the problem formulation are presented
in Section II. In Section III, we provide the design method
for the fault detection filter. In Section IV, we evaluate the
effectiveness of the proposed approaches with simulations.
Finally, Section V concludes this brief with future directions.

Notation: Sets R(R+) and N denote all (positive) reals
and nonnegative integers, respectively. The space of n-

Fig. 1. Architecture of an IBM system with the diagnosis component.

dimensional real-valued vectors is denoted by Rn . For a
vector v = [v1, . . . , vn], the infinity norm of v is ∥v∥∞ =

maxi∈{1,...,n} |vi |. The diagonal operator is denoted by diag(·).
For two discrete-time signals s1 and s2 taking values in Rn with
length T , the L2 inner product is represented as ⟨s1, s2⟩ :=∑T

k=1 s⊤

1 (k)s2(k), and the corresponding norm ∥s1∥L2 :=

(⟨s1, s1⟩)
1/2. The notation 0m×n denotes a zero matrix with m

rows and n columns. The identity matrix with an appropriate
dimension is denoted by I . For a random variable χ , Pr[χ ]

and E[χ ] are the probability law and the expectation of χ ,
respectively.

II. MODELING AND PROBLEM STATEMENT

In this section, we present the state-space model of an IBM
system and consider three-phase symmetrical ground faults.
Then, we formulate the problem addressed in this work.

A. System Description
An IBM generally consists of four components: the power

supplier, the LC L filter, the controller, and the load, as shown
in Fig. 1. Let us elaborate on the functions of each component.

1) Power Supplier: The power supply part contains a
generator source and an inverter. We assume that: 1) an
ideal generator source is available and 2) the inverter
switching process can be neglected due to its high
switching frequency. Therefore, we can set the output
voltage of the inverter vi = v∗

i . The output current of
the inverter is denoted by il . As the single generator
source supplies all power to the load, droop control is
unnecessary, and the microgrid frequency ω is constant.

2) LCL Filter: The LC L filter is used to filter the har-
monics produced by the inverter. It consists of two
resistors R f and Rc, two inductors L f and Lc, and a
capacitor C f . The signals vo and io denote the grid-side
voltage and the output current, respectively.

3) Controller: The control part keeps the grid-side voltage
at v∗

o with two proportional integral (PI) controllers,
where v∗

o is a reference voltage determined by load
demand and generation capacity. The voltage controller
sets reference i∗

l for the current controller. The FCL is
a saturation block that protects the microgrid from large
fault currents.

4) Load: The load denoted by RL is purely resistive,
and 1RL is the unknown load change.

The mentioned voltages and currents are based on a
three-phase system. We introduce the direct-quadrature (dq)
transform to simplify the analysis. Specifically, for a
three-phase system with current i = [ia ib ic]

⊤ and voltage v =

[va vb vc]
⊤ in the abc framework, the dq transform projects i
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and v onto dq-axis, i.e., idq = [id iq ]
⊤

= Pi and vdq =

[vd vq ]
⊤

= Pv. We refer interested readers to [19] for more
details about the dq transform.

B. State-Space Model of the Fault-Free IBM System
We first model individual components of the microgrid.

Considering the voltage controller in the control component,
we transform vo, v

∗
o , io, and i∗

l into the dq framework, which
are vodq , v

∗

odq , iodq , and i∗

ldq , respectively. The cumulative error
between vodq and v∗

odq denoted by φdq := [φd φq ]
⊤ can be

written as
dφd(t)

dt
= v∗

od(t) − vod(t),
dφq(t)

dt
= v∗

oq(t) − voq(t). (1)

Then, we have the following relations:{
i∗

ld = Fiod − ωC f voq + K v
P

(
v∗

od − vod
)
+ K v

I φd

i∗

lq = Fioq + ωC f vod + K v
P

(
v∗

oq − voq
)
+ K v

I φq
(2)

where F is the feedforward coefficient, and K v
P and K v

I denote
the proportional and integral gains, respectively. From (1)
and (2), we obtain the state-space model of the voltage
controller{

φ̇dq = Bv1v
∗

odq + Bv2
[
ildq vodq iodq

]⊤
i∗

ldq = Cvφdq + Dv1v
∗

odq + Dv2
[
ildq vodq iodq

]⊤ (3)

where the matrices are

Bv1 =

[
1 0
0 1

]
, Bv2 =

[
0 0 − 1 0 0 0
0 0 0 − 1 0 0

]
Cv =

[
K v

I 0
0 K v

I

]
, Dv1 =

[
K v

P 0
0 K v

P

]
Dv2 =

[
0 0 −K v

P −ωC f F 0
0 0 ωC f −K v

P 0 F

]
.

Similarly, one can obtain the state-space model of the
current controller. Let us transform il , i∗

l , and v∗

i into the dp
framework, which are ildq , i∗

ldq , and v∗

idq , respectively. The
cumulative error between ildq and i∗

ldq is denoted by γdq :=

[γd γq ]
⊤, i.e.,

dγd(t)
dt

= i∗

ld(t) − ild(t),
dγq(t)

dt
= i∗

lq(t) − ilq(t) (4)

along with the equations{
v∗

id = −ωL f ilq + K c
P

(
i∗

ld − ild
)
+ K c

I γd

v∗

iq = ωL f ild + K c
P(i∗

lq − ilq) + K c
I γq

(5)

where K c
P and K c

I denote the proportional and integral gains,
respectively. Based on (4) and (5), the state-space model of
the current controller is given by{

γ̇ dq = Bc1i∗

ldq + Bc2[ildq vodq iodq ]
⊤

v∗

idq = Ccγdq + Dc1i∗

ldq + Dc2[ildq vodq iodq ]
⊤

(6)

where the matrices are

Bc1 =

[
1 0
0 1

]
, Bc2 =

[
−1 0 01×4
0 − 1 01×4

]
, Cc =

[
K c

I 0
0 K c

I

]
Dc1 =

[
K c

P 0
0 K c

P

]
, Dc2 =

[
−K c

P −ωL f 01×4
ωL f −K c

P 01×4

]
.

For the LC L filter, we transform the output voltage of the
inverter vi and the bus voltage vb into the dq framework,

i.e., vidq and vbdq , respectively. The dynamics of the LC L
filter is as follows:

i̇ ld =
−R f

L f
ild + ωilq +

1
L f

vid −
1

L f
vod

i̇ lq =
−R f

L f
ilq − ωild +

1
L f

viq −
1

L f
voq

v̇od = ωvoq +
1

C f
ild −

1
C f

iod

v̇oq = −ωvod +
1

C f
ilq −

1
C f

ioq

i̇od =
−Rc

Lc
iod + ωioq +

1
Lc

vod −
1
Lc

vbd

i̇oq =
−Rc

Lc
ioq − ωiod +

1
Lc

voq −
1
Lc

vbq .

Then, the state-space model of the LC L filter becomes i̇ ldq
v̇odq
i̇odq

 = Al

 ildq
vodq
iodq

+ [Bl1 Bl2]
[

vidq
vbdq

]
(7)

where vbdq = diag(RL + 1RL , RL + 1RL)iodq , and the
matrices are given by

Al =



−
R f

L f
ω −

1
L f

0 0 0

−ω −
R f

L f
0 −

1
L f

0 0

1
C f

0 0 ω −
1

C f
0

0
1

C f
−ω 0 0 −

1
C f

0 0
1
Lc

0 −
Rc

Lc
ω

0 0 0
1
Lc

−ω −
Rc

Lc



Bl1 =


1

L f
0 01×4

0
1

L f
01×4


⊤

Bl2 =

01×4 −
1
Lc

0

01×4 0 −
1
Lc


⊤

.

Recalling that vidq = v∗

idq and combining (3), (6), and (7),
we obtain the complete state-space model of the IBM system
in the fault-free case{

ẋ = Ah x + Bhv
∗

odq + Bdd
iodq = Cx

(8)

where x = [φ⊤

dq γ ⊤

dq i⊤

ldq v⊤

odq i⊤

odq ]
⊤ is the augmented state

and d = iodq1RL is the disturbance. The system matrices are

Ah =

 02×2 02×2 Bv2
Bc1Cv 02×2 Bc1 Dv2 + Bc2

Bl1 Dc1Cv Bl1Cc Ah33
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Bh =

 Bv1
Bc1 Dv1

Bl1 Dc1 Dv1

, Bd =


08×1 08×1

−
1
Lc

0

0 −
1
Lc


C =

[
02×8 I

]
where

Ah33 = Al + Bl1(Dc1 Dv2 + Dc2) + Bl2

[
RL 0
0 RL

]
[02×4 I ].

We would like to highlight that the number of states is 10,
while we only have two measurements, i.e., iod and ioq .
We take into account disturbances resulting from unknown
load changes, which are commonly observed in microgrid
systems and typically manifest as random step signals [20],
[21], [22]. Therefore, in this study, we assume that d is a
step signal taking random values uniformly within the known
range [dlb, dub] where dlb, dub ∈ R2. Additionally, since the
dimension of the measurement signal is equal to that of the
disturbance, d cannot be fully decoupled [23, Chapter 6],
leading to challenges in fault detection. To address this issue,
we split Bd = [B̂d B̌d ] and define d = [d̂ ď]

⊤, where d̂ and ď
represent the decoupled and nondecoupled parts, respectively.

C. State-Space Model of the IBM System With Ground Faults

We consider three-phase symmetrical ground faults, which
can cause a short circuit and a sharp increase in currents. After
ground faults occur: 1) the bus voltage vbdq = 0 because of
the short circuit and 2) the output of the voltage controller i∗

ldq
saturates to a constant value τdq immediately, i.e., i∗

ldq(t) = τdq
for t ≥ t f , where t f denotes the time instant when ground
faults occur. Therefore, the state-space model of the current
controller (6) in the faulty mode becomes{

γ̇ dq = Bc1τdq + Bc2
[
ildq vodq iodq

]⊤
v∗

idq = Ccγdq + Dc1τdq + Dc2
[
ildq vodq iodq

]⊤
.

(9)

Based on (3), (7), and (9), the state-space model of the IBM
system with ground faults can be written as{

ẋ = Auh x + Buh1v
∗

odq + Buh2τdq

iodq = Cx
(10)

where the matrices A f , Buh1, and Buh2 are

Auh =

02×2 02×2 Bv2
02×2 02×2 Bc2
06×2 Bl1Cc Al + Bl1 Dc2

, Buh1 =

 Bv1
02×2
06×2


Buh2 =

[
02×2 B⊤

c1 (Bl1 Dc1)
⊤
]⊤

.

Note that d has no effect on the faulty system because of
the short circuit and the redundant state φdq in the faulty
model (10) is retained for consistency. To streamline the
representation of the normal and faulty models (8) and (10),
we introduce a binary signal f ∈ {0, 1}, where f = 1 indicates
the occurrence of ground faults, and f = 0 otherwise. Then,
we obtain the following unified expression:{

ẋ = A( f )x + Bu( f )u + Bd( f )d
y = Cx

(11)

where u = [v∗

odq
⊤ τ⊤

dq ]
⊤ and y = iodq . The dimen-

sions of x, u, d, and y are denoted by nx , nu, nd , and ny ,
respectively. The system matrices are

A( f ) = Ah + f (Auh − Ah)

Bu( f ) = [Bh + f (Buh1 − Bh) f Buh2]

Bd( f ) = [B̂d( f ) B̌d( f )] = (1 − f )[B̂d B̌d ].

Considering that discrete-time data sampling is used
in reality, we discretize the continuous-time state-space
model (11) when designing the diagnosis scheme. For con-
venience, we adopt the same notations for system matrices in
both the continuous-time and discrete-time representations.

D. Problem Statement

The objective of this work is to detect the occurrence of
ground faults in the IBM system using known signals u and y.
Our proposed scheme is to design a residual generator denoted
by a linear transfer function F, whose output is a scalar-valued
signal r (called residual). The structure is illustrated in the
diagnosis component of Fig. 1. This residual r serves as an
indicator of ground faults. Ideally, in the absence of ground
faults, r should remain close to zero in the presence of
disturbances. However, r can exhibit a significant increase to
facilitate detection when ground faults occur.

Additionally, in real-world application scenarios, the mea-
surement ỹ, which is directly fed to the residual generator, may
deviate from the output of the mathematical model (MM) y
due to simplifications made during the modeling process.
Therefore, in addition to disturbances, it is essential to ensure
that r remains robust against discrepancies induced by model-
ing uncertainties, i.e., ξ = ỹ − y. Based on the above analysis,
to obtain the desired residual behavior, two questions arise
naturally. How can we design F to: 1) mitigate effects of d
and ξ on r in the normal mode and 2) enhance fault sensitivity
of r in the faulty mode.

In this work, we provide a design method of the filter F in
the DAE framework to fulfill the two requirements. To this
end, let us introduce the shift operator q, i.e., qx(k) =

x(k+1), and transform the discrete-time version of the unified
state-space model (11) into

H(q, f )[X ] + L( f )[Y ] + E( f )[ď] = 0 (12)

where X = [x⊤ d̂]
⊤ and Y = [y⊤ u⊤

]
⊤. The matrices H(q, f )

are a polynomial matrix in q, which is

H(q, f ) = qH1 + H0( f ) =

[
−qI +A( f ) B̂d( f )

C 0

]
H1 =

[
−I 0
0 0

]
, H0( f ) =

[
A( f ) B̂d( f )

C 0

]
.

The expressions of L( f ) and E( f ) are

L( f ) =

[
0 Bu( f )

−I 0

]
, E( f ) =

[
B̌d( f )

0

]
.

We define L0 := L(0), L1 := L(1), and E0 := E(0) for
simplicity of expression.

The fault detection filter F is defined in the form of

F(q) =
N (q)L0

a(q)
(13)
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where the numerator N (q) is a polynomial row vector,
i.e., N (q) =

∑dN
i=0 Niq

i , Ni ∈ R1×(nx +ny), and dN is the
degree of N (q). The denominator a(q) is a polynomial with
a degree larger than dN and all roots inside the unit circle
so that the derived filter is strictly proper and stable. For
simplicity of design, we fix dN and a(q) and only design the
coefficients of N (q). It is worth pointing out that a(q) can
be chosen up to the user and specific requirements, e.g., noise
sensitivity and dynamic performance, which will be our future
research.

By setting f = 0 and multiplying from the left-hand side
of (12) by a−1(q)N (q), we obtain the residual r in the normal
mode as

r =
N (q)L0

a(q)

[
ỹ
u

]
= −

N (q)H(q, 0)

a(q)
[X ] −

N (q)E0

a(q)
[ď] +

N (q)L0

a(q)
[ξ̄ ] (14)

where ξ̄ = [ξ⊤ 0⊤
]
⊤ as we use the practical measurement ỹ

instead of y here.
When ground faults happen, i.e., f = 1, DAE model (12)

becomes H(q, 1)[X ] + L1[Y ] = 0 as E(1) = 0. It holds
that Y = −L†

1 H(q, 1)[X ], where L†
1 is the left inverse

of L1 and it always exist as L1 has full-column rank. The
residual r in the faulty mode becomes

r =
N (q)L0

a(q)

[
ỹ
u

]
= −

N (q)L0L†
1 H(q, 1)

a(q)
[X ] +

N (q)L0

a(q)
[ξ̄ ]. (15)

Since all the entities in a−1(q)N (q)L0[ỹ⊤ u⊤
]
⊤ are known,

it can be used to generate the residual. The second
line of (14) and (15) characterizes the mapping relations
between the unknown signals x, d, and ξ and the resid-
ual r in the normal and faulty modes, respectively, based
on which we can design N (q) for different diagnosis
purposes.

Recall the two design requirements. To ensure a sufficiently
small residual, we decouple X from r when there is no fault
through

N (q)H(q, 0)
∣∣
q=1 = 0. (16a)

Furthermore, we let the transfer function from X to r
remain nonzero to guarantee fault sensitivity in the faulty
mode, i.e.,

N (q)L0L†
1 H(q, 1)

∣∣
q=1 ̸= 0. (16b)

We also aim to mitigate the effects of ξ on r , namely,
the last term in (14) and (15). Inspired by the approach
in [14], we tackle this problem from a data-driven per-
spective by training the filter with historical data of ξ to
enhance its robustness. To elaborate, we can obtain m ∈ N
instances of output differences, i.e., {ξ1, . . . , ξm}, by running
the actual system and the MM simultaneously. For each
instance ξi = [ξi (0), ξi (1), . . . , ξi (T )] with T ∈ N, we define

its contribution to r as

rξi =
N (q)L0

a(q)
[ξ̄ i ], ξ̄ i = [ξ⊤

i 0⊤
]
⊤.

Then, we can suppress the average effects of ξ by constrain-
ing the L2-norm of rξi for all i ∈ {1, . . . , m}, i.e.,

1
m

m∑
i=1

∥rξi ∥
2
L2

=
1
m

m∑
i=1

∥∥∥∥N (q)L0

a(q)
[ξ̄ i ]

∥∥∥∥2

L2

≤ β1 (16c)

where β1 ∈ R+. We show later the approach to con-
structing ∥rξi ∥

2
L2

with a combination of the system model
and historical data. For the nondecoupled disturbance ď
in (14), we choose the same solution as above and
let

1
m

m∑
i=1

∥rď i
∥

2
L2

=
1
m

m∑
i=1

∥∥∥∥N (q)E0

a(q)
[ď i ]

∥∥∥∥2

L2

≤ β2 (16d)

where β2 ∈ R+, ď i for i ∈ {1, . . . , m} is an instance of ď,
and rď i

denotes the contribution of ď i to r .
Problem (Data-Assisted Robust Fault Detection Filter

Design): Consider the state-space model of the IBM sys-
tem (11) with three-phase symmetrical ground faults. Given
m instances of output discrepancies ξi and nondecoupled
disturbances ď i , find a fault detection filter F in the form
of (13) that satisfies (16a)–(16d).

III. MAIN RESULTS

In this section, we present the design method of the
fault detection filter and the determination method of the
threshold.

A. Filter Design

Let us start by constructing ∥rξi ∥
2
L2

mentioned above. Note
that the response of the j th element of ξi , i.e., ξi ( j), can be
computed by[

rξi ( j)(0), rξi ( j)(1), . . . , rξi ( j)(T )
]

= N (q)L0ξ̄ i ( j)ℓ̄ j

where ℓ̄ j = [

j︷ ︸︸ ︷
0, . . . , 0, ℓ(0), ℓ(1), . . . , ℓ(T − j)] and ℓ(k)

for k ∈ N is the value of the discrete-time unit impulse
response of a−1(q) at the time instance k. By summing
up the response of ξi ( j) for j ∈ {0, . . . , T − dN },
we obtain[

rξi (0), rξi (1), . . . , rξi (T )
]

= N (q)L0

T −dN∑
j=0

ξ̄ i ( j)ℓ̄ j

= N̄ L̄0


I
qI
...

qdN I

[ξ̄ i (0), . . . , ξ̄ i (T − dN )]

 ℓ̄0
...

ℓ̄T −dN

 (17)

where N̄ = [N0, N1, . . . , NdN ] and L̄0 = diag(L0, . . . , L0)

according to the multiplication rule of polynomial matri-
ces [14, Lemma 4.2]. Recall that q is a time-shift operator,
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i.e., qξ̄ i (k) = ξ̄ i (k + 1). Equation (17) becomes[
rξi (0), rξi (1), . . . , rξi (T )

]
= N̄ L̄0


ξ̄ i (0) . . . ξ̄ i (T − dN )

ξ̄ i (1) . . . ξ̄ i (T − dN + 1)
...

. . .
...

ξ̄ i (dN ) . . . ξ̄ i (T )


 ℓ̄0

...

ℓ̄T −dN


= N̄ L̄04i0. (18)

To ensure the existence of 4i , we assume that the length of
data T is greatly larger than dN +1, i.e., T ≫ dN +1. With (18),
∥rξi ∥

2
L2

is further formulated into

∥rξi ∥
2
L2

= N̄8i N̄⊤, 8i = L̄04i0(L̄04i0)⊤. (19)

It is worth emphasizing that 8i is positive semidefinite
since ∥rξi ∥

2
L2

= N̄8i N̄⊤
≥ 0 for all nonzero N̄ . Similarly,

we obtain the signature matrix for ď i , which is

∥rď i
∥

2
L2

= N̄9i N̄⊤, 9i = Ē0 Ďi0(Ē0 Ďi0)⊤.

The construction of Ē0 and Ďi is similar to that of L̄0 and 4i .
Now, we can present the design method of the ground fault

detection filter for the IBM system in the following theorem.
Theorem 3.1 (Filter design: QP): Consider the unified

state-space model of the IBM system (11) and the structure
of the fault detection filter in (13). Given the degree dN ,
a stable a(q), and m instances of output discrepancies ξi and
nondecoupled disturbances ď i , (16a)–(16d) in problem are
satisfied by solving the following optimization problem:

min
N̄

N̄ (8̄ + 9̄)N̄⊤
− ∥N̄ L̄ H̄(1) Ī∥∞

s.t. N̄ H̄(0) Ī = 0 (20)

where 8̄ = (1/m)
∑m

i=1 8i , 9̄ = (1/m)
∑m

i=1 9i ,

L̄ = diag (L0L†
1, . . . , L0L†

1)︸ ︷︷ ︸
dN +1

, Ī = [I, . . . , I︸ ︷︷ ︸
dN +2

]
⊤

H̄( f ) =


H0( f ) H1 0 . . . 0

0 H0( f ) H1 0
...

... 0
. . .

. . . 0
0 . . . 0 H0( f ) H1

, f ∈ {0, 1}.

Proof: According to the multiplication rule of polynomial
matrices, we have

N (q)H(q, 0) = N̄ H̄(0)[I, qI, . . . , qdN +1 I ]⊤

N (q)L0L†
1 H(q, 1) = N̄ L̄ H̄(1)[I, qI, . . . , qdN +1 I ]⊤.

One can see from the first equality that, by letting q = 1,
N̄ H̄(0) Ī = 0 directly implies (16a). For (16b), we let
coefficients of N (q)L0L†

1 H(q, 1) be nonzero by maximiz-
ing ∥N̄ L̄ H̄(1) Ī∥∞ in the objective function, such that (16b) is
satisfied. The first term in the objective function, i.e., N̄ (8̄ +

9̄)N̄⊤, relates to (16c) and (16d), which ensures that the aver-
age effects of different instances of ξ and ď on r are bounded.
The derivation process of the quadratic form of ∥rξi ∥

2
L2

and ∥rď i
∥

2
L2

is presented in (17)–(19). This completes the
proof. □

Note that N̄ L̄ H̄(1) Ī is a row vector with (nx +1) columns.
For a positive scalar ζ , ∥N̄ L̄ H̄(1) Ī∥∞ ≥ ζ holds if and
only if N̄ L̄ H̄(1) Ī ei ≥ ζ or N̄ L̄ H̄(1) Ī ei ≤ −ζ , where ei

is an (nx + 1)-dimensional column vector with only the i th
element be 1 and the rest are zero, i.e., ei = [0, . . . , 1, . . . , 0]

⊤.
Moreover, it is easy to check that if N̄ ∗ is a solution to (20),
so is −N̄ ∗. Additionally, 8i and 9i are positive semidefinite.
Therefore, (20) can be viewed as a set of (nx + 1) QP prob-
lems by replacing the term ∥N̄ L̄ H̄(1) Ī∥∞ with N̄ L̄ H̄(1) Ī ei

(or −N̄ L̄ H̄(1) Ī ei ), and thus is convex and tractable.
Remark 3.2 (Feasibility Analysis): It holds that (dN +

1)(nx + ny) = Rank(H̄(0) Ī ) + Null(H̄(0) Ī ) based on Rank
Plus Nullity theorem, where Rank(H̄(0) Ī ) and Null(H̄(0) Ī )
denote the rank and the left null space dimension of H̄(0) Ī ,
respectively. Thus, the equality constraint in (20) is feasi-
ble when (dN + 1)(nx + ny) > Rank(H̄(0) Ī ), i.e., Null
(H̄(0) Ī ) ̸= 0. For ∥N̄ L̄ H̄(1) Ī∥∞ ̸= 0, it requires that L̄ H̄(1) Ī
does not belong to the column range space of H̄(0) Ī ,
i.e., Rank([H̄(0) Ī L̄ H̄(1) Ī ]) > Rank(H̄(0) Ī ). Otherwise,
a feasible N̄ to N̄ H̄(0) Ī = 0 leads to N̄ L̄ H̄(1) Ī = 0.

We further propose an approximate analytical solution
to (20) in the following corollary.

Corollary 3.3 (Approximate Analytical Solution):
Consider the optimization problem (20). There exists an
approximate analytical solution given in the following form:

N̄ ∗(δ) =

(
L̄ H̄(1) Ī e∗

i

)⊤
2δ

(
δ−1(8̄ + 9̄) + H̄(0) Ī Ī ⊤ H̄⊤(0)

)−1

(21)

where e∗

i = arg maxi∈{1,...,nx +1} |N̄ ∗(δ)L̄ H̄(1) Ī ei | and δ ∈ R+

is the Lagrange multiplier. The solution N̄ ∗(δ) provides an
approximate solution to (20) and will converge to the optimal
solution as δ tends to ∞.

Proof: The proof is similar to that of [18, Corollary 3.4]
and thus is omitted here. □

With the analytical solution, one can update the coeffi-
cients of the filter online with new data without the need to
resolve (20), which is an improvement over [14].

Remark 3.4 (Average Objective Function): We consider
the average effects of all ξi and ď i on the residual as the
objective function in (20). An alternative way is to consider
the worst-case scenario, i.e., maxi∈{1,...,m} N̄ (8i + 9i )N̄⊤.
The average objective function is, however, of interest if one
requires to train the filter with a large number of patterns.
This is due to the fact that the computational complexity
of the derived QP problem is independent of the number of
instances with the average objective function.

Remark 3.5 (Approximate Analytical Solution With δ):
The Lagrange multiplier δ is introduced in (20) to penalize
the equality constraint N̄ H̄(0) Ī = 0, and in the ideal case,
δ tends to infinity as stated in Corollary 3.3. However, for a
bounded δ, the equality constraint cannot be strictly satisfied,
which is why we refer to the solution (21) as an approximate
analytical solution. Additionally, to ensure that N̄ H̄(0) Ī is
sufficiently close to zero, δ should be large enough while
remaining numerically bounded for practical considerations.

Remark 3.6 (Control Saturation): In our problem,
we adopt PI controllers in the IBM system, which may
raise concerns about control saturation. We would like to
highlight that since we consider a small-signal model of the
IBM system with bounded load changes, controller saturation
is rare and not a major problem we aimed to deal with.
Nonetheless, in the case of saturation, we can address this

Authorized licensed use limited to: TU Delft Library. Downloaded on January 03,2025 at 12:53:43 UTC from IEEE Xplore.  Restrictions apply. 



398 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 33, NO. 1, JANUARY 2025

issue by modeling the IBM system with saturation and
incorporating the disturbance suppression when saturation
happens in design conditions.

To detect the fault, we introduce the power of the resid-
ual r(k) as the evaluation function, i.e., J (r) = r(k)2 for k ∈

N. Let Jth be the detection threshold. Then, we can consider
the following detection logic:{

J (r) ≤ Jth ⇒ no faults
J (r) > Jth ⇒ faults.

We show the computation method of the threshold and the
false alarm rate in the following proposition.

Proposition 3.7 (Probabilistic False Alarm Certificate):
Assume that the patterns of ď and ξ follow different
independent identically distributed (i.i.d.) distributions.
Consider (11), the filter F(q) obtained by solving (20) with
the corresponding optimal solution N̄ ∗, and the evaluation
function J (r) = r(k)2. Given a scalar λ ≥ 1, if we set the
threshold Jth as

Jth =
λ

T
N̄ ∗(8̄ + 9̄)N̄ ∗⊤ (22)

the false alarm rate in the steady state satisfies

lim
k→∞

Pr{J (r(k)) > Jth| f = 0} ≤
1
λ

. (23)

Proof: Since both ď i and ξi follow i.i.d. distributions, the
residual in the normal mode as shown in (14) can be viewed
as a random variable. It is proven in [14, Theorem 4.11] that
the empirical average error

εm =
1
m

m∑
i=1

∥rξi + rď i
∥

2
L2

− E
[
∥r∥

2
L2

]
satisfies the strong law of large numbers, i.e., limm→∞ εm = 0
almost surely. Therefore, in the steady state, it holds that

Jth = lim
T,m→∞

λ

T

(
1
m

m∑
i=1

∥rξi ∥
2
L2

+
1
m

m∑
i=1

∥rď i
∥

2
L2

)

≥ lim
T,m→∞

λ

T

(
1
m

m∑
i=1

∥rξi + rď i
∥

2
L2

)

= lim
T →∞

λ

T
E
[
∥r∥

2
L2

]
= λ lim

k→∞

E[r(k)2
].

According to Markov inequality, the false alarm rate in the
steady state satisfies

lim
k→∞

Pr{r(k)2 > Jth| f = 0}

< lim
k→∞

Pr{r(k)2 > λE[r(k)2
]| f = 0} ≤

1
λ

.

This completes the proof. □
We further derive the circumstances in which ground faults

can be detected by comparing the steady-state value of r2

with Jth. However, given that the faulty model is unobservable,
it is essential to first identify its observable subsystem, denoted
as (Auh,o, [Buh1,o, Buh2,o], Cuh,o), through Kalman decompo-
sition. Define the transfer function from [v∗

odq
⊤ τdq ]

⊤ to r as
Tur (q) = Cuh,o(qI − Auh,o)

−1
[Buh1,o, Buh2,o]. Then, the ground

faults can be detected if(
N (q)L0

a(q)

[
Tur (q)

I

][
v∗

odq
τdq

]∣∣∣∣
q=1

)2

> Jth .

TABLE I
PARAMETERS

Fig. 2. Output currents generated by different models.

IV. NUMERICAL RESULTS IN RTDS

In this section, we validate the performance of the fault
detection filter through simulations. We refer interested readers
to the extended version of this work [24] for additional
simulation results. Here, we report only the results imple-
mented with the IBM system depicted in Fig. 1 through
the MM (11), Simulink, and RTDS. Note that electrical
components integrated into Simulink and RTDS allow for a
more realistic simulation of practical scenarios compared to
the simplified MM. In addition, RTDS is widely recognized
in the industry for its ability to simulate power systems in
real time [25]. Subsequently, we collect the discrepancy data
between the output of MM and those from Simulink and
RTDS. Step signals are employed to characterize the unknown
load changes. Following this, we design the filter by solving
the optimization problem (20). Finally, we apply the derived
filter to models constructed by Simulink and RTDS to evaluate
diagnosis performance in the presence of partially decoupled
disturbances and modeling uncertainties.

The parameters of the system are presented in Table I,
sourced from [26] with some modifications. The sampling
period is 0.1 ms and the simulation time is 6 s. The reference
frequency and reference voltage are 50 Hz and v∗

odq =

[3810]
⊤, respectively. The FCL parameter is τdq = [35, 0.7]

⊤.
To design the fault detection filter following the structure
of (13), we set the degree of N (q) as dN = 10 and choose
a stable denominator a(q) with a degree larger than dN .
We further collect 100 output discrepancy and disturbance
instances with T = 200 to construct 8̄ and 9̄, respectively.
The disturbance is a step signal, i.e., d = [−15 0.1]

⊤

for k > 15 000. The ground fault occurs at k = 40 000.
Given the settings specified above, we utilize the YALMIP
toolbox [27] to address the optimization problem (20) and
obtain the fault detection filter. The simulation results are
presented in Figs. 2 and 3.

Fig. 2 illustrates the per-unit (p.u.) values of output currents
generated by the three different models, which exhibit close
resemblance. This implies that the simplified MM aligns well
with the more intricate systems constructed using Simulink
and RTDS. From the small figures, one can see minor dis-
crepancies between these outputs. Furthermore, there is a step
change in the output currents after an unknown load change
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Fig. 3. Diagnosis results with different models.

at k = 15 000, which is similar to the effect caused by
the ground fault at k = 40 000. Therefore, discerning the
occurrence of a ground fault solely from the output current
proves challenging.

Fig. 3 displays the diagnosis results characterized through
the values of r2(k). In the left figure, we show the diagnostic
performance of the filter designed to withstand output dis-
crepancies between MM and the Simulink model. One can
see that r2(k) remains below the threshold in the presence of
partially decoupled disturbances and modeling uncertainties
until the occurrence of the fault at k = 40 000. After the
fault occurs, r2(k) immediately exceeds the threshold and
remains higher than the threshold. This indicates that the fault
is successfully detected with modeling uncertainties and is
distinguishable from disturbances. The right-hand side figure
depicts the diagnosis outcome of the filter designed for the
RTDS model. One can see that this filter effectively suppresses
the partially decoupled disturbances and modeling uncertain-
ties and successfully detects the ground fault as well. Note
that due to the spike induced by the load change in the output
current, r2(k) surpasses the threshold and causes a false alarm.
Nonetheless, the signal rapidly diminishes below the threshold,
distinguishing it from scenarios where ground faults occur.
To address this issue, we can extend the evaluation time.

V. CONCLUSION

In this brief, we propose a diagnosis scheme for the
detection of ground faults in IBM systems with partially
decoupled disturbances and modeling uncertainties. In future
work, we first will consider designing the denominator of the
filter for better dynamic performance. The second direction
will be focused on extending the proposed approaches to
more complex and realistic settings, such as considering the
presence of multiple converters.
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