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tuning for reducing tail latency in edge‑cloud 
jobs
Shilin Wen1, Rui Han1*, Chi Harold Liu1 and Lydia Y. Chen2 

Abstract 

Edge-cloud applications are rapidly prevailing in recent years and pose the challenge of using both resource-strenu-
ous edge devices and elastic cloud resources under dynamic workloads. Efficient resource allocation on edge-cloud 
jobs via cluster schedulers (e.g. Kubernetes/Volcano scheduler) is essential to guarantee their performance, e.g. tail 
latency, and such allocation is sensitive to scheduler configurations such as applied scheduling algorithms and task 
restart/discard policy. Deep reinforcement learning (DRL) is increasingly applied to optimize scheduling decisions. 
However, DRL faces the conundrum of achieving high rewards at a dauntingly long training time (e.g. hours or days), 
making it difficult to tune the scheduler configurations online in accordance to dynamically changing edge-cloud 
workloads and resources. For such an issue, this paper proposes EdgeTuner, a fast scheduler configuration tuning 
approach that efficiently leverages DRL to reduce tail latency of edge-cloud jobs. The enabling feature of EdgeTuner 
is to effectively simulate the execution of edge-cloud jobs under different scheduler configurations and thus quickly 
estimate these configurations’ influence on job performance. The simulation results allow EdgeTuner to timely train 
a DRL agent in order to properly tune scheduler configurations in dynamic edge-cloud environment. We implement 
EdgeTuner in both Kubernetes and Volcano schedulers and extensively evaluate it on real workloads driven by Ali-
baba production traces. Our results show that EdgeTuner outperforms prevailing scheduling algorithms by achieving 
much lower tail latency while accelerating DRL training speed by an average of 151.63x.

Keywords  Edge-cloud jobs, Tail latency, Scheduler configurations, DRL, Kubernetes and Volcano

Introduction
With the fast development of Internet of Things (IoT), 
traditional cloud-based applications suffer from high 
transmission latency due to large data volume and limited 
bandwidth. On the other hand, edge computing provides 
quick response and protects data privacy via local data 
processing, but has limited computational resources to 
execute expensive vision and machine learning tasks [20, 

21, 24, 27, 43, 58]. Increasing numbers of IoT applica-
tions, therefore, apply a new paradigm that processes a 
job’s tasks on both cloud and edge nodes [28, 69, 80]. This 
paper studies two typical types of edge-cloud jobs:

•	 Directed acyclic graph (DAG) jobs, whose tasks have 
sequential dependence. Examples include distributed 
data processing  [4, 18, 23], face/fingerprint recog-
nition  [52, 53], and image classification  [36, 55, 56, 
62]. In particular, MapReduce jobs are a representa-
tive type of DAG jobs. For a typical MapReduce job, 
it usually consists of a three-step execution process: 
(1) a start-up task slices the input data set into mul-
tiple separate chunks; (2) many parallel Map tasks 
process them; (3) after all Map tasks are completed, 
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the results will be sent to the Reduce task for final 
processing. So we can see that for a MapReduce job, 
subsequent tasks require the completion of previous 
tasks before they can start (that is, its tasks are exe-
cuted sequentially).

•	 Artificial intelligence (AI) jobs, which usually have a 
large number of concurrent tasks. Examples include 
smart home applications  [42, 82], smart health-
care  [46], anomaly detection  [81], object recogni-
tion [37], autonomous driving services [8], and intel-
ligent photo management [68]. In particular, machine 
learning jobs that are submitted in TensorFlow [1] 
framework are a representative type of AI jobs. For 
a TensorFlow job, it usually consists of multiple (e.g. 
50) tasks that execute concurrently. Since there is 
no sequential execution dependency between these 
tasks, they will not affect each other during execu-
tion.

When processing the above workloads on edge and 
cloud nodes [28, 69, 80], proper scheduling of their tasks 
is critical to their performance. In particular, a small pro-
portion (e.g. 1%) of straggling tasks, called tail latency, 
decide a job’s response time.

Example. Figure  1 shows an example scenario using 
in a Kubernetes cluster. The Volcano scheduler  [10] 
allocates a list of jobs to edge and cloud nodes under 
different scheduler configurations. Specifically, the 
scheduling algorithm (e.g. GANG_LRP , GANG_MRP 
and GANG_BRA ) decides how resources are allocated 

to tasks of these jobs. In addition, tail latency mitigation 
policy (task resubmitting policy (TRP) or task discard 
policy (TDP)) is another type of scheduler configura-
tion, which is used to control which tasks (that cause the 
long tail latencies) need to be restarted or discarded. This 
example shows that for the same workload, when using 
six different configuration combinations (e.g. c1, c2, c3, 
c4, c5 and c6), the scheduler results in considerably dif-
ferent tail latencies. Note that, due to the tail latency 
determines the response time of a job, when this value is 
larger, the job completion time is correspondingly larger. 
Hence, in order to make the running workload complete 
faster, we can achieve this by selecting the one with lower 
tail latency from different scheduling configuration com-
binations. For example, in Fig. 1, c1 is a scheduling con-
figuration combination with lower tail latency, thus we 
can select c1 to obtain lower job completion time.

Configuration sensitive schedulers propose two key 
challenges in practice. First, real cluster schedulers have 
massive optional configurations, including dozens of 
scheduling algorithms (e.g. 11 Kubernetes scheduling 
algorithms and 13 Volcano scheduling algorithms) and 
settings of tail latency mitigation policies (e.g. differ-
ent values of TRP and TDP). The combination of these 
configurations constructs a huge search space. Second, 
at run-time, jobs of different characteristics arrive con-
tinuously and most jobs last for a few seconds to minutes. 
Moreover, in a resource-sharing environment, the avail-
able resources in edge and cloud nodes also dynamically 
change.

Fig. 1  Edge-cloud workloads scheduling through Kubernetes cluster schedulers
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Recently, deep reinforcement learning (DRL), which is 
an important extension of the traditional reinforcement 
learning (RL) method, has been applied to various sophis-
ticated online optimization problems with large solution 
spaces [40, 44, 63]. However, in real cluster scheduling, 
applying this technique to tune scheduler configurations 
requires a dauntingly large number of data samples for 
training DRL agents. Moreover, due to randomly arrival 
jobs, various resource demands of tasks, and elastic node 
resources, when constructing time-variant states in a 
DRL environment, a training sample needs rather long 
time (e.g. 10 seconds) to generate. And the DRL training 
may also need millions of samples to converge. Therefore, 
the time-consuming sampling phase (may take dozens 
of hours) is the bottleneck of the whole DRL training 
process. Note that at run-time, an outdated DRL agent 
may lead to significant deviations from the optimal con-
figuration combination and incur job performance degra-
dation. Some techniques have been proposed to support 
the DRL training in an offline fashion through developing 
simulation platforms [54, 75, 76]. But most of them have 
such limitations: (1)they only consider these long-running 
jobs in high performance computing (HPC) data centers; 
(2)in their considered scheduling scenarios, these long-
running jobs are allocated to proper servers according to 
a fixed job scheduling algorithm; (3)in DRL training, 
they implicitly assume fixed available resources in the 
cluster.

In this paper, we propose EdgeTuner, an online 
approach that effectively uses a DRL agent to select 
scheduler configurations for edge-cloud jobs. To over-
come the expensive training overhead, we develop a clus-
ter simulator to emulate the volatile and complex state 
space of edge-cloud jobs (e.g. their task dependance, 
tasks’ resource demands, and cluster resource utiliza-
tion). The simulator effectively captures the on-line adap-
tion across different scheduling algorithms as well as the 
dynamicity of edge-cloud jobs. As such, the training of 
DRL agent can be effectively and quickly converged via 
this offline simulation phase. Note that EdgeTuner dif-
fers from traditional hyper-heuristic approaches that find 
an optimal scheduling algorithm for pre-specified cloud 
workflow [73] or batch jobs [61, 64]. This is because Edg-
eTuner needs no prior knowledge about the jobs to be 
scheduled and provides fast scheduling algorithm tuning 
for continuously arrival jobs in the cluster.

In this paper, our contributions are mainly as follows:
⊲ Complex Edge-Cloud job scheduling modelling. 

We formulate the tuning of scheduling algorithms for 
edge-cloud jobs as a sequential decision making process 
(MDP) to leverage the DRL technique. To incorporate 
various scheduling scenarios, we define general state rep-
resentation of complex nodes and workloads, use action 

to reflect optional scheduling algorithms, and define 
reward function to estimate job tail latency.
⊲ DRL training acceleration. We develop a cluster 

simulator to emulates a scheduling algorithm’s resource 
allocation mechanism and its influence factors, includ-
ing available resources, and waiting and running tasks. 
At each scheduling interval, the simulator takes the 
agent’s state and action as inputs and outputs the reward 
instantly (this reward production process takes at least 
a few seconds in real clusters). The training can be per-
formed offline by directly interacting with the simulator 
in the usually adopted online learning scheme.
⊲ Implementation and evaluation. We incorporate 

our controller on the popular Kubernetes and Volcano 
schedulers and evaluate both schedulers using workloads 
driven from the Alibaba cluster trace  [2, 3]. The exten-
sive comparative evaluations against latest Kubernetes 
and Volcano scheduling algorithms show: (i) by applying 
DRL agents in such various scenarios of dynamic work-
loads and resources, EdgeTuner outperforms baselines by 
achieving an average of 21.66% reductions in tail laten-
cies; (ii) EdgeTuner accelerates the whole DRL training 
speeds by an average of 151.63x.

The remainder of this paper is organized as follows: 
Section “Background” introduces the background, and 
Section “Problem Formulation” formulates the problem. 
Section “EdgeTuner” explains our approach, and Section 
“Evaluation” evaluates it. Section “Related Work” intro-
duces the related work, and finally, Sections “Conclusion” 
summarizes the work.

Background
Heterogeneous workloads and machines in edge‑cloud 
collaboration scenarios
Heterogeneous workloads
Although cloud computing has strong computing pro-
cessing capabilities, its resources are relatively con-
centrated and the distribution of computing centers is 
relatively sparse. This leads to large latencies in real-time 
communication with users. On the contrary, since the 
edge nodes are deployed close to the base stations (that 
is, the communication cost with users is very low), edge 
computing can better handle latency-sensitive tasks 
compared to cloud computing. Therefore, in practical 
edge-cloud environment, edge-cloud nodes often need 
to cooperate to handle diverse workloads. Specially, some 
edge-cloud applications in traditional DAG-based sys-
tems generate a lot of DAG jobs (e.g. distributed com-
puting [4, 18], face/fingerprint recognition [52, 53], and 
big data classification [36, 56, 62]). The other edge-cloud 
applications for executing AI tasks generate a large num-
ber of AI jobs (e.g. smart service and control applications 
[8, 37, 42, 46, 68, 81, 82]).
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In this paper, we mainly consider two edge-cloud work-
loads: DAG batch workloads and AI workloads. And 
based on the real cluster trace provided by Alibaba [2, 
3], we analyze the different characteristics of these two 
workloads, respectively.

Trace analysis for DAG batch workloads. We study 
the real cluster-trace-v2018 [2], which mainly records 
the operation of offline batch workloads in the Alibaba 
mixed CPU cluster with 4,034 machines running in con-
secutive 8 days. From the trace, we can find that a batch 
job usually contains multiple tasks, and most tasks have 
DAG dependencies. Each task also usually consists of 
several instances (that is, an instance is the smallest unit 
of batch job scheduling), these instances will execute the 
same application code and request the same resources, 
but their input data is different. In detail, we analyze the 
trace from four aspects: job and task allocation, instance 
completion time, arrival pattern of jobs and tasks, and 
resource utilization.

•	 Job and task allocation. In particular, we analyze the 
distribution of task number for each job in Fig. 2(a), 
and the results show that most jobs contain less than 
150 tasks.

•	 Instance completion time. Figure 2(b) shows the CDF 
distribution of the completion time for all instances, 
and the 80% , 90% , and 99% of the instance comple-
tion time are 58s, 177s, and 828s, respectively.

•	 Arrival pattern of jobs and tasks. Figure  2(c) shows 
the arrival frequency of jobs and tasks, and tasks have 
the highest arrival rate at 4:00am each day (the arrival 
rate is lower during the daytime). In other words, the 
task activity in this cluster follows a Daytime-Night 
pattern: the cluster will execute more tasks at night, 
while executing less tasks during the daytime.

•	 Resource utilization. Figure  2(d) shows the average 
resource usage of tasks. The results show that the 
CPU and Memory resources required by tasks are 
the largest from 24:00 (the day) to 6:00 (the next day), 
so the resource usage of all tasks is periodic. It veri-
fies the Daytime-Night pattern that exists in the clus-
ter.

Trace analysis for AI workloads. We study the real 
cluster-trace-gpu-v2020 [3], that records the work-
load information collected from Alibaba PAI (Artificial 
Intelligence Platform) with over 6,500 GPUs (about 
1800 machines) in a month. From the trace, we can 
observe that user-submitted workloads consist of AI 
jobs from various machine learning frameworks, such 
as TensorFlow [1], PyTorch [50], Graph-Learn [74], 
RLlib [39]. Among these workloads, each job is com-
posed of multiple different tasks running concurrently 

on many machines, and there is no DAG dependencies 
among these tasks. Similarly, we also analyze the trace 
from four aspects: job and task allocation, job comple-
tion time, arrival pattern of jobs and tasks, and resource 
utilization.

•	 Job and task allocation. In particular, we select the 
trace data of the first week as the basis for analysis. In 
Fig. 3(a), we analyze the CDF distribution of the task 
number concurrently executed by each AI job, and 
conclude: about 25.16% of jobs have less than 10 of 
concurrent tasks, about 80.48% of jobs have less than 
50 of concurrent tasks, and about 92.76% of jobs have 
less than 100 of concurrent tasks.

•	 Job completion time. In Fig. 3(b), we analyze the CDF 
distribution of the completion time for all AI jobs, 
and conclude: about 48.51% of jobs run less than 
10min, about 64.83% of jobs run less than 30min, 
about 73.86% of jobs run less than 60min, and about 
80% jobs run less than 90min.

•	 Arrival pattern of jobs and tasks. Figure  3(c) shows 
the periodic characteristics between jobs and tasks, 
and most jobs and tasks are submitted from 11:00am 
to 14:00pm.

•	 Resource utilization. Figure  3(d) shows the aver-
age resource requests of tasks in the GPU cluster. 
The results show that the GPU, CPU and Memory 
resources required by tasks are the largest from 24:00 
(the day) to 8:00 (the next day), so the resource usage 
of all tasks is also periodic. It also indicates that a 
Daytime-Night pattern also exists in the GPU cluster.

Heterogeneous machines
In edge-cloud environment, due to heterogeneity of hard-
ware architecture and resource sharing at run-time of 
different machines in the cluster, this leads to these edge-
cloud nodes’ heterogeneity.

Heterogeneity of hardware architecture. For these 
edge-cloud nodes, they have different CPU architectures, 
such as X86 and ARM. And they have multiple GPU 
types, such as NVIDIA Jetson series, Raspberry Pi, and 
other NVIDIA GPUs. Therefore, different nodes usually 
have large performance variance (e.g. different processing 
speeds).

Resource sharing at run-time. When the cluster is at 
run-time, the resources of edge-cloud nodes are shared 
by all submitted jobs/tasks, leading to dynamic changes 
in available resources. At this time, the performance of 
different nodes will also be very different. For example, 
the performance of nodes with intense resource competi-
tion will be greatly affected.
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Fig. 2  Alibaba cluster-trace-v2018 analysis for DAG batch workloads
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Sensitive scheduler configurations of affecting tail latency
In real Kubernetes cluster, when scheduling edge-cloud 
workloads (such as DAG batch workloads and AI work-
loads), the tail latencies of jobs in such workloads are 
influenced by different scheduler configurations. In this 
paper, we mainly considered two categories: scheduling 
algorithms and tail latency mitigation policies.

Scheduling algorithms
In our proposed cluster simulator, we implement 11 
Kuberentes scheduling algorithms, and 13 Volcano 
scheduling algorithms. In Kubernetes scheduler [19], 
there are three typical scheduling algorithms are: (1)BRA: 
this algorithm balances the utilization of CPU and mem-
ory resources in different nodes. (2)LRP: this algorithm 

Fig. 3  Alibaba cluster-trace-gpu-v2020 analysis for AI workloads
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calculates the amount of resources and the number of 
tasks allocated to different nodes, and prefers to allocate 
tasks to nodes with more available resources. (3)MRP: 
this algorithm prefers to allocate tasks to nodes with less 
available resources, thus running the same tasks with the 
least number of nodes. And in Volcano scheduler [10], 
three typical scheduling algorithms are: (1)GANG_LRP : 
this algorithm means that first, only when the clus-
ter resources meet the request of the minimum parallel 
tasks required by a job, the job can be scheduled (that is, 
GANG [71]); then it prefers to allocate tasks of the job to 
nodes with more available resources. (2)GANG_MRP : 
this algorithm aims that first, only when the cluster 
resources meet the request of the minimum parallel tasks 
required by a job, the job can be scheduled; then it pre-
fers to allocate tasks of the job to nodes with less available 
resources. (3)GANG_BRA : this algorithm indicates that 
first, only when the cluster resources meet the request of 
the minimum parallel tasks required by a job, the job can 
be scheduled; then it prefers to allocate tasks of the job 
to nodes with more balanced resources. In addition, DRF 
[17], SLA [48] and BINPACK [7] are also two typical allo-
cation algorithms for how jobs are scheduled in Volcano 
scheduler.

Tail latency mitigation policies
There have been some research works on reducing the 
tail latency for online concurrent service components, 

such as request retransmission techniques that produce 
accurate results [12, 35, 59] and request partial execution 
techniques that produce approximate results [12, 14, 29, 
30, 35, 78]. In view of the above works, for edge-cloud 
workloads’ scheduling scenarios, we develop two mitiga-
tion policies to reduce the tail latency.

•	 Task Restart Policy (TRP): this policy will restart a 
certain number of tasks that meet the conditions 
by controlling a restart ratio. First, we set a task 
restart time. Then if a task has not been started for 
a long time or the execution has not been completed 
before the restart time, the task will be immediately 
restarted and redistributed to such a node that pro-
cesses the task faster in the cluster.

•	 Task Discard Policy (TDP): the policy will terminate a 
certain number of tasks with a long latency by con-
trolling a discarding ratio. First, we set a task com-
pletion deadline. Then if a task has not been started 
for a long time or the execution has not been com-
pleted before the completion deadline, the task will 
be directly discarded.

Example of job scheduling using three Volcano scheduler 
configurations
Example. Figure  4 illustrates an example of allocat-
ing three tasks (of an AI job) to two nodes using three 

Fig. 4  An example of job scheduling using three Volcano scheduler configurations



Page 8 of 32Wen et al. Journal of Cloud Computing           (2023) 12:90 

Volcano scheduler configurations. Here, the example set-
tings include: (1)three tasks are submitted and executed 
at the same time; (2)when the tail latency mitigation pol-
icy is TDP, this AI job is considered for completion once 
at least two tasks in the job have completed.

Results. We can see that the job performance (that 
is, job tail latency) is determined by the slowest execut-
ing task, and it is influenced by three factors: (1)Differ-
ent tasks with requiring different amounts of resources 
in Fig. 4(a). (2)Available resources of the cluster nodes in 
Fig. 4(b). (3)Scheduler configurations in Fig. 4(c). Among 
them, scheduling algorithms (such as GANG_LRP and 
GANG_MRP ) first decide how tasks are allocated to 
nodes, and then tail latency mitigation policies (such as 
TRP or TDP) control that which tasks (that cause the 
long tail latencies) need to be restarted or discarded.

When using different scheduler configurations (e.g. C1, 
C2 and C3 in Volcano [10]), the job has considerably dif-
ferent tail latencies. Moreover, Fig. 4(d) shows that com-
pared with the other two configurations, C3 achieves the 
lowest tail latency, because its mechanism can allocate 
the resources most efficiently for this specific scenario.

Problem formulation
Scenarios. In our considered edge-cloud collaboration 
scenarios, these edge-cloud jobs usually contain mul-
tiple concurrent tasks (e.g. 50 tasks). For the resource 
demands, we mainly consider CPU, GPU and memory. 
As shown in Section “Sensitive Scheduler configurations 
of Affecting Tail Latency”, different scheduler configura-
tions (including scheduling algorithms and TDP/TRP) 
can decide how tasks can be better executed concur-
rently in the cluster based on their resource need, so that 
the tail latencies of jobs are minimized. Here, we specifi-
cally consider scenarios that different configuration com-
binations can be dynamically chosen during the system 
runtime.

Modeling a RL problem. Recently, deep reinforce-
ment learning (DRL), which is an important extension of 
the traditional reinforcement learning (RL) method, has 
been applied to various sophisticated online optimization 
problems with large solution spaces. Therefore, we model 
the tuning for scheduler configurations as a RL problem, 
in which an agent (tuner) learns to act (selecting a con-
figuration combination of one scheduling algorithm and 
one possible tail latency mitigation policy) in an envi-
ronment (cluster), in order to maximize a scalar reward 
signal [60]. At each discrete time-step (episode) t = 0, 1, 
2 . . . , the cluster provides the tuner with an observation st , 
the tuner responds by selecting a configuration combina-
tion at and obtains the feedback of reward R(st , at) , and 
next state st+1 from the environment. This interaction 
is formalized within the framework of Markov Decision 

Process (MDP), which is a controlled stochastic process 
defined by the state space S , action space A , transition 
dynamics 0 ≤ P(st+1|st , at) ≤ 1 , and reward function 
R(st , at).

State. The modeling of state considers two factors 
that determine the jobs’ tail latencies at run-time: the 
resource utilizations in nodes and the waiting and run-
ning tasks in the cluster. In scheduling, waiting tasks 
are the targets that a configuration combination of clus-
ter schedulers needs to manage together; running tasks 
occupy resources and then release them after comple-
tion. Formally, st = (N ,Vw ,V r) denotes the node and 
task state information during a scheduling interval.

•	 A node n ∈ N  is denoted as a 9-tuple 
(cpuu, cpur , cpuc,memu,memr ,memc, gpuu, gpur , gpuc) : 
(1)cpuu represents the actual usage of CPU cores; 
(2)cpur represents the requested (reserved by tasks) 
CPU cores; (3)cpuc represents the capacity of CPU 
cores in the node; (4)memu represents the actual 
memory usage; (5)memr represents the requested 
memory by tasks; (6)memc represents the node’s 
memory capacity; (7)gpuu represents the actual usage 
of GPU number; (8)gpur represents the requested 
(reserved by tasks) GPU number; (9)gpuc represents 
the capacity of GPU number in the node.

•	 A waiting task vw ∈ Vw , it is denoted as a 7-tuple 
(cpur , cpul ,memr ,meml , gpul ,work , jid) : (1)cpur rep-
resents the requested CPU by the task;(2)cpul repre-
sents the CPU limit of the task; (3)memr represents 
the requested memory by the task; (4)meml repre-
sents the task’s memory limit; (5)gpul represents the 
requested GPU number by the task; (6)work repre-
sents the workload of task, e.g. workload 400 means 
the task needs 100 seconds to complete when run-
ning in 4 CPU cores; and (7) jid is the job ID the task 
belongs to.

•	 A running task vr ∈ V r is denoted as a 6-tuple 
(work , node, cpul , gpul , et, jid) : (1)work represents 
the task’s workload (that is, execution time × cpul ); 
(2)node represents the node the task is allocated; 
(3)cpul represents the task’s CPU limit; (4)gpul rep-
resents the task’s GPU limit (Note that gpul and gpur 
are equal when a task uses GPU); (5)et represents the 
elapsed time when the task starts running; and (6) jid 
is its job ID.

Dimensionality of state st . We note that in practical job 
scheduling, |N| is the number of nodes in the cluster, and 
the numbers of waiting and running tasks continuously 
change at different time steps. Given that the schedul-
ing interval is short (e.g. 15 seconds), such values do not 
increase the training complexity. We note that the state 
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space grows significantly with the number of job/task arriv-
als and the size of cluster.

Action. Given a scheduler, action at represents one pos-
sible configuration combination of cluster schedulers. 
Here, in order to express at more intuitively, we denote a 
2-tuple ( a1t , a2t  ): a1t represents one possible scheduling algo-
rithm, a2t  represents one possible tail latency mitigation 
policy (that is, TRP or TDP) that an agent can select.

Transition dynamics. In a MDP, transition dynamics 
P(st+1|st , at) reflects the time-variant dynamics of cluster. 
Such dynamics are determined by three factors: the tasks 
Vallocate
t  that obtain resource allocations; the completed 

tasks V complete
t  at time-step t; and the newly arrival jobs/

tasks Varrive
t+1  at time-step t+1. We note that both Vallocate

t  
and V complete

t  are influenced by the scheduler algorithm set 
by action at , and they determine the three elements in state 
st+1 at time step t+1:

Reward. At a time-step t, a reward rt denotes the job 
latency as JTL (denoted in [12, 22]) when using a configura-
tion combination ( a1t , a2t  ). Given that there are only a small 
number of jobs during a scheduling interval, we consider 
tail latencies of both jobs and their tasks to accelerate the 
convergency of RL training. Specifically, let J be the set of 
jobs completed within period (t − 1, t] and JTLi be the tail 
latency of a job ji ∈ J . At time-step t, the reward of job ji is:

Similarly, let V run be the set of tasks running within 
period (t − 1, t] , and TTLruni |t̂ ( ̂t ∈ (t − 1, t] ) be the tail 
latency at time t̂ for a task vruni ∈ V run . At time-step t, the 
reward of the set V run is:

And let Vwait be the set of tasks waiting within period 
(t − 1, t] , and TTLwaiti |t̂ ( ̂t ∈ (t − 1, t] ) be the waiting 
latency at time t̂ for a task vwaiti ∈ Vwait . At time-step t, the 
reward of the set Vwait is:

The reward rt of time-step t is the summation of jobs, 
running tasks’ and waiting tasks’ rewards.

(1)Vw
t+1 = Vw

t \Vallocate
t ∪ Varrive

t+1

(2)V r
t+1 = V r

t ∪ Vallocate
t \V

complete
t

(3)r
job
i = α1 ∗ JTLi|t + β1

(4)
rrunt = α2 ∗ [max(TTLruni |t)−max(TTLruni |t−1)] + β2

(5)rwaitt = α3 ∗max(TTLwaiti |t)+ β3

(6)rt =

|J |

i=1

r
job
i + rrunt + rwaitt

In RL training, we set negative values of α1 , α2 and α3 , 
and positive values of β1 , β2 and β3 in Equations 3, 4 and 
5. These settings ensure the reward is inversely propor-
tional to the tail latencies of running and waiting tasks.

EdgeTuner
Design idea
Our work is proposed with two objectives.

1) Hot swapping scheduler configurations for dynamic 
workloads and resources. The core component of Edg-
eTuner, the DRL-based agent, is external to the cluster 
scheduler and just operates on its configuration com-
binations (consisting of one scheduling algorithm and 
one tail latency mitigation policy). This design ensures 
minimum modifications to the scheduler, and more 
importantly, making it possible to replace any of them at 
runtime without shutting down the system. Specifically, 
the agent observes the state (cluster status) periodically 
(e.g. 10 seconds) and selects a configuration combination 
for the cluster scheduler.

2) Simulator-based DRL training acceleration. We 
note that under diverse workloads, the whole training 
process needs a lot of experience (e.g. several million 
samples) to converge. However, in real job scheduling 
scenarios, the actor takes at least a few seconds to evalu-
ate the effectiveness of an action (that is, the selection of 
a configuration combination) and obtains a sample from 
the environment (the cluster). Even using the latest DRL 
training techniques (e.g. IQN+Ape-X  [63]), the training 
may take dozens of hours to complete due to the long 
sampling phase. Moreover, when the cluster resource 
changes, the training process needs to be re-executed 
and the long training time makes the DRL agent infeasi-
ble for online scheduler configuration tuning. Given this 
motivation, we develop a cluster simulator and use it as 
the environment for the actor. We explain how to train 
DRL agent under dynamic workloads and resources in 
Section “Simulator-based DRL Training”.

Overview
Our cluster simulator is implemented using Golang and 
it can support different operating systems such as Linux 
and Max-Os. Figure  5 illustrates the implementation of 
cluster simulator for DRL training, and it consists of two 
major parts: Simulator-based DRL Training and Clus-
ter Simulator.

Simulator‑based DRL training
Based on the Kubernetes framework, we incorporated 
the proposed approach with its two important schedulers 
(such as Kubernetes scheduler [19] and Volcano sched-
uler [10]). Similar to other mainstream resource nego-
tiation systems, Kubernetes provides access to various 
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information regarding to resources, jobs, and schedul-
ing constraints. When a job is submitted, Kubernetes 
also provides interfaces to obtain its submission time, 
resource demand, and task information. When an agent 
generates an action according to the above state informa-
tion, it is pushed to the Kubernetes scheduler (or Volcano 
scheduler) that supports run-time adjustment of its con-
figuration combinations.

Crucially, for the whole simulator-based DRL tarining 
process, there are four key modules.

State. At each sampling or training time-step t, this 
module receives the cluster nodes’ and tasks’ state infor-
mation from the cluster simulator, and then constructs 
state st in the experience. In particular, this module has 
two main functions: (1)initializing the simulation envi-
ronment, including initial node information, tasks wait-
ing to be scheduled, and tasks that have been executed. 
(2)storing the state information during the training 
process.

Action. At each sampling or training time-step t, this 
module is responsible for accepting an action at from the 
agent, converting it into the corresponding configuration 
combination ( a1t , a2t  ), and then forwarding it to the sim-
ulator-based environment. Note that the configuration 
combination is composed of one scheduling algorithms 
(such as LRP, MRP, BRA, GANG_LRP , GANG_MRP and 
GANG_BRA ) and one tail latency mitigation policies 
(such as TRP and TDP).

Reward. At each sampling or training time-step t, this 
module receives the scheduling results (that is, 99th% 
quantile’s tail latency of a edge-cloud job) from the 

cluster simulator, and then constructs reward rt in the 
experience.

Simulator-based Environment. After the DRL agent 
generates an action according to the state information, 
this module will provide the action to the cluster simu-
lator. In addition, this module is also responsible for 
providing these information to the cluster simulator, 
including simulation heterogeneous nodes’ configuration 
and submitted workloads.

DRL agent for training
The DRL agent is the core of the whole simulator-based 
DRL tarining process. And the training of a DRL agent 
has two phases: (1)In the sampling phase, the actor col-
lects experience training samples by interacting with 
the simulator. (2)The learning phase starts when a pre-
specified number of samples is collected. Similar to other 
simulation platforms [76, 77], our simulator is driven by 
workload traces and it can generate an experience sample 
instantly, thus considerably accelerating the sampling and 
training process.

Actor. Algorithm  1 details the steps of the actor. It 
first initializes the environment by obtaining the lat-
est network parameters (line 1) and getting initial state 
from environment (line 2). Subsequently, it iteratively 
obtains samples and adds them to the replay mem-
ory (lines 3 to 14). At each iteration, the actor first 
selects an action at−1 (that is, a configuration com-
bination) and applies it to the environment (line 4). 
It then triggers environment. SimulateOneStep(st−1

,at−1 ) to obtain state st and reword rt constructed 

Fig. 5  Implementation of Cluster Simulator for DRL training
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using information of nodes, jobs, and tasks in the 
environment (line 5). Finally, it gets episode termi-
nation signal (line 6) and adds the sample data to the 
local buffer (line 7). When the buffer size is larger than 
the maximal size B, the actor calculates priorities for 
the current experience and triggers the remote call to 
add experience to the replay memory (lines 8 to 12). 
The actor also periodically obtains the latest network 
parameters (line 13).

Algorithm 1 Actor

Algorithm 2 LearnerLearner. Similarly, Algorithm 2 
details the steps of the learner. The learner starts when 
the replay memory has N samples (lines 1 to 4) and 
trains the model using Ts iterations (line 5). At each 
iteration, the learner first samples a prioritized batch 
of experience (training samples), applies the learn-
ing rule, and updates the model parameters (lines 6 to 
8). Subsequently, this function calculates and updates 
the priorities for experience (lines 9 to 10). And when 
there is too much data in replay memory, the function 
will remove old experience from replay memory (lines 
11-13).

Task and resource allocation of simulator‑based environment
The function env.SimulateOneStep(st−1,at−1 ) is explained 
in Algorithm 3. This function first gets the set N of nodes, 
and the waiting tasks Vw and running tasks V r from state 
st−1 (line 1). It then simulates resource allocations using 
a list of iterations (lines 3 to 7). At each iteration, the 
function sequentially allocates resources to waiting tasks 
using a scheduling configuration combination at−1 (line 
4) and checks the completion of running tasks at the cur-
rent simulation time ts (line 5). The status of nodes, and 
waiting, running and completed tasks are updated before 
moving to the next iteration. The iterations end when the 
simulation time exceeds the scheduling interval. Finally, 
the function converts the information of nodes and tasks 
into state st and reward rt of time-step t, and returns 
them (lines 8 to 11).

Algorithm 3 env.SimulateOneStep(st−1, at−1)Implementation 
of cluster simulator
The cluster simulator is mainly responsible for simulating 
jobs’ scheduling according to the simulation nodes, jobs 
and actions’ information provided from the simulation 
environment. Crucially, it implements two popular simu-
lation schedulers: Kubernetes simulation scheduler and 
Volcano simulation scheduler, which are used to sched-
ule different edge-cloud jobs. For example, DAG jobs will 
be scheduled by Kubernetes simulation scheduler, and AI 
jobs will be scheduled by Volcano simulation scheduler. 
After the scheduler completes scheduling, the simula-
tor will get the simulation scheduling results (that is, tail 
latencies of edge-cloud jobs), so as to provide a basis for 
the reward of DRL training.

Note that in the cluster simulator, each sampling/
training time-step t (e.g. an episode) corresponds to 
multiple iterations, and an iteration process is con-
cretely shown in Fig. 6. At each iteration, the simulator 
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first judges if there exists tasks to be scheduled in the 
waiting queue and if there are sufficient resources. If 
the available resources exceed the requested resources 
by the waiting tasks, the simulator applies a configu-
ration combination to assign the tasks to these cluster 
nodes, and updates the node and task statuses; other-
wise it updates the simulation time ts . The simulation 
completes if ts is longer than the scheduling interval; 
otherwise it continues scheduling the remaining tasks 
at the next iteration.

Discussion of system uncertainties. We note that 
in real clusters, a job’s performance is also influenced 
by random background activities such as system main-
tenance or garbage collection of operating systems. 
These activities are not incorporated in our simula-
tor for two reasons. First, although background activi-
ties can create considerable CPU or network load (in 
particular when resource are saturated), this work 
focuses on comparing job performances across differ-
ent scheduler configurations and implicitly assumes 
that the performances are estimated under the same 
factors (that is, different algorithms suffer from the 
same performance interferences). Second, in many 
practical scenarios (when systems have available 
resources for allocation), the performance impact of 
background activities is much smaller (e.g. 100 times 
smaller) than that caused by applying different sched-
uler configurations.

Evaluation
In this section, we evaluate the proposed approach with 
two major criteria: (1) its robust performance under 
diverse scheduling scenarios of dynamic edge-cloud 
workloads (Section “Evaluation of EdgeTuner’s Effec-
tiveness Under Dynamic Edge-Cloud Workloads”) and 
dynamic available cluster resources (Section “Discus-
sion of Reducing Tail Latency Under Dynamic Avail-
able Cluster Resources”); and (2) its effectiveness in 
significantly accelerate DRL training (Section “Evalu-
ation of EdgeTuner’s Acceleration Effect in DRL train-
ing”) and how it is influenced by DRL training settings 
(Section “Discussion of DRL Training Settings”).

Experimental settings
  Experimental Platform. For evaluation experiments, 
we built a Kubernetes cluster, and the specific configu-
ration is as follows:

⊲ 1 Master Node + 4 Edge Devices + 5 Cloud 
Nodes 

*	 16 Intel(R) Xeon(R) CPU E5-2660 v4 @2.00GHz 
processor cores and 32GB memory/Master 
Node, 4-core 1.5GHz Cortex-A72 ARMV8.0 
and 4 GB memory (Raspberry Pi 4B)/Two Edge 

Fig. 6  An iteration process of sampling and training in cluster simulator
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devices, 384-core 1100MHz NVIDIA VOLTA 
GPU, 6-core 1.4Ghz NVIDIA Carmel ARMV8.2, 
and 8GB memory (Jetson Xavier NX)/Two Edge 
devices, 4 Intel(R) Xeon(R) CPU E5-2680 v4 
@2.40GHz processor cores and 8GB memory/
Four Cloud Nodes, and Seven Intel(R) Xeon(R) 
Gold 6238 CPU @ 2.10GHz processors, 24GB 
NVIDIA TITAN RTX Graphics Card and 512GB 
memory/A Cloud Node

*	 Linux Ubuntu 18.04 LTS
*	 Python 3.8.5, Go 1.17.6, Docker 20.10.14, Vol-

cano v1.0, and Kubernetes v1.19.0

⊲ Two Intel(R) Xeon(R) Silver 4216 processors, 
48GB Quadro RTX 8000 Graphics Card, and 256 
GB memory (A GPU Node for conducting the 
training of DRL agents)

Edge-Cloud Workloads. In evaluation, driven by 
two types of real-world cluster traces provided by Alib-
aba [2, 3], we generate two edge-cloud workloads: DAG 
batch workloads and AI workloads. From the traces, we 
derive some crucial information of two generated edge-
cloud workloads, such as job arrival pattern (here, job is 
submitted exactly at the job submission interval of the 
real trace), the number of tasks in a job, the resource 
(CPU, GPU and memory) request and resource limit of 
each task, and the workload (that is, the running time 
of a task).

⊲ For DAG batch workloads, the basis is as follows: 

*	 Driven by Alibaba cluter-trace-v2018 [2] that 
mainly records the information of offline batch 
tasks in the mixed CPU cluster with 4034 nodes 
running in 8 days

*	 Two typical application scenarios: Daytime (6:00 
to 24:00) and Night (0:00 to 6:00)

*	 136,500 jobs, 8.30 million tasks submitted in the 
Daytime, and 198,100 jobs, 8.40 million tasks 
submitted at Night (in the trace)

⊲ For AI workloads, the basis is as follows: 

*	 Driven by Alibaba cluter-trace-gpu-v2020 [3] that 
records the information collected from Alibaba 
PAI (Artificial Intelligence Platform) with over 
6,500 GPUs (about 1800 machines) in a month

*	 Two typical application scenarios: Daytime (8:00 
to 24:00) and Night (0:00 to 8:00)

*	 1.76 million jobs, 12.54 million tasks submitted in 
the Daytime, and 2.46 million jobs, 17.55 million 
tasks submitted at Night (in the trace)

Considered Scheduler Configurations. In evalua-
tion, we mainly consider two scheduler configurations: 
scheduling algorithms and tail latency mitigation poli-
cies. For scheduling algorithms, we compare against 
11 representative Kubernetes scheduling algorithms 
[19]: LeastRequestedPriority (LRP), MostRequested-
Priority (MRP), BalancedResourceAllocation (BRA), 
EqualPriority (EP), Resource Limits Priority (RLP), 
Taint Toleration Priority (TTP), Node Affinity Prior-
ity (NAP), Image Locality Priority (ILP), Node Pre-
fer Avoid Pods Priority (NPAPP), Node Label Priority 
(NLP), and Inter Pod Affinity Priority (IPAP). And we 
also compare against 13 representative Volcano sched-
uling algorithms [10]: GANG_BRA, GANG_MRP, 
GANG_LRP, DRF_BRA, DRF_MRP, DRF_LRP, GANG_
DRF_BINPACK, GANG_DRF_BRA, GANG_DRF_
MRP, GANG_DRF_LRP, SLA_BRA, SLA_MRP and 
SLA_LRP. Moreover, our settings of tail latency mitiga-
tion policies are: (1)for DAG batch workloads, we only 
set 11 different ratios of TRP: 70%, 72%, 74%, 76%, 
78%, 80%, 82%, 84%, 86%, 88%, and 90%. (2)for AI 
workloads, we set 11 different ratios of TDP and TRP: 
70%, 72%, 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 
and 90%, respectively.

DRL Training Setting. We implemented the pro-
posed approach based on Google DeepMind’s RainBow 
tool  [31]. In DQN training, we use the latest tech-
nique  [63] that combines Implicit Quantile Networks 
(IQN)  [11] and Ape-X  [33]. The training settings of 
three DRL elements are as follows:

⊲ State. The interval between two time-steps is 10 
seconds, hence the number of waiting and running 
tasks in a state is set to 10. In Equations 3, 4 and 5, 
the values of α1 , β1 , α2 , β2 , α3 and β3 are set to -0.02, 
10, -0.1, 5, -0.002, 1, respectively.
⊲ Actor. The maximal number of time-steps is 60 
millions and the experience replay memory capac-
ity is set to 12 million. In sampling, the number of 
actors is 8, the history length (the number of con-
secutive states processed) is set to 8, and the fre-
quency of sampling from memory is 5.
⊲ Learner. The training phase starts after 10K time-
steps of the sampling phase. In training, the net-
work hidden node size is set to 64, the batch size 
is 32, the network is updated every 1000 steps, 
and the importance sampling weight in prioritised 
experience replay is 0.5.
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In particular, as shown in Table 1, we summarize some 
important notations in problem formulation and our 
proposed approach.

Evaluation Metrics. For evaluation metrics, we con-
sider job performance and training efficiency.

⊲ Job performance: measured by the average tail 
latency
⊲ Simulation acceleration: measured by the sampling 
time and the training time in DRL training

Evaluation of EdgeTuner’s effectiveness under dynamic 
edge‑cloud workloads
In this section, we evaluate the effectiveness of EdgeT-
uner in reducing tail latencies by adaptively selecting its 

scheduler configurations under dynamic edge-cloud 
workloads.

Evaluation settings
 Workloads. This evaluation tests 4 different workloads, 
consisting of 2 generated edge-cloud workload patterns 
(DAG batch workloads and AI workloads) and 2 periods 
(Daytime and Night).

Compared Configuration Settings. In particular, 
for DAG batch workloads, we evaluate them by select-
ing 11 baseline Kubernetes scheduling algorithms and 
two ratios for TRP (namely Res_80% and Res_70%). 
Note that we don’t select TDP in scheduling DAG batch 
workloads, because when using TDP in such workloads’ 
scheduling scenarios, the DAG dependencies between 
their tasks will be lost, thereby causing the failure of 
subsequent tasks to run normally, so TDP can not be 

Table 1  Description of important notations in problem formulation and proposed approach

Notations Introduction

S the state space

A the action space

R(st , at) the reward function

P(st+1|st , at) transition dynamics (reflects the time-variant dynamics of cluster, 0 ≤ P(st+1|st , at) ≤ 1)

st the node and task state information during a scheduling interval

vw a waiting task

vr a running task

at an action that is one possible configuration combination of cluster schedulers

Vallocate the tasks that obtain resource allocations

Vcomplete the completed tasks

Varrive the newly arrival tasks

JTL denoted the job tail latency as JTL

J the set of jobs completed within period (t − 1, t]

TTL denoted the tail latency of a task as TTL

V run the set of tasks running within period (t − 1, t]

Vwait the set of tasks waiting within period (t − 1, t]

rjob the reward of job

rrun the reward of the set V run

rwait the reward of the set Vwait

rt the reward of time-step t

α1,α2,α3 the negative values

β1,β2,β3 the positive values

B(Actor) the maximal size of local buffer in Actor

Ts(Actor) the number of sampling steps in Actor

N(Learner) the experience number to start training in Learner

L(Learner) the maximal size of local buffer in Learner

Ts(Learner) the maximum number of training in Learner

ts the simulation time

△t the duration of one iteration in simulation

|N| the number of cluster nodes
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selected. However, for AI workloads, due to no DAG 
dependencies between their tasks, we evaluate them by 
selecting 13 baseline Volcano scheduling algorithms and 
a total of four ratios for TRP and TDP (namely Res_80%, 
Res_70%, Dis_80%, and Dis_70%). In particular, for TRP, 
Res_80% indicates that when 80% of the tasks in a job are 
completed, the remaining 20% of the tasks are restarted; 
Res_70% indicates that when 70% of the tasks in a job are 
completed, the remaining 30% of the tasks are restarted. 
For TDP, Dis_80% indicates that for TDP, when 80% of 
tasks in a job are completed, the remaining 20% are dis-
carded; Dis_70% indicates that for TDP, when 70% of 
tasks in a job are completed, the remaining 30% are 
discarded.

Comparison of tail latency reduction under dynamic 
edge‑cloud workloads
  Comparison Using DAG Batch Workloads. Figure  7 
uses box plots to illustrate each DAG batch workload’s 

distribution of tail latencies, including their minimum 
and maximum values, the first quartile, median, and third 
quartile. We can observe that in considered 6 scenarios 
(Scenarios 1 to 6), EdgeTuner achieves lower tail laten-
cies than other scheduler configurations, indicating the 
DRL agent selects proper scheduler configurations for 
different DAG batch workloads in the cluster. In detail, 
most of jobs in DAG workloads complete within dozens 
of minutes. This means the waiting and running tasks 
continuously change at different scheduling time-steps, 
and the agent selects the optimal scheduler configura-
tion that brings the largest reward. Particularly, Table  2 
summarizes the percentages of reduced tail latency under 
two DAG batch workloads (Daytime and Night), when 
comparing EdgeTuner against the 11 baseline Kuber-
netes scheduler configurations. We can see that these 
reductions vary across different workloads depending on 
a variety of factors, such as different types of workloads 
and multiple different scheduler configurations.

Fig. 7  Comparison of tail latency under DAG batch workloads driven by Alibaba trace 2018
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Figure  8 shows the comparison of Makespan (a com-
mon performance evaluation metric which represents 
the total time spent from the start of the first job to the 
end of all jobs in the workload) between EdgeTuner and 
other 11 Kubernetes scheduler configurations. We can 
observe that in considered 6 scenarios (Scenarios 1 to 6), 
EdgeTuner can also achieve lower Makespan than other 
scheduler configurations. This indicates the DRL agent 
of EdgeTuner chooses the optimal scheduling configura-
tion combination for each DAG batch workload sched-
uling scenario, thereby allowing workload scheduling to 
be completed faster. In addition, Fig.  9 shows the com-
parison of average CPU usage of the cluster during a cer-
tain execution period (between EdgeTuner and other 11 
Kubernetes scheduler configurations). We can see that 
in considered 6 scenarios (Scenarios 1 to 6), EdgeTuner 
can also achieve higher cluster CPU usage than other 
scheduler configurations. This indicates that during clus-
ter execution, EdgeTuner can always choose the optimal 
scheduling configuration combination for the continu-
ously arriving DAG batch workloads, thus improving the 
CPU resource utilization of the cluster.

Comparison Using AI Workloads. Similarly, Fig.  10 
also uses box plots to illustrate each AI workload’s distri-
bution of tail latencies. We can also observe that in con-
sidered 10 scenarios (Scenarios 7 to 16), EdgeTuner still 
achieves lower tail latencies than other scheduler con-
figurations, which also indicates the DRL agent selects 
proper scheduler configurations for different AI work-
loads in the cluster. Note that, compared to DAG work-
loads, most of jobs in AI workloads take longer time to 
complete (e.g. more than 10min). Despite this, the agent 
can still select the optimal scheduler configuration that 
brings the largest reward (that is, achieving the lowest 
tail latency). Particularly, Table  3 also summarizes the 
percentages of reduced tail latency under two AI work-
loads (Daytime and Night), when comparing EdgeTuner 
against the 13 baseline Volcano scheduler configurations. 
We can also see that these reductions vary across differ-
ent workloads depending on a variety of factors, such 
as types of workloads and multiple different scheduler 
configurations.

Figure  11 shows the comparison of Makespan 
between EdgeTuner and other 13 Volcano scheduler 

Fig. 8  Comparison of Makespan under DAG batch workloads driven by Alibaba trace 2018
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configurations. We can observe that in considered 
10 scenarios (Scenarios 7 to 16), EdgeTuner can also 
achieve lower Makespan than other scheduler configu-
rations, indicating the DRL agent of EdgeTuner chooses 
the optimal scheduling configuration combination for 
each AI workload scheduling scenario. In this way, 
compared to other scheduler configurations, EdgeTuner 
allows workload scheduling to be completed faster. In 
addition, Fig. 12 shows the comparison of average CPU 
usage of the cluster during a certain execution period 
(between EdgeTuner and other 13 Volcano scheduler 
configurations). We can see that in considered 10 sce-
narios (Scenarios 7 to 16), EdgeTuner can also achieve 
higher cluster CPU usage than other scheduler configu-
rations, which indicates that during cluster execution, 
EdgeTuner can always choose the optimal scheduling 
configuration combination for the continuously arriv-
ing AI workloads. As a result, EdgeTuner improves the 
CPU resource utilization of the cluster.

Evaluation Results. In general, when considering all 
16 evaluation scenarios, our approach achieves an aver-
age of 21.66% reductions in tail latencies.

Discussion of reducing job completion time (under 
dynamic Edge-Cloud workloads). When scheduling 
diverse workloads in the cluster, Job completion time 
(JCT) is also an important performance metric. Note 
that, for a DAG batch job, the job’s tail latency is the 
most significant factor in its completion time. For an 
AI job, the maximum job’s tail latency represents its 
completion time. Therefore, we can find that the job’s 
tail latency determines its final completion time. In 
this paper, in our considered 16 scheduling scenarios 
(Scenarios 1 to 16), EdgeTuner can achieve lower tail 
latencies than other scheduler configurations due to 
its dynamic tuning mechanism, which indicates the 
DRL agent selects proper scheduler configurations for 
different DAG batch and AI workloads in the cluster. 
Correspondingly, EdgeTuner can also achieve lower 

Fig. 9  Average CPU usage of the cluster during a certain execution period under DAG batch workloads
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job completion time for each workload scheduling 
scenario.

Evaluation of EdgeTuner’s acceleration effect in DRL 
training
Note that, the effectiveness of tuning scheduler configu-
rations relies on efficiently training DRL agents. And an 
agent’s training time consists of two parts: (1)the major 
training time comes from collecting samples in the actor 
(Algorithm 1). Each training needs several million sam-
ples to converge and each sample needs at least a few 
seconds to obtain in real clusters; (2)using the collected 
samples in the replay memory, the learner trains the 
DQN model. Based on this, we evaluate the acceleration 
effect of EdgeTuner.

Evaluation settings
According to the experimental settings of the previous 
section, under our considered 16 scenarios, we compare 
the DRL training time of EdgeTuner (collecting samples 
with the Kubernetes simulator in Algorithm  3) and the 
real Kubernetes cluster.

Comparison of DRL training time in EdgeTuner and real 
Kubernetes cluster
Table  4 lists the sampling times and training times of 
EdgeTuner and real Kubernetes cluster, and Fig. 13 shows 
reductions of sampling time and training time.

Evaluation Results. For all considered 16 scenarios, 
the sampling phase takes a long time (more than 92.27 
hours) in the real Kubernetes cluster, and EdgeTuner 
considerably reduce this time to a few minutes (accel-
eration by up to 3134.17x). Similarly, in real Kubernetes 
cluster, the training phase also completes in dozens of 
hours (e.g. even several days) due to the time-consuming 
sampling process. In contrast, EdgeTuner completes the 
training phase within a few hours. The training time also 
varies across different states (i.e. different jobs, tasks) and 
our approach can reduce the training time by an average 
of 97.15x.

Results. In general, when considering both sampling 
and training phases, our approach accelerates DRL 
training by an average of 151.63x. This is because it can 
perform the DRL training to in an offline way, and can 
provide the adapted DRL agent timely.

Fig. 10  Comparison of tail latency under AI workloads driven by Alibaba trace 2020
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Fig. 11  Comparison of Makespan under AI workloads driven by Alibaba trace 2020

Fig. 12  Average CPU usage of the cluster during a certain execution period under AI workloads
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Discussion of DRL training settings
Evaluation settings
We take a DAG batch workload (Daytime) and an AI 
workload (Night) as two examples, and design experi-
ments to discuss the three major factors that influence 

DRL training efficiency. In addition, we use five metrics 
to evaluate: sampling time, training time, the total num-
ber of samples, the total number of sampling and train-
ing iterations, and the total time of sampling and training 
phases.

Comparison of different DRL training techniques
In DRL training, our work adpots the latest Rainbow 
tool [31] combined with two model training techniques: 
IQN for distributional reinforcement learning  [11], and 
Ape-X for distributed sampling and prioritized experi-
ence replay [33].

Evaluation Results. We can see that under two dif-
ferent edge-cloud workload scheduling scenarios: (i) 
Fig.  14(a) shows that IQN incurs the longest sampling 
time because it only uses one actor. In contrast, Ape-X 
supports multiple actors and considerably reduces the 
sampling time when collecting the same number of 
samples. (ii) Fig.  14(b) shows that Ape-X has the long-
est training time, while the IQN technique accelerates 
the convergence speed. (iii) Fig. 14(c) and (d) show that 
Ape-X needs the largest samples and training iterations, 
and thus takes the longest time to complete the whole 
training process (Fig. 14(e)).

Comparison of actors with different numbers
This evaluation considers three different numbers of 
actors: 8 (used in EdgeTuner), 4, and 16.

Evaluation Results. We can see that under two dif-
ferent edge-cloud workload scheduling scenarios: (i) 
Fig. 15(a) shows that more actors indeed reduce sampling 
time. (ii) However, when the actor number is 16, the sam-
pling speed exceeds the training speed. This means the 
16 actors need to wait for the learner while occupying 
resources, thus delaying the training process (Fig. 15(b)). 
This claim is also verified in Fig. 15(c), (d) and (e)’s results.

Comparison of different history length
In DRL training, history length decides the number of 
time-steps to construct a state in the environment. Note 
that, the longer the history length, the more information 
the agent can learn from a state. This evaluation consid-
ers three history lengths: 8 (used in EdgeTuner), 1, and 4.

Evaluation Results. We can see that under two dif-
ferent edge-cloud workload scheduling scenarios, (i) 
Fig. 16 display that when the history length is 1 (that is, 
the states in different iterations are independent of each 
other), the training needs the largest numbers of samples 
and the longest time to converge. (ii) However, when the 
history length is 8, the training needs the smallest num-
ber of samples (Fig.  16(c)), but its sampling time is still 
longer than that of history length 4 (Fig.  16(a)). This is 
because the state of history length 8 is two times larger 

Table 4  Sampling time and training time of EdgeTuner and real 
Kubernetes cluster under different workloads

Scenario Sampling time (seconds) Training time (seconds)

EdgeTuner Kubernetes EdgeTuner Kubernetes

1 110 332160 6224 742708

2 118 342578 7002 774568

3 112 351027 7016 780246

4 155 341463 8189 896439

5 164 349873 8964 914782

6 159 356047 8902 913026

7 583 673240 9336 882708

8 595 688452 10402 943258

9 585 680064 9408 866802

10 587 682247 9386 856349

11 596 684065 9502 876543

12 740 1114389 16134 1446439

13 780 1156000 17225 1456020

14 764 1175438 16548 1470865

15 796 1118634 16208 1450862

16 802 1116065 17106 1465684

Fig. 13  Reductions of sampling time and training time under 
considered 16 scenarios
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than that of history length 4 and hence each sample’s col-
lection time is longer in the former setting.

Discussion of reducing tail latency under dynamic 
available cluster resources
Evaluation settings
Workloads and Available Resources. In evaluation, we 
test 4 different workloads, covering 2 generated edge-
cloud workload patterns (DAG batch workloads and AI 

workloads) and 2 periods (Daytime and Night). Moreo-
ver, we further test 4 dynamic resource changes: 50% 
decrease, 25% decrease, 25% increase, and 50% increase 
in cluster resources, respectively.

Compared Configuration Settings. In particular, for 
DAG batch workloads, we evaluate them by selecting 
11 baseline Kubernetes scheduling algorithms and one 
median ratio 80% of TRP (namely Res_80%). And for 
AI workloads, we evaluate them by selecting 13 baseline 

Fig. 14  Comparison of DRL training overheads under different model training techniques

Fig. 15  Comparison of DRL training overheads under different actors

Fig. 16  Comparison of DRL training overheads under different history lengths
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Volcano scheduling algorithms and one median ratio 80% 
of TDP (namely Dis_80%).

Comparison of tail latency reduction under dynamic 
available cluster resources
Table  5 and Table  6 summarizes the percentages of 
reduced tail latency, when comparing EdgeTuner against 
the baseline scheduler configurations. Figures  17 and 
18 also use box plots to display the comparison results.

Experimental Results. We can observe that in our 
considered 20 different scheduling scenarios (Scenarios 
17 to 36): (i) compared to other baseline scheduler con-
figurations, EdgeTuner consistently brings the lowest tail 
latencies due to its dynamic tuning mechanism. (ii) in 
particular, for the same workload, less available resources 
result in higher tail latencies.

Results. In general, when the cluster resource changes, 
the DRL agent needs to be re-trained because the node 
information changes in its state. In EdgeTuner, this 
training can be performed offline by setting different 
resources in its simulator for the same workload, thus 
avoiding the time-consuming online learning process. 
Moreover, as shown in Figs. 19 and 20, we also compare 
Makespan of EdgeTuner with other scheduler configura-
tions in 20 different workload scheduling scenarios (Sce-
narios 17 to 36). We can see that under these scenarios 
that the cluster resource changes, EdgeTuner can also 
achieve lower Makespan than other scheduler con-
figurations (that is, enabling workload scheduling to be 

completed more quickly), which indicates the DRL agent 
of EdgeTuner chooses the optimal scheduling configu-
ration combination for each scenario. Thus, EdgeTuner 
can well adapt to such situations where cluster resources 
change dynamically.

Discussion of reducing job completion time (under 
dynamic available cluster resources). First, the job’s tail 
latency determines its final completion time. In detail, 
for a DAG batch job, the job’s tail latency is the most 
significant factor in its completion time. For an AI job, 
the maximum job’s tail latency represents its comple-
tion time. Secondly, when the available cluster resources 
change dynamically (Scenarios 17 to 36), we can also 
find that EdgeTuner can achieve lower tail latencies than 
other scheduler configurations due to its dynamic tun-
ing mechanism, which indicates the DRL agent selects 
proper scheduler configurations and how well EdgeTuner 
can adapt to dynamically changing resource situations. 
Therefore, similar to dynamically changing Edge-Cloud 
workload scenarios, EdgeTuner can also achieve lower 
job completion time for such scheduling scenarios with 
dynamic available cluster resources.

Related work
In modern cloud data centers, the scheduling of diverse 
workloads has aroused the pursuit of many scholars 
and industries. Table 7 summarizes existing scheduling 
techniques from the following three perspectives.

Fig. 17  Comparison of tail latency of DAG batch workloads driven by Alibaba trace 2018 under dynamic resources
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Fig. 18  Comparison of tail latency of AI workloads driven by Alibaba trace 2020 under dynamic resources

Fig. 19  Comparison of Makespan of DAG batch workloads driven by Alibaba trace 2018 under dynamic resources
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Cluster resource management systems
Many cluster resource management systems have been 
developed to allocate available resources to their jobs 
[16, 25, 26, 45, 49, 83]. For example, Mesos  [32] is the 
first cluster resource management system released 
by UC Berkeley. Mesos increases the cluster resource 
utilization using a two-level scheduler, which shares 
resources among multiple computing frameworks 
(e.g. Hadoop, Spark and Storm) as well as jobs within 
each framework. YARN [65] is the next generation of 
Hadoop compute platform. By separating resource 
management functions from the programming model, 
it delegates many scheduling-related functions to per-
job components. Google Borg [66] is a pioneer system 

that divides cloud jobs into high-priority service jobs 
and low-priority batch jobs, and schedule these jobs 
with consideration of multiple resource dimension-
alities including CPU, memory, disk, and network. In 
recent years, Google launches a new system (Kuber-
netes [19]) for the new generation container technology 
(Docker [47]).

More importantly, they can provide configuration 
parameters to control the resource allocation mechanism 
of their schedulers.

Scheduling optimization for traditional workloads
There are lots of research work on traditional workloads’ 
scheduling optimization based on ML/DRL techniques. 

Fig. 20  Comparison of Makespan of AI workloads driven by Alibaba trace 2020 under dynamic resources

Table 7  Scheduling techniques for traditional and AI workloads

Category Introduction

Cluster resource management systems Provide scheduling configuration parameters (e.g. Google Borg [66],YARN [65], Mesos [32], 
Kubernetes [19])

Scheduling optimization for traditional workloads Apply DRL under a simplified state space (e.g. DeepRM [44])

Adopt event-driven decision framework to reduce the booming action space (e.g. [9, 13, 41, 70])

Apply DRL to tackle DAG-based job scheduling problems (e.g. Decima [45], Spear [34])

Scheduling optimization for AI workloads Take the feature of iterativeness into consideration (e.g. SLAQ [79], Optium [51], OASiS [6])

Adopt DRL techniques into job scheduling optimization (e.g. Harmony [5], SIREN [67], DSS [57])

Apply DRL to optimize the task scheduling (e.g. [15, 38, 72])
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For example, DeepRM  [44] applies DRL in cluster job 
scheduling under a simplified state space: it assumes a 
synthetic job arrival process and describes both clus-
ter and job as slots of homogeneous CPU and memory. 
Hence it can only handle a limited action space: admit-
ting jobs or not. However, a real deployed scheduler 
usually has a sophisticated state space and a huge action 
space that decides the allocation of heterogeneous 
resources to a large number of jobs of different workload 
characteristics and priorities.

On the other hand, both [70] and [41] adopts event-
driven decision framework to reduce the booming action 
space in practice. Here, [41] is a hierachical framework 
that consists of global tier for VM resource allocation and 
local tier for power management of local servers. While 
[70] mainly targets the constraints of QoS requirements 
(e.g., average response time). DRL-Cloud [9] improves 
the energy (e.g. electricity) efficiency of data centers 
with the consideration of task/data dependencies in task 
scheduling stage. Du et al. [13] designed a DRL agent that 
enables simultanueously deciding discrete actions (VMs 
placement) and continuous actions (dynamic resource 
pricing).

Besides, both [45] and [34] apply DRL to tackle DAG-
based job scheduling problems. Here, Decima [45] uses 
a policy gradient agent and has a similar objective as 
DeepRM, which is designed to tackle the DAG schedul-
ing problems within each job in Spark, while considering 
interdependent tasks. Spear [34] works to minimize the 
makespan of complex DAG-based jobs while consider-
ing both task dependencies and heterogeneous resource 
demands at the same time.

These studies are mostly relied on specific contexts 
such as power saving or resource pricing, along with 
diverse constraints defined by users.

Scheduling optimization for AI workloads
Natural characteristics of AI workloads make them dif-
ferent from traditional workloads, so recent years has 
witnessed and injected such features into job schedul-
ing optimization. For example, SLAQ [79], Optium [51] 
and OASiS [6] take the feature of iterativeness into con-
sideration, and separately propose their online prediction 
method for predicting the overheads of coming itera-
tions in each iterative step. Difference among them is that 
SLAQ mainly studies the connection between job latency 
and model quality, and advocates placing more resources 
to jobs with a great potential of quality improvement; 
Optium is designed for DL workloads, and it further ena-
bles saving communication cost while improving training 
efficiency; OASiS is aiming at dynamically controlling the 
number of concurrent workers and parameter servers for 

each job to get a higher resource utilization and training 
expedition.

Some other approaches adopt DRL techniques into 
job scheduling optimization. For example, Harmony [5] 
implicitly encodes interferences among co-located ML 
jobs as one of inputs of neural network that maps raw 
cluster and job states to job placement decisions (workers 
and PSs allocation). SIREN [67] abstracts a ML job as a 
set of serverless functions (e.g. AWS Lambda functions) 
and leverages DRL techniques to adjust the number and 
memory of such functions. DSS [57] is an automated 
big-data task scheduling approach in cloud comput-
ing environments, which combines DRL and LSTM to 
automatically predict the VMs to which each incoming 
big data job should be scheduled to improve the perfor-
mance of big data analytics while reducing the resource 
execution cost. They mostly consider the job placement 
in a manner of Job-to-VMs, whereas we target changing 
the scheduler configurations in a run-time mode.

Besides, DRL is also applied to optimize the task sched-
uling. For example, Fang et al. [15] propose an advanced 
deep reinforcement learning (RL) approach (that learns 
to schedule from experience) to better schedule DNN 
inference queries, and Li et al. [38] develop a novel and 
highly effective DRL-based control framework for dis-
tributed streaming data processing. Wu et  al. [72] pre-
sent an optimal task allocation scheme with a virtual 
network mapping algorithm based on deep CNN and 
value-function based Q-learning. Note that they mostly 
consider task scheduling scenarios with fixed workloads 
and resources, whereas we consider such scenarios with 
dynamically changing workloads and resources.

Our Work. In this paper, we focuses on edge-cloud 
jobs with diverse workload characteristics (such as sto-
chastic arrival rate, different resource demands and 
durations). Based on popular Kubernetes scheduler 
and Volcano scheduler in real Kubernetes cluster, our 
approach is built upon these two existing configurable 
schedulers. Simultaneously, we employ DRL to tune their 
configuration combinations online. On the one hand, 
early work in this area adopts reinforcement learning 
(RL) techniques to schedule jobs at particular time slots, 
so as to minimize their latencies [44]. On the other hand, 
in order to accelerate the training speed, later techniques 
in this area applies state-of-the-art DRL techniques [40, 
63]. However, when the cluster schedules edge-cloud jobs 
by using DRL to tune scheduler configurations at run-
time, it still suffers from the time-consuming challenge 
of the sampling phases, which is mainly because: (1)in 
order to achieve convergence, the DRL training needs a 
large number of samples (e.g. over 1 million); (2)in order 
to obtain a training sample, it also takes a rather long 
time (at least a few seconds).
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To address the above challenges, some recent approaches 
train DRL agents in an offline manner  [75, 76]. Note that 
the DRL training is driven by a neural network based com-
putational model, which predicts system states and gener-
ates training samples based on history traces. Similarly, 
Ran et.al [54] develop a simulation platform called DeepEE, 
which is used to emulate dynamic IT workloads and cooling 
systems. More crucially, these techniques target long-run-
ning and compute-intensive jobs in HPC data centers. And 
compared with our work’s scenario, there are two key dif-
ferences: (i)the long-running jobs follow an arrival queue, 
and are dispatched to proper servers through a fixed job 
scheduling algorithm. (ii)for these compute-intensive jobs 
in their scenarios, latency is not a key concern. (iii)in DRL 
training, these techniques implicitly assume pre-defined 
available resources in the cluster.

Conclusion
In this paper, we propose EdgeTuner, a fast scheduler 
configuration tuning approach that efficiently lever-
ages DRL to reduce tail latency of edge-cloud jobs. It 
can timely train a DRL agent in order to properly tune 
scheduler configurations in dynamic edge-cloud envi-
ronment. We implement EdgeTuner on both Kubernetes 
and Volcano schedulers and extensively evaluate it on 
real workloads driven by Alibaba production traces. The 
experimental results show that EdgeTuner outperforms 
prevailing scheduling algorithms by achieving much 
lower tail latency while accelerating DRL training speed.
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