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Energy Efficient Pronking of a Series Elastic
Actuated Quadrupedal Robot Using Trajectory
Optimization and Functional Iterative Learning

Control
Josh Yeung Ho Pho

Abstract—Monitoring expeditions in endangered habitats are
currently performed by human experts. However, this approach
has several disadvantages, including the limited amount of
experts, cost-intensive expeditions, and the dangers that are posed
by exploring dangerous terrains. Therefore, one can look into
using quadrupedal legged robots that would collaborate with the
human operators, which would be able to assist them by perform-
ing extra measurements in these dangerous habitats. An open
problem in quadrupedal legged locomotion is robust periodic
forward jumping, a.k.a. pronking, specifically for quadrupedal
robots that have flexible joints placed in series. In this paper,
we therefore propose a novel framework that generates an
energy efficient pronking motion for a quadrupedal series elastic
actuated legged robot. This periodic pronking motion is generated
using a reduced order model and the serial elasticity of the
joints is taken into account using an template-anchor approach.
To minimize the trajectory error we use Functional Iterative
Learning Control (fILC) as feedforward control in parallel with
a proportional-derivative feedback controller. The advantage of
using fILC is that the elasticity of the quadrupedal robot is
preserved and that the controller is able to learn the pronking
motion in a small number of iterations. This framework is
validated on an eight degrees of freedom series elastic actuated
robot. In- and outdoor experiments show that this framework is
able to work in unknown terrains.

I. INTRODUCTION

DUE to the heavy usage of fossil fuels and agriculture
since the late 18th century, the amount of carbon dioxide

and other greenhouse gases have increased monotonically [1].
The consequence of this is a change in climate on Earth,
which leads to increase of endanger of ecosystems and species,
water stress, coastal flooding, mortality rates due to heat stress
and droughts [2]. The European Union therefore proposes the
European Green Deal to mitigate this issue, which contains a
proposed strategy to tackle the aforementioned climate change
problem1. One of the elements of the Green Deal involves
preservation and restoration of ecosystems protected by the
Natura 2000 Network (N2000N). Here, the goal is also to
increase the biodiversity of existing species2. The N2000N
terrestrial habitats are currently monitored by human operators,
as they have the expertise to perform an examination of the
habitat and they are able to explore unknown environments.
A downside of using human operators is that there is only a

1https://ec.europa.eu/environment/nature/natura2000/index en.htm
2https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1576150542719&uri

=COM%3A2019%3A640%3AFIN

limited amount of experts in the field, and with the increasing
amount of endangered habitats there is a need for more human
operators. Such a monitoring expedition is also cost-intensive
and might be dangerous for older experts with lower mobility
in areas such as Alpine screes [3]. One can look into using
robots to aid human operators in performing experiments. The
robot can for example perform extra measurements in addition
to the human operators on an expedition, or in case of extreme
weather/dangerous areas take over the task of the human oper-
ator and autonomously perform measurements. Angelini et al.
[3] propose to use soft legged quadrupedal robots to aid human
operators in habitat monitoring. Although aerial vehicles are
more agile and are not limited to the surface of earth, its main
drawback is the limited amount of battery charge. The term
’soft’ in legged quadrupeds indicates the addition of elasticity
in the joints. To be able to anticipate unpredictable behaviour
in robots, researchers have been inspired by the body structures
of animals [4][5]. Adding elastic elements that are biologically
inspired can provide benefits such as (1) regulation of muscle
power, by storing energy and releasing it in a quick manner
for purposes such as jumping tasks. (2) Recycling energy, by
storing the elastic strain energy in tendons and returning it as
elastic recoil [6]. (3) Reducing the impact forces on the foot at
touchdown [7]. Examples of these soft legged quadrupeds are
Spacebok [8], ANYmal [9], Delft E-Go [10] and MULINEX
[11].

The planned movement and execution of a quadrupedal
robot is separated into two phases, a planner and controller
phase, as illustrated in Fig. 1. In the planning phase the motion
of the robot is generated and optimized using Trajectory
Optimization (TO). To achieve an energy efficient motion
using TO we can minimize for a certain cost function. This
cost function can for example be the amount of energy spent
to produce the trajectory and is often expressed in metrics
such as Cost of Transport (CoT) [12][13] or torque squared
[14]. Using the CoT as cost function for example means that
the trajectory of the joints can be optimized for using as
less energy as possible. Another aspect to be considered in
TO is the model and motion of the robot. For quadrupedal
robots, the motion of an energy efficient periodic forward
jump, called ’pronking’ is still a challenge [15]. To make this
problem more tractable, it is often chosen to opt for a reduced
order model. However, many articles consider the quadrupedal
robot as a robot with rigid links, therefore not taking the
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elasticity in the joints into account [16][17]. Examples of
reduced order models that do take them into account are
the Spring Loaded Inverted Pendulum (SLIP) [18], 3-D SLIP
[19] and Trunk-Spring Loaded Inverted Pendulum (T-SLIP)
[12]. Ding et al. [15] propose a compliant single-mass model
which takes the elasticity of the joints into account using a
template-anchor approach [20]. In practice this means that
they use the T-SLIP model to generate a pronking motion that
also takes the Parallel Elastic Actuators (PEA) into account.
With this method, they capture the periodic jumping motion
with a simple T-SLIP model whilst still taking the parallel
elasticity in the joints into account. To the best of the author’s
knowledge, no similar paper has been found that combines
the T-SLIP model and modelling of Series Elastic Actuators
(SEA) in a quadrupedal robot.

In the controller phase a simple Proportional-Derivative
(PD) feedback controller is often used to track the reference
trajectory [21][22]. However, Della Santina et al. [23] mention
that closed-loop control is equivalent to increasing the stiffness
of the system, defeating the purpose of adding elasticity in the
joints. Instead, it is suggested to use open loop feedforward
control in combination with low PD feedback control. Iterative
Learning Control (ILC) is an intelligent feedforward control
method that is able to learn to reduce the signal reference
error in a short amount of iterations and send feedforward
signals to the robot, given that the task is periodic [24]. Gori
et al. [17] use ILC to close the sim-to-real gap for a quadruped
jumping task. Pierallini et al. and Chhatoi et al. show success-
ful trajectory tracking using ILC in compliant underactuated
arms [25][26][27]. A special type called functional Iterative
Learning Control (fILC) works for underactuated (non-square)
systems. With fILC, intermittent control is possible and the
generated feedforward signal is continuous of nature [28].
Drost et al. show trajectory tracking in a one-link flexible
arm using fILC [29]. Ding et al. extend this work by applying
fILC on a PEA quadruped robot for a pronking task [15]. To
the best of the author’s knowledge, there is no paper found
that has provided experimental validation of fILC on a SEA
quadrupedal robot.

In summary, the contribution of this thesis work is three-
fold:

1) An energy efficient periodic pronking motion is achieved
in a TO framework, which also takes the elasticity of
the joints that are configured in series into account. The
trajectory of the robot in Cartesian space is modeled using
the T-SLIP model [12]. Using a template-anchor approach
the serial elasticity of the joints are embedded into the
T-SLIP model.

2) To reduce the sim-to-real gap of the performance of the
quadrupedal robot we use fILC. fILC is an intelligent
control method that works for underactuated systems
and is able to learn to reduce the trajectory error in a
short number of iterations. We verify and validate in
simulation and real experiments that fILC works on a
SEA quadrupedal robot.

3) These two methods, combined in one framework, are
validated on an 8 Degrees of Freedom (DoF) SEA
driven prototype robot through both indoor and outdoor

Fig. 1. Pipeline of the whole framework.

experiments. The TO is calculated offline, while fILC can
perform all its calculations online.

The structure of this paper is split up into two main blocks,
as illustrated in Fig. 1. The first block, as elaborated on in
Section II, is the trajectory optimization of the motion of
the robot. Here, the T-SLIP model in combination with SEA
model are used to generate the trajectory. With the physical
parameters of the robot, the trajectory can be optimized to
minimize the energy used to perform the pronking motion.
The output of this block are the Cartesian coordinates, and
with inverse kinematics the motor and link trajectories in
Joint coordinate frame can be obtained. To be able to follow
the reference trajectories, PD feedback in parallel with fILC
feedforward control are used, which is explained in more detail
in Section III. The simulation and experimental results of the
method are explained in Section IV and V, respectively. At
last, a conclusion and recommendations for future work are
given in Section VI.

II. TRAJECTORY GENERATION AND OPTIMIZATION

This section will focus on the formulation of the trajectory
optimization framework. To achieve an energy efficient pronk-
ing gait the problem can be formulated as an Optimal Control
Problem (OCP). The OCP can be converted into a Non-Linear
Problem (NLP) [30]. We follow a bottom-up approach in
which each component of the NLP is explained in more detail
in the following subsections.

A. Objective Function (14)

Cost of Transport (CoT) is often used as a metric to compare
the efficiency between robots, independent of their weight
and size. CoT is a dimensionless number and can be defined
as the work required to move an unit body an unit distance
[12]. Specifically, Mechanical Cost of Transport (CoTmech) is
defined as the mechanical work E produced by the actuators
divided by the mass of the robot m multiplied by a travel
distance xN [13]. This is given by

CoTmech =
E

mgxN
=

∑N
n=1

∑5
i=2 τ

n
i θ̇

n
i

mgxN
. (1)

Here τ is the torque delivered by the actuator and θ̇ angular
velocity of the actuator.
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Fig. 2. Illustration of the T-SLIP model, with the TD event in between the
flight-stance phase and TO event in the stance-flight phase.

Fig. 3. View of the quadruped robot with its joint angles and torque inputs
from the motors.

B. Robot Model (15)-(17)

The trajectory of the robot is modelled using the Trunk-
Spring Loaded Inverted Pendulum (T-SLIP) [31], which is an
extension of the SLIP model [18] by adding an extra DoF in
the Center of Mass (CoM). The T-SLIP model is a cyclic gait
that consists of three phases, as illustrated by Fig. 2. In these
three phases it is assumed that the robot is a Single Rigid Body
(SRB), i.e. all mass is concentrated in the center of the robot.
The SRB consists of three Cartesian coordinates, as shown by
Fig. 3, which are the horizontal x and vertical z position,
respectively and the trunk angle α. These three Cartesian
coordinates are combined in ξ = [x, z, α]T . The quadrupedal
robot has four motor side angles θ2, . . . , θ5, with four actuated
joints τ2, . . . , τ5 and six link side angles q1, . . . , q6, all in Joint
space.

The first phase, called the flight phase, starts at the apex
after which the CoM follows a ballistic trajectory according
to

M(ξ)ξ̈ +G(ξ) = 0, (2)

where M is the inertia matrix ∈ R3×3 and G ∈ R3×1 the
gravitational term. After the first flight phase the T-SLIP model
comes in contact with the ground, which is called the stance
phase. The transition from the first flight phase to the stance
phase is called the Touch-Down (TD) event. The TD event, as
given by Fig. 2, happens at a TD angle θTD and uncompressed

spring length lTD, after which the virtual spring gets loaded
in compression. The virtual spring force is elongated and a
transition of stance to flight phase occurs, which is called the
Take-Off (TO) event. After the TO event the robot goes into
a second flight phase until it reaches the apex again. The T-
SLIP model is given in Cartesian coordinates and is connected
with the links of the robot by means of inverse kinematics. The
SEA of the robot are modeled according to the reduced Spong
model [32]. In Spong’s model, the elasticity in the joints can
be modeled by separating the motor θ ∈ Rnj and link q ∈ Rnj

side dynamics, with nj being the number of joints. In between
each motor and link there is a spring with stiffness K. Spong’s
model considers the following assumptions [20][33]:

(A1) Deflection of the joints are small, therefore the elasticity
of the joints can assumed to be linear.

(A2) Center of the mass of each motor is on the rotation axis.
(A3) Each motor is located on the previous link.
(A4) The kinetic energy of the motor is due to its own rotation,

i.e. independent of the rotation of the link.
The equations of motion can be derived using the previous
assumptions and the Euler-Lagrangian formulation, as ex-
plained in Appendix A. This results in the link and motor
side equations described by

M(ξ)ξ̈ +G(ξ) + JT
h (ξ)K(q − θ) = 0,

Bθ̈ +K(θ − q) = τm,
(3)

where B ∈ Rnj×nj is the motor inertia matrix, K ∈ Rnj×nj

the stiffness matrix and τm ∈ Rnj the torque generated by the
motor. The flight and stance phases are combined and solved
for the acceleration terms as given by

ξ̈ = −M(ξ)−1G(ξ),

ξ̈ = M(ξ)−1(−G(ξ) + JT
h (ξ)K(θ − q)) (Cartesian space),

θ̈ = B−1(τm −K(θ − q)) (Joint space).
(4)

C. System Dynamics (18)

The state of the system is chosen to be

ζ = [ξ, ξ̇, θ, θ̇]T = [x, z, α, ẋ, ż, α̇, θ2, . . . , θ5, θ̇2, . . . , θ̇5]
T ∈ R14

(5)
and the control input to the robot

u = [τ2, . . . , τ5]
T ∈ R4. (6)

The system dynamics can be formulated as a first order differ-
ential equation ζ̇ = f(x, u) and is solved using Direct Multiple
Shooting (DMS) method. The state in the next timestep ζn+1

can be calculated using Runge-Kutta 4 method.

D. Initial Condition (19)

According to the T-SLIP model the robot starts in flight
phase at the apex. Hence, the initial horizontal x and vertical
velocity ż at the first timestance are equal to 0, as given by

[x, ż]T = [0, 0]T . (7)
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TABLE I
STATE AND CONTROL INPUT LIMITS OF THE ROBOT.

State ζ Limits Value Input u Limits Value
x [m] 0, 2 τ2 [Nm] -15, 15
z [m] 0, 2 τ3 [Nm] -15, 15
α [deg] -20, 20 τ4 [Nm] -15, 15
ẋ [m/s] 0, 5 τ5 [Nm] -15, 15
ż [m/s] -2, 2
α̇ [m/s] -2, 2
dt [s] 0.001, 0.1
θTD[deg] 0, 40
θ2 [deg] -180, 180
θ3 [deg] -180, 180
θ4 [deg] -180, 180
θ5 [deg] -180, 180
θ̇2 [deg/s] -180, 180
θ̇3 [deg/s] -180, 180
θ̇4 [deg/s] -180, 180
θ̇5 [deg/s] -180, 180

E. Periodicity Constraint (20)

The T-SLIP model assumes that the trajectory is a cyclic
motion, therefore the state in the last node should be equal to
the zeroth state in the next iteration, therefore

ζ0 = ζN . (8)

F. Event Based Switch Constraints (21)-(22)

The event based switch constraints consists of two events;
the TD and TO events as mentioned before. The TD event
occurs in the first flight phase, so ż < 0. Furthermore, it is
assumed that this event occurs at the moment the virtual spring
touches the ground, i.e.

z = lTDcos(θTD). (9)

The TO event occurs when the robot is moving in upwards
direction (ż > 0) and Ground Reaction Force (GRF) F of the
virtual spring equals zero, such that

F = K(l − lvirt) = 0. (10)

The length of the spring l can be calculated as

l2 =
√
x2 + z2, (11)

so substitution of (11) in (10) results in the TO event as given
by √

x2 + z2 − lvirt = 0. (12)

G. State & Input Limits (23)-(24)

The state and control input limits of the robot are given in
Tab. I. The state limits are estimated from [15] and the limits
of the control input are obtained from the EM-Act actuator
datasheet [11].

Fig. 4. Overview of the low level control framework.

H. Friction Constraint (25)

To minimise the slippage of the feet when it is in contact
with the ground a Coulomb friction constraint is added, as
given by

Fx = µFz, (13)

where Fx and Fz are the horizontal and vertical contact
forces in x- and z- direction, respectively, and µ the friction
coefficient.

I. Non-Linear Problem

All equations and constraints ((14)-(25)) that are explained
in the previous subsections can be combined into the following
TO framework.

minimize
x0,...,xN ,
u0,...,uN ,
dt,θTD,lTD

CoTmech =

∑N
n=1

∑5
i=2 τ

n
i θ̇

n
i

mgxN
(14)

subject to ξ̈ = −M−1G ∀n ∈ [0, nTD) ∪ [nTO, N ] (15)

ξ̈ = M−1(−G+ JT
h K(θ − q)) ∀n ∈ [nTD, nTO)

(16)

θ̈ = B−1(τ −K(θ − q)) ∀n ∈ [nTD, nTO)
(17)

ζn+1 = ζn +

∫ ζn+1

ζn

f(ζn, un)dt ∀n ∈ [0, N ]

(18)

[ζ0 ζ̇0]
T = 0 (19)

ζ0 = ζN (20)
ζnTD

∈ χTD = {x|z − lvirt cos(θvirt) = 0 ∧ ż < 0}
(21)

ζnTO
∈ χTO = {x|

√
x2 + z2 − lvirt = 0 ∧ ż > 0}

(22)
ζmin ≤ ζn ≤ ζmax (23)
umin ≤ un ≤ umax (24)
Fx ≤ µFz ∀n ∈ [0, N ] (25)
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III. LOW LEVEL CONTROL FRAMEWORK

The low level control framework can be broken down into
two main components as illustrated in Fig. 4. The idea of
this control framework is to combine a low feedback gain
with a feedforward term, as using high gain feedback alone
increases the mechanical stiffness of the robot, which defeats
the purpose of adding compliancy in the robot [23]. Fig. 4
shows that we have a closed PDfeedback loop in parallel with
feedforward fILC. The following subsections will delve more
in depth into the specifics of feedforward fILC.

A. Functional Iterative Learning Control

In functional Iterative Learning Control (fILC) [28] a linear
non-square continuous system

ẋj = Axj +Buj , yj = Cxj , (26)

is assumed, with iteration index j, A ∈ Rn×n, B ∈ Rn×l,
C ∈ Rm×n, xj ∈ Rn, uj ∈ Rl , yj ∈ Rm, is considered. For
an underactuated system, l < m can be assumed. Furthermore,
o number of time instances T 1, . . . , T o is defined. The goal
with fILC is to learn the control input uj(t), where j implies
the iteration index, such that

lim
j→∞

y(T k) = ȳk,∀ ∈ 1 . . . o, (27)

where ȳk denotes the reference output. The control input uj(t)

uj(t) = π(t)αj , π = [π1 . . . πo] ∈ Rl×mo, (28)

is split into two components, where π(t) is time dependent and
consists of a combination of basis functions πi(t) ∈ Rl×m and
αj ∈ Rl×mo is the learning vector. The closed form solution
of (27) is

yj(t) = CeAtx(0) + C

∫ t

0

eAt−τBuj(τ)dτ. (29)

Substitution of (28) into (29) at the i-th time instance yields

yj(T
i) = CeAT i

x(0) + (

∫ T i

0

CeAT i−τBπ(τ)dτ)αj . (30)

(29) can subsequently be transformed in the super-vector
notation,

Yj = dj +Hαj , (31)

where Yj denotes all output responses at iteration j. dj and H
are the free- and forced response, respectively. The error Ej

between the tracked reference output Ȳ and measurement Yj

can be multiplied by a learning rate L ∈ Rmo×mo to determine
the vector αj+1 in the next iteration, as given by

αj+1 = αj + LEj = αj + L(Ȳ − Yj). (32)

B. Basis Function Selection

Della Santina et al. [28] found out that, any choice of π
can be chosen if det(H) ̸= 0. Therefore, the following three
types of basis functions are chosen [15]:

• Gaussian:

πi(t) = A1
1

σ
√
2π

e−
1
2 (

t−µi

σ1
)2 (33)

• Sinusoid:

πi(t) = A2(1 + sin(ω(t− bi)) (34)

• Radial Gaussian:

πi(t) = A3e
− 1

2 (
t−µi

σ2
3

)2

(35)

Here, πi is distributed evenly over the stance phase period,
i.e. [nTD, nTO). To prevent coupling of control inputs, πi is
diagonally inserted into π(t).

C. Quadratically Optimal Learning Rate

An optimal learning rate can be used for (32) if a more
accurate knowledge of the plant is known [34]. (36) shows
a quadratic next-iteration cost criterion called Q-ILC, where
QLQ ∈ Rmo×mo penalizes the error between the reference
and measured output and SLQ ∈ Rmo×mo penalizes large
changes in the control action [24]. The H-matrix can be
obtained without deriving an explicit model by exciting the
system through πi and recording the forced response at o time
instances. Minimizing the cost criterion

Jj+1(uj+1) = ||Ej ||2QLQ
+ ||αj − αj−1||2SLQ

, (36)

results in an optimal learning rate

L = (HTQH + S)−1HTQ. (37)

D. Continuous fILC Learning

According to the T-SLIP model the Center of Mass (CoM)
of the robot starts at apex with an initial horizontal speed. In
practice however this is not possible, therefore an alternative
approach called continuous fILC learning is used [15]. In this
approach fILC starts with α = 0 and in stance phase. The
trajectory is followed in an iterative manner without resetting
to the initial condition after each iteration. In practice this
means that at the last state of iteration 1, the system state is
not reset to the initial state, but is instead used as the first state
of iteration 2.

E. Control Input to Robot

The structure of control input to the robot is graphically
depicted in Fig. 4. Here, a PD feedback law is added to the
fILC feedforward torque, as given by

uj+1(t) = KP (θref (t)− θmeas(t)) +KD(−θ̇meas(t))︸ ︷︷ ︸
PDfeedback

+ ufILCj+1︸ ︷︷ ︸
τfeedforward

(t).

(38)
The PD feedback term in (38) works by multiplying a pro-
portional KP ∈ Rnj×nj and derivative gain KD ∈ Rnj×nj

with the error between the reference and measured motor side
angles. The αj+1 term in the fILC control law is multiplied
with π(t) as given by (32). Here, Ȳ is chosen to be the po-
sition references of both the motor- and link side trajectories,
therefore Ȳ = [θ2, . . . , θ5, q2, . . . , q5]. The variables are the
same for Yj , as we can measure both motor- and link side
positions with encoders. The feedforward fILC term, in the
next iteration, is calculated as given by (28) and added to the
PD feedback term, as given by (38).
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TABLE II
INPUT FOR THE OPTIMIZATION FRAMEWORK.

Parameter Value
m [kg] 5.5
J [kgm2] 9.24 ∗ 10−3

k2 [Nm/rad] 45.5*2
k3 [Nm/rad] 45.5*2
k4 [Nm/rad] 45.5*2
k5 [Nm/rad] 45.5*2
l1 [m] 0.19
l2 [m] 0.19
l3 [m] 0.23
I2 [kg/m2] 2.1 ∗ 10−3

I3 [kg/m2] 2.1 ∗ 10−3

I4 [kg/m2] 2.1 ∗ 10−3

I5 [kg/m2] 2.1 ∗ 10−3

nodes [−] 300

IV. SIMULATION RESULTS

This section will focus on the results obtained from sim-
ulation. First the setup of the simulation and the optimal
results from the Trajectory Optimization (TO) are explained.
Then, different hyperparameters of functional Iterative Learn-
ing Control (fILC) are compared to each other in the the
subsequent subsections.

A. Setup

The trajectory optimization is calculated using CasADi [35]
and Ipopt as solver [36]. Furthermore, ROS2 is used as a
framework to develop robotic software [37] and Gazebo [38]
allows users to simulate their robot in a virtual environment. In
the real experiment the prototype robot ’MULINEX’ is to be
used and a physical description, Unified Robot Description
Format (URDF), of MULINEX is used in Gazebo. Using
inverse kinematics the Cartesian coordinates are mapped to
link side angles, which are used as trajectory reference for
the robot. Note that we deliberately use only the link side
reference angles in simulation as the URDF of MULINEX has
no elasticity, i.e. the body and its links are rigid. The intention
is to use both reference motor- and link side trajectories in the
real experiments.

B. Trajectory Optimization Results

In this section we show the results of the Nonlinear Pro-
gramming (NLP) problem that is explained in Section II-I.
Here, we also compare two cases in terms of CoT, one
where the robot is assumed to have flexible SEA joints and
the other for rigid joints. In the first case we can use the
physical parameters of the MULINEX robot from Tab. II.
This is the input into the NLP problem that is explained in
Section II-I. Using the Ipopt solver we obtain the following
results; CoT = 0.957, θopt = 16.85◦ and lTD = 0.3[m].
Fig. 5(a) shows the Cartesian trajectory that the robot follows
according to the results of the NLP. The red arrows denote the
Ground Reaction Forces (GRF) and the red and orange points
are the flight-stance event switches and virtual foot positions,
respectively. Fig. 5(b) depicts the Cartesian trajectory of its
position on the left and velocities on the right. For the second

TABLE III
COMPARISON OF ENERGY EFFICIENCY FOR A RIGID AND ELASTIC MODEL.

Elasticity Rigid
CoT 0.96 1.42

rigid joints case we assume a high joint stiffness (K → ∞).
Therefore, θ → q and K(q − θ) → finite value, so that
we obtain the equivalent rigid model if we sum up both
motor- and link equations in (3) [20]. For the second case
we get the following results; CoT = 1.42, θopt = 16.85◦ and
lTD = 0.3[m]. The results of both cases are again highlighted
in Tab. III, and from this it can be concluded that with
series elastic actuation the quadruped is more energy efficient
compared to a rigid quadruped.

C. Functional Iterative Learning Control Results

This section focuses on the verification of using fILC on
a quadruped with the TO results from the previous section.
To show the contribution of fILC more clearly we opt for
an objective function that also focuses on reaching a higher
jumping height. Therefore, the objective function is changed
to

objective = CoT + w1(ζ[7 : 11, 0]final − ζ[7 : 11, 0]initial),
(39)

where w1 = 1e4 is a weight value, ζ[7 : 11, 0]final is
the final values of the motor side angles obtained from
TO and ζ[7 : 11, 0]initial = [1.64,−2.39,−2.39, 1.64] the
initial motor side angles that is chosen as input into the TO.
Furthermore, in ROS2 and in the real experiments we are not
able to measure the base coordinates of the robot, therefore we
can not verify and validate the fILC contribution in terms of
CoT. Instead, we chose to use the Mean Average Error (MAE)
of the positions of each joint to measure the performance
of the robot. With these changes in mind, the output of
this NLP results in a CoTmech = 2.86[−], θTD = 0[rad]
and lTD = 0.3[m]. Fig. 5(c) and Fig. 5(d) again show the
Cartesian trajectory and Cartesian positions and velocities,
respectively. These results from the ’planner’ are used to test
the performance of the fILC controller in ROS2. As mentioned
before in Section III-B, the basis functions are distributed
evenly over the stance phase, i.e. t = 0.1 − 0.2[s]. The
values of the basis function are set to a maximum torque
value of τ = 10[Nm], which are used to determine the H-
matrix for calculating the optimal learning rate (37). Here,
the time instances are chosen to be at the following nodes:
T i = [0, 50, 100, 125, 150, 175, 199, 200, 250, 300]. Note that
the MAE only measures the tracking performance only at the
time instances, not the whole timespan of the trajectory. The
frequency of the control loop in ROS2 is set at f = 500[Hz],
because this will be the maximum frequency that the MU-
LINEX robot can handle in the experiment. The following
sections will compare the hyperparameters of the fILC against
one another.

1) Control Input Comparison: Two control input strategies
are compared, which are using only PDfeedback versus using
PDfeedback and the τfeedforward term that is generated by
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(a) Cartesian trajectory, objective = CoT (b) Cartesian positions and velocities, objective = CoT

(c) Cartesian trajectory, objective = CoT + w1(ζ[7 : 11, 0]final − ζ[7 :
11, 0]initial)

(d) Cartesian positions and velocities, objective = CoT + w1(ζ[7 :
11, 0]final − ζ[7 : 11, 0]initial)

Fig. 5. This figure depicts the Cartesian trajectory obtained from trajectory optimization in (a) and (c). The red arrows here indicate the ground reaction
forces. The Cartesian positions and velocities from trajectory optimization are illustrated in (b) and (d).

(a) Flight phase (b) TD event (c) Stance phase (d) TO event (e) Flight phase

Fig. 6. Snapshots of the pronking motion of the robot in the Gazebo simulator.

fILC. Fig.6 shows the motion of the jump in the Gazebo
environment. The motion of the robot starts in flight phase
Fig.6(a), which occurs from t = 0.0− 0.1[s]. The robot then
touches the ground during the TD event Fig.6(b), as described
before in Section II-F. After this event the robot goes into
stance phase from t = 0.1− 0.2[s], as shown in Fig.6(c). The
robot prepares for take-off during the TO event and goes into
flight phase again from t = 0.2− 0.3[s] as shown in Fig.6(d)
and Fig.6(e), respectively. Fig. 7 and Fig. 8 show the results
of the comparison between the two control strategies. From
simulation, it is observed that with both methods the robot is
able to perform a successful pronking motion. Fig. 7 shows
the reference trajectory for the actuated joints seen from the
right hand side. Note that the black crosses here are the time
instances that are chosen in the previous subsection. The first
iteration, given in blue, only uses PD feedback control, without
feedforward fILC. After 150 iterations it is observed that with
fILC the trajectory tracking is more accurate. The lower two
images in Fig. 7 show the torque control input and learning

weights of α, respectively. Fig. 8 shows the comparison of
both control input strategies in terms of MAE, which shows
that with only PDfeedback the same MAE value of 0.048[rad]
is achieved for all iterations. This is as expected, because with
PDfeedback only it is not able to ’learn’ in iteration domain.
The control input that takes the fILC feedforward term into
account is able to converge into a lower MAE. The nature of
fILC is also present in the first couple iteration, in which the
MAE lowers monotonously and converges into a stable value
of 0.0158[rad].

2) Basis Function Comparison: The performance of three
types of basis function described before in (33)-(35) are
compared to each other. The parameters of the basis function
are chosen as follows: A1 = 0.25, σ2

1 = 0.0001, A2 = 5.0,
ω = 2π 1

Tstance
, A3 = 10.0 and σ2

3 = 0.01. The PDfeedback

gains are set to KP = 50Inj×nj
and KD = 0.4Inj×nj

.
The other fILC parameters are fixed at Q = 1.0Inj×nj and
S = 1.0Inj×nj , with initial value of α = 0. The results are
illustrated in Fig. 9 and Fig. 10. Fig. 9 shows the amount
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Fig. 7. Comparison of PD feedback and PD feedback + fILC feedforward, in Joint space. The upper four images show the reference tracking performance
of the joints seen from the right hand side of the robot. Note that in iteration 1 there is no feedforward term as α = 0, therefore iteration 1 is equivalent to
using only PD feedback. In orange the reference trajectories that are obtained from TO are given. The black crosses indicate the tracked time instances. The
torque control input and the learning weights of α at iteration 150 are shown in the lower two graphs.

Fig. 8. Comparison of PD feedback and PD feedback + fILC feedforward.

of iterations (niterations) and Mean Average Error (MAE) on
the horizontal and vertical axes, respectively. Fig. 10 depicts
the fILC feedforward torques of all three basis functions and
the distribution of α of all πi. From simulation it is obtained
that with all three basis functions the robot is able to perform
the pronking motion. Fig. 9 shows that the Gaussian and
Radial Gaussian basis functions perform better compared to
the Sinusoid function in terms of MAE, but also contain larger
variation in MAE, which is noticeable at iteration numbers

Fig. 9. Comparison between Gaussian, Sinusoid and Radial Gaussian basis
functions.

80 to 140. All three of them show fast convergence in the
first couple of iterations and the MAE at niteration = 150
are 0.023, 0.028 and 0.015[rad] for Gaussian, Sinusoid and
Radial Gaussian, respectively.

3) Learning Rate Comparison: Comparison of parameters
of the learning rate, as described by (37), is done in this
section. Bristow et al. mention that Q can influence the
performance, rate of convergence at robustness of the system
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(a) Gaussian (b) Sinusoid (c) Radial Gaussian

Fig. 10. Comparison of Gaussian, Sinusoid and Radial basis functions. The upper images show the torque inputs to the robot and the lower images show the
α distribution across all πi.

Fig. 11. Comparison between different values for Q in the learning rate
equation.

[24]. In Fig. 11, S is fixed at 1.0Inj×nj
at three values for Q,

which are 0.1, 0.5 and 1.0. This figure shows that by increasing
Q the rate of convergence is faster as well. However, larger
penalty factors comes at risk of stability, as can be seen from
Q = 0.5, niter = 100 and Q = 1.0, niter = 105, where
MAE spikes are observed. Fig. 12 shows a fixed variable for
Q, and S has a range between 1.0, 2.0 and 5.0. Bristow et
al. mention that the value of S does not have an influence
on the asymptotic error value, which can also be seen from
Fig. 12, where the MAE for all three lines have the same
value at niterations = 150. Furthermore, it can be concluded
that a higher value for S yields in less variation of the
MAE. This can be seen when comparing Q = 1.0, S = 1.0
with Q = 1.0, S = 5.0, where the latter one monotonously
decreases faster compared to the former.

4) Stiffness Comparison: Della Santina et al. [39] mention
that there is a inverse relationship between stiffness and track-
ing performance. In the context of SEA’s a higher PDfeedback

is equivalent to adding a second spring in parallel, which
means the system acts more in a rigid manner. However,
the trade-off is that tracking performance is reduced. Fig. 13
confirms this hypothesis, where we show the results of three
PDfeedback values of KP = 30, 50 and 70. Indeed, a higher
stiffness of KP = 70 results in a lower MAE compared
KP = 30. From simulation, it is obtained that with KP = 30

Fig. 12. Comparison between different values for S in the learning rate
equation.

Fig. 13. Comparison between different values for PDfeedback .

the robot is able to jump higher in vertical direction, but not
in the positive horizontal direction. With KP = 50 and 70
the robot is able to successfully perform the forward pronking
motion.
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Fig. 14. Snapshots of the rough terrain experiment in the Gazebo simulator. The uneven ground is set at a height of 1 cm.

D. Rough Terrain

To test the robustness of the whole framework we put the
robot in a rough environment as shown in Fig. 14. In this
environment we add uneven ground, with a maximum height
of 1 cm. From Fig. 14 it is also observed that the robot is
able to successfully traverse through the rough terrain. Fig. 15
shows that at iteration 1 the tracking error is large for the right
front- and hind knees between t = 0.15 − 0.20[s]. After 150
iterations, fILC manages again to reduce this tracking error.
From Fig. 16 it is observed that the MAE drops down to a
value of 0.02 [rad].

V. EXPERIMENTAL RESULTS

This section elaborates on the experimental results obtained
during the tests of the robot. Again, the setup will be ex-
plained first. Subsequently, the experiments will be discussed
afterwards.

A. Setup

The MULINEX prototype robot, as illustrated by Fig. 17,
is to be used in this experiment. MULINEX is a low cost 8-
DoF quadrupedal robot with modular Series Elastic Actuators
(SEA), developed by Research Center E. Piaggio at University
of Pisa [11]. With SEA’s embedded into the system its purpose
is to perform highly dynamic tasks, such as jumping.

B. Indoor Experiment

As mentioned before in Section IV-A, both motor and link
side reference trajectories are used in the real experiment. The
link side positions are measured using the second encoders
which are located on the link side position of the actuator.
The Radial Gaussian type of basis function for the controller
is used here with Q = 0.01, S = 2.0, KP = 50 and KP = 0.4.
Fig. 17 shows snapshots of the indoor experiment. During the
experiment it is observed that the robot successfully achieves
a higher hopping height. Another observation is that the robot
tends to hopping backwards in negative x-direction. Fig. 18
shows the tracking performance for both motor- and link right
side joints. Fig. 19 illustrates the control input and learning
weights α at 150-th iteration. From Fig. 18 it can be observed
that the link side measurements have a sensor bias for all
joints. If we compare the first iteration with iteration 150,
we observe worse tracking for the motor references and a
slightly better tracking performance for the link references.
Fig. 20 shows that the MAE is able to converge at a slow rate.
Spikes are observed at niteration = 50, 120 and 158, which
can be explained by the fact that the laptop is sometimes not
able to send the commanding joint angles to the robot due
to wireless connectivity issues. The overall magnitude of the

MAE is larger compared to the simulation results. This could
be due to multiple reasons. The first reason is that the precise
stiffness of the belt is unknown, as another version of the
EM-ACT actuator is used compared to the EM-ACT actuator
written in [11]. The second reason is that the robot tends to
move in negative x-direction, as we only control the robot
in Joint coordinates. We do not have any information of the
Cartesian state of the robot so we can not force the controller
to go in positive x-direction. The third possible reason is that
during the experiment the temperature of the motors in the
hind legs quickly increases compared to the front legs. These
temperatures quickly rose to 60◦ Celsius, after which the
performance of these motors decrease significantly. A fourth
possible reason for the relatively poor tracking performance is
that there is a certain sensor bias in the link measurements, as
shown in the lower four images of Fig. 18.

C. Outdoor Experiment

The robustness of the framework is also tested in an outside
environment, where the robot is put on a slope in front of the
Engineering Faculty of University of Pisa, as illustrated in
Fig. 24. The idea behind putting the robot on the slope is that
weight vector now has a component in positive x-direction,
such that the robot converges more quickly into the forward
hopping motion. Furthermore, to put less stress on the motors
of the hind legs the trunk angle α is fixed at −5.0[deg]. The
results of the optimization trajectory is as follows: CoTmech =
4.01, θTD = 0[deg], lTD = 0.28[m]. During the experiment
the robot is able to perform the pronking motion in positive
x-direction, as shown in Fig. 21. Fig. 22 however shows that
the overall tracking performance is poor for the first iteration.
When we look at the results for iteration 50 we can see a slight
improvement for all motor- and link measurements, however
there is still a significant discrepancy between the reference
and measured trajectories. The bias is also observed again in
the link measurements. Fig. 24 shows that the MAE decreases
in few iterations to an error of 0.0765[rad].

VI. CONCLUSION & FUTURE WORK

In this work, we have combined three ideas into one
framework. The first idea is to create a pronking motion for
a quadrupedal robot using a reduced order model that takes
the elasticity of the joints into account. With a template-anchor
approach the elasticity of the joints, which are placed in series,
are embedded into a Trunk-Spring Loaded Inverted Pendulum
(T-SLIP) model. This model provides a periodic pronking
motion of a quadrupedal robot. The second idea is the use of
functional Iterative Learning Control (fILC) as a feedforward
controller to preserve the elasticity of the quadruped. We show
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Fig. 15. Rough terrain simulation results. The upper four images show the reference tracking performance of the joints seen from the right hand side of the
robot. In orange the reference trajectories that are obtained from TO are given. The black crosses indicate the tracked time instances. The torque control input
and the learning weights of α at iteration 150 are shown in the lower two graphs.

Fig. 16. This figure depicts the MAE against the number of iterations when
testing the robot in a rough simulated environment.

that with fILC the trajectory error can be reduced in a short
amount of iterations. These two ideas are validated in a newly
developed series elastic actuated 8-DoF quadrupedal robot
called ’MULINEX’. Here, the Trajectory Optimization (TO)
is done offline and all the calculations from fILC can be done
online.

From simulation it is observed that combining the first two
ideas results in a successful pronking motion. Here, multiple
hyperparameters such as the type of basis function, learning

rate and stiffness are tested against one another to determine
the best initialization parameters to be used during the real
experiment. The three ideas combined are then validated on
both in- and outdoor experiments. The indoor experiment
shows that the robot is able to perform a pronking motion,
and with fILC the MAE is able to converge monotonously. In
the outdoor experiment, where the robot is put on a slope, we
observe that the robot is able to pronk in forwards direction.
The MAE converges to a lower value however there is still
a large discrepancy between the performance of the robot in
simulation compared to the real experiments.

Future work can improve the performance of the pronking
motion by first getting the robot into the correct initial flight
position and then performing the pronking motion. This was
already attempted by combining the work of Gori et al. [17]
with this thesis work. Gori’s paper focuses on gait adaption
using TO, in which the quadrupedal robot is able to perform
a jumping motion from stand still. By connecting Gori’s work
with this thesis work the robot is already in the first flight
phase after which the T-SLIP model performs the pronking
gait. Another way to improve the pronking motion is to replace
the ball feet with bioinspired adaptive feet to decrease the
amount of slippage when performing the jumping task [40].
Some preliminary tests with these adaptive feet were done,
however due to time constraints we were not able to perform
a successful pronking motion with the adaptive feet.

Another possibility of improving the work in this thesis is
to be able to measure the base states of the robot by means of
an IMU. By giving both Cartesian and Joint reference signals
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(a) Flight phase (b) TD event (c) Stance phase (d) TO event (e) Flight phase

Fig. 17. Snapshots of the indoor experiment with the MULINEX robot.

Fig. 18. Tracking performance for motor- and link positions for the indoor experiment. The eight images show the reference tracking performance of the
motor- and link trajectories seen from the right hand side of the robot. In orange the reference trajectories that are obtained from trajectory optimization are
given. The black crosses indicate the tracked time instances. The acronyms on the y-axes are as follows; RF HFE = Right Front Hip, RF KFE = Right Front
Knee, RH HFE = Right Hind Hip, RH KFE = Right Hind Knee.

Fig. 19. Control input torques and α weight distribution for the indoor
experiment.

Fig. 20. MAE plotted against the number of iterations for the indoor
experiment.
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(a) Flight phase (b) TD event (c) Stance phase (d) TO event (e) Flight phase

Fig. 21. Snapshots of the outdoor experiment with the MULINEX robot.

Fig. 22. Tracking performance for motor- and link positions for the outdoor experiment. The eight images show the reference tracking performance of the
motor- and link trajectories seen from the right hand side of the robot. In orange the reference trajectories that are obtained from trajectory optimization are
given. The black crosses indicate the tracked time instances. The acronyms on the y-axes are as follows; RF HFE = Right Front Hip, RF KFE = Right Front
Knee, RH HFE = Right Hind Hip, RH KFE = Right Hind Knee.

Fig. 23. Control input torques and α weight distribution for the outdoor
experiment.

Fig. 24. MAE plotted against the number of iterations for the outdoor
experiment.
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to the robot it should be able to perform a succesful forward
pronking motion. Other possibilities of improvement is to ex-
tend the T-SLIP model to include lateral motion of the robot or
to use other types of gait in combination with fILC. At last, it
would be also interesting to combine Reinforcement Learning
(RL) with ILC. The main drawback of only using ILC is that is
restricted to only one repetitive task. Combining RL and ILC
can have the advantage that RL can achieve generalisation of
multiple tasks whilst convergence is guaranteed with ILC. De
Santis et al. [41] propose this idea for a 2-DoF SEA leg robot
following a minimal jerk trajectory. De Santis’ work could be
combined with this work to achieve multiple jumping tasks in
combination with fILC on a quadrupedal robot.
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APPENDIX A
The stance dynamics can be derived using T-SLIP and

reduced Spong model. We first take the Cartesian coordinates
ξ = [x, z, α]. With assumption A2 and A3 we can state that:

Tlink =
1

2
m(ẋ2 + ż2) +

1

2
Jα̇2 (Cartesian space), (40)

Vlink = mgz (Cartesian space). (41)

With assumption A2 and A4 we can state that:

Tmotor =
1

2
I2θ̇2

2
+

1

2
I3θ̇3

2
+

1

2
I4θ̇4

2
+

1

2
I5θ̇5

2
(42)

Vmotor = +
1

2
K2(θ2 − q2)

2 +
1

2
K3(θ3 − q3)

2

+
1

2
K3(θ4 − q4)

2 +
1

2
K3(θ5 − q5)

2.
(43)

The Lagrangian formulation can be derived as follows:

L = T − V = (Tlink + Tmotor) + (Vlink + Vmotor), (44)

and the Euler-Langragian equations are shown in (45) and
(46).

d

dt
(
∂L

∂ξ̇
)T − (

∂L

∂ξ
)T = 0 (45)

d

dt
(
∂L

∂θ̇
)T − (

∂L

∂θ
)T = τm (46)

Substitution of (40)-(44) into the Euler-Lagrangian deriva-
tion (45)-(46) yields

ξ̈ = M(ξ)−1(−G(ξ) + JT
h (ξ)K(θ − q)) (Cartesian space),

θ̈ = B−1(τm −K(θ − q)) (Joint space).
(47)


