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We consider the propagation of smooth solitary waves in a two-dimensional gener-
alization of the Camassa–Holm equation. We show that transverse perturbations to 
one-dimensional solitary waves behave similarly to the KP-II theory. This conclu-
sion follows from our two main results: (i) the double eigenvalue of the linearized 
equations related to the translational symmetry breaks under a transverse pertur-
bation into a pair of the asymptotically stable resonances and (ii) small-amplitude 
solitary waves are linearly stable with respect to transverse perturbations.
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Nous considérons la propagation d’ondes solitaires lisses dans une généralisation 
bidimensionnelle de l’équation de Camassa–Holm. Nous montrons que les perturba-
tions transversales des ondes solitaires unidimensionnelles se comportent de manière 
similaire à la théorie KP-II. Cette conclusion découle de nos deux principaux ré-
sultats : (i) la valeur propre double des équations linéarisées liées à la symétrie 
de translation est brisée sous une perturbation transversale en une paire de réso-
nances asymptotiquement stables et (ii) les ondes solitaires de petite amplitude sont 
linéairement stables par rapport aux perturbations transversales.
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1. Introduction

The Camassa–Holm equation, labeled as the CH equation,

ut − utxx + 3uux = 2uxuxx + uuxxx, (1.1)

is a popular model for the dynamics of unidirectional shallow water waves [3,21] which has been justified 
mathematically in [9]. It was originally introduced in [14] as a deformation of the integrable KdV equation. 
The equation models the behavior of shallow water waves both in the setting of solitary and periodic waves. 
Global solutions exist for initial data with sufficiently gradual slopes and wave breaking occurs in finite 
time for initial data with steep slopes [7,8]. There exist smooth and peaked traveling waves both among 
the spatially solitary and periodic waves [17,27]. The smooth solitary waves were shown to be spectrally 
and orbitally stable in the time evolution of the CH equation [12,24]. Similar stability results were obtained 
for the traveling periodic waves in [17,28]. On the other hand, although the peaked traveling waves (both 
solitary and periodic) are energetically stable in the energy space H1 [10,11,25,26], the local solutions are 
only defined in the function space H1∩W 1,∞ [13,29]. It was recently shown that the peaked traveling waves 
are both spectrally and orbitally unstable in H1 ∩W 1,∞ [23,30,35].

As a model for shallow water waves, the CH equation (1.1) is limited to two-dimensional fluid motion 
confined by a one-dimensional time-dependent surface. Transverse modulations on the water surface can 
be defined in terms of the two spatial variables (x, y) ∈ R2. A generalization of the CH equation with 
a two-dimensional time-dependent profile u = u(x, y, t) has appeared in the literature only recently. This 
equation can be written in its simplest dimensionless form as

(ut − utxx + 3uux − 2uxuxx − uuxxx)x + uyy = 0. (1.2)

It was first derived in [4] as a model in the context of nonlinear elasticity theory. More recently, it was 
obtained in [18] as a model in the context of incompressible and irrotational shallow water wave theory. We 
refer to (1.2) as the CH-KP equation because it generalizes the CH equation (1.1) in the same way as the 
Kadomtsev–Petviashvili (KP) equation generalizes the classical Korteweg–de Vries (KdV) equation [22].

In the following we review some mathematical results that have been obtained for the CH-KP equation 
(1.2) so far. Local existence of solutions was obtained in the space of functions Xs(R2) with s ≥ 2, where

Xs(R2) := {u ∈ Hs(R2) : ∂−1
x u ∈ Hs(R2), ∂xu ∈ Hs(R2)},

see [18, Theorem 1.1]. The nonlocal operator ∂−1
x can be formally defined as

(∂−1
x f)(x) :=

x∫
+∞

f(x′) dx′

for functions f(x) : R → R that decay to zero as x → +∞. This nonlocal operator can be used to rewrite 
(1.2) in the evolution form

ut + (1 − ∂2
x)−1 [3uux − 2uxuxx − uuxxx + ∂−1

x uyy

]
= 0. (1.3)

The evolution equation (1.3) can be cast in Hamiltonian form

ut = −JF ′(u), (1.4)

with the skew-adjoint operator J := ∂x(1 − ∂2
x)−1 and the conserved energy
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F (u) := 1
2

∫
R2

[
u3 + uu2

x + (∂−1
x uy)2

]
dx dy. (1.5)

It was shown in [18] that F (u) is conserved in time for local solutions in Xs(R2) for s ≥ 2, and so is the 
momentum

E(u) := 1
2

∫
R2

(u2 + u2
x) dx dy. (1.6)

In addition to F (u) and E(u), the mass

M(u) :=
∫
R2

u dx dy (1.7)

is formally conserved in the time evolution of the CH-KP equation (1.2). Various wave breaking criteria 
were obtained in [18, Theorems 1.2–1.4]. A recent work [40] explored numerical (Galerkin) methods for 
approximation of solitary waves in the CH–KP equation. Very recently the spectral stability of periodic 
waves under transverse perturbations in the b-CH-KP equation, which is a two-dimensional generalization 
of the b-family of CH equations, was shown in [5].

The purpose of this work is to study the transverse stability of perturbed solitary waves in the CH-KP 
equation (1.2). Line solitary waves are obtained for functions of the form u(x, y, t) = φ(x + γy − ct) with 
parameters γ, c ∈ R. In what follows, we will only consider the case γ = 0 for the traveling wave solutions 
of the CH equation (1.1).

It was the motivation of the pioneering work [22] to investigate the transverse stability of solitary waves 
under small slowly varying perturbations. It was discovered that the line solitary waves are transversely 
unstable in one version of the KP equation and are transversely stable in another version of the KP equation. 
These versions are now conventionally referred to as the KP-I and KP-II equations, respectively. The CH-
KP equation (1.2) we are considering in the present work corresponds to KP-II.

A rigorous proof of transverse stability of traveling waves in the KP-II equation was completed only 
recently. Linear and nonlinear stability of the solitary waves have been proven for transversely periodic 
perturbations in [32] and for decaying perturbations in R2 [31]. Linear stability of traveling periodic waves 
was shown in [19] and the nonlinear stability of periodic waves is still an open problem for the KP-II 
equation.

Asymptotic reductions of other nonlinear systems to the KP-II equation have been explored in the 
literature. Mizumachi and Shimabukuro used the KP–II equation as an approximation of the Benney–
Luke system to prove linear and nonlinear transverse stability of the line solitary waves of small amplitudes 
[33,34]. A justification of the asymptotic reduction to the KP-II equation for the two-dimensional Boussinesq 
equation was done by Gallay and Schneider [15]. In the recent series of papers [16,20,36], the KP-II equation 
was justified as the leading model for a two-dimensional Fermi–Pasta–Ulam system on a square lattice. See 
also [1,2] for recent work on transverse stability of line solitary waves in other generalizations of the KP 
equation.

We can formally obtain the asymptotic reduction of the CH–KP equation to the KP-II equation. Let 
k > 0 be a fixed parameter and consider the slowly varying approximation of small-amplitude perturbations 
of a constant background in the form

u(x, y, t) = k + ε2v(ε(x− 3kt), ε2y, ε3t). (1.8)

By using the chain rule and the evolution form (1.3), we derive the following evolution equation for the 
variable v = v(X, Y, T ) in scaled coordinates as
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vT + (1 − ε2∂2
X)−1 [2kvXXX + 3vvX + ∂−1

X vY Y − ε2(2vXvXX + vvXXX)
]

= 0.

The formal truncation at ε = 0 yields the KP-II equation in the form

vT + 2kvXXX + 3vvX + ∂−1
X vY Y = 0. (1.9)

For every fixed k > 0, the line solitary waves are linearly and nonlinearly stable in the KP-II equation (1.9)
[31]. The main conclusion of this work is that the smooth solitary waves are linearly transversely stable also 
in the CH-KP equation (1.3). The nonlinear transverse stability is still an open question, and our results 
on the linear transverse stability so far are limited to two claims:

• The transverse perturbation breaks the double zero eigenvalue of the linearized equations into a pair of 
resonances located in the left half-plane. This result is obtained for smooth solitary waves of arbitrary 
amplitude.

• The line solitary waves are linearly stable with respect to transverse perturbations if the wave amplitude 
is sufficiently small.

The precise statement of these two results will be given in Section 2, after the traveling waves and their 
linear stability problems will be described. Sections 3 and 4 contain the proofs of these two main results. 
Section 5 concludes the paper with a summary and a list of open questions for further studies.

2. Smooth solitary waves

We consider the traveling one-dimensional solitary waves described by solutions to the CH-KP equation 
(1.2) of the form

u(x, y, t) = φ(x− ct),

where φ(x) → k as |x| → ∞, for a fixed background parameter k > 0. It is well-known [17,24], see also 
[12,27] for earlier results, that such solitary waves exist for c > 3k and have a smooth profile φ ∈ C∞(R). 
The following lemma formalizes the result.

Lemma 2.1. Fix k > 0. For every c > 3k, there exists a traveling solitary wave solution of the CH equation 
(1.1) with profile φ ∈ C∞(R) of the form φ(x) = k + ψ(x), where ψ is found from the first-order invariant

(ψ′)2 = ψ2 c− 3k − ψ

c− k − ψ
. (2.1)

In particular, ψ(x) > 0 for all x ∈ R, ψ(x) → 0 as |x| → ∞ exponentially fast, and ψ(x) is monotonically 
decreasing on both sides of its maximum at max

x∈R
ψ(x) = c − 3k.

Proof. The traveling wave of the CH equation (1.1) with profile φ satisfies the third-order differential 
equation

−c(φ′ − φ′′′) + 3φφ′ − 2φ′φ′′ − φφ′′′ = 0,

which can either be integrated directly to give

(c− φ)(φ− φ′′) + 1(φ′)2 − 1
φ2 = kc− 3

k2, (2.2)
2 2 2
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or first multiplied by (c − φ) and then integrated to give

−(c− φ)2(φ′′ − φ) = k(c− k)2. (2.3)

In both cases, we have fixed the integration constant from the conditions φ(x) → k and φ′(x), φ′′(x) → 0
as |x| → ∞. Multiplying (2.3) by φ′ and integrating again gives

1
2(φ′)2 − 1

2φ
2 + k(c− k)2

(c− φ) = kc− 3
2k

2. (2.4)

Writing φ = k + ψ, we obtain (2.1) from (2.4).
A solitary wave with ψ(x) → 0 as |x| → ∞ corresponds to a homoclinic orbit on the phase plane 

(ψ, ψ′) to the saddle point (0, 0). Since (0, 0) is a saddle point for c − 3k > 0, the convergence rate of 
ψ(x) → 0 as |x| → ∞ is exponential. The stable and unstable curves at (0, 0) do not intersect if ψ < 0
and intersect if ψ > 0. Hence ψ(x) > 0 for all x ∈ R and the turning point x0 ∈ R with ψ′(x0) = 0 exists 
if and only if ψ(x0) = c − 3k. Thus, the profile ψ is monotonically decreasing away from its maximum at 
max
x∈R

ψ(x) = c − 3k. �
Remark 2.2. Due to the translational symmetry of the CH equation we may place the maximum of ψ at 
x = 0 such that ψ(0) = c − 3k.

Remark 2.3. Since the scaling (1.8) suggests a reduction of the CH-KP equation (1.3) to the KP-II equation 
(1.9), the traveling solitary wave of Lemma 2.1 must converge to the traveling solitary wave of the KdV 
equation

vT + 2kvXXX + 3vvX = 0. (2.5)

Indeed, solving the KdV equation (2.5) for the solitary wave profile with

v(X,T ) = sech2
(
X − T

2
√

2k

)

gives the formal asymptotic expansion

φ(x) = k + ε2sech2
(

εx

2
√

2k

)
+ O(ε4), c = 3k + ε2, (2.6)

where ε > 0 is an arbitrary (small) parameter and x stands for x − ct. The asymptotic limit to the solitary 
wave of small amplitude corresponds to the limit c → 3k for which ε → 0. This reduction is made rigorous 
in Lemma 4.1 below.

In order to set up the linear transverse stability problem for the smooth solitary wave of Lemma 2.1, we 
consider the decomposition

u(x, y, t) = φ(x− ct) + v(x− ct, y, t)

with the perturbation v to the solitary wave profile φ ∈ C∞(R). After substitution of the decomposition 
into (1.3) and neglecting the quadratic terms in v, we obtain the linearized equation

vt = J(L− ∂−2
x ∂2

y)v, (2.7)
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where J := ∂x(1 − ∂2
x)−1 as in (1.4) and

L := c− 3φ + φ′′ − ∂x(c− φ)∂x. (2.8)

Separation of variables in the linearized equation (2.7) by using normal modes of the form

v(x, y, t) = eλteiηy v̂(x),

where λ ∈ C and η ∈ R, yields the spectral stability problem

J(L + η2∂−2
x )v̂ = λv̂. (2.9)

The one-dimensional spectral stability problem is recovered for η = 0. We can now specify the following 
definition of transverse spectral stability.

Definition 2.4. We say that the solitary wave with profile φ ∈ C∞(R) is transversely spectrally stable if for 
every η ∈ R there exists no eigenvalue λ ∈ C with Re(λ) > 0 and eigenfunction v̂ ∈ Dom(J(L + η2∂−2

x )) ⊂
L2(R) of the spectral stability problem (2.9).

A common method to study the linear stability of solitary waves in the KdV equation (2.5) is to use the 
exponentially weighted space L2

ν with fixed ν > 0 [6,38], which is defined as

L2
ν := {f(x) : R → R : eν·f ∈ L2(R)}. (2.10)

If f ∈ L2
ν with ν > 0, then f(x) → 0 as x → +∞ and so the nonlocal operator ∂−1

x is well-defined. Note 
however that f(x) does not have to decay and may even be slowly growing as x → −∞. By using the 
exponentially weighted space L2

ν , we rephrase the definition of the transverse spectral stability.

Definition 2.5. We say that the solitary wave with profile φ ∈ C∞(R) is transversely asymptotically stable 
in L2

ν for some ν > 0 if for every η ∈ R, η 	= 0 there exists b > 0 such that all points λ in the spectrum of 
the linear operator

J(L + η2∂−2
x ) : Dom(J(L + η2∂−2

x )) ⊂ L2
ν → L2

ν

satisfy Re(λ) ≤ −b.

The fact that φ(x) → k as |x| → ∞ exponentially fast greatly simplifies the spectral analysis of our 
problem. As a result, Weyl’s theory implies that the continuous spectrum of J(L +η2∂−2

x ) in L2
ν is uniquely 

determined by the purely continuous spectrum of J(L0 + η2∂−2
x ), where

L0 := c− 3k − (c− k)∂2
x. (2.11)

In addition, the point spectrum of J(L + η2∂−2
x ) in L2

ν may contain eigenvalues λ ∈ C with eigenfunctions 
v̂ ∈ Dom(J(L + η2∂−2

x )) ⊂ L2
ν .

The first result of this paper is to show that both the continuous spectrum and the two eigenvalues near 
the origin in the complex plane satisfy the transverse asymptotic stability condition of Definition 2.5 for 
some ν > 0. The proof is developed in Section 3, where the continuous spectrum is computed with the 
help of the Fourier transform and the two eigenvalues are computed by using Puiseux expansions [39] in 
the small parameter η.
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Theorem 2.6. For every c > 3k, η ∈ R, and ν ∈ (0, ν0) with ν0 :=
√

c−3k
c−k , there exists b0 > 0 such that 

all points λ in the spectrum of the linear operator J(L0 + η2∂−2
x ) in L2

ν satisfy Re(λ) ≤ −b0. Furthermore, 
there exists η0 > 0 such that the spectrum of the linear operator J(L + η2∂−2

x ) in L2
ν with η ∈ (−η0, η0)

includes a pair of simple eigenvalues λ±(η) such that for η 	= 0 we have

• Re(λ+(η)) = Re(λ−(η)) < 0,
• Im(λ+(η)) = −Im(λ−(η)) > 0,

and λ+(0) = λ−(0) = 0.

Remark 2.7. The result of Theorem 2.6 is consistent with the transverse asymptotic stability with respect 
to long transverse perturbations in the sense of Definition 2.5 with small η 	= 0. However, the spectrum of 
JL in L2

ν might include more than the continuous spectrum and the double zero eigenvalue. There might 
exist additional embedded eigenvalues of JL in L2(R) on the imaginary axis which could become isolated 
in L2

ν for ν > 0. The latter possibility has been ruled out for the KdV equation (2.5), see [37,38]. However, 
nothing is known about the existence of additional embedded eigenvalues of JL in L2(R) on iR for the CH 
equation (1.1).

The second result of this paper explores the small-amplitude limit of the solitary waves and provides 
transverse asymptotic stability for solitary waves of small amplitudes in the sense of Definition 2.5. The 
proof is developed in Section 4 based on estimates for the resolvent equation.

Theorem 2.8. Let λ±(η) be the simple eigenvalues of J(L + η2∂−2
x ) in L2

ν for fixed ν ∈ (0, ν0) found in 
Theorem 2.6. There exists ε0 > 0 and β0 > 0 such that for every ε ∈ (0, ε0), where ε :=

√
c− 3k, and for 

every η ∈ R, η 	= 0, the spectrum of J(L + η2∂−2
x ) in L2

ν is contained in

S := {λ ∈ C : Re(λ) ≤ −β0ε
3},

with the exception of the two simple eigenvalues λ = λ±(η).

Remark 2.9. Since Re(λ±(η)) < 0 for η ∈ (−η0, η0), η 	= 0, the solitary waves of small amplitude are 
transversely asymptotically stable in L2

ν . By using the Fourier transform in y, the result of Theorem 2.8 also 
implies the transverse asymptotic stability of these solitary waves with respect to perturbations in L2

ν(R2), 
where the weight ν ∈ (0, ν0) is only applied in the direction of the solitary waves. This yields asymptotic 
stability of solutions to the linear evolution equation (2.7) in L2

ν(R2) by semi-group theory.

3. Proof of Theorem 2.6

3.1. Preliminary results

The one-dimensional CH equation (1.1) has the following conserved quantities which play a crucial role 
in the stability analysis of its traveling solitary and periodic waves [12,17]:

F̂ (u) := 1
2

∫
R

(u3 + uu2
x − k3) dx,

Ê(u) := 1
2

∫
(u2 + u2

x − k2) dx,

R
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M̂(u) :=
∫
R

(u− k) dx.

The constant values have been subtracted from the integrands to ensure that the integrals converge if 
u(x) → k as |x| → ∞ sufficiently fast. These quantities are the one-dimensional analogues of the conserved 
quantities (1.5), (1.6), and (1.7) of the two-dimensional CH-KP equation (1.2). Using F̂ , Ê, and M̂ we 
define the augmented energy

Λc(u) := −F̂ (u) + cÊ(u) −
(
ck − 3

2k
2
)
M̂(u).

Smooth solutions to the second-order equation (2.2) with the profile φ ∈ C∞(R) are critical points of Λc in 
the sense that the first variation vanishes:

Λ′
c(φ) = −3

2φ
2 + 1

2(φ′)2 + φφ′′ + cφ− cφ′′ − ck + 3
2k

2 = 0.

The linear operator L in (2.8) is the Hessian operator of Λc at the critical point with the profile φ ∈ C∞(R). 
This variational characterization of the traveling wave solutions was explored in the stability analysis in 
[12,17], see also [24] for an alternative variational characterization of the traveling wave solutions in the CH 
equation (1.1).

Remark 3.1. Since the linear operator L in (2.8) is the Hessian operator Λ′′
c (φ) at the traveling solitary wave 

with the profile φ ∈ C∞(R) given by Lemma 2.1, it also arises in the linearization of the CH equation (1.1)
given by vt = JLv.

If φ = k + ψ, then

E1D(ψ) := Ê(φ) − kM̂(φ)

= 1
2

∫
R

[(k + ψ)2 + (ψ′)2 − k2 − 2kψ]dx

= 1
2

∫
R

[(ψ′)2 + ψ2]dx (3.1)

and

M1D(ψ) := M̂(φ) =
∫
R

ψdx. (3.2)

The following lemma reports important monotonicity properties of E1D(ψ) and M1D(ψ) with respect to the 
parameter c ∈ (3k, ∞) for fixed k > 0. The proof is based on direct computations.

Lemma 3.2. For fixed k > 0, let ψ be the solitary wave defined by the first-order invariant (2.1). Then, the 
mappings c �→ M1D(ψ) and c �→ E1D(ψ) are monotonically increasing for every c ∈ (3k, ∞).

Proof. Without loss of generality, we place the maximum of ψ at x = 0 such that ψ(0) = c − 3k, see 
Remark 2.2. By Lemma 2.1, we have ψ(x) = ψ(−x) > 0 for every x ∈ R and ψ′(x) = −ψ′(−x) < 0 for 
every x > 0. We obtain from (3.2) by explicit computations that
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M1D(ψ) = 2
∞∫
0

ψ(x)dx

= 2
c−3k∫
0

√
c− k − ψ√
c− 3k − ψ

dψ

= 2
c−3k∫
0

√
2k + z√

z
dz

= 8k
ξ0∫
0

√
1 + ξ2dξ,

where we have made the substitutions z = c − 3k − ψ and

ξ =
√
z√
2k

, ξ0 =
√
c− 3k√

2k
.

The integral is evaluated explicitly to find that

M1D(ψ) = 4k
[
ξ0

√
1 + ξ2

0 + arcsinhξ0
]
,

from which it follows that

d

dc
M1D(ψ) = 2

√
c− k

c− 3k > 0.

Similarly, we find that

E1D(ψ) = 2
c−3k∫
0

ψ(c− 2k − ψ)√
(c− k − ψ)(c− 3k − ψ)

dψ

= 2
c−3k∫
0

(c− 3k − z)(z + k)√
z(z + 2k)

dz,

from which we obtain that

d

dc
E1D(ψ) = 2

c−3k∫
0

z + k√
z(z + 2k)

dz

= 2
√

z(z + 2k)
∣∣∣∣
z=c−3k

z=0

= 2
√

(c− 3k)(c− k) > 0.

Thus, both mappings c �→ M1D(ψ) and c �→ E1D(ψ) are monotonically increasing for every c ∈ (3k, ∞). �
Remark 3.3. The monotonicity of c �→ E1D(ψ) plays a central role in the proof of the orbital stability of 
smooth solitary wave in the CH equation (1.1), see [12].
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Remark 3.4. For later reference, we also compute ‖ψ‖2
L2 by using the same idea as in the proof of Lemma 3.2:

‖ψ‖2
L2 = 2

c−3k∫
0

ψ
√
c− k − ψ√

c− 3k − ψ
dψ

= 2
c−3k∫
0

√
2k + z(c− 3k − z)√

z
dz

= 8k
ξ0∫
0

(c− 3k − 2kξ2)
√

1 + ξ2dξ,

from which we obtain

‖ψ‖2
L2 = 4k(c− 3k)

[
ξ0

√
1 + ξ2

0 + arcsinhξ0
]

− 2k2
[
2ξ0

√
(1 + ξ2

0)3 − ξ0

√
1 + ξ2

0 − arcsinhξ0
]

= 2k(2c− 5k)
[
ξ0

√
1 + ξ2

0 + arcsinhξ0
]
− 4k2ξ0

√
(1 + ξ2

0)3.

3.2. The continuous spectrum of the spectral problem (2.9)

We start by analyzing properties of L. First, L is a self-adjoint Sturm-Liouville operator in L2(R) with 
dense domain in H2(R). The translational symmetry of the CH equation (1.1) implies that

Lφ′ = 0, φ′ ∈ Dom(L) ⊂ L2(R). (3.3)

Since φ′ has only one zero on R, Sturm–Liouville theory implies that the spectrum of L in L2(R) consists 
of one simple negative and a simple zero eigenvalue isolated from the strictly positive part of the spectrum. 
Furthermore, since φ ∈ C∞(R) is smooth in c, we find by differentiating the traveling wave equation (2.2)
with respect to c that

L∂cφ = k − μ, ∂cφ ∈ Dom(L) ⊂ L2(R), (3.4)

where μ := φ −φ′′. Based on these computations, the following two lemmas specify properties of the linearized 
operator JL in L2(R), included here for the sake of completeness, and in the exponentially weighted space 
L2
ν for small ν > 0.

Lemma 3.5. For every c > 3k, the spectrum of JL in L2(R) covers iR with 0 being an embedded eigenvalue.

Proof. It follows from (3.3) that JLφ′ = 0 with φ′ ∈ Ker(JL) ⊂ L2(R) so that 0 ∈ σ(JL). Because φ(x) → k

as |x| → ∞ exponentially fast, Weyl’s theorem implies that the continuous spectrum of JL is given by the 
spectrum of JL0 in L2(R), where L0 is given by (2.11). By using the Fourier transform in L2(R), we obtain 
that

σ(JL0) =
{
iξ(1 + ξ2)−1[c− 3k + (c− k)ξ2], ξ ∈ R

}
= iR in L2(R).
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Since φ is spectrally stable in the time evolution of the CH equation (1.1) [12,24], no other points of the 
spectrum of JL in L2(R) exist outside iR. Thus, the spectrum of JL in L2(R) is σ(JL) = iR with 0 being 
an embedded eigenvalue. �
Lemma 3.6. For every c > 3k, there exists ν0 > 0 such that the continuous spectrum of JL in L2

ν with 
ν ∈ (0, ν0) is strictly negative and the (isolated) zero eigenvalue in L2

ν is algebraically double.

Proof. By Weyl’s theorem, the continuous spectrum of JL in L2
ν is given by the spectrum of JL0 in L2

ν . 
Using the Fourier transform we obtain that

σ(JL0) =
{
(iξ − ν)[1 − (iξ − ν)2]−1[c− 3k − (c− k)(iξ − ν)2], ξ ∈ R

}
in L2

ν .

We claim that if 0 < ν < ν0 with ν0 =
√

c−3k
c−k , then

Re(σ(JL0)) < 0 in L2
ν ,

where Re(σ(JL0)) coincides with the range of the function λr(ξ) : R → R given by

λr(ξ) = Re
[
(iξ − ν)[1 − (iξ − ν)2]−1[c− 3k − (c− k)(iξ − ν)2]

]
= Re

[
(c− k)(iξ − ν) − 2k(iξ − ν)[1 − (iξ − ν)2]−1]

= −ν(c− k) − 2kν(ν2 + ξ2 − 1)
(1 − ν2 + ξ2)2 + 4ξ2ν2

Expanding this quantity yields

λr(ξ) = − ν

(1 − ν2 + ξ2)2 + 4ξ2ν2

[
c− 3k + 2cξ2 − 2(c− 2k)ν2 + (c− k)(ξ2 + ν2)2

]
,

which is strictly negative if ν > 0 and

(c− k)ν4 − 2(c− 2k)ν2 + c− 3k > 0.

The latter constraint is true if ν < ν0 =
√

c−3k
c−k . Note that ν0 ∈ (0, 1).

It remains to prove that 0 ∈ σ(JL) is a double eigenvalue in L2
ν . Since φ′(x) → 0 as |x| → ∞ exponentially 

fast, we have φ′ ∈ L2
ν for sufficiently small ν > 0. The Wronskian between two solutions {f1, f2} of Lf = 0

is asymptotically constant at infinity and nonzero since

W (f1, f2) =

∣∣∣∣∣ f1 f2
f ′
1 f ′

2

∣∣∣∣∣ = W0

c− φ
, x ∈ R,

where W0 is a nonzero constant. If one solution f1 := φ′ decays exponentially at infinity, the other (linearly 
independent) solution f2 grows exponentially at infinity. Hence

Ker(L) = span(φ′) in L2
ν .

Furthermore, since φ is even, L is parity preserving. There exists an even solution f0 to the inhomogeneous 
equation Lf0 = 1 and since L converges to L0 at infinity, f0 is non-decaying at infinity. Since JLf = 0
implies Lf = C for some constant C ∈ R and f = Cf0 /∈ L2

ν is non-decaying if C 	= 0, it follows that
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Ker(JL) = Ker(L) = span(φ′) in L2
ν .

In order to study the algebraic multiplicity of the zero eigenvalue, we consider solutions of JLf = φ′. Since 
it follows from (3.4) that JL∂cφ = −φ′ and ∂cφ ∈ L2

ν , we have

Ker((JL)2) = span(φ′, ∂cφ) in L2
ν .

The zero eigenvalue of JL is algebraically double if and only if there exists no f ∈ L2
ν such that JLf = ∂cφ, 

or equivalently,

Lf = ∂−1
x ∂cμ, (3.5)

where ∂−1
x ∂cμ ∈ L2

ν . If the eigenfunctions of L are defined in L2
ν , then the adjoint eigenfunctions are defined 

in L2
−ν due to the transformation L �→ Lν := eνxLe−νx for eigenfunctions in the weighted space L2

ν, see 
[6,38]. As a result, the inner product in L2

μ is equivalent to the inner product in L2, i.e.

∀f ∈ L2
ν , ∀g ∈ L2

−ν : 〈f, g〉L2
ν

:= 〈eνxf, e−νxg〉L2 = 〈f, g〉L2 . (3.6)

In what follows, we drop the subscript L2 for the inner product in L2. To provide the existence of solutions 
f ∈ L2

ν of the linear inhomogeneous equation (3.5), we check the Fredholm condition given by

〈φ′, ∂−1
x ∂cμ〉 = −〈(φ− k), ∂cμ〉 = − d

dc
E1D(ψ), (3.7)

where E1D(ψ) is given by (3.1) and integration by parts gives no contribution at infinity since φ(x) → k as 
|x| → ∞ exponentially fast. By Lemma 3.2, the right-hand side is strictly negative so that no f ∈ L2

ν exists 
such that JLf = ∂cφ. Hence, 0 ∈ σ(JL) is a double eigenvalue in L2

ν . �
Based on Lemma 3.6, we can study properties of the spectral stability problem (2.9) with transverse wave 

number η ∈ R, η 	= 0. The continuous spectrum of J(L +η2∂−2
x ) in L2

ν coincides with the purely continuous 
spectrum of J(L0 +η2∂−2

x ) in L2
ν , which can be obtained by using the Fourier transform in x. The spectrum 

σ(L0 + η2∂−2
x ) in L2

ν is defined by the range of the function λ(ξ) : R → C given by

λ(ξ) = (iξ − ν)[1 − (iξ − ν)2]−1 [c− 3k − (c− k)(iξ − ν)2 + η2(iξ − ν)−2] . (3.8)

Fig. 3.1 gives a plot of λ(ξ) for specific values of k, c, η, and ν. The plot suggests that σ(L0 + η2∂−2
x ) in L2

ν

is located in the left half-plane bounded away from zero. The following lemma proves this property.

Lemma 3.7. For every c > 3k, η ∈ R and ν ∈ (0, ν0), where ν0 :=
√

c−3k
c−k , we have Re(λ(ξ)) < 0 for all 

ξ ∈ R.

Proof. The expression (3.8) can be simplified in the form:

λ(ξ) =(c− k)(iξ − ν) − 2k(iξ − ν)[1 − (iξ − ν)2]−1 + η2(iξ − ν)−1[1 − (iξ − ν)2]−1.

Computing the real part and using λr(ξ) from the proof of Lemma 3.6, we obtain

Re(λ(ξ)) = λr(ξ) −
η2ν(1 − ν2 + 3ξ2)

(ξ2 + ν2)[(1 − ν2 + ξ2)2 + 4ξ2ν2] .

Since λr(ξ) < 0 for ν ∈ (0, ν0) with ν0 :=
√

c−3k
c−k and ν0 ∈ (0, 1), we have Re(λ(ξ)) < 0 for all ξ ∈ R. �
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Fig. 3.1. A plot of λ(ξ), ξ ∈ R in the complex plane for k = 1, c = 4, η = 0.01, and ν = 0.1.

3.3. Splitting of the double zero eigenvalue in L2
ν for η 	= 0

By Lemma 3.6, 0 is a double (isolated) eigenvalue of JL in L2
ν for small ν > 0. When η 	= 0 in (2.9), the 

translational symmetry is broken and the double zero eigenvalue may split into two complex eigenvalues of 
J(L + η2∂−2

x ). Since it is isolated away from the continuous spectrum of J(L + η2∂−2
x ) for every η ∈ R and 

small ν > 0 by Lemma 3.7, the splitting can be studied by using perturbative methods in powers of η.
The following lemma states that when η 	= 0 the double zero eigenvalue of JL in L2

ν for small ν > 0 splits 
into a pair of eigenvalues of J(L + η2∂−2

x ) located in the left half of the complex plane. The result holds for 
solitary waves of arbitrary amplitude and is derived by means of Puiseux expansions in η. Together with 
Lemma 3.7, this proves the result of Theorem 2.6.

Lemma 3.8. There exists ν0 > 0 such that for every fixed ν ∈ (0, ν0) there exists η0 > 0 such that the 
spectrum of J(L + η2∂−2

x ) in L2
ν for η ∈ (−η0, η0) contains a pair of simple eigenvalues λ±(η) satisfying for 

η 	= 0

• Re(λ+(η)) = Re(λ−(η)) < 0,
• Im(λ+(η)) = −Im(λ−(η)) > 0,

and λ+(0) = λ−(0) = 0.

Proof. By Lemma 3.7, there exists ν0 > 0 such that for every fixed ν ∈ (0, ν0), the double zero eigenvalue 
of JL in L2

ν is isolated from its continuous spectrum of J(L + η2∂−2
x ) in L2

ν . Since η2∂−2
x is a bounded 

analytic perturbation to the unbounded operator L in L2
ν for ν > 0, the eigenvalues of J(L + η2∂−2

x ) in L2
ν

are continuous functions of η.
By Lemma 3.6, the zero eigenvalue of JL in L2

ν is geometrically simple and algebraically double. Hence 
we use Puiseux expansions [39] in order to trace the eigenvalues λ±(η) satisfying λ±(η) → 0 as η → 0 with 
respect to small but nonzero η. Solutions of the spectral stability problem (2.9) with λ = λ(η) are expanded 
as

v̂ = v0 + v1η + v2η
2 + v3η

3 + O(η4),
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λ(η) = λ1η + λ2η
2 + λ3η

3 + O(η4).

where v0, v1, v2, v3 ∈ L2
ν and λ1, λ2, λ3 ∈ C are to be determined. We obtain at different orders in powers of 

η that

O(1) : JLv0 = 0,

O(η) : JLv1 = λ1v0,

O(η2) : JLv2 = λ2v0 + λ1v1 − (1 − ∂2
x)−1∂−1

x v0

O(η3) : JLv3 = λ3v0 + λ2v1 + λ1v2 − (1 − ∂2
x)−1∂−1

x v1.

With arbitrary normalization, we can set v0 = φ′ and v1 = −λ1∂cφ due to computations in the proof of 
Lemma 3.6. Then, at the order of O(η2), we write v2 = −λ2∂cφ + v̂2, where v̂2 satisfies

JLv̂2 = −λ2
1∂cφ− (1 − ∂2

x)−1(φ− k).

After inverting J in L2
ν with ν > 0 we rewrite this linear inhomogeneous equation in the equivalent form

Lv̂2 = −λ2
1∂

−1
x ∂cμ− ∂−1

x (φ− k).

By using (3.6) we check the Fredholm condition for the existence of solutions v̂2 ∈ L2
ν :

λ2
1〈φ′, ∂−1

x ∂cμ〉 + 〈φ′, ∂−1
x (φ− k)〉 = 0.

Note that ∂−1
x (φ − k) =

∫ x

+∞(φ − k), so the second term gives after integration by parts

〈φ′, ∂−1
x (φ− k)〉 = (φ− k)

x∫
+∞

(φ− k)dx′
∣∣∣∣
x→+∞

x→−∞
−

∞∫
−∞

(φ− k)2dx

= −‖φ− k‖2
L2 = −‖ψ‖2

L2 .

On the other hand, the first term is evaluated with the help of (3.7). Since d
dcE1D(ψ) > 0 by Lemma 3.2, 

we obtain that

λ2
1 = −〈φ′, ∂−1

x (φ− k)〉
〈φ′, ∂−1

x ∂cμ〉
= − ‖ψ‖2

L2

d
dcE1D(ψ)

< 0. (3.9)

Thus, we have two roots for λ1 ∈ iR, which determine two simple eigenvalues λ = λ±(η). At the lead-
ing order, we have Im(λ+(η)) = −Im(λ−(η)) > 0 and the complex-conjugate symmetry of eigenvalues is 
preserved since J and L are real-valued.

At the next order O(η3) we write v3 = −λ3∂cφ + φ̂3, where v̂3 satisfies

JLv̂3 = λ1
[
v̂2 + (1 − ∂2

x)−1∂−1
x ∂cφ− 2λ2∂cφ

]
,

which, after inverting J in L2
ν with ν > 0, gives

Lv̂3 = λ1
[
(1 − ∂2

x)∂−1
x v̂2 + ∂−2

x ∂cφ− 2λ2∂
−1
x ∂cμ

]
.

By using (3.6) we check the Fredholm condition for the existence of solutions v̂3 ∈ L2
ν :
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2λ2 =
〈φ′, ∂−1

x

[
(1 − ∂2

x)v̂2 + ∂−1
x ∂cφ

]
〉

〈φ′, ∂−1
x ∂cμ〉

= 〈φ− k, (1 − ∂2
x)v̂2〉 + 〈φ− k, ∂−1

x ∂cφ〉
d
dcE1D(ψ)

.

For the first term in the numerator, we use (3.4) and obtain

〈φ− k, (1 − ∂2
x)v̂2〉 = 〈μ− k, v̂2〉 = −〈L∂cφ, v̂2〉 = −〈∂cφ,Lv̂2〉

= λ2
1〈∂cφ, ∂−1

x ∂cμ〉 + 〈∂cφ, ∂−1
x (φ− k)〉.

We use the even parity of φ for which 
∫ x

+∞(φ −k)dx′ = −1
2
∫∞
−∞(φ −k)dx′ +

∫ x

0 (φ −k)dx′, where the second 
term is odd, and obtain

〈φ− k, ∂−1
x ∂cφ〉 = −1

2

∞∫
−∞

(φ− k)dx

⎛
⎝ ∞∫
−∞

∂cφdx

⎞
⎠ = −1

2M1D(ψ) d

dc
M1D(ψ),

〈∂cφ, ∂−1
x (φ− k)〉 = −1

2

⎛
⎝ ∞∫
−∞

∂cφdx

⎞
⎠ ∞∫

−∞

(φ− k)dx = −1
2M1D(ψ) d

dc
M1D(ψ),

〈∂cφ, ∂−1
x ∂cμ〉 = −1

2

⎛
⎝ ∞∫
−∞

∂cφdx

⎞
⎠ ∞∫

−∞

∂cμdx = −1
2

(
d

dc
M1D(ψ)

)2

,

which then yields

2λ2 =
d
dcM1D(ψ)
d
dcE1D(ψ)

[
‖ψ‖2

L2

2 d
dcE1D(ψ)

d

dc
M1D(ψ) −M1D(ψ)

]

=
d
dcM1D(ψ)

2
(

d
dcE1D(ψ)

)2
[
‖ψ‖2

L2
d

dc
M1D(ψ) − 2M1D(ψ) d

dc
E1D(ψ)

]
, (3.10)

where we have used (3.9) for λ2
1.

In order to identify the sign of λ2, we recall from Lemma 3.2 that the mappings c �→ M1D(ψ) and 
c �→ E1D(ψ) are monotonically increasing. Hence, the sign of λ2 is equivalent to the sign of

‖ψ‖2
L2

d

dc
M1D(ψ) − 2M1D(ψ) d

dc
E1D(ψ)

= 4k
√
c− k√

c− 3k

[
(7k − 2c)(ξ0

√
1 + ξ2

0 + arcsinhξ0) − 2kξ0
√

(1 + ξ2
0)3

]
, ξ0 :=

√
c− 3k√

2k
,

where we have substituted explicit expressions from Lemma 3.2 and Remark 3.4. Since c > 3k, we obtain

‖ψ‖2
L2

d

dc
M1D(ψ) − 2M1D(ψ) d

dc
E1D(ψ)

≤ 4k2√c− k√
c− 3k

[
ξ0

√
1 + ξ2

0 + arcsinhξ0 − 2ξ0
√

(1 + ξ2
0)3

]
,

= −4k2√c− k√
c− 3k

ξ0

√
1 + ξ2

0

[
1 + 2ξ2

0 − log(ξ0 +
√

1 + ξ2
0)

ξ0
√

1 + ξ0
2

]
,
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where we have used arcsinhξ0 = log(ξ0 +
√

1 + ξ2
0). Since log(ξ0 +

√
1 + ξ2

0) < ξ0
√

1 + ξ2
0 for every ξ0 > 0, 

the expression in the bracket is positive so that λ2 < 0. This yields Re(λ+(η)) = Re(λ−(η)) < 0 at the 
leading order and hence for sufficiently small η 	= 0. �
Remark 3.9. In the KdV limit (2.6) as c → 3k, we can simplify the expressions (3.9) and (3.10) for λ1 and 
λ2 to obtain

λ2
1 = −

√
2k

2
√
c− 3k

[
4(c− 3k)ξ0 −

8
3kξ

3
0 + O(ξ5

0)
]
∼ −4

3(c− 3k)

and

2λ2 = k

(c− 3k)2

[
4(3k − c)ξ0 −

8
3kξ

3
0 + O(ξ5

0)
]
∼ − 8

√
2k

3
√
c− 3k

,

where we have used the explicit expressions in the proof of Lemma 3.2 and the asymptotic limit ξ0 → 0. 
Extracting the positive square root for λ1 yields the expansion for λ±(η) in the form

λ±(η) = ± 2i√
3
√
c− 3kη − 4

3

√
2k√

c− 3k
η2 + O(η3).

Using the KP-II scaling (1.8) and (2.6) with η = ε2Υ and c − 3k = ε2, we obtain

ε−3λ±(ε2Υ) = ± 2i√
3
Υ − 4

3
√

2kΥ2 + O(Υ3),

which is the asymptotic expansion of the exact expression of the pair of eigenvalues Λ±(Υ) of the corre-
sponding linearized operator for the KP-II equation (1.9),

Λ±(Υ) = ± 2i√
3
Υ

√
1 ± 4i√

3
√

2kΥ, (3.11)

see [31].

Remark 3.10. The continuous spectrum of J(L + η2∂−2
x ) in L2

ν deforms to iR as ν → 0, which can be seen 
by taking the limit ν → 0 in equation (3.8). On the other hand, the location of the simple eigenvalues 
λ±(η) is independent of ν for η ∈ (−η0, η0) and ν ∈ (0, ν0) as follows from (3.9) and (3.10). As a result, 
the continuous spectrum crosses the location of the simple eigenvalues for some ν1 ∈ (0, ν0) that depends 
on η 	= 0. Consequently, as is shown in [38], the simple eigenvalues of J(L + η2∂−2

x ) in L2
ν for ν ∈ (ν1, ν0)

are no longer eigenvalues of J(L + η2∂−2
x ) in L2

ν for ν ∈ (0, ν1) and in L2(R), because they are associated 
with the eigenfunctions growing exponentially as x → −∞. Such points are referred to as resonances of the 
linear operator J(L + η2∂−2

x ), see [38].

4. Proof of Theorem 2.8

4.1. Preliminary results

We consider the spectral stability problem in the form (2.9). Writing φ = k + ψ and c = 3k + γ, we can 
rewrite the spectral problem (2.9) in the equivalent form

∂x(1 − ∂2
x)−1 (γ − 3ψ + ψ′′ − ∂x(γ − ψ)∂x − 2k∂2

x + η2∂−2
x

)
v̂ = λv̂. (4.1)
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In order to analyze the spectral problem (4.1) in the limit of small-amplitude solitary waves, we give a 
rigorous proof of the approximation result in Remark 2.3 and justify the asymptotic approximation (2.6). 
The following lemma presents this asymptotic result.

Lemma 4.1. There exists ε0 > 0 and C0 > 0 such that for every ε ∈ (0, ε0) the solitary wave solution of 
Lemma 2.1 satisfying ψ(0) = c − 3k and ψ′(0) = 0 can be written in the form

ψ(x) = ε2ΨKdV(X) + ε4Ψ̃(X), X = εx, c = 3k + ε2, (4.2)

where

ΨKdV(X) := sech2
(

X

2
√

2k

)
and ‖Ψ̃‖L∞ ≤ C0.

Proof. Substituting ψ(x) = ε2Ψ(X), X = εx, and c = 3k + ε2 into (2.1) yields the first-order invariant

(Ψ′)2 = Ψ2 1 − Ψ
2k + ε2(1 − Ψ) ,

for some Ψ ∈ H2(R). The function ΨKdV is a solution of the above equation in the limit ε → 0. To prove 
(4.2) we differentiate the first-order invariant and obtain the second-order equation in the form F (Ψ, ε2) = 0, 
where F (Ψ, ε2) : H2(R) ×R → L2(R) is the operator function given by

F (Ψ, ε2) := −Ψ′′ + Ψk(2 − 3Ψ) + ε2(1 − Ψ)2

(2k + ε2(1 − Ψ))2 .

It is clear that F is a C1 function near (ΨKdV, 0) satisfying

F (ΨKdV, 0) = −Ψ′′
KdV + 1

4kΨKdV(2 − 3ΨKdV) = 0

and

DΨF (ΨKdV, 0) = −∂2
x + 1

2k (1 − 3ΨKdV).

Since 0 is a simple eigenvalue of DΨF (ΨKdV, 0) with odd eigenfunction Ψ′
KdV, and the rest of its spectrum is 

bounded away from 0, the operator DΨF (ΨKdV, 0) is invertible in the subspace of even functions in H2(R). 
By the implicit function theorem, there exists a unique C1 mapping ε2 �→ Ψ(·, ε2) ∈ H2(R) which yields 
the unique even solution of F (Ψ(·, ε2), ε2) = 0 for small ε2 such that Ψ(·, ε2) → ΨKdV as ε2 → 0. The 
decomposition (4.2) follows from the C1 property of this mapping and the continuous embedding of H2(R)
into L∞(R). �

The KP-II scaling (1.8) and (2.6) corresponds to

λ = ε3Λ, η = ε2Υ, γ = ε2, x = ε−1X, v̂(x) = V̂ (X). (4.3)

By Lemma 4.1, we can also write

ψ(x) = ε2Ψ(X), Ψ := ΨKdV + ε2Ψ̃, c = 3k + ε2. (4.4)

The spectral problem (4.1) can then be rewritten as
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∂X(1 − ε2∂2
X)−1 (LKdV + ε2Lpert + Υ2∂−2

X

)
V̂ = ΛV̂ , (4.5)

where

LKdV := 1 − 3ΨKdV − 2k∂2
X , Lpert := Ψ′′ − ∂X(1 − Ψ)∂X − 3Ψ̃.

Since

ν0 =
√
c− 3k√
c− k

= ε√
2k + ε2

in Lemma 3.7, we need to rescale the exponential weight ν as ν = ερ and replace the weighted space (2.10)
by

L2
ρ := {F (X) : R → R : eρ·F ∈ L2(R)}.

The parameter ρ is fixed in (0, ρ0), where ρ0 := 1/
√

2k. In order to prove Theorem 2.8, we consider the 
resolvent equations obtained from the spectral stability problem (4.1) in the original variables and (4.5) in 
the scaled variables. The two resolvent equations are used in two different regions:

• the high-frequency region with |η| ≥ K2
0ε

2 for sufficiently large K0 > 0;
• the low-frequency region with |η| ≤ K2ε2 for every fixed K > 0.

Combining the two regions covers the entire range of η values since K can be taken to be greater than K0. 
Estimates in Lemma 4.6 and Lemma 4.8 below prove the result of Theorem 2.8.

4.2. The high-frequency region

We start with the following result, which is a generalization of [33, Lemma 3.1] obtained for the linearized 
KP-II equation and extended here for the spectral problem (4.5).

Proposition 4.2. For every ρ ∈ (0, ρ0) there exist ε0 > 0 and β0 > 0 such that for every ε ∈ (0, ε0), Υ ∈ R, 
and every Λ ∈ C satisfying Re(Λ) > −β0, we have

‖
(
Λ − ∂X(1 − ε2∂2

X)−1(1 − (2k + ε2)∂2
X + Υ2∂−2

X )
)−1 ‖L2

ρ→L2
ρ
≤ (Re(Λ) + β0)−1. (4.6)

Moreover, there exists C > 0 such that

‖∂X(1 − ε2∂2
X)−1 (Λ − ∂X(1 − ε2∂2

X)−1(1 − (2k + ε2)∂2
X + Υ2∂−2

X )
)−1 ‖L2

ρ→L2
ρ

≤ C (Re(Λ) + β0)−1/2
. (4.7)

if Re(Λ) > −1
2β0.

Proof. Since the operators in the estimates (4.6) and (4.7) have constant coefficients, we can use the Fourier 
transform in X and introduce the spectral function

Λ(Ξ) := (iΞ − ρ)[1 − ε2(iΞ − ρ)2]−1[1 − (2k + ε2)(iΞ − ρ)2 + Υ2(iΞ − ρ)−2],

for Υ ∈ R. The function Λ(Υ) is a scaled version of the function λ(ξ) in (3.8). We deduce the explicit 
expression as in the proof of Lemmas 3.6 and 3.7:
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Re (Λ(Ξ)) = −ρ
[
1 + 2k(3Ξ2 − ρ2 + ε2(Ξ2 − ρ2)2)

1 + 2ε2(Ξ2 − ρ2) + ε4(Ξ2 + ρ2)2

+ Υ2(1 + 3ε2Ξ2 − ε2ρ2)
(Ξ2 + ρ2)[1 + 2ε2(Ξ2 − ρ2) + ε4(Ξ2 + ρ2)2]

]
. (4.8)

Since

1 − 2ε2ρ2 ≤ 1 + 2ε2(Ξ2 − ρ2) + ε4(Ξ2 + ρ2)2 ≤ [1 + ε2(Ξ2 + ρ2)]2,

we have

−Re(Λ(Ξ)) ≥ ρ

[
1 − 2kρ2 + 2k(−ε2ρ4 + 3Ξ2 + ε2Ξ4 + ε4ρ2(Ξ2 + ρ2)2)

1 + 2ε2(Ξ2 − ρ2) + ε4(Ξ2 + ρ2)2

]

≥ ρ

[
1 − 2kρ2 − 2kε2ρ4

1 − 2ε2ρ2 + 2k[Ξ2(3 + ε2Ξ2) + ε4ρ2(Ξ2 + ρ2)2]
[1 + ε2(Ξ2 + ρ2)]2

]
(4.9)

uniformly for all Υ ∈ R. Therefore, there exists ρ0 = 1/
√

2k such that for every ρ ∈ (0, ρ0) there exists 
ε0 > 0 and β0 > 0 such that −ReΛ(Ξ) ≥ β0 for every ε ∈ (0, ε0) uniformly for all Ξ ∈ R. For instance, we 
can choose

β0 := ρ

[
1 − 2kρ2 − 2kε2

0ρ
4

1 − 2ε2
0ρ

2

]
> 0

for a suitable choice of ε0 > 0. Hence, for every Λ ∈ C satisfying Re(Λ) > −β0, we have

|Λ − Λ(Ξ)| ≥ (Re(Λ) + β0)

and the bound (4.6) holds from standard Fourier estimates.
For the bound (4.7), we obtain from (4.9) that there exists γ0 > 0 such that

−Re(Λ(Ξ)) ≥ β0 + γ0Ξ2

1 + ε2(Ξ2 + ρ2) .

For instance, we can choose γ0 := 2kρ since ε0ρ0 < 1. Hence for every Λ ∈ C satisfying Re(Λ) > −1
2β0, we 

have

|Λ − Λ(Ξ)| ≥ 1
2β0 + γ0Ξ2

1 + ε2(Ξ2 + ρ2) . (4.10)

Since there exists C0 ∈ (0, 1) such that

1 + 2ε2(Ξ2 − ρ2) + ε4(Ξ2 + ρ2)2 ≥ C0[1 + ε2(Ξ2 + ρ2)]2,

we obtain

|iΞ − ρ|
|1 − ε2(iΞ − ρ)2||Λ − Λ(Ξ)| ≤

C
√

Ξ2 + ρ2

|1 + ε2(Ξ2 + ρ2)||Λ − Λ(Ξ)|

≤ C√
1 + ε2(Ξ2 + ρ2)

√
|Λ − Λ(Ξ)|

≤ C(Re(Λ) + β0)−1/2, (4.11)

for some generic constants C > 0 uniformly in Ξ ∈ R. The bound (4.7) follows again from Fourier theory. �
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In order to complete the estimates in the high-frequency region, we obtain a modified version of Propo-
sition 4.2.

Proposition 4.3. Let ε0 > 0 and β0 > 0 be the same as in Proposition 4.2. There are K0 > 0 and C0 > 0
such that for every Λ ∈ C satisfying Re(Λ) > −1

2β0 and every Υ ∈ R satisfying |Υ| ≥ K2
0 , we have

‖∂X(1 − ε2∂2
X)−1 (Λ − ∂X(1 − ε2∂2

X)−1(1 − (2k + ε2)∂2
X + Υ2∂−2

X )
)−1 ‖L2

ρ→L2
ρ

≤ CK−1
0 (Re(Λ) + β0)−1/2

. (4.12)

Proof. This follows from the bounds on Λ(Ξ) obtained in the proof of Proposition 4.2. If |Ξ| ≥ K0 and 
K0 > 0 is sufficiently large, then it follows from (4.10) that for every Υ ∈ R, we have

|Λ − Λ(Ξ)| ≥ γ0K
2
0

1 + ε2(Ξ2 + ρ2) .

On the other hand, if |Ξ + iρ| ≤ K0 and |Υ| ≥ K2
0 ≥ K0|Ξ + iρ|, then it follows from (4.8) that

|Λ − Λ(Ξ)| ≥ ρΥ2(1 + 3ε2Ξ2 − ε2ρ2)
(Ξ2 + ρ2)[1 + ε2(Ξ2 − ρ2)]2 ≥ ρK2

0
1 + ε2(Ξ2 + ρ2) .

Then, similarly to (4.11), we obtain

|iΞ − ρ|
|1 − ε2(iΞ − ρ)2||Λ − Λ(Ξ)| ≤

C√
1 + ε2(Ξ2 + ρ2)

√
|Λ − Λ(Ξ)|

≤ CK−1
0 (Re(Λ) + β0)−1/2,

for some generic constant C > 0 uniformly in Ξ ∈ R. This justifies the bound (4.12). �
The resolvent equation in the original variables is obtained from the spectral problem (4.1) with γ = ε2

in the form:

(λ−A0 −A1 −A2)u = f, f ∈ L2
ν , (4.13)

where

A0 := ∂x(1 − ∂2
x)−1(ε2 − (2k + ε2)∂2

x + η2∂−2
x ),

A1 := ∂x(1 − ∂2
x)−1∂xψ∂x,

A2 := ∂x(1 − ∂2
x)−1(−3ψ + ψ′′).

Using this notation we obtain the following corollary of Proposition 4.3 which gives the bounds in original 
variables.

Corollary 4.4. For every λ ∈ C satisfying Re(λ) > −1
2β0ε

3 with some β0 > 0 and every η ∈ R satisfying 
|η| ≥ K2

0ε
2 with sufficiently large K0 > 0 we find that

‖(λ−A0)−1‖L2
ερ→L2

ερ
≤ Cε−3, (4.14)

‖∂x(1 − ∂2
x)−1(λ−A0)−1‖L2

ερ→L2
ερ

≤ Cε−2, (4.15)

and

‖∂x(1 − ∂2
x)−1(λ−A0)−1‖L2 →L2 ≤ CK−1

0 ε−2. (4.16)

ερ ερ
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Remark 4.5. Since the continuous spectrum of ε−3A0 in L2
ρ is bounded away from iR by the ε-independent 

constant β0, and ε−3A1 is a relatively bounded perturbation to ε−3A0 of order O(ε2) due to the scaling 
(4.4), the estimates (4.14), (4.15), and (4.16) apply also for (λ −A0 −A1)−1 instead of (λ −A0)−1. Hence, 
we will use

‖(λ−A0 −A1)−1‖L2
ερ→L2

ερ
≤ Cε−3, (4.17)

‖∂x(1 − ∂2
x)−1(λ−A0 −A1)−1‖L2

ερ→L2
ερ

≤ Cε−2, (4.18)

and

‖∂x(1 − ∂2
x)−1(λ−A0 −A1)−1‖L2

ερ→L2
ερ

≤ CK−1
0 ε−2. (4.19)

instead of (4.14), (4.15), and (4.16).

The following lemma uses the fact that the operator A2 in (4.13) is small compared to the operator 
A0 +A1 in L2

ερ due to the KP-II scaling (4.3) and (4.4), see the estimate (4.22) below. As a result, we obtain 
the following resolvent estimate in the high-frequency region.

Lemma 4.6. For every ρ ∈ (0, ρ0) there exists ε0 > 0, β0 > 0, and K0 > 0 such that for every ε ∈ (0, ε0), 
η ∈ R satisfying |η| ≥ K2

0ε
2, and λ ∈ C satisfying Re(λ) > −β0ε

3, there exists a unique solution u ∈
Dom(A0) ⊂ L2

ερ to the resolvent equation (4.13) with f ∈ L2
ερ such that

‖u‖L2
ερ

≤ Cε−3‖f‖L2
ερ
, (4.20)

for some C > 0 independently of f ∈ L2
ερ and ε.

Proof. We use the resolvent identity

(λ−A0 −A1 −A2)−1 = [I − (λ−A0 −A1)−1A2]−1(λ−A0 −A1)−1.

It follows from the bound (4.17) that we only need to show that the operator

I − (λ−A0 −A1)−1A2

is invertible with a bounded inverse in L2
ερ, which is true if ‖(λ −A0 −A1)−1A2‖L2

ερ→L2
ερ

is small. Since the 
decomposition (4.4) implies that

‖(−3ψ + ψ′′)f‖L2
ερ

≤ Cε2‖f‖L2
ερ
, (4.21)

it follows from the bound (4.18) that the smallness of ‖(λ −A0−A1)−1A2‖L2
ερ→L2

ερ
cannot be deduced from 

smallness of ε. Nevertheless, if we use the estimates (4.19) and (4.21), then we obtain

‖(λ−A0 −A1)−1A2‖L2
ερ→L2

ερ
≤ C0K

−1
0 (4.22)

for some C0 > 0. If K0 > 0 is sufficiently large, the norm is small and the operator I − (λ −A0 −A1)−1A2

is invertible with a bounded inverse in L2
ερ. The bound (4.20) follows from (4.17). �
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4.3. The low-frequency region

We first consider the two eigenvalues λ±(η) of the spectral problem (4.1) in L2
ν for small η 	= 0, see 

Lemma 3.8. By Remark 3.9, the expansion of ε−3λ±(ε2Υ) in Υ agrees with the exact expression (3.11)
known for the KP-II equation (1.9). The following lemma states that the same correspondence holds for 
every Υ if ε is sufficiently small.

Lemma 4.7. Let Λ±(Υ) be given by (3.11) for every Υ ∈ R. For every ρ ∈ (0, ρ0), there exists ε0 > 0 and 
C0 > 0 such that for every ε ∈ (0, ε0) the spectral problem (4.5) admits eigenvalues ε−3λ±(ε2Υ) in L2

ρ such 
that

|ε−3λ±(ε2Υ) − Λ±(Υ)| ≤ C0ε
2.

Proof. By bootstrapping arguments, an eigenfunction V̂ of the spectral problem (4.5) in L2
ρ satisfies that

V̂ ∈ Dom(∂X(1 − ε2∂2
X)−1(LKdV + Υ2∂−2

X )) ⊂ L2
ρ

if and only if

V̂ ∈ Dom(∂X(LKdV + Υ2∂−2
X )) ⊂ L2

ρ.

Hence we can rewrite the spectral problem (4.5) for the eigenfunction V̂ in L2
ρ in the equivalent form

∂X
(
LKdV + ε2Lpert + Υ2∂−2

X

)
V̂ = Λ(1 − ε2∂2

X)V̂ . (4.23)

Since (Λ±(Υ), U±) ∈ C × L2
ρ are solutions of the truncated problem

∂X
(
LKdV + Υ2∂−2

X

)
U± = Λ±(Υ)U±, (4.24)

we can write the decomposition Λ = Λ±(Υ) + ε2Λ̃, V̂ = U± + εŨ and obtain the perturbed problem for 
(Λ̃, Ũ) given by

∂X
(
LKdV + ε2Lpert + Υ2∂−2

X

)
Ũ − (Λ±(Υ) + ε2Λ̃)(1 − ε2∂2

X)Ũ

= −LpertU± − Λ±∂
2
XU± + Λ̃(1 − ε2∂2

X)U±.

This equation is routinely solved by using the method of Lyapunov–Schmidt reduction with Λ̃ being uniquely 
defined from the condition that Ũ ∈ Dom(∂X(LKdV + Υ2∂−2

X )) ⊂ L2
ρ satisfy the orthogonality condition to 

the adjoint eigenfunction for the eigenvalue Λ±(Υ). See Lemma 3.4 and Corollary 3.5 in [33] for details. �
The resolvent equation in the scaled variables is obtained from the spectral stability problem (4.5) in the 

form

(
Λ − ∂X(1 − ε2∂2

X)−1 (LKdV + ε2Lpert + Υ2∂−2
X

))
U = F, F ∈ L2

ρ. (4.25)

The following lemma uses the smallness of ε2Lpert and the formalism from [33] in order to obtain the 
resolvent estimate in the low-frequency region.

Lemma 4.8. For every ρ ∈ (0, ρ0) there exists ε0 > 0, β0 > 0 such that for every ε ∈ (0, ε0), Υ ∈ R and 
Λ ∈ C satisfying Re(Λ) > −β0 and Λ 	= ε−3λ±(ε2Υ), there exists a unique solution
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U ∈ Dom(∂X(1 − ε2∂2
X)−1(LKdV + Υ2∂−2

X )) ⊂ L2
ρ

of the resolvent equation (4.25) for every F ∈ L2
ρ satisfying

‖U‖L2
ρ
≤ C‖F‖L2

ρ
(4.26)

for C > 0.

Proof. Let QKP be the projection operator for the spectral problem (4.24) which reduces L2
ρ to the subspace 

orthogonal to the two adjoint eigenfunctions for the eigenvalues Λ±(Υ). It follows from Proposition 3.2 in 
[33] (proven in [31]) that there exists β0 > 0 and C0 > 0 such that for every Λ ∈ C satisfying Re(Λ) > −β0
and every F ∈ L2

ρ, we have

‖(Λ − ∂X(LKdV + Υ2∂−2
X ))−1QKPF‖L2

ρ
≤ C0‖F‖L2

ρ
. (4.27)

By the proximity result of Lemma 4.7, we can introduce Q, the projection operator for the spectral problem 
(4.23) which reduces L2

ρ to the subspace orthogonal to the two adjoint eigenfunctions for the eigenvalues 
ε−3λ±(ε2Υ). The bound (4.27) and the proximity result suggest that there exists β0 > 0 and C0 > 0 such 
that for every Λ ∈ C satisfying Re(Λ) > −β0 and every F ∈ L2

ρ, we have

‖(Λ −M)−1QF‖L2
ρ
≤ C0‖F‖L2

ρ
, (4.28)

where

M := ∂X(1 − ε2∂2
X)−1(LKdV − ε2∂X(1 − Ψ)∂X + Υ2∂−2

X ).

Writing again the resolvent identity as

(Λ − ∂X(1 − ε2∂2
X)−1(LKdV + ε2Lpert + Υ2∂−2

X ))−1)−1

= [I − ε2(Λ −M)(Ψ′′ − 3Ψ̃)]−1(Λ −M)−1

and using smallness of ε2, we obtain the invertibility of the near-identity operator

[I − ε2(Λ −M)(Ψ′′ − 3Ψ̃)] : L2
ρ → L2

ρ

for every Λ ∈ C satisfying Re(Λ) > −β0. The bound (4.26) on the unique solution U to the resolvent 
equation (4.25) follows from the bound (4.28). �
5. Conclusion

We have derived two results, which suggest that the transverse perturbations to the one-dimensional 
solitary waves of the CH equation (1.1) are stable in the time evolution of the CH-KP equation (1.2), similar 
to the KP-II theory. First, we proved that the double zero eigenvalue of the linearized equation related to 
the translational symmetry breaks under a transverse perturbation into a pair of the asymptotically stable 
resonances, which are isolated eigenvalues in the exponentially weighted L2 space. Second, we considered the 
small-amplitude solitary waves governed by the perturbed KP-II equation and proved their linear stability 
under transverse perturbations.

We conclude the paper with a list of further questions. First, nonlinear stability of small-amplitude solitary 
waves of CH-KP is an open question, see [34] for such analysis in the Benney–Luke equation. Second, peaked 
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traveling waves of the CH equation (1.1) exist but they are linearly and nonlinearly unstable in the time 
evolution in H1(R) ∩ W 1,∞(R), see [23,35]. It would be interesting to see how the peaked profile of the 
solitary waves breaks under transverse perturbations and whether cusps (waves with infinite slopes at their 
maximum) would form in finite time. Third, transverse stability of smooth periodic waves and transverse 
instability of peaked periodic waves can be studied based on the stability analysis of the periodic waves in 
the one-dimensional model, see [17] and [30]. Finally, hydrodynamical applications of the obtained results 
are interesting in their own right within modeling of shallow water waves in seas and oceans [18].
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