<]
TUDelft

Delft University of Technology

Fast DRL-based scheduler configuration tuning for reducing tail latency in edge-cloud jobs

Wen, Shilin; Han, Rui; Liu, Chi Harold; Chen, Lydia Y.

DOI
10.1186/s13677-023-00465-z

Publication date
2023

Document Version
Final published version

Published in
Journal of Cloud Computing

Citation (APA)

Wen, S., Han, R,, Liu, C. H., & Chen, L. Y. (2023). Fast DRL-based scheduler configuration tuning for
reducing tail latency in edge-cloud jobs. Journal of Cloud Computing, 12(1), Article 90.
https://doi.org/10.1186/s13677-023-00465-z

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1186/s13677-023-00465-z
https://doi.org/10.1186/s13677-023-00465-z

Wen et al. Journal of Cloud Computing (2023) 12:90 Journal of Cloud Com puting:
https://doi.org/10.1186/5s13677-023-00465-z . .
Advances, Systems and Applications

. ®
Fast DRL-based scheduler configuration i

tuning for reducing tail latency in edge-cloud
jobs

Shilin Wen', Rui Han'", Chi Harold Liu' and Lydia Y. Chen?

Abstract

Edge-cloud applications are rapidly prevailing in recent years and pose the challenge of using both resource-strenu-
ous edge devices and elastic cloud resources under dynamic workloads. Efficient resource allocation on edge-cloud
jobs via cluster schedulers (e.g. Kubernetes/Volcano scheduler) is essential to guarantee their performance, e.g. tail
latency, and such allocation is sensitive to scheduler configurations such as applied scheduling algorithms and task
restart/discard policy. Deep reinforcement learning (DRL) is increasingly applied to optimize scheduling decisions.
However, DRL faces the conundrum of achieving high rewards at a dauntingly long training time (e.g. hours or days),
making it difficult to tune the scheduler configurations online in accordance to dynamically changing edge-cloud
workloads and resources. For such an issue, this paper proposes EdgeTuner, a fast scheduler configuration tuning
approach that efficiently leverages DRL to reduce tail latency of edge-cloud jobs. The enabling feature of EdgeTuner
is to effectively simulate the execution of edge-cloud jobs under different scheduler configurations and thus quickly
estimate these configurations'influence on job performance. The simulation results allow EdgeTuner to timely train
a DRL agent in order to properly tune scheduler configurations in dynamic edge-cloud environment. We implement
EdgeTuner in both Kubernetes and Volcano schedulers and extensively evaluate it on real workloads driven by Ali-
baba production traces. Our results show that EdgeTuner outperforms prevailing scheduling algorithms by achieving
much lower tail latency while accelerating DRL training speed by an average of 151.63x.

Keywords Edge-cloud jobs, Tail latency, Scheduler configurations, DRL, Kubernetes and Volcano

Introduction 21, 24, 27, 43, 58]. Increasing numbers of IoT applica-
With the fast development of Internet of Things (IoT), tions, therefore, apply a new paradigm that processes a
traditional cloud-based applications suffer from high job’s tasks on both cloud and edge nodes [28, 69, 80]. This
transmission latency due to large data volume and limited ~ paper studies two typical types of edge-cloud jobs:
bandwidth. On the other hand, edge computing provides

quick response and protects data privacy via local data + Directed acyclic graph (DAG) jobs, whose tasks have
processing, but has limited computational resources to sequential dependence. Examples include distributed
execute expensive vision and machine learning tasks [20, data processing [4, 18, 23], face/fingerprint recog-

nition [52, 53], and image classification [36, 55, 56,
62]. In particular, MapReduce jobs are a representa-

;CQEGSPO“de“C‘?: tive type of DAG jobs. For a typical MapReduce job,
h:%rjgbbit.edum it usually consists of a three-'step executior} process:
' School of Computer Science and Technology, Beijing Institute (1) a start-up task slices the input data set into mul-
of Technology, Beijing, China tiple separate chunks; (2) many parallel Map tasks

?TU Delft, Delft, Netherland
el ellt, Retheriands process them; (3) after all Map tasks are completed,

. ©The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
@ Sprlnger O pe n permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
— original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00465-z&domain=pdf

Wen et al. Journal of Cloud Computing (2023) 12:90

the results will be sent to the Reduce task for final
processing. So we can see that for a MapReduce job,
subsequent tasks require the completion of previous
tasks before they can start (that is, its tasks are exe-
cuted sequentially).

« Artificial intelligence (AI) jobs, which usually have a
large number of concurrent tasks. Examples include
smart home applications [42, 82], smart health-
care [46], anomaly detection [81], object recogni-
tion [37], autonomous driving services [8], and intel-
ligent photo management [68]. In particular, machine
learning jobs that are submitted in TensorFlow [1]
framework are a representative type of Al jobs. For
a TensorFlow job, it usually consists of multiple (e.g.
50) tasks that execute concurrently. Since there is
no sequential execution dependency between these
tasks, they will not affect each other during execu-
tion.

When processing the above workloads on edge and
cloud nodes [28, 69, 80], proper scheduling of their tasks
is critical to their performance. In particular, a small pro-
portion (e.g. 1%) of straggling tasks, called tail latency,
decide a job’s response time.

Example. Figure 1 shows an example scenario using
in a Kubernetes cluster. The Volcano scheduler [10]
allocates a list of jobs to edge and cloud nodes under
different scheduler configurations. Specifically, the
scheduling algorithm (e.g. GANG_LRP, GANG_MRP
and GANG_BRA) decides how resources are allocated

Page 2 of 32

to tasks of these jobs. In addition, tail latency mitigation
policy (task resubmitting policy (TRP) or task discard
policy (TDP)) is another type of scheduler configura-
tion, which is used to control which tasks (that cause the
long tail latencies) need to be restarted or discarded. This
example shows that for the same workload, when using
six different configuration combinations (e.g. c1, c2, c3,
¢4, c5 and c6), the scheduler results in considerably dif-
ferent tail latencies. Note that, due to the tail latency
determines the response time of a job, when this value is
larger, the job completion time is correspondingly larger.
Hence, in order to make the running workload complete
faster, we can achieve this by selecting the one with lower
tail latency from different scheduling configuration com-
binations. For example, in Fig. 1, c1 is a scheduling con-
figuration combination with lower tail latency, thus we
can select c1 to obtain lower job completion time.

Configuration sensitive schedulers propose two key
challenges in practice. First, real cluster schedulers have
massive optional configurations, including dozens of
scheduling algorithms (e.g. 11 Kubernetes scheduling
algorithms and 13 Volcano scheduling algorithms) and
settings of tail latency mitigation policies (e.g. differ-
ent values of TRP and TDP). The combination of these
configurations constructs a huge search space. Second,
at run-time, jobs of different characteristics arrive con-
tinuously and most jobs last for a few seconds to minutes.
Moreover, in a resource-sharing environment, the avail-
able resources in edge and cloud nodes also dynamically
change.

 TmTmmmmm—_——— ~ N P ~a
7/ Edge-cloud workloads \ P s Kubernetes cluster N
! \
I /" @Task [—Jdob Nob submit time : " Configurarion cl c2 c3 c4 c5 c6 \
! | I Scheduling GANG_MRP(1) | GANG_LRP(2) | GANG_BRA(3) |
1 algorithms I
20 s0(| 1 | i
I Iy I | P |y ree) | TDp(2) | TRP(T) | TDPE@) | TRP(1) | TDP(E) |
1 mitigation policies I
|
[! | an | a2 [en | e | 6n | 62 I
: DAG batch workloads I 1|| Job tail latency (s) 764 807 906 859 832 799 1 |
1
1 1 I Configuration of I
I o I submit I the scheduler
B Task —_JJob 4 Job submit time I
1 I Kubernetes/Volcano scheduler 1
|
| I ¥ Allocate :
| ! Edge-cloud nodes |
| : Edge Node 1 Edge Node 2 Cloud Node 1 Cloud Node 2 1
|
I | CPU: 2 cores CPU: 3 cores CPU: 4 cores CPU: 8 cores !
\ || Memory: 4GB Memory: 6GB Memory: 8GB Memory: 16GB I
l \ nvidia.com/gpu: 4 nvidia.com/gpu: 8]
\ N /
A S
~

Fig. 1 Edge-cloud workloads scheduling through Kubernetes cluster schedulers

Wen et al. Journal of Cloud Computing (2023) 12:90

Recently, deep reinforcement learning (DRL), which is
an important extension of the traditional reinforcement
learning (RL) method, has been applied to various sophis-
ticated online optimization problems with large solution
spaces [40, 44, 63]. However, in real cluster scheduling,
applying this technique to tune scheduler configurations
requires a dauntingly large number of data samples for
training DRL agents. Moreover, due to randomly arrival
jobs, various resource demands of tasks, and elastic node
resources, when constructing time-variant states in a
DRL environment, a training sample needs rather long
time (e.g. 10 seconds) to generate. And the DRL training
may also need millions of samples to converge. Therefore,
the time-consuming sampling phase (may take dozens
of hours) is the bottleneck of the whole DRL training
process. Note that at run-time, an outdated DRL agent
may lead to significant deviations from the optimal con-
figuration combination and incur job performance degra-
dation. Some techniques have been proposed to support
the DRL training in an offline fashion through developing
simulation platforms [54, 75, 76]. But most of them have
such limitations: (1)they only consider these long-running
jobs in high performance computing (HPC) data centers;
(2)in their considered scheduling scenarios, these long-
running jobs are allocated to proper servers according to
a fixed job scheduling algorithm; (3)in DRL training,
they implicitly assume fixed available resources in the
cluster.

In this paper, we propose EdgeTuner, an online
approach that effectively uses a DRL agent to select
scheduler configurations for edge-cloud jobs. To over-
come the expensive training overhead, we develop a clus-
ter simulator to emulate the volatile and complex state
space of edge-cloud jobs (e.g. their task dependance,
tasks’ resource demands, and cluster resource utiliza-
tion). The simulator effectively captures the on-line adap-
tion across different scheduling algorithms as well as the
dynamicity of edge-cloud jobs. As such, the training of
DRL agent can be effectively and quickly converged via
this offline simulation phase. Note that EdgeTuner dif-
fers from traditional hyper-heuristic approaches that find
an optimal scheduling algorithm for pre-specified cloud
workflow [73] or batch jobs [61, 64]. This is because Edg-
eTuner needs no prior knowledge about the jobs to be
scheduled and provides fast scheduling algorithm tuning
for continuously arrival jobs in the cluster.

In this paper, our contributions are mainly as follows:

> Complex Edge-Cloud job scheduling modelling.
We formulate the tuning of scheduling algorithms for
edge-cloud jobs as a sequential decision making process
(MDP) to leverage the DRL technique. To incorporate
various scheduling scenarios, we define general state rep-
resentation of complex nodes and workloads, use action

Page 3 of 32

to reflect optional scheduling algorithms, and define
reward function to estimate job tail latency.

> DRL training acceleration. We develop a cluster
simulator to emulates a scheduling algorithm’s resource
allocation mechanism and its influence factors, includ-
ing available resources, and waiting and running tasks.
At each scheduling interval, the simulator takes the
agent’s state and action as inputs and outputs the reward
instantly (this reward production process takes at least
a few seconds in real clusters). The training can be per-
formed offline by directly interacting with the simulator
in the usually adopted online learning scheme.

> Implementation and evaluation. We incorporate
our controller on the popular Kubernetes and Volcano
schedulers and evaluate both schedulers using workloads
driven from the Alibaba cluster trace [2, 3]. The exten-
sive comparative evaluations against latest Kubernetes
and Volcano scheduling algorithms show: (i) by applying
DRL agents in such various scenarios of dynamic work-
loads and resources, EdgeTuner outperforms baselines by
achieving an average of 21.66% reductions in tail laten-
cies; (ii) EdgeTuner accelerates the whole DRL training
speeds by an average of 151.63x.

The remainder of this paper is organized as follows:
Section “Background” introduces the background, and
Section “Problem Formulation” formulates the problem.
Section “EdgeTuner” explains our approach, and Section
“Evaluation” evaluates it. Section “Related Work” intro-
duces the related work, and finally, Sections “Conclusion”
summarizes the work.

Background

Heterogeneous workloads and machines in edge-cloud
collaboration scenarios

Heterogeneous workloads

Although cloud computing has strong computing pro-
cessing capabilities, its resources are relatively con-
centrated and the distribution of computing centers is
relatively sparse. This leads to large latencies in real-time
communication with users. On the contrary, since the
edge nodes are deployed close to the base stations (that
is, the communication cost with users is very low), edge
computing can better handle latency-sensitive tasks
compared to cloud computing. Therefore, in practical
edge-cloud environment, edge-cloud nodes often need
to cooperate to handle diverse workloads. Specially, some
edge-cloud applications in traditional DAG-based sys-
tems generate a lot of DAG jobs (e.g. distributed com-
puting [4, 18], face/fingerprint recognition [52, 53], and
big data classification [36, 56, 62]). The other edge-cloud
applications for executing Al tasks generate a large num-
ber of Al jobs (e.g. smart service and control applications
[8, 37,42, 46, 68, 81, 82]).

Wen et al. Journal of Cloud Computing (2023) 12:90

In this paper, we mainly consider two edge-cloud work-
loads: DAG batch workloads and AI workloads. And
based on the real cluster trace provided by Alibaba [2,
3], we analyze the different characteristics of these two
workloads, respectively.

Trace analysis for DAG batch workloads. We study
the real cluster-trace-v2018 [2], which mainly records
the operation of offline batch workloads in the Alibaba
mixed CPU cluster with 4,034 machines running in con-
secutive 8 days. From the trace, we can find that a batch
job usually contains multiple tasks, and most tasks have
DAG dependencies. Each task also usually consists of
several instances (that is, an instance is the smallest unit
of batch job scheduling), these instances will execute the
same application code and request the same resources,
but their input data is different. In detail, we analyze the
trace from four aspects: job and task allocation, instance
completion time, arrival pattern of jobs and tasks, and
resource utilization.

o Job and task allocation. In particular, we analyze the
distribution of task number for each job in Fig. 2(a),
and the results show that most jobs contain less than
150 tasks.

« Instance completion time. Figure 2(b) shows the CDF
distribution of the completion time for all instances,
and the 80%, 90%, and 99% of the instance comple-
tion time are 58s, 177s, and 828s, respectively.

o Arrival pattern of jobs and tasks. Figure 2(c) shows
the arrival frequency of jobs and tasks, and tasks have
the highest arrival rate at 4:00am each day (the arrival
rate is lower during the daytime). In other words, the
task activity in this cluster follows a Daytime-Night
pattern: the cluster will execute more tasks at night,
while executing less tasks during the daytime.

+ Resource utilization. Figure 2(d) shows the average
resource usage of tasks. The results show that the
CPU and Memory resources required by tasks are
the largest from 24:00 (the day) to 6:00 (the next day),
so the resource usage of all tasks is periodic. It veri-
fies the Daytime-Night pattern that exists in the clus-
ter.

Trace analysis for AI workloads. We study the real
cluster-trace-gpu-v2020 [3], that records the work-
load information collected from Alibaba PAI (Artificial
Intelligence Platform) with over 6,500 GPUs (about
1800 machines) in a month. From the trace, we can
observe that user-submitted workloads consist of Al
jobs from various machine learning frameworks, such
as TensorFlow [1], PyTorch [50], Graph-Learn [74],
RLIib [39]. Among these workloads, each job is com-
posed of multiple different tasks running concurrently

Page 4 of 32

on many machines, and there is no DAG dependencies
among these tasks. Similarly, we also analyze the trace
from four aspects: job and task allocation, job comple-
tion time, arrival pattern of jobs and tasks, and resource
utilization.

o Job and task allocation. In particular, we select the
trace data of the first week as the basis for analysis. In
Fig. 3(a), we analyze the CDF distribution of the task
number concurrently executed by each Al job, and
conclude: about 25.16% of jobs have less than 10 of
concurrent tasks, about 80.48% of jobs have less than
50 of concurrent tasks, and about 92.76% of jobs have
less than 100 of concurrent tasks.

 Job completion time. In Fig. 3(b), we analyze the CDF
distribution of the completion time for all Al jobs,
and conclude: about 48.51% of jobs run less than
10min, about 64.83% of jobs run less than 30min,
about 73.86% of jobs run less than 60min, and about
80% jobs run less than 90min.

o Arrival pattern of jobs and tasks. Figure 3(c) shows
the periodic characteristics between jobs and tasks,
and most jobs and tasks are submitted from 11:00am
to 14:00pm.

o Resource utilization. Figure 3(d) shows the aver-
age resource requests of tasks in the GPU cluster.
The results show that the GPU, CPU and Memory
resources required by tasks are the largest from 24:00
(the day) to 8:00 (the next day), so the resource usage
of all tasks is also periodic. It also indicates that a
Daytime-Night pattern also exists in the GPU cluster.

Heterogeneous machines

In edge-cloud environment, due to heterogeneity of hard-
ware architecture and resource sharing at run-time of
different machines in the cluster, this leads to these edge-
cloud nodes’ heterogeneity.

Heterogeneity of hardware architecture. For these
edge-cloud nodes, they have different CPU architectures,
such as X86 and ARM. And they have multiple GPU
types, such as NVIDIA Jetson series, Raspberry Pi, and
other NVIDIA GPUs. Therefore, different nodes usually
have large performance variance (e.g. different processing
speeds).

Resource sharing at run-time. When the cluster is at
run-time, the resources of edge-cloud nodes are shared
by all submitted jobs/tasks, leading to dynamic changes
in available resources. At this time, the performance of
different nodes will also be very different. For example,
the performance of nodes with intense resource competi-
tion will be greatly affected.

Wen et al. Journal of Cloud Computing

(2023) 12:90 Page 5 of 32

le3
1.0 B s 1.0
., 081"t . , 08 -
Q .
E . I
2‘ 0.6 1 - = . E 0.6
< : : . =il . O
8 0.4 - < 8 e g
= : : " e 04
reeo o ~$o -e c... o." e .
02 '.z e '.- :. o2 . '-.
2) .- -n. < -:. S e u.-.: S 02 4
0.0 lﬁ—n——“—m—
1 1 1 Ll 1 T 1 L] T I
0 1000000 2000000 3000000 4000000 0 500 1000 1500 2000
Job ID Instance run time
(a) The distribution of task number for each job (b) CDF of instance completion time
10 A
= jobs(10K)
g == tasks(10K)
8 E ---- instances(20M)
— R
4 . 04:00
E 61 E
=
Z
4 4
2 -
0 -
T T T T T T 1 T
0 1 2 3 4 7 8
Time (days)
(C) The number of batch jobs and tasks arriving in the CPU cluster
8
GCJIJ m—().2 CPU cores
s = 0.1 GB Memory
5
Q
=
3
)
2]
e
o]
on
>
<
0 T T T T T T
0 1 2 3 4 5 6 7
Time (days)

(d) The average resource usage of batch tasks in the CPU cluster

Fig. 2 Alibaba cluster-trace-v2018 analysis for DAG batch workloads

Wen et al. Journal of Cloud Computing (2023) 12:90 Page 6 of 32
1.0 1 1.0
0.8 1 0.8 1
5 0.61 = 0.6
O O
0.4 1 0.4 1
0.2 1 0.2 1
10 100 200 300 500 1000 3090 240 480 600 1000
Concurrent task number Job run time (min)
() CDF of concurrent task number (b) CDF of job completion time
g
A
o 67 ’ I f ‘
g S \ ! \ I
'g h ,‘“” A ! l‘ : 1 1 i N \ n 1 \ 1
5 4{t i\ N\ 1 ‘ Iy LIy ¥ N h - !
z u W iY N, AW WH ALY 'R I
v vy = [
i U |l’ M, ! EAY. 1 9N
21 A3 vy - v J
— average tasks for each job < v l\’ ¥ \\
== = 125 tasks
0 - . v -
0 1 2 3 5 6 7
Time (days)

(C) The number of jobs and tasks arriving in the GPU cluster (the first week)

140

,_.
=)
e

Average resource usage
W ~
w f=)
Y :

2 \ »
—’\/“A"—"\-Qv/ \..,_,..,‘\-’\,_-.\/v\,__, u\vﬁa--~\//~.\-/-/'l\y/\/'ﬂ.-—J\\'/vvﬂ

= (.1 CPU cores
= 0.01 GPU cores
== = 1 GB Memory

: '

0 T T :
0 1 2 3

4 5 6 7

Time (days)
(d) The average resource usage of tasks in the GPU cluster (the first week)

Fig. 3 Alibaba cluster-trace-gpu-v2020 analysis for Al workloads

Sensitive scheduler configurations of affecting tail latency
In real Kubernetes cluster, when scheduling edge-cloud
workloads (such as DAG batch workloads and AI work-
loads), the tail latencies of jobs in such workloads are
influenced by different scheduler configurations. In this
paper, we mainly considered two categories: scheduling
algorithms and tail latency mitigation policies.

Scheduling algorithms

In our proposed cluster simulator, we implement 11
Kuberentes scheduling algorithms, and 13 Volcano
scheduling algorithms. In Kubernetes scheduler [19],
there are three typical scheduling algorithms are: (1)BRA:
this algorithm balances the utilization of CPU and mem-
ory resources in different nodes. (2)LRP: this algorithm

Wen et al. Journal of Cloud Computing (2023) 12:90

calculates the amount of resources and the number of
tasks allocated to different nodes, and prefers to allocate
tasks to nodes with more available resources. (3)MRP:
this algorithm prefers to allocate tasks to nodes with less
available resources, thus running the same tasks with the
least number of nodes. And in Volcano scheduler [10],
three typical scheduling algorithms are: (1)GANG_LRP:
this algorithm means that first, only when the clus-
ter resources meet the request of the minimum parallel
tasks required by a job, the job can be scheduled (that is,
GANG [71]); then it prefers to allocate tasks of the job to
nodes with more available resources. (2)GANG_MRP:
this algorithm aims that first, only when the cluster
resources meet the request of the minimum parallel tasks
required by a job, the job can be scheduled; then it pre-
fers to allocate tasks of the job to nodes with less available
resources. (3)GANG_BRA: this algorithm indicates that
first, only when the cluster resources meet the request of
the minimum parallel tasks required by a job, the job can
be scheduled; then it prefers to allocate tasks of the job
to nodes with more balanced resources. In addition, DRF
[17], SLA [48] and BINPACK [7] are also two typical allo-
cation algorithms for how jobs are scheduled in Volcano
scheduler.

Tail latency mitigation policies
There have been some research works on reducing the
tail latency for online concurrent service components,

Page 7 of 32

such as request retransmission techniques that produce
accurate results [12, 35, 59] and request partial execution
techniques that produce approximate results [12, 14, 29,
30, 35, 78]. In view of the above works, for edge-cloud
workloads’ scheduling scenarios, we develop two mitiga-
tion policies to reduce the tail latency.

« Task Restart Policy (TRP): this policy will restart a
certain number of tasks that meet the conditions
by controlling a restart ratio. First, we set a task
restart time. Then if a task has not been started for
a long time or the execution has not been completed
before the restart time, the task will be immediately
restarted and redistributed to such a node that pro-
cesses the task faster in the cluster.

« Task Discard Policy (TDP): the policy will terminate a
certain number of tasks with a long latency by con-
trolling a discarding ratio. First, we set a task com-
pletion deadline. Then if a task has not been started
for a long time or the execution has not been com-
pleted before the completion deadline, the task will
be directly discarded.

Example of job scheduling using three Volcano scheduler
configurations

Example. Figure 4 illustrates an example of allocat-
ing three tasks (of an Al job) to two nodes using three

CPU CPU | Memory Wogl;l{}ad CPU Memgry Configuration Cl1 C2 C3
Task | request | limit | limit (Node | capacity | Limit Scheduling GANG GANG GANG
(cores) | (cores) (GB) core x (cores) (GB) algorithm _MRP _LRP _LRP
seconds)
Tail latency
v, 2 4 1 80 n 8 16 mitigation policy TDP(X) TRP(Y TDP(X)
4 3 4 4 120 4 g (GANG (GANG (GANG
(a) Three tasks (b) Two nodes (c) Three scheduler configurations
A A A
(@) a @}
ol i i is-] = s~} ——
| 14 | c \ c \
Noden, 5 i 3acpy (@I Nodemy s fl 'L} emmmmms Noden, o | [}
8CPU £ || === scpu § |&Y v scpu £ [T |
1668 g % l 6XU 16GB E | 7, 1 . 16GB £ [7
48CPU | 4cPU 4CPU
——— ‘-___-‘ —> ___J| ______ T —> — H —>
! \Discard V. 1 : :
Q a ; 3 a4)Restart Vi @] i /Discard V.
Node n, & ‘ Node n, & : g Node n, & T / ' !
4CPU = - : 4CPU 5 r—;—\{ ——————————— 4CPU ¢ FRgmv o]
8GB 3 | " 3 8GB £ g AX 8GB 2 2 X |
g Jcry) R glacrut «fbu R ol A 2. 1,
37.5s time 150s time 30s time
C1 (GANG_MRP, TDP) C2 (GANG_LRP, TRP) C3 (GANG_LRP, TDP)

(d) Tail latencies under three different scheduler configurations
Fig.4 An example of job scheduling using three Volcano scheduler configurations

Wen et al. Journal of Cloud Computing (2023) 12:90

Volcano scheduler configurations. Here, the example set-
tings include: (1)three tasks are submitted and executed
at the same time; (2)when the tail latency mitigation pol-
icy is TDP, this Al job is considered for completion once
at least two tasks in the job have completed.

Results. We can see that the job performance (that
is, job tail latency) is determined by the slowest execut-
ing task, and it is influenced by three factors: (1)Differ-
ent tasks with requiring different amounts of resources
in Fig. 4(a). (2)Available resources of the cluster nodes in
Fig. 4(b). (3)Scheduler configurations in Fig. 4(c). Among
them, scheduling algorithms (such as GANG_LRP and
GANG_MRP) first decide how tasks are allocated to
nodes, and then tail latency mitigation policies (such as
TRP or TDP) control that which tasks (that cause the
long tail latencies) need to be restarted or discarded.

When using different scheduler configurations (e.g. C1,
C2 and C3 in Volcano [10]), the job has considerably dif-
ferent tail latencies. Moreover, Fig. 4(d) shows that com-
pared with the other two configurations, C3 achieves the
lowest tail latency, because its mechanism can allocate
the resources most efficiently for this specific scenario.

Problem formulation

Scenarios. In our considered edge-cloud collaboration
scenarios, these edge-cloud jobs usually contain mul-
tiple concurrent tasks (e.g. 50 tasks). For the resource
demands, we mainly consider CPU, GPU and memory.
As shown in Section “Sensitive Scheduler configurations
of Affecting Tail Latency’, different scheduler configura-
tions (including scheduling algorithms and TDP/TRP)
can decide how tasks can be better executed concur-
rently in the cluster based on their resource need, so that
the tail latencies of jobs are minimized. Here, we specifi-
cally consider scenarios that different configuration com-
binations can be dynamically chosen during the system
runtime.

Modeling a RL problem. Recently, deep reinforce-
ment learning (DRL), which is an important extension of
the traditional reinforcement learning (RL) method, has
been applied to various sophisticated online optimization
problems with large solution spaces. Therefore, we model
the tuning for scheduler configurations as a RL problem,
in which an agent (tuner) learns to act (selecting a con-
figuration combination of one scheduling algorithm and
one possible tail latency mitigation policy) in an envi-
ronment (cluster), in order to maximize a scalar reward
signal [60]. At each discrete time-step (episode) £ =0, 1,
2. .., the cluster provides the tuner with an observation s;,
the tuner responds by selecting a configuration combina-
tion a; and obtains the feedback of reward R(s;, a;), and
next state sy;+1 from the environment. This interaction
is formalized within the framework of Markov Decision

Page 8 of 32

Process (MDP), which is a controlled stochastic process
defined by the state space S, action space A, transition
dynamics 0 < P(s¢y1lss,a¢) <1, and reward function
R(sy, ar).

State. The modeling of state considers two factors
that determine the jobs’ tail latencies at run-time: the
resource utilizations in nodes and the waiting and run-
ning tasks in the cluster. In scheduling, waiting tasks
are the targets that a configuration combination of clus-
ter schedulers needs to manage together; running tasks
occupy resources and then release them after comple-
tion. Formally, s; = (N, V", V") denotes the node and
task state information during a scheduling interval.

« A node neN is denoted as a 9-tuple
(cpu™, cpu”, cpu®, mem*, mem’” , mem®, gpu*, gpu’, gpuc)
(1)cpu™ represents the actual usage of CPU cores;
(2)cpu” represents the requested (reserved by tasks)
CPU cores; (3)cpu’ represents the capacity of CPU
cores in the node; (4)mem" represents the actual
memory usage; (5)mem” represents the requested
memory by tasks; (6)mem® represents the node’s
memory capacity; (7)gpu” represents the actual usage
of GPU number; (8)gpu” represents the requested
(reserved by tasks) GPU number; (9)gpu represents
the capacity of GPU number in the node.

+ A waiting task v € V%, it is denoted as a 7-tuple
(cpu”, cpul, mem”, mem', gpul, work, j*): (1)cpu” rep-
resents the requested CPU by the task;(2)cpu! repre-
sents the CPU limit of the task; (3)mem” represents
the requested memory by the task; (4)mem’ repre-
sents the task’s memory limit; (5)gpu’ represents the
requested GPU number by the task; (6)work repre-
sents the workload of task, e.g. workload 400 means
the task needs 100 seconds to complete when run-
ning in 4 CPU cores; and (7)]'"”[is the job ID the task
belongs to.

+ A running task v" € V" is denoted as a 6-tuple
(work, node, cput, gpul, et, j*?): (1)work represents
the task’s workload (that is, execution time x cpul);
(2)node represents the node the task is allocated;
(3)cpu! represents the task’s CPU limit; (4)gpu' rep-
resents the task’s GPU limit (Note that gpu! and gpu”
are equal when a task uses GPU); (5)et represents the
elapsed time when the task starts running; and (6) j*
is its job ID.

Dimensionality of state s;. We note that in practical job
scheduling, |N] is the number of nodes in the cluster, and
the numbers of waiting and running tasks continuously
change at different time steps. Given that the schedul-
ing interval is short (e.g. 15 seconds), such values do not
increase the training complexity. We note that the state

Wen et al. Journal of Cloud Computing (2023) 12:90

space grows significantly with the number of job/task arriv-
als and the size of cluster.

Action. Given a scheduler, action a; represents one pos-
sible configuration combination of cluster schedulers.
Here, in order to express a; more intuitively, we denote a
2-tuple (a}, a?): a} represents one possible scheduling algo-
rithm, a? represents one possible tail latency mitigation
policy (that is, TRP or TDP) that an agent can select.

Transition dynamics. In a MDD, transition dynamics
P(s¢11l8t, ar) reflects the time-variant dynamics of cluster.
Such dynamics are determined by three factors: the tasks
y@llocate that obtain resource allocations; the completed
tasks V" lete ot time-step t; and the newly arrival jobs/
tasks Vt‘yfgrli"e at time-step £+1. We note that both V#/ecate
and V" léte are influenced by the scheduler algorithm set
by action a;, and they determine the three elements in state
S¢+1 at time step t+1:

Vtujr L= Vtw\vtallocate U ;Tiive

(1)

U Vtallocate\vtwmpl@te (2)

Reward. At a time-step ¢, a reward r; denotes the job
latency as JTL (denoted in [12, 22]) when using a configura-
tion combination (a}, @?). Given that there are only a small
number of jobs during a scheduling interval, we consider
tail latencies of both jobs and their tasks to accelerate the
convergency of RL training. Specifically, let J be the set of
jobs completed within period (¢t — 1, ¢] and JTL; be the tail
latency of ajob j; € /. At time-step t, the reward of job j; is:

r _ yr
t+1 — Vt

®3)

Similarly, let V" be the set of tasks running within
period (¢ — l,tl, and TTL""|; (t € (t — 1,¢]) be the tail
latency at time ¢ for a task v/*” € V"™". At time-step t, the
reward of the set V" is:

job
7" = a1 % JTLil; +

r" = o * [max(TTL™"|;) — max(TTL™"|;—1)] + B2
(4)
And let V"4 be the set of tasks waiting within period
(t —1,¢), and TTL!™'|; (£ € (t —1,¢]) be the waiting
latency at time f for a task v}"“” € Vwait A¢ time-step t, the
reward of the set VW4 is;

r;mit = a3 * max(TTL}With) + B3

(5)

The reward r; of time-step ¢ is the summation of jobs,
running tasks’ and waiting tasks” rewards.

I/

job i

= Z,{ + r;’un + r;vazt
i=1

(6)

Page 9 of 32

In RL training, we set negative values of «j, @3 and 3,
and positive values of 81, B2 and B3 in Equations 3, 4 and
5. These settings ensure the reward is inversely propor-
tional to the tail latencies of running and waiting tasks.

EdgeTuner
Design idea
Our work is proposed with two objectives.

1) Hot swapping scheduler configurations for dynamic
workloads and resources. The core component of Edg-
eTuner, the DRL-based agent, is external to the cluster
scheduler and just operates on its configuration com-
binations (consisting of one scheduling algorithm and
one tail latency mitigation policy). This design ensures
minimum modifications to the scheduler, and more
importantly, making it possible to replace any of them at
runtime without shutting down the system. Specifically,
the agent observes the state (cluster status) periodically
(e.g. 10 seconds) and selects a configuration combination
for the cluster scheduler.

2) Simulator-based DRL training acceleration. We
note that under diverse workloads, the whole training
process needs a lot of experience (e.g. several million
samples) to converge. However, in real job scheduling
scenarios, the actor takes at least a few seconds to evalu-
ate the effectiveness of an action (that is, the selection of
a configuration combination) and obtains a sample from
the environment (the cluster). Even using the latest DRL
training techniques (e.g. IQN+Ape-X [63]), the training
may take dozens of hours to complete due to the long
sampling phase. Moreover, when the cluster resource
changes, the training process needs to be re-executed
and the long training time makes the DRL agent infeasi-
ble for online scheduler configuration tuning. Given this
motivation, we develop a cluster simulator and use it as
the environment for the actor. We explain how to train
DRL agent under dynamic workloads and resources in
Section “Simulator-based DRL Training”.

Overview

Our cluster simulator is implemented using Golang and
it can support different operating systems such as Linux
and Max-Os. Figure 5 illustrates the implementation of
cluster simulator for DRL training, and it consists of two
major parts: Simulator-based DRL Training and Clus-
ter Simulator.

Simulator-based DRL training

Based on the Kubernetes framework, we incorporated
the proposed approach with its two important schedulers
(such as Kubernetes scheduler [19] and Volcano sched-
uler [10]). Similar to other mainstream resource nego-
tiation systems, Kubernetes provides access to various

Wen et al. Journal of Cloud Computing (2023) 12:90

Page 10 of 32

Tail latency |

Reward (p99)

: N
DRL Agent (Rainbow IQN Ape-X)| _ i Scheduling’,
-._____Task execution time (s). ./ Tesults ¢
Cluster -~
(eekes " SimNode 1 SimNode n
Simulation
CPU: 8
CPU: 4 cores Memory:c;)ézss heterogeneous
Waiting Memory: 8GB nvidia.com/gpu: 16 nodes
tasks -
Allocate resources
Scheduling
Running configuration
tasks
7 ';li‘r:z:;]::f: _Volcan_o Simulation
________________ : ‘ Scheduling Alogorithms | Restart/Discard Policies scheduler scheduler s
: ‘ BRA ‘ ‘ GANG_BRA ‘ Task Restart Policy(TRP) ‘) f
i[[mrp |~ | caANG_LRP ‘ Submit jobs
; . . H t = N
E ‘ LRP ‘ ‘ GANG_MRP ‘ Task Discard Policy(TDP) ‘ ; L ® f
g Cq00d @ | Submitted
; H @ Task. workloads
Simulator-based DRL Training @ Aldob 1.
Cluster Simulator
Cluster Node and Task State Infromation I

Fig. 5 Implementation of Cluster Simulator for DRL training

information regarding to resources, jobs, and schedul-
ing constraints. When a job is submitted, Kubernetes
also provides interfaces to obtain its submission time,
resource demand, and task information. When an agent
generates an action according to the above state informa-
tion, it is pushed to the Kubernetes scheduler (or Volcano
scheduler) that supports run-time adjustment of its con-
figuration combinations.

Crucially, for the whole simulator-based DRL tarining
process, there are four key modules.

State. At each sampling or training time-step ¢, this
module receives the cluster nodes’ and tasks’ state infor-
mation from the cluster simulator, and then constructs
state s; in the experience. In particular, this module has
two main functions: (1)initializing the simulation envi-
ronment, including initial node information, tasks wait-
ing to be scheduled, and tasks that have been executed.
(2)storing the state information during the training
process.

Action. At each sampling or training time-step ¢, this
module is responsible for accepting an action a; from the
agent, converting it into the corresponding configuration
combination (a},a?), and then forwarding it to the sim-
ulator-based environment. Note that the configuration
combination is composed of one scheduling algorithms
(such as LRP, MRP, BRA, GANG_LRP, GANG_MRP and
GANG_BRA) and one tail latency mitigation policies
(such as TRP and TDP).

Reward. At each sampling or training time-step ¢, this
module receives the scheduling results (that is, 99th%
quantile’s tail latency of a edge-cloud job) from the

cluster simulator, and then constructs reward r; in the
experience.

Simulator-based Environment. After the DRL agent
generates an action according to the state information,
this module will provide the action to the cluster simu-
lator. In addition, this module is also responsible for
providing these information to the cluster simulator,
including simulation heterogeneous nodes’ configuration
and submitted workloads.

DRL agent for training

The DRL agent is the core of the whole simulator-based
DRL tarining process. And the training of a DRL agent
has two phases: (1)In the sampling phase, the actor col-
lects experience training samples by interacting with
the simulator. (2)The learning phase starts when a pre-
specified number of samples is collected. Similar to other
simulation platforms [76, 77], our simulator is driven by
workload traces and it can generate an experience sample
instantly, thus considerably accelerating the sampling and
training process.

Actor. Algorithm 1 details the steps of the actor. It
first initializes the environment by obtaining the lat-
est network parameters (line 1) and getting initial state
from environment (line 2). Subsequently, it iteratively
obtains samples and adds them to the replay mem-
ory (lines 3 to 14). At each iteration, the actor first
selects an action a;_; (that is, a configuration com-
bination) and applies it to the environment (line 4).
It then triggers environment. SimulateOneStep(s;—1
,a:_1) to obtain state s; and reword r; constructed

Wen et al. Journal of Cloud Computing (2023) 12:90

using information of nodes, jobs, and tasks in the
environment (line 5). Finally, it gets episode termi-
nation signal (line 6) and adds the sample data to the
local buffer (line 7). When the buffer size is larger than
the maximal size B, the actor calculates priorities for
the current experience and triggers the remote call to
add experience to the replay memory (lines 8 to 12).
The actor also periodically obtains the latest network
parameters (line 13).

Require: B: the maximal size of local buffer;
Ts: the number of sampling steps.

1. 6o < learner.Parameters();

2. sg < environment.InitialState();

3. fort =1 to Ts do

4. at—1 < Trgt_l(stfl);

5. st, ¢ <—env.SimulateOneStep(s;—1,at—1);
6. ~¢ < environment.HasDone();

7. localBuffer. Add((st—1,at—1,7¢,7t));

8. if localBuffer.Size() > B then

9. T < localBuffer.Get(B);

10. p < ComputePriorities(7);

11. replay.Add(T, p);

12. endif

13. Periodically(6; < learner.Parameters()).
14. end for

Algorithm 1 Actor

Require: N: the experience number to start training;
L: the maximal size of local buffer;
Ts: the maximum number of training.
0 < environment.InitialState();
while not replayMemory.HasEnoughExperience(N) do
WaitAmoment();
end while
fort =1toTs do
id, 7 < replay.SampleExperience();
l + GetLoss(T, 6);
UpdateParameters(l, 0);
p < GetPriorities();
replayMemory.SetPriority(id, p);
if replayMemory.len() > L then
replayMemory.RemoveOldExperience();
end if
. end for

rRORpROOPNOTIAWN R

Algorithm 2 LearnerLearner. Similarly, Algorithm 2
details the steps of the learner. The learner starts when
the replay memory has N samples (lines 1 to 4) and
trains the model using T; iterations (line 5). At each
iteration, the learner first samples a prioritized batch
of experience (training samples), applies the learn-
ing rule, and updates the model parameters (lines 6 to
8). Subsequently, this function calculates and updates
the priorities for experience (lines 9 to 10). And when
there is too much data in replay memory, the function
will remove old experience from replay memory (lines
11-13).

Page 11 of 32

Task and resource allocation of simulator-based environment
The function env.SimulateOneStep(s;—1,a;—1) is explained
in Algorithm 3. This function first gets the set N of nodes,
and the waiting tasks V" and running tasks V" from state
s¢—1 (line 1). It then simulates resource allocations using
a list of iterations (lines 3 to 7). At each iteration, the
function sequentially allocates resources to waiting tasks
using a scheduling configuration combination a;_; (line
4) and checks the completion of running tasks at the cur-
rent simulation time ¢* (line 5). The status of nodes, and
waiting, running and completed tasks are updated before
moving to the next iteration. The iterations end when the
simulation time exceeds the scheduling interval. Finally,
the function converts the information of nodes and tasks
into state s; and reward r; of time-step £, and returns
them (lines 8 to 11).

Require: t°: the simulation time;
At: the duration of one iteration in simulation;
VW VT Ve: the sets of waiting, running, and completed tasks;
N: the set of nodes.
1. Obtain N, V% V7" from state s¢_1;
2. t5=0;
3. while t* is smaller than the scheduling interval do
4 N, V% VT + environment.AllocateResource
(N, Task™,at—1);
5 N, VT V¢ < environment.CheckCompletion
(N, Task™);
6. tS=t° + At;
7. end while
8. st « stateBuilder.Build(N, V¥ VT);
9. V,! < GetRunningTasks(V");
10. V! + GetWaitingTasks(V%);
11. 74 + rewardBuilder.Build(V,!, Vi});
12. return sy, 7.

Algorithm 3 env.SimulateOneStep(s;_1, a;—)Implementation
of cluster simulator

The cluster simulator is mainly responsible for simulating
jobs’ scheduling according to the simulation nodes, jobs
and actions’ information provided from the simulation
environment. Crucially, it implements two popular simu-
lation schedulers: Kubernetes simulation scheduler and
Volcano simulation scheduler, which are used to sched-
ule different edge-cloud jobs. For example, DAG jobs will
be scheduled by Kubernetes simulation scheduler, and Al
jobs will be scheduled by Volcano simulation scheduler.
After the scheduler completes scheduling, the simula-
tor will get the simulation scheduling results (that is, tail
latencies of edge-cloud jobs), so as to provide a basis for
the reward of DRL training.

Note that in the cluster simulator, each sampling/
training time-step ¢ (e.g. an episode) corresponds to
multiple iterations, and an iteration process is con-
cretely shown in Fig. 6. At each iteration, the simulator

Wen et al. Journal of Cloud Computing (2023) 12:90

Begin an iteration of
each sampling/training

Judge whether there exist
tasks to be scheduled?

Judge whether there are
sufficient resources?

Page 12 of 32

Apply a configuration combination
(an action) from the agent to allocate
waiting tasks to cloud and edge nodes

Judge if ts exceeds the
scheduling interval?

Update the simulation time t

Update the cluster node and task
status infromation according to
the scheduling results

Complete an iteration
of sampling/training

Fig. 6 An iteration process of sampling and training in cluster simulator

first judges if there exists tasks to be scheduled in the
waiting queue and if there are sufficient resources. If
the available resources exceed the requested resources
by the waiting tasks, the simulator applies a configu-
ration combination to assign the tasks to these cluster
nodes, and updates the node and task statuses; other-
wise it updates the simulation time ¢°. The simulation
completes if ¢° is longer than the scheduling interval;
otherwise it continues scheduling the remaining tasks
at the next iteration.

Discussion of system uncertainties. We note that
in real clusters, a job’s performance is also influenced
by random background activities such as system main-
tenance or garbage collection of operating systems.
These activities are not incorporated in our simula-
tor for two reasons. First, although background activi-
ties can create considerable CPU or network load (in
particular when resource are saturated), this work
focuses on comparing job performances across differ-
ent scheduler configurations and implicitly assumes
that the performances are estimated under the same
factors (that is, different algorithms suffer from the
same performance interferences). Second, in many
practical scenarios (when systems have available
resources for allocation), the performance impact of
background activities is much smaller (e.g. 100 times
smaller) than that caused by applying different sched-
uler configurations.

Evaluation

In this section, we evaluate the proposed approach with
two major criteria: (1) its robust performance under
diverse scheduling scenarios of dynamic edge-cloud
workloads (Section “Evaluation of EdgeTuner’s Effec-
tiveness Under Dynamic Edge-Cloud Workloads”) and
dynamic available cluster resources (Section “Discus-
sion of Reducing Tail Latency Under Dynamic Avail-
able Cluster Resources”); and (2) its effectiveness in
significantly accelerate DRL training (Section “Evalu-
ation of EdgeTuner’s Acceleration Effect in DRL train-
ing”) and how it is influenced by DRL training settings
(Section “Discussion of DRL Training Settings”).

Experimental settings

Experimental Platform. For evaluation experiments,
we built a Kubernetes cluster, and the specific configu-
ration is as follows:

> 1 Master Node + 4 Edge Devices + 5 Cloud
Nodes

* 16 Intel(R) Xeon(R) CPU E5-2660 v4 @2.00GHz
processor cores and 32GB memory/Master
Node, 4-core 1.5GHz Cortex-A72 ARMVS8.0
and 4 GB memory (Raspberry Pi 4B)/Two Edge

Wen et al. Journal of Cloud Computing (2023) 12:90

devices, 384-core 1100MHz NVIDIA VOLTA
GPU, 6-core 1.4Ghz NVIDIA Carmel ARMVS.2,
and 8GB memory (Jetson Xavier NX)/Two Edge
devices, 4 Intel(R) Xeon(R) CPU E5-2680 v4
@2.40GHz processor cores and 8GB memory/
Four Cloud Nodes, and Seven Intel(R) Xeon(R)
Gold 6238 CPU @ 2.10GHz processors, 24GB
NVIDIA TITAN RTX Graphics Card and 512GB
memory/A Cloud Node

Linux Ubuntu 18.04 LTS

Python 3.8.5, Go 1.17.6, Docker 20.10.14, Vol-
cano v1.0, and Kubernetes v1.19.0

> Two Intel(R) Xeon(R) Silver 4216 processors,
48GB Quadro RTX 8000 Graphics Card, and 256
GB memory (A GPU Node for conducting the
training of DRL agents)

Edge-Cloud Workloads. In evaluation, driven by
two types of real-world cluster traces provided by Alib-
aba [2, 3], we generate two edge-cloud workloads: DAG
batch workloads and Al workloads. From the traces, we
derive some crucial information of two generated edge-
cloud workloads, such as job arrival pattern (here, job is
submitted exactly at the job submission interval of the
real trace), the number of tasks in a job, the resource
(CPU, GPU and memory) request and resource limit of
each task, and the workload (that is, the running time
of a task).

> For DAG batch workloads, the basis is as follows:

Driven by Alibaba cluter-trace-v2018 [2] that
mainly records the information of offline batch
tasks in the mixed CPU cluster with 4034 nodes
running in 8 days

Two typical application scenarios: Daytime (6:00
to 24:00) and Night (0:00 to 6:00)

136,500 jobs, 8.30 million tasks submitted in the
Daytime, and 198,100 jobs, 8.40 million tasks
submitted at Night (in the trace)

> For Al workloads, the basis is as follows:

Driven by Alibaba cluter-trace-gpu-v2020 [3] that
records the information collected from Alibaba
PAI (Artificial Intelligence Platform) with over
6,500 GPUs (about 1800 machines) in a month
Two typical application scenarios: Daytime (8:00
to 24:00) and Night (0:00 to 8:00)

Page 13 of 32

&

1.76 million jobs, 12.54 million tasks submitted in
the Daytime, and 2.46 million jobs, 17.55 million
tasks submitted at Night (in the trace)

Considered Scheduler Configurations. In evalua-
tion, we mainly consider two scheduler configurations:
scheduling algorithms and tail latency mitigation poli-
cies. For scheduling algorithms, we compare against
11 representative Kubernetes scheduling algorithms
[19]: LeastRequestedPriority (LRP), MostRequested-
Priority (MRP), BalancedResourceAllocation (BRA),
EqualPriority (EP), Resource Limits Priority (RLP),
Taint Toleration Priority (TTP), Node Affinity Prior-
ity (NAP), Image Locality Priority (ILP), Node Pre-
fer Avoid Pods Priority (NPAPP), Node Label Priority
(NLP), and Inter Pod Affinity Priority (IPAP). And we
also compare against 13 representative Volcano sched-
uling algorithms [10]: GANG_BRA, GANG_MRP,
GANG_LRP, DRF_BRA, DRF_MRP, DRF_LRP, GANG_
DRF_BINPACK, GANG_DRF_BRA, GANG_DRF_
MRP, GANG_DRF_LRP, SLA_BRA, SLA_MRP and
SLA_LRP. Moreover, our settings of tail latency mitiga-
tion policies are: (1)for DAG batch workloads, we only
set 11 different ratios of TRP: 70%, 72%, 74%, 76%,
78%, 80%, 82%, 84%, 86%, 88%, and 90%. (2)for Al
workloads, we set 11 different ratios of TDP and TRP:
70%, 72%, 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%,
and 90%, respectively.

DRL Training Setting. We implemented the pro-
posed approach based on Google DeepMind’s RainBow
tool [31]. In DQN training, we use the latest tech-
nique [63] that combines Implicit Quantile Networks
(IQN) [11] and Ape-X [33]. The training settings of
three DRL elements are as follows:

> State. The interval between two time-steps is 10
seconds, hence the number of waiting and running
tasks in a state is set to 10. In Equations 3, 4 and 5,
the values of a1, 81, a2, B2, @3 and Bs are set to -0.02,
10, -0.1, 5, -0.002, 1, respectively.

> Actor. The maximal number of time-steps is 60
millions and the experience replay memory capac-
ity is set to 12 million. In sampling, the number of
actors is 8, the history length (the number of con-
secutive states processed) is set to 8, and the fre-
quency of sampling from memory is 5.

> Learner. The training phase starts after 10K time-
steps of the sampling phase. In training, the net-
work hidden node size is set to 64, the batch size
is 32, the network is updated every 1000 steps,
and the importance sampling weight in prioritised
experience replay is 0.5.

Wen et al. Journal of Cloud Computing (2023) 12:90

Page 14 of 32

Table 1 Description of important notations in problem formulation and proposed approach

Notations Introduction

S the state space

A the action space
R(st,ar) the reward function

P(St411se,ar)

transition dynamics (reflects the time-variant dynamics of cluster, 0 < P(S¢+115¢,ar) <)

St the node and task state information during a scheduling interval

a waiting task

a running task

ar an action that is one possible configuration combination of cluster schedulers
\/allocate the tasks that obtain resource allocations
\/complete the completed tasks

\/arrive the newly arrival tasks

JTL denoted the job tail latency as JTL

J the set of jobs completed within period (t — 1,t]
TTL denoted the tail latency of a task as TTL

yvrn the set of tasks running within period (t — 1,t]
\/wait the set of tasks waiting within period (t — 1,t]
pob the reward of job

run the reward of the set V"¥"

rwait the reward of the set /#at

It the reward of time-step t

o, 00,03 the negative values

B B2 B3 the positive values

B(Actor) the maximal size of local buffer in Actor
Ts(Actor) the number of sampling steps in Actor
N(Learner) the experience number to start training in Learner
L(Learner) the maximal size of local buffer in Learner
Ts(Learner) the maximum number of training in Learner

tf the simulation time

At the duration of one iteration in simulation

N the number of cluster nodes

In particular, as shown in Table 1, we summarize some
important notations in problem formulation and our
proposed approach.

Evaluation Metrics. For evaluation metrics, we con-
sider job performance and training efficiency.

> Job performance: measured by the average tail
latency

> Simulation acceleration: measured by the sampling
time and the training time in DRL training

Evaluation of EdgeTuner’s effectiveness under dynamic
edge-cloud workloads

In this section, we evaluate the effectiveness of EdgeT-
uner in reducing tail latencies by adaptively selecting its

scheduler configurations under dynamic edge-cloud
workloads.

Evaluation settings

Workloads. This evaluation tests 4 different workloads,
consisting of 2 generated edge-cloud workload patterns
(DAG batch workloads and AI workloads) and 2 periods
(Daytime and Night).

Compared Configuration Settings. In particular,
for DAG batch workloads, we evaluate them by select-
ing 11 baseline Kubernetes scheduling algorithms and
two ratios for TRP (namely Res_80% and Res_70%).
Note that we don'’t select TDP in scheduling DAG batch
workloads, because when using TDP in such workloads’
scheduling scenarios, the DAG dependencies between
their tasks will be lost, thereby causing the failure of
subsequent tasks to run normally, so TDP can not be

Wen et al. Journal of Cloud Computing (2023) 12:90

selected. However, for Al workloads, due to no DAG
dependencies between their tasks, we evaluate them by
selecting 13 baseline Volcano scheduling algorithms and
a total of four ratios for TRP and TDP (namely Res_80%,
Res_70%, Dis_80%, and Dis_70%). In particular, for TRD,
Res_80% indicates that when 80% of the tasks in a job are
completed, the remaining 20% of the tasks are restarted;
Res_70% indicates that when 70% of the tasks in a job are
completed, the remaining 30% of the tasks are restarted.
For TDP, Dis_80% indicates that for TDP, when 80% of
tasks in a job are completed, the remaining 20% are dis-
carded; Dis_70% indicates that for TDP, when 70% of
tasks in a job are completed, the remaining 30% are
discarded.

Comparison of tail latency reduction under dynamic
edge-cloud workloads

Comparison Using DAG Batch Workloads. Figure 7
uses box plots to illustrate each DAG batch workload’s

Page 15 of 32

distribution of tail latencies, including their minimum
and maximum values, the first quartile, median, and third
quartile. We can observe that in considered 6 scenarios
(Scenarios 1 to 6), EdgeTuner achieves lower tail laten-
cies than other scheduler configurations, indicating the
DRL agent selects proper scheduler configurations for
different DAG batch workloads in the cluster. In detail,
most of jobs in DAG workloads complete within dozens
of minutes. This means the waiting and running tasks
continuously change at different scheduling time-steps,
and the agent selects the optimal scheduler configura-
tion that brings the largest reward. Particularly, Table 2
summarizes the percentages of reduced tail latency under
two DAG batch workloads (Daytime and Night), when
comparing EdgeTuner against the 11 baseline Kuber-
netes scheduler configurations. We can see that these
reductions vary across different workloads depending on
a variety of factors, such as different types of workloads
and multiple different scheduler configurations.

Max Mean Min
— [e |
Q3(75 Median Q1(25
quantile) quantile)
—~ 300 - 300
300 é éé é é é ééé é
> i 200 4
8200'[%] 2ooé
ot
=100 100 - 100 -
o
o p—
g OIIIIIIIIIIII Ollllllllllll OIIIIIIIIIIII
ELLSSSSSSESs B %1010 % %1% %0 %% = RN I RN AN RN
Lo oo oo oo oo oo ”838%%8%8%88 O VLU DDLU D D W
D222 22222277 AR R R R
BT YFTFYFFFTFFFTFHF R+t +f++++F+F+ 7+ M+ +++++++++F
A A AAA A A Ay Ay A A A Ay Ay A A A A A A A A A A A A A
ém:1<:zn:<qmqf- §m5<c¢m<_ln-§[— §m4<mm<_m.§r—
@ EASzZgxE M EHSzZzg~E m TEASzZZgixE
Z Z Z

(a) Daytime (DAG batch workloads): different Kubernetes scheduler configurations

@ 800 -
5600-@
= 400 - 400 4
&;400-
— 200 200 2007
<
F O T T T T T T T T T T T 0 T T T T T T T T T T T O T T T T T T T T T T T
N N N Y N Y AL L O & & & & & L& "> AL L O O & & &\ L& "2
255555552555 2223533533233% ZEEEEsseeeE:
ELSRRRRRRREE £ %9090, 90,99, %9, %9, 09, %9, %, o~ A N AN O T AN RN N R
[} [R R o B B R B I B AR B B] QO v VB Yy Y YD YD YD D LD LD
XSS T R X Il dLe A XL AL L
BRETFsrrFsrsss REF+F++++++FF ME+r+++Fr+++++ %
A Ay A A A A A A EAAAS A AL A < B A A AR A A A A A
SHSSR2IIESE §m:1<a<c4<qn-_1@ rHdd < da dE
m TEAZzZZLxE m EASzzgLxE o EASzZzZLxE
Z Z Z

(b) Night (DAG batch workloads): different Kubernetes scheduler configurations

Fig. 7 Comparison of tail latency under DAG batch workloads driven by Alibaba trace 2018

Page 16 of 32

(2023) 12:90

Wen et al. Journal of Cloud Computing

9€sl g€l vyl €gel s€Tl 0€LL L9€L SLLL SOLL Ol 66 %0/ oleilelsdy 9
617 TllT S61C v907 091 €06l ¥8IT 00NT LT 88TC 60LL %08 91ei Lelsay S
vSl €lLT vz W9 vOLT T8WC €S0E vS/T ¥ELT vI'ST 8€ET %0 Aljod oN s92un0sal [euIBlO WBIN ¥
051 OL€L 60CL S80L 60Tl 08/ 60TL OSEL /6L S8OL 0STI %0/ 9lelLeisdy £
oIz 66l 6/17 9SSL €17 ¥9El €0/l 088l 769 LLOZ OL'SL %08 olelleisdy z
SpeOo|yIoM

7567 8€LT S50€ 09€C SS0E THOT 64T 9¥ST €0SE TS6T STOT %O fojodoN seounosaljeulbo ewnkeq Upleq Dyq |

dll dl ddvdN dIN d¥N d¥W d¥T dvdl 4l dl vug dyl soueuads Buinpayds qof oueudS

8107 92811 BRI AQ USALIP SPROPIOM UD1eg DY Japun Aduie| 1Bl paonpal Jo sabeiuadiad g ajqel

Wen et al. Journal of Cloud Computing (2023) 12:90 Page 17 of 32
~~~
Z 10000 10000 8000
§ 7500 7500 6000
2 5000 5000 4000
= 2500 2500 2000
> 02 BB P P P B P P 0 O O O N O O N N 0 BRI RIEIRNEIER
220885508550 2222222000 SRRRRRRREREs
20006000050 S [DIO0PROPOROB0R0G000000000 =R O RO
RS 955888855558 £8888888888%8
20
G N e N i o
émmméémmmmm AAAAAA AL A A §mmmmmmmmmm
M < <G 1= §m§<mm<qmqk e = Tl
m TEASZZ L m TELSZZLxE m TEASZZIxE
Z Z Z
(a) Daytime (DAG batch workloads): different Kubernetes scheduler configurations
0 15000 15000
=
£ 10000 10000 10000
w2
% 5000 5000 5000
S rereraraneealiibressssssn s ull e snenesaee:
RN RRERS 255555582558 AN
ot M- piststst st s MBI
80585555555 288888888888 288888858889
BLLZZ 22272727 DAL LAY AU AL PU AL A L CRUCY AP AR Y Y
M+++++++++++ g e e e e g gl gl 5 M++++++ -+ +++
mmméammmmm émmmmmmm&mm AAAAAAAAA A
§md< <A m5§5M<E<ég O << <P
m TEASZZIME m TEEZ = m TEASZZI~ME
Z Z

(b) Night (DAG batch workloads): different Kubernetes scheduler configurations
Fig. 8 Comparison of Makespan under DAG batch workloads driven by Alibaba trace 2018

Figure 8 shows the comparison of Makespan (a com-
mon performance evaluation metric which represents
the total time spent from the start of the first job to the
end of all jobs in the workload) between EdgeTuner and
other 11 Kubernetes scheduler configurations. We can
observe that in considered 6 scenarios (Scenarios 1 to 6),
EdgeTuner can also achieve lower Makespan than other
scheduler configurations. This indicates the DRL agent
of EdgeTuner chooses the optimal scheduling configura-
tion combination for each DAG batch workload sched-
uling scenario, thereby allowing workload scheduling to
be completed faster. In addition, Fig. 9 shows the com-
parison of average CPU usage of the cluster during a cer-
tain execution period (between EdgeTuner and other 11
Kubernetes scheduler configurations). We can see that
in considered 6 scenarios (Scenarios 1 to 6), EdgeTuner
can also achieve higher cluster CPU usage than other
scheduler configurations. This indicates that during clus-
ter execution, EdgeTuner can always choose the optimal
scheduling configuration combination for the continu-
ously arriving DAG batch workloads, thus improving the
CPU resource utilization of the cluster.

Comparison Using AI Workloads. Similarly, Fig. 10
also uses box plots to illustrate each Al workload’s distri-
bution of tail latencies. We can also observe that in con-
sidered 10 scenarios (Scenarios 7 to 16), EdgeTuner still
achieves lower tail latencies than other scheduler con-
figurations, which also indicates the DRL agent selects
proper scheduler configurations for different AI work-
loads in the cluster. Note that, compared to DAG work-
loads, most of jobs in Al workloads take longer time to
complete (e.g. more than 10min). Despite this, the agent
can still select the optimal scheduler configuration that
brings the largest reward (that is, achieving the lowest
tail latency). Particularly, Table 3 also summarizes the
percentages of reduced tail latency under two Al work-
loads (Daytime and Night), when comparing EdgeTuner
against the 13 baseline Volcano scheduler configurations.
We can also see that these reductions vary across differ-
ent workloads depending on a variety of factors, such
as types of workloads and multiple different scheduler
configurations.

Figure 11 shows the comparison of Makespan
between EdgeTuner and other 13 Volcano scheduler



Wen et al. Journal of Cloud Computing (2023) 12:90

Page 18 of 32

0.6 1 0.6
051 %" - 0.5 A
g)ﬁ '/.{;"
< . { ¥ 0.4 1
g < 04 i
ragl
D 03 0.3 03
[
O 0.2 4 —*- EdgeTuner MRP+NoPolicy 0.2 4 —*- EdgeTuner MRP+Res_80% 0.2 4 —*- EdgeTuner MRP+Res_70%
) -%- BRA+NoPolicy ~ —%- NAP+NoPolicy : -%- BRA+Res_80% -%- NAP+Res_80% -®- BRA+Res_70%  -w#- NAP+Res_70%
—e- EP+NoPolicy —e- NLP+NoPolicy —e- EP+Res_80% —e- NLP+Res_80% —o- EP+Res_70% —e- NLP+Res_70%
0.1 4 —%- ILP+NoPolicy -4~ NPAPP+NoPolicy 0.1 4 —*- ILP+Res_80% -4~ NPAPP+Res_80% 0.1 4 —#*- ILP+Res_70% —4- NPAPP+Res_70%
IPAP+NoPolicy ~ =%= RLP+NoPolicy IPAP+Res_80%  —®- RLP+Res_80% IPAP+Res_70%  -w- RLP+Res_70%
LRP+NoPolicy —e~ TTP+NoPolicy LRP+Res_80% —e- TTP+Res_80% LRP+Res_70% —e- TTP+Res_70%
0.0 T T T T T ~ 0.0 : : ; : : : 0.0 T T T T T T
\ N Q Q Q Q Q Q Q Q Q Q Q O Q O \} Q Q
N N N O N N S S S S S S O S L S OO
N N P w & S Q N ,]/Q ,,)Q W© %Q & O N '19 ,,)Q w© (,)Q S S
(a) Cluster execution time (s): Daytime (DAG batch workloads)
0.8 ————— [ *<___ 1 | __- o= [Fop——— L
e el A N e ‘*\
07 X 0.7 1 g 0.7 1
\\! diemn S, e IR e \\x
O 06- N e 0.6 - pgg.q-_aggggghg@‘ e 0.6 -
en : wmmm T R o e e 'S ‘:;\ NNQ:
= S
S 051 SR | 051 | 051
= |
D 0.4 1 0.4 1 0.4
=%
O 03- 0.3 1 0.3 4
-w- EdgeTuner MRP+NoPolicy —%- EdgeTuner MRP+Res_80% —-%- EdgeTuner MRP+Res_70%
—w- BRA+NoPolicy  —*- NAP-+NoPolicy 0.2 ] ~%- BRA¥Res 80% -~ NAP+Res 80% 0.2 4 ~- BRA+Res 70%  -w- NAP+Res_70%
0.2 —e- EP+NoPolicy —e- NLP+NoPolicy : —e- EP+Res_80% —e- NLP+Res_80% . —e- EP+Res_70% —e- NLP+Res_70%
—a- ILP+NoPolicy  —&- NPAPP+NoPolicy | -4 ILP+Res 80% -4~ NPAPP+Res 80% 14 ~&- ILP+Res_70% -4~ NPAPP+Res_70%
0.1 IPAP+NoPolicy  =#~= RLP+NoPolicy 0.1 IPAP+Res_80%  —w- RLP+Res_80% 0. IPAP+Res_70%  -®- RLP+Res 70%
LRP+NoPolicy ~ —e- TTP+NoPolicy LRP+Res 80%  —e- TTP+Res_80% LRP+Res_70%  —e- TTP+Res_70%
0.0 1— ; ; ; : 0.0 - T T T T T 0.0 T T T T T
S S N o N S & & & & & S & & & & &
$ P P P P Q Q N N N Q
S P & & S S & & & & D S S SR

(b) Cluster execution time (s): Night (DAG batch workloads)

Fig. 9 Average CPU usage of the cluster during a certain execution period under DAG batch workloads

configurations. We can observe that in considered
10 scenarios (Scenarios 7 to 16), EdgeTuner can also
achieve lower Makespan than other scheduler configu-
rations, indicating the DRL agent of EdgeTuner chooses
the optimal scheduling configuration combination for
each Al workload scheduling scenario. In this way,
compared to other scheduler configurations, EdgeTuner
allows workload scheduling to be completed faster. In
addition, Fig. 12 shows the comparison of average CPU
usage of the cluster during a certain execution period
(between EdgeTuner and other 13 Volcano scheduler
configurations). We can see that in considered 10 sce-
narios (Scenarios 7 to 16), EdgeTuner can also achieve
higher cluster CPU usage than other scheduler configu-
rations, which indicates that during cluster execution,
EdgeTuner can always choose the optimal scheduling
configuration combination for the continuously arriv-
ing Al workloads. As a result, EdgeTuner improves the
CPU resource utilization of the cluster.

Evaluation Results. In general, when considering all
16 evaluation scenarios, our approach achieves an aver-
age of 21.66% reductions in tail latencies.

Discussion of reducing job completion time (under
dynamic Edge-Cloud workloads). When scheduling
diverse workloads in the cluster, Job completion time
(JCT) is also an important performance metric. Note
that, for a DAG batch job, the job’s tail latency is the
most significant factor in its completion time. For an
Al job, the maximum job’s tail latency represents its
completion time. Therefore, we can find that the job’s
tail latency determines its final completion time. In
this paper, in our considered 16 scheduling scenarios
(Scenarios 1 to 16), EdgeTuner can achieve lower tail
latencies than other scheduler configurations due to
its dynamic tuning mechanism, which indicates the
DRL agent selects proper scheduler configurations for
different DAG batch and AI workloads in the cluster.
Correspondingly, EdgeTuner can also achieve lower



Page 19 of 32

(2023) 12:90

me in EdgeTuner and real

i

ti

ining

Evaluation Results. For all considered 16 scenarios,
the sampling phase takes a long time (more than 92.27
hours) in the real Kubernetes cluster, and EdgeTuner
considerably reduce this time to a few minutes (accel-
eration by up to 3134.17x). Similarly, in real Kubernetes

Results. In general, when considering both sampling
and training phases, our approach accelerates DRL
training by an average of 151.63x. This is because it can

cluster, the training phase also completes in dozens of
sampling process. In contrast, EdgeTuner completes the

training phase within a few hours. The training time also
varies across different states (i.e. different jobs, tasks) and

our approach can reduce the training time by an average

of 97.15x.
perform the DRL training to in an offline way, and can

EdgeTuner and real Kubernetes cluster, and Fig. 13 shows
provide the adapted DRL agent timely.

Table 4 lists the sampling times and training times of
reductions of sampling time and training time.

Comparison of DRL tra
Kubernetes cluster

(b) Night (Al workloads): different Volcano scheduler configurations

Wen et al. Journal of Cloud Computing

= F%0L_SIa+d 4N VT T F %0L_SIA+d AL VIS
= 3 c\MoD_QiE,_m,mﬁmm e b 40 SIA+d¥ T VIS
W= F %0L_SId+ViId_VIS — r %0L_SIA+VIL_VIS
= b %0, SIA+d AN —=T F %0L_SId+d Y- DNVO
%0L_SIA+dYIN. DNVO v [ Ze0L_SH
= F%0L_Sid+d¥T_DNVD [ 0L S1d+d¥T DNVD
= — L 0%40L Sk D %0L_SIA+d AN LA ONVD
e AT L S LY = F 650£Siq+d¥ 1 A _ONVD
= F %0L_SiA+dAT_44d _ONVYD = F 400 _SIA+VYIE A DNYD
Fo Sy ‘OUL_>7Y
= %0L_SIA+VIE 1A ONYD [ ot/ si
= Lo —E %0L_SIA+MOVANIE LAd DNVD
%0L_SIA+MOVANIE 2AA ONVD M = L o007 Sid+vaE - DNVD
= F %0L_SIA+VIEd_DNVD = L o807 Sic+ AT
=T R i = F%0L_SIA+d¥'T 19d
[ Je0L_Sd+ = F%0L SiA+vad 4dd
HE=— F%0L SId+vid J3d ) HEn + Idunpospy
HEH - Iaun]a3py . m szt o
o o o <o
S 2 2 2 — us "
® © F a = _ _
= L 0,08 - T F%08_SIA+d AL VIS
el [ $08- St VIS 2 e F %08 SIA+INT VIS
9%08_Sid+dAT_V'IS e L 6008 Sici+ Ve Vs
= F %08_SIQ+Vad_Vv1S S = L 0008 SicL-dMIA HNVD
s F %08_SIA+dAN_ ONVO O |vem [ 6208 sicis,
[¢ %08_Sid+d T ONYD
sy 7008 SiA+dyT DNVD O |ew F %08_SIA+d WA M ONVO
HI=— r %08_SIA+d AN LAA ONVD = | E F %08_SIA+d AT _1dd _ONVD
= F %08_SIA-+d AT _A4d _ONVD O | [ 0208 Si+VaE 43 DNYD
= r %08_SId+Vdd 44d ONYD .m —E F 9%08_SIA+MOVANIA 1Id DNVD
e [ 7008 _SIA+AOVANIE Add ONVO 5 | F %08_Sid+VId_DNVD
HE— r %08_SIJ+VId_DONVD o = F %08_SIA+d A 4dd
s 2 = i i
[ o085 o |- F %08 SI+Vid 4dd
I r %08 SiA+vid J4d @ | riounjospy
S —— v | csss oo
g8888¢8° S 28R88R
S ® © F a c ==
S _ _
Lo/ "so ~ = [E F%0L_Sod+d 4N VIS
e [ J60L_SoM+dAW ¥ IS o | = L 000, SN +dU T V1S
%0L_SU+d AT VIS Sl L o0 —so8 1Rt VS
2| [ 0L+ VHE VIS e F 90L SO +dMNL DNVD
F %0L_S2d+ddAN_ ONVD D= (A=~ L 0 SO ONVD
= [ Je0L_52U+dH T DNV 5 = L %40 SOY+dMAL A ONVD
F %0L_S9Y+d AN 24AONVD o L 6007 SO+ qaT d ONVD
= F %0L_S¥+d AT _14d _ONVD O | L S0 oM+ Ve A DNYD
HI=— I %0L_S99+Vdd A ONYD rﬁ = F 9%0L_SOY+DVANIA 1dd DNVD
M= F %0L_SO+DVANIE 2Ad DNVD o= | = L 040/ So¥+Vie_DNVD
H=— r %0L_S9Y+VIH_DONVD O | F 9%0L_Sd+dIIN_ 1A
S DmSnRRRd iR R
[ Y00L_SoU-+ | F %0, SY+VId ddd
= F%0L SRA+VYE 1AA 3 En | iounyespy
HEH F IounjoSpHg ] 22ssg°
£888° g AaE2ER
= F 9%08_S9¥+d AN VIS s = F %08_So¥+d WAL VIS
= F %08_SRU+d AT VIS 2 = F %08_SU+d AT VIS
= F %08_SNA-+VHL_V'IS e F %08_SNY+ VAL _V'IS
M F %08_S9U-+d AN ONVD —_ | e F %08_SNA-+d AN ONVD
= F %08_S9¥+d AT ONVD < = F %08_S¥+d ¥ T ONYD
= F %08_SOY+d AL 44A ONVO - | F %08_SRY+d AN 4 HONVD
L] F %08_SNY+d AT _AAA _ONVD o = F %08_S+d AT 1A _ONVD
= F %08_SY+Vid A4 DNYD G F %08_SU+V I AU DNYD
=~ F 408 SO+ MOVANIE Add DNVD & |~ F %08_SRY+MOVANIE A DNVD
= F %08_S3Y+VId_DONVD Bl F %08_S0Y+VId_ONVD
I F %08_SNA-+d AN 1dd S, | e F %08_Sa¥+d AL 4dd
= F %08_Sd+d A1 _14d o [ F %08_S¥+d 1 _A¥d
M= F %08 mww+<~_m ERi(el A ™. .wmmkwwwm,&m ER(l
[ [euniespq — 7
oo o9 oo oo o9 o
EEEE S gE238%
= | AO1O0JON+d WAL VIS Bl | AS1OJON+dMIAL VIS
o F ASI[0JON+dY'T V'IS e [ A2i[0JON+d¥'T VIS
Lol F K91[0JON+VIE_VIS —E F £21[0JON+VIE_V'IS
o) F A21[0JON+d - DNVD e F £21[0JON+dYIN_ DNVD
M= F ASI[0JON+d AT ONVD e F A21[0JON+d AT ONVYD
M r A21[0JON+d AL AU ONVO jac r K21[0JON+I AN AUA ONVO
L] F £10dON+d ¥ T 1A _ONVD —E F £1[0dON+d YT 1A _ONVD
I F AS1[0JON+VIE Jdd DNYD = F A210JON+VIE_ AAA DNVD
= F A21[0dON+MOVANIE 4dd DNVD e F £21[0dON+MOVANIE 44d DNVD
= r A21[0dJON+VIH_DONVD —E» F £21[0dON+VIH_DNVD
I~ F &1OJON+d WAL 19 s F £21[0dON+dYIAL 44
M= F A21[0dON+d YT _1dd G F A2l[0dON+d¥'T 14d
= r &91[0JON+VYE 44d —Ew F &91[0JON+V IS 4
L MER - 10UNJ5pY I [ Jounga5py
S23Fa 787287
(s) Aouase[ re], (s) Aouaie[ re],

ining

Fig. 10 Comparison of tail latency under Al workloads driven by Alibaba trace 2020
seconds to obtain in real clusters; (2)using the collected  hours (e.g. even several days) due to the time-consuming

job completion time for each workload scheduling
scenario.

Note that, the effectiveness of tuning scheduler configu-
rations relies on efficiently training DRL agents. And an
agent’s training time consists of two parts: (1)the major
training time comes from collecting samples in the actor
(Algorithm 1). Each training needs several million sam-
ples to converge and each sample needs at least a few
DQN model. Based on this, we evaluate the acceleration
According to the experimental settings of the previous
section, under our considered 16 scenarios, we compare
the DRL training time of EdgeTuner (collecting samples
with the Kubernetes simulator in Algorithm 3) and the
real Kubernetes cluster.

samples in the replay memory, the learner trains the
effect of EdgeTuner.

Evaluation of EdgeTuner’s acceleration effect in DRL

Evaluation settings

tra



Page 20 of 32

(2023) 12:90

Wen et al. Journal of Cloud Computing

a1el

[8€L 60'LL 05'S1 L0°SL 8L11 €8 €L6 66'S1 €901 6€01 Ll SS'LL LGEL %0/ piessid 9l
a1el

el 44! 8¥'0¢C oo Sl/L 1294 €6'Gl 96'0C 819l 819l S691 Slzl 706l %08  pledsid Sl
ael

€991 [4ya} [dye 0T/L €681 oSl Y4 L§0¢ 661 €Csl 188l 98l YCLT %0L  Velssy 14!
ael

SCle 9le 64°9C €eLe 90°€C 1981 S6'9C S0'ST 85'€C L9ce 56l LTEC CESC %08  Meisay €l
£o1j0d - s921n0sa)

434 1 4WAd 6l'le 66'9¢ ov'ce Sh'ee 08'6¢ 61’6 ol'se 16'LC L6'CC re6c 690¢ %0 ON  [eubuQ WBIN 4
a1el

1901 807l 6£°0C 8LSl €LLe STST 008 €8'le 0€'s1 906l LLSL sl Y69l %0/  plessia Ll
31el

€8/l 8L¥C 69'6C 105 LT0€E 0o'ee 6v61 L9'6C €1'se €0'SC L¥'9C LLST L9 %08  Pie3sia 0l
Eatel

L5°9C LETC L6 rS6l E'6C €6'6C 6621 Lrce 9971 VA4dd G558l 6€'9¢C 06'LC %0L  Meisay 6
el

€o'Le veLe 68'6C 18'9¢ 007¢ rove r9°ce Pele [d0h74 €1'8¢ [4yA4 0s'le 8G°CE %08  MeIseY 8
Aojod  sa1nosal Speo|

414 9LC 149843 85°CC 81'se 9g'ce 000¢ roee vL9C 61'8¢ S6'€C L¥'6C 667€ %0 ON  [eubuQ Bwinkeq -uom |y L

3 B 3 3 _ ddw” d4T vdd_ HDOVdNIg 3 _ _ B
d4in dy1 vdga ddN dy1 44a 44a 44a 44a vy ddiN dy1 vud
vis vis VIS DONVD DONVD DNVYD DONVD DONVD ONVD  ONVD 44a 44a 44a ddl/dal soleusds bulinpayds qor - oueuds

020¢ 22811 _gRqI|Y AQ USALIP SPROPIOM |y JIapun ADuaie| |iel padnpai Jo sabeiusdiad € ajqel



Wen et al. Journal of Cloud Computing

15000
10000
5000

Makespan (s)

30000
20000
10000

Makespan (s)

(2023) 12:90

Page 21 of 32

(b) Night (AT workloads): different Volcano scheduler configurations
Fig. 11 Comparison of Makespan under Al workloads driven by Alibaba trace 2020

fgggg M 15000 15000 15000
10000 10000 10000
10000
5000 5000 5000 5000
0 0 0 0
N T ERRSRRRRIRRRRR P N SESSSSSSRSSSSR
SSSEtiiiiiii: eeeeeseeene SSERRRSRRRRRRE SEmmesmaesanss SeRRReseseeees
A A 5l lalialilaliali alialoa ! 5 plalnlalalnlalalylalslyll Qp20RBARANRDNBAN O.0.0.0.0.2.0.0.0.9.9.90.9.9
_gn°;‘>99>>>>°°°° SHEOCLOLLLS8STY HECCSLLTO LTSS éﬂeeeeeeeeeeeee é@eee%e%eeeeee
Z
Flddiicdddd <dd “Eﬁiﬁiéiiiiéii ”‘219’2552&&&&21& R S e ) R eI e
sEdsems DEemme Shoaem SmEn ok i
B L B PPyl B | [P CYRP Ban=n (PP
BA ARSI sl ol il bEe bbb pEoZsEL o<t pEbZeEs o<
ARRZRRCRZZa 77 BARZARCRLZn70 EoEZBANREZann [allar Pbpg<m @ e amar s e
Sy0oS S505eUS 0550 g9 Fggoo o
QZZZ QZZZ 8ZZ7Z S5< az<s
< < < <!
%éoo 2500 gsoé 26 S %500
< < Z 5 g
o ) ]
(a) Daytime (Al workloads): different Volcano scheduler configurations
30000 n 30000 P s | 30000 30000 =
20000 20000 20000 20000
10000 10000 10000 10000
0 0 0 0
o N N S S N T R T R N BT e O OO OO0 OO0 O PR o900
225552E55anssy E e e Sesessscsscccs EEESEsseess E=S £52
CRLRLRLRLLLLL ECTUTTT T I T LI T =P U U U
BEE5555555555% 88888555555888% $8888558585585 E%EEEEEEEE'E 'Eag'g EEE‘
REFTEECTFrsesy MEF+++t+++++++ DErrEtidaarrs BTTrTTETTTT =57 77T
VP - -9
SRS SRR SR SN N PN R e SRESEERERE 5= See
Ny AR Rl B A N Baplp] AR 2 @z
e OZe e Do« = ZupeJo< < B OZEx s S0<S< wh O Z e O & <<<
1~ =4 & =~ ) 4 1A = 4 =1~ o
2REZZERE ] BREZERREZZ 1S BREZERREZZn; EREZSERZZ2 2& REN
émpbpoé EANBACE SRS NSRS
2020 2979 £>72 =950
0Z%Z 8E<Z D6<< az%Z
oBSS BERS govs SRR
Z Z < z
&) (&) o o)

'.—/' P S R = L T AR =
0.6 0.6 0.6 0.6
% %
£ = .
& o0s 05 ﬁgsauuaizz 05 Sngmerdnng | o5
12} g ATy
= —s-——==13
D 04 F -w- EdgeTuner 0.4 4 -»- EdgeTuner 0.4 1 -~ EdgeTuner 0.4 4 -~ EdgeTuner 0.4 -»- EdgeTuner
2 R oA oroly T ORF sRasRes 30% o o ohkres 70% a7 one ows O a0 e OAr BRADi 7%
o e et e L DA LRPrRes 0% T DheLRerner 7% T onrinreois 0% o ORriRreDa TN
O T CRr MRP NPy 03 ] 5 DR o 03 ] = ORF MR 0% 03 ] o ORE MR a0 03] = oRF e o
03 GANG_BRA+NoPolicy - GANG_BRA+Res_80% . GANG_BRA+Res_70% . - GANG_BRA+Dis_80% . GANG_BRA+Dis_70%
GANG_DRF_BINPACK+NoPolicy GANG_DRF_BINPACK+Res_80% GANG_DRF_BINPACK+Res_70% GANG_DRF_BINPACK+Dis_80% GANG_DRF_BINPACK+Dis_70%
GANG_DRF_BRA+NoPolicy GANG_DRF_BRA+Res_80% GANG_DRF_BRA+Res_70% GANG_DRF_BRA+Dis_80% GANG_DRF_BRA+Dis_70%
02 ~n- GANG_DRF_LRP+NoPolicy 0.2 -~ GANG_DRF_LRP+Res_80% 0.2 -~ GANG_DRF_LRP+Res_70% 0.2 4 -%- GANG_DRF_LRP+Dis_80% 0.2 { -»- GANG_DRF_LRP+Dis_70%
—e- GANG_DRF_MRP+NoPolicy F_MRP+Res_80% —e- GANG_DRF_MRP+Res_70% —e- GANG_DRF_MRP+Dis_80% —e- GANG_DRF_MRP+Dis_70%
-~ GANG_LRP+NoPolicy (G_LRP+Res_80% -a- GANG_LRP+Res_70% ~&- GANG_LRP+Dis_80% -4~ GANG_LRP+Dis_70%
01 -u= GANG_MRP+NoPolicy 0.1 7" GANG.MRP+Res_80% 0.1 " GANG_MRP+Res 70% 0.1 7" GANG_MRp+Dis 80% 0.1 4 77 GANG MRP+Dis 70%
o —e- SLA_BRA+NoPolicy N —®- SLA BRA+Res_80% g —e- SLA_BRA+Res_70% o —e- SLA_BRA+Dis_80% = —e- SLA_BRA+Dis_70%
-4~ SLA_LRP+NoPolicy ~&= SLA_LRP+Res_80% ~4= SLA_LRP+Res_70% -4~ SLA_LRP+Dis_80% == SLA_LRP+Dis_70%
~u~ SLA_MRP+NoPolicy ~*- SLA_MRP+Res_80% ~w~ SLA_MRP+Res_70% ~w= SLA_MRP+Dis_80% ~w~ SLA_MRP+Dis_70%
0.0 0.0 0.0 0.0+ T T T — 0.0
8 8 8 8 8 8 8 8 8 8 888 ° 8 8 8 8 8 ° 8 8 8 8 8 ° g8 8 8 8 s
S i=] [=3 =3 =3 o -] =3 S -] 8 < < i< [=3 (=3 =3 i< =3 o o o S =3 =3 =3
f &8 8 8 8 § 8 ¥ © ® 9 & ¥ & &8 8 & 8 & ¥ 8 8 8 & ¥ @ 8 8
(a) Cluster execution time (s): Daytime (Al workloads)
0.8
& 07
<
g 0.6
2 051 cageriner 054 == Edgetuner 05 -u- edgeruner 0.5 1 o cagetinar 05 -u- egetuner
Ay -w- DRF_BRA+NoPolicy -~ DRF_BRA+Res_80% -n- DRF_BRA+Res_70% -~ DRF_BRA+Dis_80% -~ DRF_BRA+Dis_70%
O g4 = R Lresopoicy 0.4 ] - DRFLRP+Res 8% 0.4 - oRELRPaRes 70% 0.4 = DRF.LRP+0Is B0% 0.4 —*- DRF_LRP+Dis 70%
140127 o wpaboreley A {1 A e s o 49 227 ORe- A nes 70% 41172 DRF e 0% 4|2 DR MR eois 70%
GANG_BRA+NoPolicy GANG_BRA+Res_80% GANG_BRA+Res_70% GANG_BRA+Dis_80% GANG_BRA+Dis_70%
03 GANG_DRF_BINPACK+NoPolicy 03 (GANG_DRF_BINPACK+Res_80% 034 GANG_DRF_BINPACK+Res_70% 03 GANG_DRF_BINPACK+Dis_80% 03 GANG_DRF_BINPACK+Dis_70%
- GANG_DRF_BRA+NoPolicy 4 GANG_DRF_BRA+Res_80% - GANG_DRF_BRA+Res_70% - GANG_DRF_BRA+Dis_80% - GANG_DRF_BRA+Dis_70%
~»- GANG_DRF_LRP+NoPolicy -n- GANG_DRF_LRP+Res_80% -w- GANG_DRF_LRP+Res_70% -n- GANG_DRF_LRP+Dis_80% -%- GANG_DRF_LRP+Dis_70%
0.2 { —- GANG_DRF_MRP+NoPolicy 0.2 4 —*- GANG_DRF_MRP+Res 80% 0.2 { —*- GANG_DRF_MRP-+Res_70% 0.2 | —*- GANG_DRF_MRP+Dis_80% 0.2 | —*- GANG_DRF_MRP+Dis 70%
-&- GANG_LRP+NoPolicy "€ | -a- GANG_LRP+Res_80% ““ | -a- GANG_LRP+Res_70% ~A- GANG_LRP+Dis_80% " | -a- GANG_LRP+DIs_70%
~m= GANG_MRP+NoPolicy —u- GANG_MRP+Res_80% —u- GANG_MRP+Res_70% —u- GANG_MRP+Dis_80% —u- GANG_MRP+Dis_70%
0.1 —*- SLA_BRA+NoPolicy 0.1 —*- SLA_BRA+Res 80% 0.1 { —®- SLA_BRA+Res_70% 0.1 =% SLA-BRA4DIs_80%. 0.1 4 —- SLA_BRA+DIs_70%
—4- SLA_LRP+NoPolicy -4- SLA_LRP+Res_80% 4~ SLA_LRP+Res_70% ~&- SLA_LRP+Dis_80% -4~ SLA_LRP+Dis_70%
=»= SLA_MRP+NoPolicy ~w- SLA MRP+Res_80% ~w- SLA_MRP+Res_70% ~w= SLA_MRP+Dis_80% ~®~ SLA_MRP+Dis_70%
0.0 0.0 T 0.0 0.0 T 0.0
8 8 8 8 8 8 8 8 8 8 g8 8 8 8 8 g8 8 8 8 8 8 8 8 8 8
& 8 8 8 g & g g & g & 8 & § g g &8 8 &8 § 8 g8 g8 g g
= - ~ ~ = - & B = - & ~ = - « N - - & ~

(b) Cluster execution time (s): Night (Al workloads)
Fig. 12 Average CPU usage of the cluster during a certain execution period under Al workloads




Wen et al. Journal of Cloud Computing (2023) 12:90

Table 4 Sampling time and training time of EdgeTuner and real
Kubernetes cluster under different workloads

Scenario  Sampling time (seconds) Training time (seconds)
EdgeTuner Kubernetes EdgeTuner Kubernetes
1 110 332160 6224 742708
2 118 342578 7002 774568
3 112 351027 7016 780246
4 155 341463 8189 896439
5 164 349873 8964 914782
6 159 356047 8902 913026
7 583 673240 9336 882708
8 595 688452 10402 943258
9 585 680064 9408 866802
10 587 682247 9386 856349
11 596 684065 9502 876543
12 740 1114389 16134 1446439
13 780 1156000 17225 1456020
14 764 1175438 16548 1470865
15 796 1118634 16208 1450862
16 802 1116065 17106 1465684
"-—n"‘\\
\-..,._-x\
\‘\ R ol e L PP
3 3= e = = 36 =
10" 7
=
X
w
=
.2
B 2] Ve
S 10 ARG S T S8 S TS S oy
-%- Sampling time
-4 Training time
-4- Total training time
1
10 T T T T T T T T T T T T T T T
— NN TN O~ 0ND —~ NN O
oo o0oo0o0oo0o0oo0oo0 2 ——
TEEEEEEEEE.L.2.2.L2L2.2L8.20
S 8 8 € 8 8 « 8 < D & B HEEE R
S g8 8 8 68 8 6 8 8 c 8 8 8 8 8 <
58528888885 EEFEE
NANANAAANAANAAAN O QO O O QO O O
NN NNAARNA

Fig. 13 Reductions of sampling time and training time under
considered 16 scenarios

Discussion of DRL training settings

Evaluation settings

We take a DAG batch workload (Daytime) and an Al
workload (Night) as two examples, and design experi-
ments to discuss the three major factors that influence

Page 22 of 32

DRL training efficiency. In addition, we use five metrics
to evaluate: sampling time, training time, the total num-
ber of samples, the total number of sampling and train-
ing iterations, and the total time of sampling and training
phases.

Comparison of different DRL training techniques

In DRL training, our work adpots the latest Rainbow
tool [31] combined with two model training techniques:
IQN for distributional reinforcement learning [11], and
Ape-X for distributed sampling and prioritized experi-
ence replay [33].

Evaluation Results. We can see that under two dif-
ferent edge-cloud workload scheduling scenarios: (i)
Fig. 14(a) shows that IQN incurs the longest sampling
time because it only uses one actor. In contrast, Ape-X
supports multiple actors and considerably reduces the
sampling time when collecting the same number of
samples. (ii) Fig. 14(b) shows that Ape-X has the long-
est training time, while the IQN technique accelerates
the convergence speed. (iii) Fig. 14(c) and (d) show that
Ape-X needs the largest samples and training iterations,
and thus takes the longest time to complete the whole
training process (Fig. 14(e)).

Comparison of actors with different numbers
This evaluation considers three different numbers of
actors: 8 (used in EdgeTuner), 4, and 16.

Evaluation Results. We can see that under two dif-
ferent edge-cloud workload scheduling scenarios: (i)
Fig. 15(a) shows that more actors indeed reduce sampling
time. (ii) However, when the actor number is 16, the sam-
pling speed exceeds the training speed. This means the
16 actors need to wait for the learner while occupying
resources, thus delaying the training process (Fig. 15(b)).
This claim is also verified in Fig. 15(c), (d) and (e)’s results.

Comparison of different history length
In DRL training, history length decides the number of
time-steps to construct a state in the environment. Note
that, the longer the history length, the more information
the agent can learn from a state. This evaluation consid-
ers three history lengths: 8 (used in EdgeTuner), 1, and 4.
Evaluation Results. We can see that under two dif-
ferent edge-cloud workload scheduling scenarios, (i)
Fig. 16 display that when the history length is 1 (that is,
the states in different iterations are independent of each
other), the training needs the largest numbers of samples
and the longest time to converge. (ii) However, when the
history length is 8, the training needs the smallest num-
ber of samples (Fig. 16(c)), but its sampling time is still
longer than that of history length 4 (Fig. 16(a)). This is
because the state of history length 8 is two times larger



Wen et al. Journal of Cloud Computing (2023) 12:90

D DAG batch workload(Daytime)

Page 23 of 32

. Al workload(Night)

1e6
50000 : 50000 50000
5000 2 «
— — 2 g
g 400 g 40000 £ : 40000 g w0
3 g a0 a S a0000 S a000]
3 3000 2 B 3 = 3
~ ~ o 5] z
[ -
£ 2000 & 20000 £ 5 20000 2 20000 4
= = 5 £ I
1000 10000 G Z 10000 10000
0 0 0 0 0
IQN+Ape-X Ape-X IQN IQN+Ape-X Ape-X IQN IQN+Ape-X Ape-X IQN IQN+Ape-X Ape-X IQN IQN+Ape-X Ape-X IQN
(EdgeTuner) (EdgeTuner) (EdgeTuner) (EdgeTuner) (EdgeTuner)
Model training Model training Model training Model training Model training
techiniques techiniques techiniques techiniques techiniques
(a) Sampling time (b) Training time (C) Number of samples (d) Number of iterations (e) Total time
Fig. 14 Comparison of DRL training overheads under different model training techniques
D DAG batch workload(Daytime) . AT workload(Night)
1600 1 s
1400 4 25000 » 254 - 25000 25000
— — 5 g
g 1200 € 20000 { g‘ 20 5 20000 3 o0
S 10004 3 - E 8
2 g0l & 15000 S 1579 & 15000 2 15000
> s 3 5 bt
E e £ 10000 E 104 S 10000 E 10000
= = 5 g £
4004 z ]
5000 05 Z 5000 5000
2004
0 0 0.0 0 0
8 (EdgeTuner) 4 16 8 (EdgeTuner) 4 16 8 (EdgeTuner) 4 16 8 (EdgeTuner) 4 16 8 (EdgeTuner) 4 16
Number of actors Number of actors Number of actors Number of actors Number of actors
(a) Sampling time (b) Training time () Number of samples (d) Number of iterations (©) Total time
Fig. 15 Comparison of DRL training overheads under different actors
I:I DAG batch workload(Daytime) . Al workload(Night)
1e7
120000 120000 120000
800 g 12 =
=z 2 100000 = .S 100000 2 100000
g E 80000 % 6. é) 80000 g 80000
Zz z 1 ot 5] N
E — g 60000 _,,é 06 & 60000 s 60000
= £ 40000 5 04 £ 40000 £ 40000
200 Z Z
20000 0.2 20000 20000
0 04 0.0 0 0
8 (EdgeTuner) 1 4 8 (EdgeTuner) 1 4 8 (EdgeTuner) 1 4 8 (EdgeTuner) 1 4 8 (EdgeTuner) 1 4
History length History length History length History length History length

(a) Sampling time (b) Training time

(C) Number of samples

(d) Number of iterations (e) Total time

Fig. 16 Comparison of DRL training overheads under different history lengths

than that of history length 4 and hence each sample’s col-
lection time is longer in the former setting.

Discussion of reducing tail latency under dynamic
available cluster resources

Evaluation settings

Workloads and Available Resources. In evaluation, we
test 4 different workloads, covering 2 generated edge-
cloud workload patterns (DAG batch workloads and Al

workloads) and 2 periods (Daytime and Night). Moreo-
ver, we further test 4 dynamic resource changes: 50%
decrease, 25% decrease, 25% increase, and 50% increase
in cluster resources, respectively.

Compared Configuration Settings. In particular, for
DAG batch workloads, we evaluate them by selecting
11 baseline Kubernetes scheduling algorithms and one
median ratio 80% of TRP (namely Res_80%). And for
Al workloads, we evaluate them by selecting 13 baseline



Page 24 of 32

(2023) 12:90

Wen et al. Journal of Cloud Computing

€0l 6/l 14! (04 el 0c0lL 9s'¢C £801 671 el 8911 %08 olel 1Jeisay 9Sealdul 905 9
00¢lL 13048 %Vl 086 €Sl 87’6 SSLC 601 o€l 7ol 601 %08 91kl 1elsay 9SBADUI %65 ¢ SC
6S'CC le'ce SC6l Lzt 6,8l 991 7661 0961 Ll SC6l 0961 %08 9lel 1ieisay 95B3U9P %S¢ 74

96'6 ¥9'L 500l 6Ll 96 S80 ¢SSl L16 870l 5001 8¢9l %08 olel 1ieisay 9589109p %05 194
6lce cl'ie S6'Lc ¥9'0¢ 09'L¢ €06l 781 00l e 88'¢C 601 %08 91kl 1ieisay $92In0sal [eulblO WBIN 44
56¢ 88'tt €6'/C 96ve €6'GC 6871 €Log 0c6C 68'8C e0Le 8,81 %08 21kl 1Jeisay 9SeaIdUI 9605 Lc
€€'GC 8r e 6591 89CE Gl'8C el S'8¢ 6C9¢ 00'5¢ 69¢ 6691 %08 ojel 1leisay 9SBADUI %S¢ 0¢
€9CC ¥1'8¢C 0€0¢ 68'/C 6€9¢ €C8 87l GE'SC 6L/l 6CYC 806l %08 olel e1say 9SE9IO9P %S¢ 6l
[4N4 1991 9L'LC S8l €8°0¢ 6'¢ S8l 6eLL S9/1 oSl 9561 %08 olel 1ieisay 9589109p %05 8l

SpeopIom

al'Le 6761 6v'LC 9561 elee yoel €0/l 088l 6'9¢ L1°0C 018l %08 olel 1ieisay $92In0sal [euIbLIO swinfeq Yo1eq 5vd Ll

dll d1d ddVdN dN dVN ddn dyl dvdi dTl d3 vid ddl solieusds bulinpayds qor olieusds

$92IN0S3 DWRUAP 12pUn 8| 0g 22811 egeqily AQ USALP SPROPIOM Udleg D/ JO Adudie| |18l padnpal Jo sabeiuadiad § ajqel



Page 25 of 32

(2023) 12:90

Wen et al. Journal of Cloud Computing

o1el oSealdul

8lve 124" G591l 6C1E 787l 6C1E ! 191 L7 G591 L7 78yl L1991 %08  piessid %05 9¢
olel osealdul

6CLC Sl €6'¢cl rLe Sl lvad 69 €6el [4 044 €6°€l 6C/LC Sl €6el %08  plessid %S¢ 93
olel 9Sealoap

0L's LSt ysel §8'G LSl §8'S €esl 99¢l L7'S ySel S8'S LSt 8¢l %08  piessid %S¢ 123
olel ENCEIE])

S06l €5CC SC6l SC6l 9eee Scol 9e'ee SC6l SC6l Sl'el Gl'6l 9e'ee SC6lL %08  plessia %05 133
olel  S92IN0OSal

clel 44 87'0¢ oLoc SlzL 114" €661 96'0¢ 8l9l 8191 G691 SlzL 706l %08  piessid [euibuo WBIN [43
olel oSealdul

LcLe 581 6€0¢ [49AS G/8l [4VAS £581 €00¢ EvLE 6£0¢ EvLE S8l €00C %08 piessid %05 L€
olel oSealdUul

08'Le le'cl 8C6l 6'le l6’ClL 89'L€ el 8C6l 6'le 8C6l 08'Le lecl 8C6l %08 piessid %S¢ 0¢
o1kl ENCEIRE]Y)

LGSl €0vc ¥S'ac 7961 €0rc 796l 14874 ¢ SCSlL ¥S'ec 7961 €0vc SLCC %08  piessid %S¢ 6¢
o1el  9seaid9p

0C'le 651C 8¢'LC 8¢'LC L7 8€'LC e 8¢'LC 8¢'LC 6C'LC 6C'LC Lrye 8E'LC %08 piessid %05 8¢
91l $9DINOSaU speo|

€81 8l¥c 696¢ LLST LC0¢g 00€ee 676l L96C €Lrse €0'SC L79¢ LLSC LL9C %08  Ppiessid [eulbuo awnpheg  fiom |y VA4

B B B B B n_m_S_H n_m_._H <mmu MDvdNIg B B B B
ddiN dd1 vdg ddin dd1 14a 44a d4a d4a vdg ddiN dd1 vdd
V1S vis V1S OSNVD DONVD DNVD DONVD ONVD ONVD ONVD 44a 44a 44a ddl/ddl soleuads bulinpayds qor  oleusds

$92IN0S2I DWRUAP J2pUn 0Z0Z 22811 egeqily AQ USALP SPROPLIOM |y JO ADUS1e| |IeY padNpal Jo sabeiusdiad 9 ajqel



Wen et al. Journal of Cloud Computing

(2023) 12:90

Max

Q3(75

quantile)

Mean Min

Median Q1(25

quantile)

Page 26 of 32

SHTTTIY:

400 4
300 1

400
300 1
200
100 4

58085008508

300+
2001
1004

RTITTILILS

8

18508508508

300+
2001
100 4

TLILIHLHE

80% -

NLP+Res 80% -
NPAPP+Res_80%

IPAP+Res_80% -

LRP+Res_80% -

MRP+Res_80%

EdgeTuner
BRA+Res_80% -
EP+Res_80% -
ILP+Res_80%
S
RLP+Res 80% A
TTP+Res_80%

NAP+Re

(a) Daytime: Original
resources

0

NLP+Res_80% -

NPAPP+Res_80%

RLP+Res_80% -

TTP+Res_80%

EP+Res_80%

ILP+Res_80% -

IPAP+Res_80% -

MRP+Res_80% -

EdgeTuner
BRA+Res_80% -
LRP+Res_80%
NAP+Res_80%

(b) Daytime: 50%
decrease in resources

EdgeTuner 4
BRA+Res_80% -

decrease in resources

EP+Res_80%
ILP+Res_80% +
IPAP+Res_80% -
LRP+Res_80% -
MRP+Res 80% -
NAP+Res_80%
NLP+Res_80% -
NPAPP+Res_80%
RLP+Res_80% A
TTP+Res_80% 4

(c) Daytime: 25%

EdgeTuner
BRA+Res_80% 4

ILP+Res_80%

LRP+Res 80% A

MRP+Res_80%

NAP+Res_80% A

NLP+Res_80% -

NPAPP+Res_80% A

RLP+Res_80% -

EP+Res_80% -
TTP+Res_80% A

IPAP+Res_80% -

(d) Daytime: 25%

increase in resources

NLP-+Res_80% -

NPAPP+Res_80% -

RLP+Res 80%

TTP+Res_80% -

EP+Res_80% -

IPAP+Res_80% -

LRP+Res_80% A

MRP+Res_80% |

EdgeTuner -
NAP+Res_80% -

BRA+Res 80%
ILP+Res_80% -

(e) Daytime: 50%
increase in resources

E7Ta0Ea00

1000

579009500608

;79090805999

800 1
600 1

.

79087058908

800
600 -

533959000000

5001

4004
200 A
0

400 A
200 A
0

0

IPAP+Res_80%

LRP+Res_80% -

NPAPP+Res_80% A

RLP+Res_80% -

TTP+Res_80%

ILP+Res_80% -+
IPAP+Res_80% -+

ILP+Res_80% 4

IPAP+Res_80% A

LRP+Res_80% 4

MRP+Res_80% -

NAP-+Res_80% 1

NLP+Res_80% -
EdgeTuner

EdgeTuner -
BRA+Res_80%

EdgeTuner -
BRA+Res_80% +

BRA+Res_80% 4
EP+Res_80% 4
EP+Res_80% -

MRP+Res_80% A

NAP+Res_80% -

NLP+Res_80% -

NPAPP+Res_80% +
RLP+Res_80% -
TTP+Res_80% -

EP+Res_80% A
ILP+Res_80% -

(f) Night: Original
resources

(g) Night: 50%
decrease in resources

LRP+Res_80% -

(h) Night: 25%
decrease in resources

IPAP+Res_80% -

LRP+Res_80% -

MRP+Res_80% -

NAP-+Res_80% -

NLP+Res_80% -

NPAPP+Res_80% -

RLP+Res_80% -+

TTP+Res_80% A

IPAP+Res_80%

LRP+Res_80%

MRP+Res 80%

NAP-+Res_80%

NLP+Res_80% -

NPAPP+Res_80% -

RLP+Res_80%

TTP+Res_80% 4

ILP+Res_80% -

NLP+Res_80%

NPAPP+Res_80%

RLP+Res_80% -

TTP+Res_80%

EP+Res_80%

MRP+Res_80%

NAP+Res_80% -
EdgeTuner -
BRA+Res 80% -
ILP+Res_80% -
EdgeTuner -
BRA+Res_80% A
EP+Res_80% -

(j) Night: 50%
increase in resources

(1) Night: 25%
increase in resources

Fig. 17 Comparison of tail latency of DAG batch workloads driven by Alibaba trace 2018 under dynamic resources

Volcano scheduling algorithms and one median ratio 80%
of TDP (namely Dis_80%).

Comparison of tail latency reduction under dynamic
available cluster resources

Table 5 and Table 6 summarizes the percentages of
reduced tail latency, when comparing EdgeTuner against
the baseline scheduler configurations. Figures 17 and
18 also use box plots to display the comparison results.

Experimental Results. We can observe that in our
considered 20 different scheduling scenarios (Scenarios
17 to 36): (i) compared to other baseline scheduler con-
figurations, EdgeTuner consistently brings the lowest tail
latencies due to its dynamic tuning mechanism. (ii) in
particular, for the same workload, less available resources
result in higher tail latencies.

Results. In general, when the cluster resource changes,
the DRL agent needs to be re-trained because the node
information changes in its state. In EdgeTuner, this
training can be performed offline by setting different
resources in its simulator for the same workload, thus
avoiding the time-consuming online learning process.
Moreover, as shown in Figs. 19 and 20, we also compare
Makespan of EdgeTuner with other scheduler configura-
tions in 20 different workload scheduling scenarios (Sce-
narios 17 to 36). We can see that under these scenarios
that the cluster resource changes, EdgeTuner can also
achieve lower Makespan than other scheduler con-
figurations (that is, enabling workload scheduling to be

completed more quickly), which indicates the DRL agent
of EdgeTuner chooses the optimal scheduling configu-
ration combination for each scenario. Thus, EdgeTuner
can well adapt to such situations where cluster resources
change dynamically.

Discussion of reducing job completion time (under
dynamic available cluster resources). First, the job’s tail
latency determines its final completion time. In detail,
for a DAG batch job, the job’s tail latency is the most
significant factor in its completion time. For an Al job,
the maximum job’s tail latency represents its comple-
tion time. Secondly, when the available cluster resources
change dynamically (Scenarios 17 to 36), we can also
find that EdgeTuner can achieve lower tail latencies than
other scheduler configurations due to its dynamic tun-
ing mechanism, which indicates the DRL agent selects
proper scheduler configurations and how well EdgeTuner
can adapt to dynamically changing resource situations.
Therefore, similar to dynamically changing Edge-Cloud
workload scenarios, EdgeTuner can also achieve lower
job completion time for such scheduling scenarios with
dynamic available cluster resources.

Related work

In modern cloud data centers, the scheduling of diverse
workloads has aroused the pursuit of many scholars
and industries. Table 7 summarizes existing scheduling
techniques from the following three perspectives.



Page 27 of 32

(2023) 12:90

Wen et al. Journal of Cloud Computing

wn
o © %)
_ - ] - - o
k=3 F %08 SIA+d YA VIS S s F %08 SIA+d AL VIS o
M F %08_SIA+d¥T_V1S " B = F %08_SIA+d¥'T VIS o E
I F %08_SIA+VHL_VIS O +ew F %08_SIA+VIL_VIS o~ 3
M F %08_SIA+d M. ONVO v = F %08_SIA+d M. ONVO S O
3 F %08 SIA+dd T ONVD o e F %08_SIA+ddT_ONVD v @
F %08_SIA+d YA A ONV! F %08_SICT+ ..
Lot 9%08_S ONVD e %08_SIA-+d AN A0 DNVD O
r %08 [+4 = r %08_S'd+ +~
I %08_SId+d¥T_14d _ONVD = g = %08_SId+d¥1_1d4d _ONVD =
= F %08_SIA+VAH A ONYD S e = F %08 SIA+VAH AUA ONVD &
M= [ %08 SIA+NOVANIE A ONVD &5° Q|- [ %08_SIA+3OVANIH 1A DNVD 80 -=
o= F %08 SI(+V I _ONVD A &= F %08_SiA+VAe_DNVD o
O SPa [ z 2
F %08_Sid+ ~ = [ 008 %+ —~
= %08 SIVAE A o 5 = [ %08 SiT+VHE 4 S0
HEH rlaunjpaspy N— n HaEn rJounaspyq =
L i
c oo oo o oo oo o m
E888R 2 zSa3sa —
- - X o - - I
[=x] F 9408 S1q+ S =] F %08 SIA+d YL VIS O
i - .,\\“m s m+mm._\_é\%,mmm v m - F %08_Sid+d¥1_VIS 5]
o] F %08 SI(+VAE_VIS N 5| = F %08_SI+VAE_VIS N=
M= F %08_SIA+d Y. ONVO PR Y= F %08_Sid+d Y- ONVD NI
= F %08_SIA+dd'T_ONVD O O| & F %08_SIA+dA'T ONVD Q2
M F %08_SIA+d YA 4Ad. ONVD g == F %08 SIA+d M A4 ONVO B
= F%08_SIQ+ddT 1A ONVD .= | = [ %08 SId+d¥1_A¥d _ONVO o=
= F %08_SId+Vid 440 ONYO W,. e [ %08_SId+Vdd JddA ONVYH R
M= [ %08 SIA+JOVANIE A DNVO 2 ¢ =2 [ %08_SIA+3OVANIE A ONVO gy &
M F %08_SIA+VIEd_ONVD wn| [ %08 SIQ+VId_ONVD =5
Co. SERONT 2 grme R 2 3
[ 2008 S+ ~ [ P05 <
Lo %608 S VaIE 1A o 5= %08 Sicl+Vad dd =~ 3
HEH - Iaun[a5pg < m R F Iouna5py 2
] R . —
c oo o oo —_o o9 9 9 © Q
E88FS wLS2SaA =)
S mEnt S raneaes 5
r %08_SId+ A r %08_Std+ _
= F %08_SIA+VIE_VIS ROE=3E=] F %08 SIA+VIE_V1S NS e
= b %08 Sid+d AL ONVD N o = F %08 SIA+dAN_ ONVD X 3
Lo F %08_SIA+dd'T_ONVD s o= F %08_SIA+dd'T_ONVD v O
[ F %08_SIq+dAL 1A ONYD QL Ll F %08 SIA+dIAL YA ONVD N @
M= F %08_SIA+d¥'T_A4d _ONVD g e F %08_SIA+d ¥ T _14d_ONVD .. O
= [ %08_SIA+V¥E JAA ONYD .o & |- F %08_SIA+VYE A4 DNVD = =
= [ %08_SIA+JOVANIE A ONVOS s F %08_SIA+MOVANIE 1A DNVOS =
Lon F %08_SI+V i _ONVD = O F %08_SIA+VId_ONVD 80 .=
o RO ) A Sta O SN z 32
r %08_SId+ r %08_ [7)
teg) [ %08 Si+Vad 14 —_ | [ %08 SIT+VHE d3d PR
HEH r lounjaspq (S} 15} Hik r JIunpaspyq h (5]
oo oo oo ~ 0Oo o 9o o — a
48L& og g 8 %
b
o] F %08_SIQ+d ML VIS o =] F 9408 SIA+d A %)
o o408 SI N VIS S Zia S S g
o r %08_SId+VId_VI1S S Sie F %08_SIA+VId_V1S o m
e [ 7608 SId-+dAIN ONYO v o|e b %08 SIA+dAIN_ ONVD X 3
r %08_SId+d¥d'T_ONVD co F %08_Sid+d¥d'T_ONVD S ©°
- F %08_SIQ+d YA 44d ONVD 0 O F %08 SIA+d AL 1A DNVD 7
g v
[ 7008 _SIq+ = F %08_SIA+d¥'T_A4d _ONVD O
= %08_SIq+d ¥ 1_1d9d _ONVD =
- [ 7008 _SIA+VAE J4A DONVO = gl= F %08_Sid+V A€ 1IA ONYD = =
iy r %08_SId+JOVANIE J4dd OZ<OW/. o | e F %08_SIA+3OVANIE A4A DNVOL
- [ %08_SId+VId_DNVD o | F %08_Sid+VId_DONVD [T =]
Tl [ 08 ST DA m @ = b %408_SIQ+d AN 4dd M o
[ J608 _Sid+ < -2 F %08 SIA+d¥' T _1dd A
- r %0 w%+<xm 44d [ORE:] F %08 Sid+vid J49d <
. i F 1oun [ 23pyg = E F Ioul Huwnvm an O
2 =" T g & < g
B = D ST+
VS B R ey »
+VIL_VIS L. O %08_SIA+VIH VIS %
+dIAONVYD o 5= %08_SIA+dAN. ONVO bt
+dT_ONVD g 2 | e %08_SId+d AT ONVD 5
I G ONYD LS Q| e %08 SIA+dAIA ONYD B 3
+d¥T_A4d _ONVD s B %08_SIA+d¥1_19d _ONVD = %
+VYE DA ONYD > %08_SIA+V I8 1dd DNYD an &
= K —
+MOVANIE 1dd ONVO S = %08_SIA+NOVANIE 44A DNVDIS =
— s N
e — 0 = p—
VIH_ONVD D < = a\o M"Q+<~_m _DNVD
+ A TId =l %08_SIA+d NN A4 <
+d¥19d A~ [ %08_Siq+d¥T_1Id = g
+VAE A & o %08 Sid+vad Jdd ~
P = ik Jaunpoaspyg .n
Ogegss~ S
(s) Aouage] [reL A ) %oqﬁﬂ [reL

Fig. 18 Comparison of tail latency of Al workloads driven by Alibaba trace 2020 under dynamic resources

%08 S9+dLL
[ %08 S9d+dTd

[ I %08_So¥+d IN
LT %08_SRY+dVN
T %08_S9¥+ddN
T %08_S9¥+d¥'T
T %08_S9¥+dVdI
C T9%08_SY+d Tl
%08 S9¥+dd

Iounge3pg

[ %08_Sod+dLL
[ %08_SoU+d T

Joun, ._lowvm

10000
7500
5000
2500

0

10000
5000

%08_S9Y+d.LL
%08_S9¥+dTd
%08_S9¥+dd VAN
%08_S9¥+d "IN
%08_S9Y+d VN
%08_SOY-+d YN
%08_SOY+d U]
9%08_SY+d VdI
9%08_SY+d 11
%08_SY+dH
%08 SRY+VIdd
Jounpaspyg

I %08_S9¥+dd VAN

%08_So¥+d LL
%08_SoY+d Td
%08_S9¥+dd VAN
%08_SY+d "IN
9%08_S9Y+d VYN
%08_SNY+d YN
%08_SoY+dd'T
%08_SY+d VdI
%08_SoY+d 11
%08_SoY+dH
%08 SRY+VId
JounjyaSpyg
%08_SOY+d LL
%08_SY+d T
%08_SY+dd VAN
%08_SY+d "IN
%08_S9Y+d VN
%08_SNA+d AN
%08_SY+d AT
%08_SOY+d VdI
%08_SY+d 11
%08_S9Y+dH
%08 SRA+V I
Iaunya3pg

(e) Daytime: 50%
increase in resources

15000

(d) Daytime: 25%
increase in resources

15000

(c) Daytime: 25%
decrease in resources

(b) Daytime: 50%

decrease in resources

(a) Daytime: Original

resources

10000

SRS
COOOOoOOO
100 00 00 00 00 00 0O 00!
lew‘mlwlwlmlwlw
VOVOVLVLLLLY
ARl
FHF++++ ¥
Eereere
—e
_dzzZEz
(j) Night: 50%

increase in resources

5000

%08_SY+dLL

9%08_SY+dH
%08 SRI+Vdd
1ounyaspg

10000

SEIERSER
SOOOOOO
00000000000000
LVLOLLVLLLOLO
EAAAAA
FTrA bt
Sepstes
E3S27<x

z

(1) Night: 25%

5000

%08_SY+d LL

9%08_SOY+d 11
%08_SoY+dH
%08 SRI+VId
Jounjo3pyg

0

15000
10000

%08_S9¥+d.LL
008_SOY+
%08_SY+d T
%08_SNU+dd VAN
%08_SU+d'IN
%08_S9Y+d VN
%08_SOY+d N
%08_S9Y+d ']
%08_SY+d VdI
%08_SU+d 11
%08_So¥+dd
%08 SRA+VIALd
iounyaspyg

5000

(h) Night: 25%
decrease in resources

0

%08_S¥+d.LL
%08_SY+dTd
%08_SY+dd VAN
%08_SY+d "IN
%08_SU+d VN
%08_SY+d YN
%08_SY+d ']
9%08_SY+d VdI
%08_SY+d 11
%08_SY+dH
%08 SRA+VAH
Jdunga3pyg

(g) Night: 50%
decrease in resources

0

1 %08 S9¥+d.LL
T %08_So¥+dTd
T %08_S9¥+dd VAN
[ %08 S9Y+d’IN
T %08_S9¥+dVN
%08 _SaY+d AN
T %08 _$¥+d ']
%08 _SY+dVdI
F %08_SY+d 11

15000
10000

M %08 SU+VIH
iaunyaspyg

Amv Sm%oxﬁz

5000

(f) Night: Original

increase in resources

resources

Fig. 19 Comparison of Makespan of DAG batch workloads driven by Alibaba trace 2018 under dynamic resources



Wen et al. Journal of Cloud Computing

(2023) 12:90 Page 28 of 32

Original resources

—
B 20000
< 15000 20000 oo 15000 15000
g 10000 10000 10000
10000 10000
£ 5000 5000 5000 5000
] 0 0 0 0 0
= BRRNRRIVRRR R o S T e T e T BRSRVRRRIRRRRR
EOOOOSOOOOOOSOOT EOOOOOOOOOOOSOSO EOOOOOOOOOOOOSO EOOOOOOOOOOOOO gOOOCOOOOOOOOO
= 6 iaaaao o aaooss S ol & poioia e o & oiaioania oo a o SR
S YaYatafatatatayatatatal e BRRgRnsasLns Bpgmasesasssss e
S AEF++rtr+ I+ 51 S o o Qtf+ttttItTtT+ AEFFLHEFIF 1+
-9} ceea ay [l AAA A A
B O SRESYSREREIEE S I ) S T o O s o
m:ﬁmgfﬂ;‘?gﬁfﬂr’% mEmgErE Ene mremgmrETEm e AR AN e m:Emgm:EGEm—'E
B OZE SO0 B OZE 5w D0 < < B OZE SO0 < 5B 0ZE D Do< < EonOZETE o<
A A P A A N A | P4 = A= =
EREZEEREZZ007 SREZ=ANRZZans BRAZ=ARAZZn7 ARRZRASEZZAs EREZARNRZZA S
Sl PS SppPS SplonPd S eloY) S s
o o B2 82 B2
goOu %GOO 2500 o635 o553
3 2 3 g 2
(a) Daytime: (b) Daytime: 50% (c) Daytime: 25% (d) Daytime: 25% (e) Daytime: 50%
- Original resources decrease in resources decrease in resources  increase in resources  increase in resources
) — = e — 40000
30000 30000 30000
b=t 40000 30000
S 20000 20000 20000 20000 20000
& 10000 10000 10000 10000
i) 0 0 0 0 0
e < o e e e T O O e e A P 50 2 52 =
S £S555E8SSESSSS £SSSSE8SSSSSSSS RS 2 28 S
= @ EEEREREE R SR PR, Eas 2 £ %
(g} B 0lnnnnnnn s s n 9 B0 wnnn s v b gy 50, | « !
2 e Yafafafafafatatatatala S eYaYaYatatatatatatatatal gLz 2 %, 2
a < ol SRA a A
z SrALLliaddiAd RiALiiiALatial BEL x m <
SEESYSEERRIEE SRRSEIRERRSEE <
= = ASASEA ) & o & I~
> N W R0l L PRELLELPELR N F = 3]
< A A o A A =7 < 2 N
= falatay mPQP< 717 ARREZBACRZZANHA a 3 o
17 < 5< <PpPRed a 7] a ]
UEUEU S SpbnPd
aZ%Z az%z
géuo o553
z Z
S © i~ ] a2
(f) Night: (g) Night: 50% (h) Night: 25% (1) Night: 25% (j) Night: 50%

decrease in resources decrease in resources  increase in resources increase in resources

Fig. 20 Comparison of Makespan of Al workloads driven by Alibaba trace 2020 under dynamic resources

Table 7 Scheduling techniques for traditional and Al workloads

Category

Introduction

Cluster resource management systems

Provide scheduling configuration parameters (e.g. Google Borg [66],YARN [65], Mesos [32],
Kubernetes [19])

Scheduling optimization for traditional workloads Apply DRL under a simplified state space (e.g. DeepRM [44])

Adopt event-driven decision framework to reduce the booming action space (e.g. [9, 13,41, 70])
Apply DRL to tackle DAG-based job scheduling problems (e.g. Decima [45], Spear [34])

Scheduling optimization for Al workloads Take the feature of iterativeness into consideration (e.g. SLAQ [79], Optium [51], OASIS [6])

Adopt DRL techniques into job scheduling optimization (e.g. Harmony [5], SIREN [67], DSS [57])
Apply DRL to optimize the task scheduling (e.g. [15, 38, 72])

Cluster resource management systems

that divides cloud jobs into high-priority service jobs

Many cluster resource management systems have been  and low-priority batch jobs, and schedule these jobs
developed to allocate available resources to their jobs  with consideration of multiple resource dimension-
[16, 25, 26, 45, 49, 83]. For example, Mesos [32] is the alities including CPU, memory, disk, and network. In
first cluster resource management system released recent years, Google launches a new system (Kuber-
by UC Berkeley. Mesos increases the cluster resource  netes [19]) for the new generation container technology
utilization using a two-level scheduler, which shares (Docker [47]).

resources among multiple computing frameworks More importantly, they can provide configuration
(e.g. Hadoop, Spark and Storm) as well as jobs within  parameters to control the resource allocation mechanism
each framework. YARN [65] is the next generation of of their schedulers.

Hadoop compute platform. By separating resource

management functions from the programming model, Scheduling optimization for traditional workloads

it delegates many scheduling-related functions to per-  There are lots of research work on traditional workloads’
job components. Google Borg [66] is a pioneer system  scheduling optimization based on ML/DRL techniques.



Wen et al. Journal of Cloud Computing (2023) 12:90

For example, DeepRM [44] applies DRL in cluster job
scheduling under a simplified state space: it assumes a
synthetic job arrival process and describes both clus-
ter and job as slots of homogeneous CPU and memory.
Hence it can only handle a limited action space: admit-
ting jobs or not. However, a real deployed scheduler
usually has a sophisticated state space and a huge action
space that decides the allocation of heterogeneous
resources to a large number of jobs of different workload
characteristics and priorities.

On the other hand, both [70] and [41] adopts event-
driven decision framework to reduce the booming action
space in practice. Here, [41] is a hierachical framework
that consists of global tier for VM resource allocation and
local tier for power management of local servers. While
[70] mainly targets the constraints of QoS requirements
(e.g., average response time). DRL-Cloud [9] improves
the energy (e.g. electricity) efficiency of data centers
with the consideration of task/data dependencies in task
scheduling stage. Du et al. [13] designed a DRL agent that
enables simultanueously deciding discrete actions (VMs
placement) and continuous actions (dynamic resource
pricing).

Besides, both [45] and [34] apply DRL to tackle DAG-
based job scheduling problems. Here, Decima [45] uses
a policy gradient agent and has a similar objective as
DeepRM, which is designed to tackle the DAG schedul-
ing problems within each job in Spark, while considering
interdependent tasks. Spear [34] works to minimize the
makespan of complex DAG-based jobs while consider-
ing both task dependencies and heterogeneous resource
demands at the same time.

These studies are mostly relied on specific contexts
such as power saving or resource pricing, along with
diverse constraints defined by users.

Scheduling optimization for Al workloads

Natural characteristics of Al workloads make them dif-
ferent from traditional workloads, so recent years has
witnessed and injected such features into job schedul-
ing optimization. For example, SLAQ [79], Optium [51]
and OASIS [6] take the feature of iterativeness into con-
sideration, and separately propose their online prediction
method for predicting the overheads of coming itera-
tions in each iterative step. Difference among them is that
SLAQ mainly studies the connection between job latency
and model quality, and advocates placing more resources
to jobs with a great potential of quality improvement;
Optium is designed for DL workloads, and it further ena-
bles saving communication cost while improving training
efficiency; OAS;S is aiming at dynamically controlling the
number of concurrent workers and parameter servers for

Page 29 of 32

each job to get a higher resource utilization and training
expedition.

Some other approaches adopt DRL techniques into
job scheduling optimization. For example, Harmony [5]
implicitly encodes interferences among co-located ML
jobs as one of inputs of neural network that maps raw
cluster and job states to job placement decisions (workers
and PSs allocation). SIREN [67] abstracts a ML job as a
set of serverless functions (e.g. AWS Lambda functions)
and leverages DRL techniques to adjust the number and
memory of such functions. DSS [57] is an automated
big-data task scheduling approach in cloud comput-
ing environments, which combines DRL and LSTM to
automatically predict the VMs to which each incoming
big data job should be scheduled to improve the perfor-
mance of big data analytics while reducing the resource
execution cost. They mostly consider the job placement
in a manner of Job-to-VMs, whereas we target changing
the scheduler configurations in a run-time mode.

Besides, DRL is also applied to optimize the task sched-
uling. For example, Fang et al. [15] propose an advanced
deep reinforcement learning (RL) approach (that learns
to schedule from experience) to better schedule DNN
inference queries, and Li et al. [38] develop a novel and
highly effective DRL-based control framework for dis-
tributed streaming data processing. Wu et al. [72] pre-
sent an optimal task allocation scheme with a virtual
network mapping algorithm based on deep CNN and
value-function based Q-learning. Note that they mostly
consider task scheduling scenarios with fixed workloads
and resources, whereas we consider such scenarios with
dynamically changing workloads and resources.

Our Work. In this paper, we focuses on edge-cloud
jobs with diverse workload characteristics (such as sto-
chastic arrival rate, different resource demands and
durations). Based on popular Kubernetes scheduler
and Volcano scheduler in real Kubernetes cluster, our
approach is built upon these two existing configurable
schedulers. Simultaneously, we employ DRL to tune their
configuration combinations online. On the one hand,
early work in this area adopts reinforcement learning
(RL) techniques to schedule jobs at particular time slots,
so as to minimize their latencies [44]. On the other hand,
in order to accelerate the training speed, later techniques
in this area applies state-of-the-art DRL techniques [40,
63]. However, when the cluster schedules edge-cloud jobs
by using DRL to tune scheduler configurations at run-
time, it still suffers from the time-consuming challenge
of the sampling phases, which is mainly because: (1)in
order to achieve convergence, the DRL training needs a
large number of samples (e.g. over 1 million); (2)in order
to obtain a training sample, it also takes a rather long
time (at least a few seconds).



Wen et al. Journal of Cloud Computing (2023) 12:90

To address the above challenges, some recent approaches
train DRL agents in an offline manner [75, 76]. Note that
the DRL training is driven by a neural network based com-
putational model, which predicts system states and gener-
ates training samples based on history traces. Similarly,
Ran et.al [54] develop a simulation platform called DeepEE,
which is used to emulate dynamic I'T workloads and cooling
systems. More crucially, these techniques target long-run-
ning and compute-intensive jobs in HPC data centers. And
compared with our work’s scenario, there are two key dif-
ferences: (i)the long-running jobs follow an arrival queue,
and are dispatched to proper servers through a fixed job
scheduling algorithm. (ii)for these compute-intensive jobs
in their scenarios, latency is not a key concern. (iii)in DRL
training, these techniques implicitly assume pre-defined
available resources in the cluster.

Conclusion

In this paper, we propose EdgeTuner, a fast scheduler
configuration tuning approach that efficiently lever-
ages DRL to reduce tail latency of edge-cloud jobs. It
can timely train a DRL agent in order to properly tune
scheduler configurations in dynamic edge-cloud envi-
ronment. We implement EdgeTuner on both Kubernetes
and Volcano schedulers and extensively evaluate it on
real workloads driven by Alibaba production traces. The
experimental results show that EdgeTuner outperforms
prevailing scheduling algorithms by achieving much
lower tail latency while accelerating DRL training speed.

Acknowledgements
The authors would like to thank all anonymous reviewers for their invaluable
comments.

Authors’ contributions

Shilin Wen and Rui Han wrote the main manuscript text. Chi Harold Liu and
Lydia Y. Chen prepared the main figures and tables. All authors reviewed the
manuscript. The author(s) read and approved the final manuscript.

Authors’ information

Shilin Wen is a PhD student at the School of Computer Science and Technol-
ogy, Beijing Institute of Technology. His work focuses on optimization of
machine learning, big data system for edge computing systems.

Rui Han is a Full Professor at the School of Computer Science and Technology,
Beijing Institute of Technology, China.

Chi Harold Liu receives the Ph.D. degree from Imperial College, UK'in 2010,
and the B.Eng. degree from Tsinghua University, China in 2006. He is currently
a Full Professor and Vice Dean at the School of Computer Science and Tech-
nology, Beijing Institute of Technology, China.

Lydia Y. Chen received the BA degree from National Taiwan University, and
the PhD from Pennsylvania State University. She is currently an associate pro-
fessor with the Department of Computer Science, Technology University Delft.
Prior to joining TU Delft, she was a research staff member with the IBM Zurich
Research Lab from 2007 to 2018.

Funding

This work is supported by the National Natural Science Foundation of China
(Grant No. 62272046, 62132019, 61872337) and Shandong Provincial Natural
Science Foundation (Grant No. ZR2020MF034).

Page 30 of 32

Availability of data and materials
The data and materials used to support the findings of this study are available
from the corresponding author upon request.

Declarations

Ethics approval and consent to participate
This declaration is “not applicable”.

Competing interests
The authors declare no competing interests.

Received: 31 October 2022 Accepted: 26 May 2023
Published online: 17 June 2023

References

1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat
S, Irving G, Isard M et al (2016) {TensorFlow}: a system for {Large-Scale}
machine learning. In: 12th USENIX symposium on operating systems
design and implementation (OSDI 16). USENIX Association, pp 265-283

2. Alibaba (2018) Alitrace. https://github.com/alibaba/clusterdata/tree/
master/cluster-trace-v2018. Accessed 10 Oct 2022

3. Alibaba (2020) Alitrace. https://github.com/alibaba/clusterdata/tree/
master/cluster-trace-gpu-v2020. Accessed 10 Oct 2022

4. Arias J, Gamez JA, Puerta JM (2017) Learning distributed discrete bayesian
network classifiers under MapReduce with apache spark. Knowl-Based
Syst 117:16-26

5. BaoY,PengY,Wu C (2019) Deep learning-based job placement in distrib-
uted machine learning clusters. In: IEEE INFOCOM 2019-IEEE Conference
on Computer Communications. IEEE, pp 505-513

6. BaoY,PengY,WuC, LiZ (2018) Online job scheduling in distributed
machine learning clusters. In: [EEE INFOCOM 2018-IEEE Conference on
Computer Communications. IEEE, pp 495-503

7. Carrién C (2022) Kubernetes scheduling: Taxonomy, ongoing issues and
challenges. ACM Comput Surv 55(7):138:1-138:37

8. Chekired DA, Togou MA, Khoukhi L, Ksentini A (2019) 5g-slicing-enabled
scalable sdn core network: Toward an ultra-low latency of autonomous
driving service. IEEE J Sel Areas Commun 37(8):1769-1782

9. Cheng M, Li J, Nazarian S (2018) Drl-cloud: Deep reinforcement learning-
based resource provisioning and task scheduling for cloud service
providers. In: Proceedings of the 23rd Asia and South Pacific Design
Automation Conference. IEEE Press, pp 129-134

10. Cloud Native Computing Foundation (CNCF). Volcano: Kubernetes native
batch system. https://volcano.sh/en/. Accessed 10 Oct 2022

11. Dabney W, Ostrovski G, Silver D, Munos R (2018) Implicit quantile net-
works for distributional reinforcement learning. In: International confer-
ence on machine learning. PMLR, pp 1096-1105

12. Dean J, Barroso LA (2013) The tail at scale. Commun ACM 56(2):74-80

13. Du B, Wu C, Huang Z (2019) Learning resource allocation and pricing
for cloud profit maximization. In: The Thirty-Third AAAI Conference on
Artificial Intelligence (AAAI-19). AAAI Press, pp 7570-7577

14. Du Z, Sun H,HeY, HeY, Bader DA, Zhang H (2013) Energy-efficient sched-
uling for best-effort interactive services to achieve high response quality.
In: 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing. IEEE, pp 637-648

15. Fang Z,YuT, Mengshoel OJ, Gupta RK (2017) Qos-aware scheduling of
heterogeneous servers for inference in deep neural networks. In: CIKM'17.
ACM, pp 2067-2070

16. Garefalakis P, Karanasos K, Pietzuch P, Suresh A, Rao S (2018) Medea:
scheduling of long running applications in shared production clusters. In:
Proceedings of the thirteenth EuroSys conference. ACM, pp 1-13

17. Ghodsi A, Zaharia M, Hindman B, Konwinski A, Shenker S, Stoica | (2011)
Dominant resource fairness: Fair allocation of multiple resource types. In:
8th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 11). USENIX Association, pp 24-24


https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2020
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2020
https://volcano.sh/en/

Wen et al. Journal of Cloud Computing

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33

34.

35.

36.

37.

38.

39.

40.

(2023) 12:90

Gianniti E, Rizzi AM, Barbierato E, Gribaudo M, Ardagna D (2017) Fluid
petri nets for the performance evaluation of MapReduce and spark
applications. ACM SIGMETRICS Perform Eval Rev 44(4):23-36

Google. Google kubernetes. https://kubernetes.io. Accessed 10 Oct 2022
Han R, Ghanem M M, Guo L, et al (2014) Enabling cost-aware and adap-
tive elasticity of multi-tier cloud applications. Future Gen Comput Syst
32:82-98

Han R, Guo L, Ghanem M M, et al (2012) Lightweight resource scaling for
cloud applications. In: 2012 12th I[EEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (ccgrid 2012). IEEE, pp 644-651

Han R, Huang S, Wang Z, Zhan J (2017) Clap: Component-level approxi-
mate processing for low tail latency and high result accuracy in cloud
online services. [EEE Trans Parallel Distrib Syst 28(8):2190-2203

Han R, John L K, Zhan J (2017) Benchmarking big data systems: A review.
IEEE Trans Serv Comput 11(3):580-597

Han R, Liu CH, Li S, Wen S, Liu X (2020) Accelerating deep learning
systems via critical set identification and model compression. IEEE Trans
Comput 69(7):1059-1070

Han R, Liu CH, Zong Z, Chen LY, Liu W, Wang S, Zhan J (2019) Workload-
adaptive configuration tuning for hierarchical cloud schedulers. I[EEE
Trans Parallel and Distrib Syst 30(12):2879-2895

Han R, Wen S, Liu C H, et al (2022) EdgeTuner: Fast Scheduling Algorithm
Tuning for Dynamic Edge-Cloud Workloads and Resources. In: [EEE
INFOCOM 2022-IEEE Conference on Computer Communications. IEEE, pp
880-889

Han R, Zhang Q, Liu CH, Wang G, Tang J, Chen LY (2021) Legodnn: block-
grained scaling of deep neural networks for mobile vision. In: Mobi-
Com'21. ACM, pp 406-419

Hao Z,YiS, Li Q (2019) Nomad: An efficient consensus approach for
latency-sensitive edge-cloud applications. In: INFOCOM'19. IEEE, pp
2539-2547

HeY, Elnikety S, Larus J, Yan C (2012) Zeta: Scheduling interactive services
with partial execution. In: Proceedings of the Third ACM Symposium on
Cloud Computing. ACM, pp 1-14

He Y, Elnikety S, Sun H (2011) Tians scheduling: Using partial processing
in best-effort applications. In: 2011 31st International Conference on
Distributed Computing Systems. IEEE, pp 434-445

Hessel M, Modayil J, Van Hasselt H, Schaul T, Ostrovski G, Dabney W,
Horgan D, Piot B, Azar M, Silver D (2018) Rainbow: Combining improve-
ments in deep reinforcement learning. In: Thirty-second AAAI conference
on artificial intelligence. AAAI Press, pp 3215-3222

Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz R, Shenker
S, Stoica | (2011) Mesos: A platform for {Fine-Grained} resource sharing

in the data center. In: 8th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 11). USENIX Association, pp 22-22
Horgan D, Quan J, Budden D, Barth-Maron G, Hessel M, Van Hasselt H,
Silver D (2018) Distributed prioritized experience replay. arXiv preprint
arXiv:1803.00933

Hu Z,Tu J, Li B (2019) Spear: Optimized dependency-aware task schedul-
ing with deep reinforcement learning. In: 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS). IEEE, pp
2037-2046

Jalaparti V, Bodik P, Kandula S, Menache |, Rybalkin M, Yan C (2013) Speed-
ing up distributed request-response workflows. ACM SIGCOMM Comput
Commun Rev 43(4):219-230

Kadkhodaei H, Moghadam AME, Dehghan M (2021) Big data classifica-
tion using heterogeneous ensemble classifiers in apache spark based on
MapReduce paradigm. Expert Syst Appl 183:115369

Kulshrestha T, Saxena D, Niyogi R, Cao J (2019) Real-time crowd monitor-
ing using seamless indoor-outdoor localization. IEEE Trans Mob Comput
19(3):664-679

LiT, Xu Z Tang J, Wang Y (2018) Model-free control for distributed stream
data processing using deep reinforcement learning. Proc VLDB Endow-
ment 11(6):705-718

Liang E, Liaw R, Nishihara R, Moritz P, Fox R, Gonzalez J, Goldberg K, Stoica
1 (2017) Ray rllib: A composable and scalable reinforcement learning
library, vol 85. arXiv preprint arXiv:1712.09381

LiuN, Li Z, Xu J, Xu Z, Lin S, Qiu Q Tang J, Wang Y (2017) A hierarchical
framework of cloud resource allocation and power management using
deep reinforcement learning. In: ICDCS'17. IEEE Computer Society, pp
372-382

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Page 31 of 32

LiuN, Li Z, Xu J,Xu Z,Lin S, Qiu Q Tang J, Wang Y (2017) A hierarchical
framework of cloud resource allocation and power management using
deep reinforcement learning. In: 2017 IEEE 37th international conference
on distributed computing systems (ICDCS). IEEE, pp 372-382

LiuY, ZhouY, Hu S (2017) Combating coordinated pricing cyberattack
and energy theft in smart home cyber-physical systems. IEEE Trans
Comput-Aided Des Integr Circ Syst 37(3):573-586

Ma X, Zhou A, Zhang S, Wang S (2020) Cooperative service caching and
workload scheduling in mobile edge computing. In: INFOCOM'20. IEEE,
pp 2076-2085

Mao H, Alizadeh M, Menache |, Kandula S (2016) Resource management
with deep reinforcement learning. In: Proceedings of the 15th ACM
workshop on hot topics in networks. ACM, pp 50-56

Mao H, Schwarzkopf M, Venkatakrishnan SB, Meng Z, Alizadeh M

(2019) Learning scheduling algorithms for data processing clusters. In:
Proceedings of the ACM Special Interest Group on Data Communication,
SIGCOMM 2019. ACM, pp 270-288

Mehnaz S, Bertino E (2020) Privacy-preserving real-time anomaly detec-
tion using edge computing. In: ICDE'20. IEEE, pp 469-480

Merkel D (2014) Docker: lightweight linux containers for consistent
development and deployment. Linux J 2014(239):2

Mirobi GJ, Arockiam L (2015) Service level agreement in cloud comput-
ing: An overview. In: 2015 International Conference on Control, Instru-
mentation, Communication and Computational Technologies (ICCICCT).
IEEE, pp 753-758

Park JW, Tumanov A, Jiang A, Kozuch MA, Ganger GR (2018) 3sigma: distri-
bution-based cluster scheduling for runtime uncertainty. In: Proceedings
of the Thirteenth EuroSys Conference. ACM, pp 1-17

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, KilleenT, Lin Z,
Gimelshein N, Antiga L et al (2019) Pytorch: An imperative style, high-
performance deep learning library. In: Annual Conference onNeural Infor-
mation Processing Systems 2019 (NeurlPS 2019). NIPS, pp 8024-8035
Peng Y, BaoY, Chen Y, Wu C, Guo C (2018) Optimus: an efficient dynamic
resource scheduler for deep learning clusters. In: Proceedings of the
Thirteenth EuroSys Conference. ACM, pp 1-14

Phan A-C, Cao H-P, Tran H-D, Phan T-C (2019) Face recognition using
gabor wavelet in mapreduce and spark. In: World Congress on Global
Optimization. Springer, pp 769-778

Phan A-C, Tran H-D, Phan T-C (2018) Fingerprint recognition using gabor
wavelet in mapreduce and spark. In: Proceedings of the Ninth Interna-
tional Symposium on Information and Communication Technology. ACM,
pp 54-60

RanY, Hu H, Zhou X, Wen Y (2019) Deepee: Joint optimization of job
scheduling and cooling control for data center energy efficiency using
deep reinforcement learning. In: 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS). IEEE, pp 645-655
Rattanaopas K (2017) A performance comparison of apache tez and
mapreduce with data compression on hadoop cluster. In: 2017 14th
International Joint Conference on Computer Science and Software
Engineering (JCSSE). IEEE, pp 1-5

Requeno JI, Gascédn |, Merseguer J (2018) Towards the performance
analysis of apache tez applications. In: Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering. ACM, pp 147-152
Rjoub G, Bentahar J, Wahab OA, Bataineh A (2019) Deep smart schedul-
ing: A deep learning approach for automated big data scheduling over
the cloud. In: 2019 7th International Conference on Future Internet of
Things and Cloud (FiCloud). IEEE, pp 189-196

ShiW, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: Vision and chal-
lenges. IEEE Internet Things J 3(5):637-646

Suresh L, Canini M, Schmid S, Feldmann A (2015) C3: Cutting tail latency
in cloud data stores via adaptive replica selection. In: 12th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 15).
USENIX Association, pp 513-527

Sutton RS, Barto AG (2018) Reinforcement learning: An introduction. MIT
Press

Tan B, Ma H, Mei Y, Zhang M (2020) A cooperative coevolution genetic
programming hyper-heuristic approach for on-line resource allocation in
container-based clouds. IEEE Trans Cloud Comput 10(3):1500-1514
TekdoganT, Cakmak A (2021) Benchmarking apache spark and hadoop
mapreduce on big data classification. In: 2021 5th International Confer-
ence on Cloud and Big Data Computing (ICCBDC). ACM, pp 15-20


https://kubernetes.io
http://arxiv.org/abs/1803.00933
http://arxiv.org/abs/1712.09381

Wen et al. Journal of Cloud Computing (2023) 12:90 Page 32 of 32

63. Toromanoff M, Wirbel E, Moutarde F (2019) Is deep reinforcement learn-
ing really superhuman on atari? leveling the playing field. arXiv preprint
arxiv:1908.04683

64. Tsai C-W, Huang W-C, Chiang M-H, Chiang M-C, Yang C-S (2014) A
hyper-heuristic scheduling algorithm for cloud. IEEE Trans Cloud Comput
2(2):236-250

65. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, Graves
T, Lowe J, Shah H, Seth S et al (2013) Apache hadoop yarn: Yet another
resource negotiator. In: Proceedings of the 4th annual Symposium on
Cloud Computing. ACM, pp 1-16

66. Verma A, Pedrosa L, Korupolu M, Oppenheimer D, Tune E, Wilkes J (2015)
Large-scale cluster management at google with borg. In: EuroSys'15.
ACM,p 18

67. Wang H, Niu D, Li B (2019) Distributed machine learning with a serverless
architecture. In: IEEE INFOCOM 2019-IEEE Conference on Computer Com-
munications. IEEE, pp 1288-1296

68. Wang J, Zhang J, Bao W, Zhu X, Cao B, Yu PS (2018) Not just privacy:
Improving performance of private deep learning in mobile cloud. In:
SIGKDD'18. ACM, pp 2407-2416

69. Wang S, Yang S, Zhao C (2020) Surveiledge: Real-time video query based
on collaborative cloud-edge deep learning. INFOCOM 2020:2519-2528

70. WeiY,Pan L, Liu S, Wu L, Meng X (2018) DRL-scheduling: An intelligent
Qos-aware job scheduling framework for applications in clouds. IEEE
Access 6:55112-55125

71. WisemanY, Feitelson DG (2003) Paired gang scheduling. IEEE Trans Paral-
lel Dist Syst 14(6):581-592

72. Wu C, Xu G, Ding Y, Zhao J (2019) Explore deep neural network and
reinforcement learning to large-scale tasks processing in big data. Int J
Pattern Recog Artif Intell 33(13):1951010

73. Xiao Q-z, Zhong J, Feng L, Luo L, Lv J (2019) A cooperative coevolution
hyper-heuristic framework for workflow scheduling problem. IEEE Trans
Serv Comput 15(1):150-163

74. Yang (2019) Aligraph: A comprehensive graph neural network platform.
In: Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining. ACM, pp 3165-3166

75. Yi D, Zhou X, Wen Y, Tan R (2019) Toward efficient compute-intensive
job allocation for green data centers: A deep reinforcement learning
approach. In: ICDCS'19. IEEE, pp 634-644

76. Yi D, Zhou X, Wen Y, Tan R (2020) Efficient compute-intensive job alloca-
tion in data centers via deep reinforcement learning. IEEE Trans Parallel
Distrib Syst 31(6):1474-1485

77. YiD, Zhou X, Wen Y, Tan R (2019) Toward efficient compute-intensive
job allocation for green data centers: A deep reinforcement learning
approach. In: 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, pp 634-644

78. Yun J-M, HeY, Elnikety S, Ren S (2015) Optimal aggregation policy for
reducing tail latency of web search. In: Proceedings of the 38th Interna-
tional ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval. ACM, pp 63-72

79. Zhang H, Stafman L, Or A, Freedman MJ (2017) Slag: quality-driven
scheduling for distributed machine learning. In: Proceedings of the 2017
Symposium on Cloud Computing. ACM, pp 390-404

80. Zhang Q Zhang Q, ShiW, Zhong H (2018) Firework: Data processing and
sharing for hybrid cloud-edge analytics. IEEE Trans Parallel Distrib Syst
29(9):2004-2017

81. Zhang, Sheng VS (2019) Fog-enabled event processing based on loT

resource models. IEEE Trans Knowl Data Eng 31(9):1707-1721 Submit your manuscript to a SprlngerOpen‘D
82. Zhao Z, Barijough KM, Gerstlauer A (2018) Deepthings: Distributed adap- journa| and benefit from:

tive deep learning inference on resource-constrained loT edge clusters.

IEEE Trans Comput-Aided Des Integr Circ Syst 37(11):2348-2359 » Convenient online submission
83. Zong Z Wen L, Hu X, Han R, Qian C, Lin L (2021) Mespaconfig: Memory- . X

sparing configuration auto-tuning for co-located in-memory cluster » Rigorous peer review

computing jobs. IEEE Trans Serv Comput 15(5):2883-2896 » Open access: articles freely available online

. , » High visibility within the field
Publisher’s Note » Retaining the copyright to your article

Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Submit your next manuscript at » springeropen.com



http://arxiv.org/abs/1908.04683

	Fast DRL-based scheduler configuration tuning for reducing tail latency in edge-cloud jobs
	Abstract 
	Introduction
	Background
	Heterogeneous workloads and machines in edge-cloud collaboration scenarios
	Heterogeneous workloads
	Heterogeneous machines

	Sensitive scheduler configurations of affecting tail latency
	Scheduling algorithms
	Tail latency mitigation policies
	Example of job scheduling using three Volcano scheduler configurations


	Problem formulation
	EdgeTuner
	Design idea
	Overview
	Simulator-based DRL training
	DRL agent for training
	Task and resource allocation of simulator-based environment

	Implementation of cluster simulator

	Evaluation
	Experimental settings
	Evaluation of EdgeTuner’s effectiveness under dynamic edge-cloud workloads
	Evaluation settings
	Comparison of tail latency reduction under dynamic edge-cloud workloads

	Evaluation of EdgeTuner’s acceleration effect in DRL training
	Evaluation settings
	Comparison of DRL training time in EdgeTuner and real Kubernetes cluster

	Discussion of DRL training settings
	Evaluation settings
	Comparison of different DRL training techniques
	Comparison of actors with different numbers
	Comparison of different history length

	Discussion of reducing tail latency under dynamic available cluster resources
	Evaluation settings
	Comparison of tail latency reduction under dynamic available cluster resources


	Related work
	Cluster resource management systems
	Scheduling optimization for traditional workloads
	Scheduling optimization for AI workloads

	Conclusion
	Acknowledgements
	References


