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A B S T R A C T   

The aerobic granular sludge (AGS) process treats wastewater with a significantly lower footprint and energy 
consumption compared to conventional activated sludge systems. Nevertheless, there is still potential for opti-
mizing its performance, and mathematical models are most valuable tools to this end. Aeration energy con-
sumption deserves particular attention, as it is the largest remaining operating cost for AGS systems. Batch-wisely 
operated reactors show an increasing oxygen transfer efficiency during aeration, which translates into a dynamic 
alpha factor. However, the dynamic nature of alpha is neglected in current models. The impact of this simpli-
fication on the operating performance was addressed for the first time in this study. Through the development of 
a novel 1-D biofilm reactor model, calibrated to a full-scale AGS plant, it was shown that the alpha dynamics 
affect both model structure and calibration, as well as the process performance. The description of the dynamic 
nature of alpha through the empirical relationship with the soluble biodegradable organic carbon required the 
addition of the state variable representing soluble slowly biodegradable organic carbon (SCB) to the biokinetic 
ASM2d model. Simulation results showed that alpha dynamics significantly influences simultaneous nitrification 
and denitrification and therefore need to be included in mathematical models to optimize AGS process perfor-
mance. Different process variables such as volume exchange ratio, aeration capacity and granule size can be 
manipulated to improve reactor design and performance. The practical application of these new insights were 
discussed regarding the optimization of AGS systems, as well as other batch-wisely operated aerobic wastewater 
treatment systems.   

1. Introduction 

The aerobic granular sludge (AGS) technology has been widely 
recognized as a true innovation in the field of wastewater treatment due 
to its low footprint and energy use compared to conventional activated 
sludge systems. Nevertheless, there is still potential for optimizing its 
process performance [1] to keep a good effluent quality facing 
increasingly stringent standards and to further reduce the energy re-
quirements. The lower pumping and mixing energy in batch-wisely 
operated AGS reactors compared to continuous activated sludge sys-
tems, results in a larger fraction of energy consumption dedicated to 
aeration (e.g. 67 % compared to 44 % for a Nereda® and Carrousel® 
systems respectively [2]). Optimizing aeration is crucial for both 

minimizing energy consumption and for maximizing treatment capacity. 
The optimisation of aeration strategies for batch-wisely operated 

granular sludge reactors has been a topic of common interest [3–10]. 
Full-scale AGS batch reactors typically operate with continuous aeration 
at a fixed dissolved oxygen (DO) set-point. However, different studies 
have explored the potential benefits of adaptive process control, where 
the DO concentration is varied over the cycle to improve simultaneous 
nitrification and denitrification (SND) [4,5,11–13]. SND occurs when 
anoxic zones form within granules due to limited oxygen diffusion and 
the simultaneous diffusion and production of NO3

– [14]. None of the 
studies investigating the optimisation of aeration strategies for batch- 
wisely operated granular sludge reactors has so far accounted for the 
dynamic nature of the alpha factor. The alpha factor defines the ratio of 
gas–liquid mass transfer in process water to clean water. It reflects the 
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low oxygen transfer efficiency at the start of the aeration phase in the 
batch operation due to operating and environmental conditions 
[15–17]. This can delay reaching the DO set-point, affecting the volume 
of aerobic and anoxic zones in the granule and consequently SND effi-
ciency. As a result, the dynamic nature of the alpha factor may impact 
the treatment capacity of a batch-wisely operated AGS plant. Further-
more, a slow increase of the alpha factor over time may lead to an 
energy-inefficient operation. Therefore, this research hypothesises that 
neglecting the dynamic nature of the alpha factor in models could limit 
the accuracy and reliability of predicting treatment capacity, energy 
consumption, and process understanding. 

Several algebraic correlations to describe the dynamic nature of 
alpha have been proposed for activated sludge with the aim to optimize 
the design and operation of aeration systems [18–25]. Three of these 
dynamic alpha models included a relationship between alpha and 
(influent) organic matter to address the short-term dynamics of alpha 
[20,21,25]. An exponential relation between alpha and the removal of 
soluble biodegradable COD (bCODS) was found for an AGS plant [15] 
similar to the empirical relation for activated sludge in batch operation 
proposed by [21]. Mathematical models applied to predict the perfor-
mance of AGS systems, so far have focused on biokinetic processes, 
while only including a simplistic modelling of oxygen mass transfer 
[26]. 

The aim of this study was to investigate the impact of the dynamic 
nature of alpha on the performance of AGS batch reactors and to identify 
the shortcomings of current models that do not consider the dynamic 

nature of alpha. In this respect, a 1-D biofilm reactor model was 
developed and calibrated to a full-scale AGS plant to examine the dif-
ference in impact of a constant versus a dynamic alpha factor on the 
reactor performance. The AGS model with a case-specific dynamic alpha 
factor was made generally applicable by including the empirical relation 
between alpha and bCODS. This novel AGS model was used to assess 
alpha’s impact on the performance of AGS reactors for different sce-
narios including a change in volume exchange ratio (VER, i.e., the ratio 
of the influent volume added to the total volume of the reactor), aeration 
capacity, temperature and granule size. Our previous study [15] 
demonstrated that the first three process variables influence the dy-
namic nature of the alpha factor. The granule size is hypothesized to also 
influence alpha dynamics as it determines the volume of aerobic and 
anoxic zones within the granule. Finally, the differences between the 
scenarios were analyzed to provide practical insights and perspectives to 
improve the optimization of AGS systems, as well as other batch-wisely 
operated aerobic wastewater treatment systems. 

2. Material and methods 

2.1. Reference case 

The reference case for this study was the Prototype Nereda® in 
Utrecht, the Netherlands, of which the experimental data was used to 
calibrate the 1-D biofilm reactor model. This full-scale research instal-
lation is owned by the district water authority Hoogheemraadschap de 

Nomenclature 

Abbreviation Definition 
ANO Autotrophic nitrifying organisms 
ASM2d Activated sludge model no.2d 
COD Chemical oxygen demand 
DO Dissolved oxygen 
GAO Glycogen accumulating organisms 
N Nitrogen 
OHO Ordinary heterotrophic organisms 
P Phosphorous 
PAO Phosphate accumulating organisms 
PI Proportional-integral controller 
SBR Sequencing batch reactor 
SND Simultaneous nitrification denitrification 
VER Volume exchange ratio 
VFA Volatile fatty acids 
1-D One-dimensional 
Symbol Definition (Unit) 
Ā Average volume-weighted biomass surface area of the 

biomass fraction > 200 μm. (m2) 
bCODS Soluble biodegradable organic carbon (g.m− 3) 
d̄ Average volume-weighted diameter (mm) 
d(i) Average diameter of size class i (mm) 
JXi,bulk Flux of particulate i in the boundary layer (g.m− 2.d− 1) 
kLaO2 , clean Gas-liquid mass transfer coefficient of O2 in clean water 

(d− 1) 
kLaO2 Gas-liquid mass transfer coefficient of O2 in process water 

(=αF •kLaO2 , clean) (d− 1) 
MLSS Total suspended solids in the mixed liquor (kg TSS. m− 3) 
MLSSg Total granular MLSS concentration (kg TSS. m− 3) 
MLSS(i) MLSS concentration in size class i (kg TSS. m− 3) 
MXi,bulk Mass of particulate i (kg TSS) 
n Total number of size classes (-) 
ng(i) Number of granules in size class i (-) 

OTR Oxygen transfer rate (kg O2.h− 1) 
OUR Oxygen uptake rate (kg O2.h− 1) 
Qin Influent flow rate (m3.d− 1) 
Qout Discharge flow rate (m3.d− 1) 
Ri,bulk Conversion rate in the bulk of particulate i (g.m− 3.d− 1) 
SF Solute concentration of fermentables (readily 

biodegradable COD) (g.m− 3) 
SRT Sludge retention time (d) 
SCB Solute concentration of slowly biodegradable COD (g.m− 3) 
Su Solute concentration of inert COD (g.m− 3) 
SVFA Solute concentration of volatile fatty acids (readily 

biodegradable COD) 
ΔTcycle Total cycle length (h) 
ΔTreaction Reaction phase length (aeration + post-denitrification 

phase length) (h) 
Vbulk Bulk liquid volume (m3) 
Vg Total granular biofilm volume (m3) 
Vreactor Reactor volume (m3) 
Xi Concentration of particulate i (kg TSS.m− 3) 
XTSS,bulk Overall TSS concentration in the bulk liquid (kg TSS.m− 3) 

Greek alphabet 
αF Alpha factor for fouled diffusers (-) 
ρg Biomass concentration in the granule (kg TSS.m− 3) 
φ Fraction of total bulk biomass wasted every cycle (-) 
φi Fraction of species-specific bulk biomass wasted every 

cycle (-) 

Subscripts 
bulk In the bulk liquid 
CB Biodegradable 
in In the influent 
PHA Polyhydroxyalkanoate 
PP Poly phosphate 
U Unbiodegradable  
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Stichtse Rijnlanden and is operated by Royal HaskoningDHV, who 
commercialized the AGS process under the trademark Nereda®. The 
reactor had a total volume of 1050 m3, with a process water depth of 7.0 
m and a surface area of 150 m2. 

Off-gas measurements were taken to analyse the dynamic behaviour 
of the alpha factor (αF) during the reaction phase of the batch cycle, as 
described in Strubbe et al. (2023). α F combines the effect of the alpha 
factor (α) and the fouling factor (F). Given that fouling is a slow phe-
nomenon, it was reasonably assumed that F remained constant over the 
time period of the data analysis, so changes in αF could be attributed to 
changes in α.

The dataset that served as the basis for calibrating the model to the 
reference case consists of reactor, operating and biomass characteristics 
of an average batch cycle. The characteristics were determined by 
analyzing 14 batch cycles in the period 3–6 July 2020, during dry 
weather conditions. The material and methods related to the liquid 
phase measurements are specified in [15]. The average operating 
strategy included an anaerobic plug-flow feeding phase (1 h), an aera-
tion phase (2.5 h), a post-denitrification phase (1.5 h), and a settling 
phase (0.5 h), resulting in an average total cycle length of 5.5 h. The 
applied VER was 25 %. During the aeration phase, the DO concentration 
was maintained at a constant set-point of 1 g O2.m− 3. The gas–liquid 
mass transfer coefficient of O2 in clean water, kLaO2 , clean (d− 1) deter-
mined according to the standard protocol DWA-M 209, 2007 of the 
German Association for Water, Wastewater and Waste is on average 148 
d–1 at 20 ◦C [15]. The average operating temperature was 21.5 ◦C. 

The biomass characteristics were based on data derived from a 
sample of the total suspended solids in the mixed liquor (MLSS) which 
was collected during the well-mixed aeration phase. Furthermore, the 
different size classes of the MLSS sample was determined by sieving the 
MLSS across a range of pore sizes (0.2, 0.63, 1.0, 1.4, and 2.0 mm) 
(Table S1). Based on this data, the volume-weighted mean diameter (d̄ =

1.3 mm, Eq. S1), volume-weighted mean granular surface area (Ā = 1 
200 000 m2, Eq. S2) of the biomass fraction > 0.2 mm and the total 
granular biofilm volume (Vg = 160 m3, Eq. S4) was calculated. Any 
solids smaller than 0.2 mm were classified as floccular biomass in this 
study. The reactor and operating characteristics are summarized in 
Table S2. 

The reactor treated on average 1000 m3.d− 1 with respective average 
influent concentrations of total organics, ammonium, and phosphate of 
688 g COD⋅m− 3, 67 g NHx-N⋅m− 3, and 5 g PO4–P⋅m− 3 during the 
reference period (Table S3). The influent COD was divided into soluble 
and particulate fractions, with the former including volatile fatty acids 
(VFA) (SVFA,in), fermentable COD (SF,in), and inert COD (Su,in) and the 
latter consisting of biodegradable (XCB,in) and inert (Xu,in) particulates 
based on the COD fractionation parameters determined by [27]. Further 
details regarding the influent concentrations are given in Table S3 and 
Fig. S1. 

The model was calibrated to the reference case for the average 
concentration profiles of DO, NH4

+ and PO4
3− over the batch cycle during 

the reference period (Fig. S2). It took on average 1.6 h of aeration to 
reach the DO set-point of 1 g O2.m− 3 for a continuous airflow rate of 800 
m3.h− 1 (Fig. S3), which is relatively long due to the limited aeration 
capacity (under dimensioning) of the reactor under study. The calibra-
tion of the DO profile between 0 and 1 g O2.m− 3 has not been under-
taken as such, given the different rates of increase observed in each 
aeration phase, which presents challenges for direct translation by the 
developed model. The NH4

+ and PO4
3− concentration profiles of this 

average batch cycle were reconstructed by calculating three average 
concentrations at specific time points: (i) at the start of the aeration 
phase, (ii) at 1 h of aeration, and (iii) at 1.5 and 2 h of aeration for PO4

3−

and NH4
+ respectively. Concentration (i) was determined as the average 

measured concentration while concentration (ii) and (iii) were deter-
mined based on their average calculated maximal removal rate. This 
implies that the average concentration profile of PO4

3− and NH4
+, used for 

calibration, exhibits a decreasing linear trend, starting from the highest 
and approaching the lowest average measured concentration level (see 
calculation procedure in S.I. Section S.1.3.) During the subsequent post- 
denitrification phase, the PO4

3− and NH4
+ concentrations remain rela-

tively stable, around the detection limits of 0.05 mg P.L− 1 and 1 mg N. 
L− 1 (Fig. S2).The average maximal removal rates for NH4

+ and PO4
3−

were determined as 3.6 mg N.L–1.h− 1 and 6.7 mg P.L− 1.h− 1, respec-
tively. On average, 20 % of the removed NH4

+ is adsorbed to the biomass 
at the start of the aeration phase [28], so the NH4

+ consumption rate was 
estimated to be 4.5 mg N.L− 1.h− 1. The calculated NH4

+ consumption rate 
and PO4

3− uptake rate were compared to values reported by [1] (i.e. 2.4 
and 7 mg N.L− 1.h− 1 and 0.45 and 10 mg P.L–1.h− 1, respectively) and 
found to be representative of a full-scale AGS batch reactor. The 
measured NO3

– concentrations were unsuitable for calibration since they 
consistently fell within the range of 0.5–3.5 mg N.L− 1, posing a chal-
lenge for qualitative interpretation given the accuracy of 0.5 mg N.L− 1. 

2.2. One-dimensional biofilm reactor model 

The behaviour of the AGS reactor was described with a one- 
dimensional (1-D) biofilm reactor model. Whereas most previous 
studies used the Aquasim [29] simulation environment [30], the 1-D 
AGS reactor model in this study was implemented in Matlab-Simulink 
(The Math Works, Inc. MATLAB. Version R2020a) to allow more easy 
and flexible testing of operating strategies. The model consists of (1) a 
bulk compartment, (2) a biofilm compartment, and (3) bioconversions 
(Fig. 1). 

2.2.1. Bulk compartment 
The bulk compartment simulates the batch operation of the AGS 

reactor under study, assuming completely mixed conditions in each 
phase of the cycle. In reality, completely mixed conditions do not apply 
during the anaerobic simultaneous feeding and discharge phase of the 
batch operation, which was taking into account through the following 
four model modifications. First, the high concentration gradients during 
anaerobic plug flow feeding were mimicked by increasing the value of 
the diffusion coefficient of acetate by a factor five [31]. The diffusion 
coefficient of other soluble biodegradable organic carbons was held 
constant as they did not exert a rate-limiting effect on the observed 
concentration profiles during anaerobic feeding. Secondly, the biocon-
version reactions in the floccular biomass were turned off to mimic se-
lective feeding of granules over flocs. Flocs are typically situated on top 
of the sludge bed, resulting in a minimal supply of feed left for the flocs 
[32]. Thirdly, denitrification and inhibition of NO3

– were excluded dur-
ing the feeding period. In practice, the plug-flow regime causes the 
accumulation of NO3

– from the previous cycle at the upper part of the 
reactor, while the granular sludge bed experiences anaerobic conditions. 
Lastly, to ensure a correct removed water volume and fulfil the correct 
VER during the anaerobic feeding phase, a separate discharge phase of 
negligible duration (5 min) was included. These four corrections made 
sure that PAOs were selected over OHOs in the granular biomass which 
was important to correctly predict the total phosphorous effluent quality 
[11]. Fig. S6 visually compares the actual and modelled batch operation. 
A proportional-integral (PI) controller with anti-windup was used for 
the oxygen control strategy, with controller parameters listed in 
Table S9. 

The model considered an average fixed floccular biomass concen-
tration (XTSS,bulk) of 1.5 kg TSS.m− 3 in the bulk based on experimental 
data (Table S1, XTSS,bulk = XU,bulk + XCB,bulk + XOHO,bulk + XPAO,bulk +

XANO,bulk, in kg TSS.m− 3). To maintain the fixed biomass concentration, 
only a fraction of the floc concentration was wasted every cycle. The 
factor φ represented this fraction and had the same value for every 
particulate in the mass balance [33]. However, later in this study it was 
found necessary to include a species-specific wasting factor, φi , the 
value of which was different for each type of particulate (see further). 
The mass balance of a specific particulate over time is given by Eq. S17. 
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2.2.2. Biofilm compartment 
The dynamic concentration gradients of solutes and particulates 

within the granules were described by the 1-D biofilm model developed 
by [33,34]. The granules were assumed to have a fixed size which was 
achieved to set detachment rates equal to the growth rates. To balance 
numerical accuracy and efficiency, each granule was subdivided into 25 
layers, each 0.03 mm thick, which is comparable to the size of an acti-
vated sludge floc [35]. The detachment of particulates from the granules 
contributes to the floccular biomass in the bulk, impacting the bulk 
liquid species composition and solid retention time (SRT) per species. 
The model was implemented in MATLAB-Simulink® R2020a software. 
Detailed information on the biofilm model can be found in S.I. section 
S2.2. 

2.2.3. Bioconversions 
The biokinetic model used in this study was ASM2d [36], corrected 

on typos by [37]). In this model, OHO and PAO are responsible for COD 
removal and denitrification, with the PAO also performing P uptake and 
the ANO performing nitrification. In this study, phosphorus precipita-
tion, redissolution reactions and alkalinity were not considered (omitted 
from ASM2d). Furthermore, incorporation of P in the biomass was not 
included in the stoichiometry and kinetics to minimize computational 
errors [9]. 

The ASM2d kinetic parameters were applied except for the decay 
rates of PAO which were decreased from 0.2 to 0.02 d− 1 as in [9] in 
order to account for the protective effects of the granule structure and 
EPS layers [38]. Detailed information on the bioconversions can be 
found in S.I. section S2.3. 

2.3. Research approach 

In this work, the model development and calibration to the reference 
case at steady-state conditions was carried out in three steps: (1) a 
constant maximum alpha (αF = 1), (2) a time-dependent alpha (αF = αF 
(t)), and (3) an alpha dependent on the removal of bCODS (αF = αF 
(bCODS (t))). The first two steps were compared to investigate whether 
the dynamic nature of alpha does have a significant impact on the 
process performance of an AGS reactor. The addition of the empirical 
relation between alpha and bCODS in the third step was necessary to 
assess the impact of the dynamic nature of the alpha factor on process 
performance for different design and operating strategies, which was 
investigated as the fourth step of the research approach followed in this 
work. The quality of the model calibration was evaluated through the 

minimal sum of squared errors between the measured and simulated 
concentrations Fig. S11 visualizes the four steps of the research 
approach. 

2.3.1. Step 1: Constant (ideal) alpha 
The 1-D biofilm reactor model was calibrated by adjusting its pa-

rameters to reflect the bulk MLSS concentration and the concentration 
profiles of NH4

+ and PO4
3− during the batch cycle of the reference case. 

This calibration was performed under constant average operating and 
influent conditions. The model assumed a constant maximum alpha 
factor of 1, which means that the gas–liquid mass transfer coefficient in 
process water was assumed equal to the one for clean water 
(kLaO2=αF • kLaO2 , clean = 148 d− 1 as determined in [15]). The MLSS 
concentration in the bulk liquid was determined by a wasting factor φ 
with the same value for all microbial species. 

2.3.2. Step 2: Time-dependency of alpha 
A time-dependent alpha factor αF = αF(t), increasing from αF = 0.25 

at the start of aeration to a maximum value of αF = 0.55, was incor-
porated in the model according to the first-order relation determined by 
Strubbe et al. (2023) [15], on experimental data of the same reference 
case as applied in this study (see S.I. section S3.2). The resulting model 
was again calibrated to the reference case. The oxygen uptake rate 
(OUR, kg O2.h− 1) for different species (OHO, PAO, and ANO) was 
compared to the oxygen transfer rate (OTR, kg O2.h− 1) for both step 1 
and 2. Details about the calculation methods can be found in S.I. section 
S3.2. 

2.3.3. Step 3: Dependency of alpha on concentration of soluble 
biodegradable organic carbon 

The dependency of the alpha factor on the soluble biodegradable 
organic carbon αF = αF(bCODS (t)) has been postulated to be the 
explanation for its time-dependent behaviour [15]. Therefore, in order 
to describe the dynamic behaviour of the alpha factor in a more general 
way, which can also be applied to different design and operating stra-
tegies, the empirical relation between alpha and bCODS from Strubbe 
et al. (2023) was used, as shown in Fig. S13. 

The alpha factor is affected by both readily and slowly soluble 
biodegradable organic carbon [15]. However, the ASM2d model as-
sumes all soluble biodegradable organic carbon to be readily biode-
gradable, while particulate organic carbon components are considered 
slowly biodegradable [36]. This assumption is not entirely accurate as 
some colloidal organic fractions can be measured as soluble, even 

Fig. 1. Schematic representation of the 1-D biofilm reactor model features developed in this study.  
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though they are slowly biodegradable [39]. To address this issue, the 
biokinetic ASM2d model was modified by dividing the soluble compo-
nents into a readily biodegradable fraction (SVFA + SF), and a slowly 
degradable fraction (SCB), as done by [40] for a high-rate activated 
sludge process. The reactions of the different biodegradable COD com-
ponents, either particulates or solutes, over the different batch phases, of 
the extended ASM2d model are visualized in Fig. 2. The model was 
calibrated by adjusting the fractionation of solutes into SF and SCB 
(Fig. S1), as well as the biokinetic parameters of SCB. The extension of 
the ASM2d model can be found in S.I. section S2.3. 

2.3.4. Step 4: Scenario analysis 
The 1-D biofilm reactor model calibrated to the reference case, with 

alpha dependent on bCODS concentration over the aeration phase, was 
used to assess the impact of alpha on the performance of AGS reactors for 
different scenarios, including a change in (i) VER, (ii) aeration capacity 
(related to kLaO2 , clean), (iii) average granule size and (iv) temperature. 
The feeding, discharge, and settling times remained constant in com-
parison to the reference case, but the length of the reaction phase, which 
includes both the aeration and post-denitrification phase lengths, var-
ied. More specifically, the aeration phase was switched off when NH4

+

reached a concentration of 3 mg NH4
+-N.L− 1 while the length of the post- 

denitrification phase was determined by an end concentration of 3 mg 
NO3

–-N.L− 1. The performance of each scenario was analysed in terms of 
treatment capacity (m3.d− 1), SND efficiency (%), and oxygen transfer 
efficiency (OTE, %) (related to energy consumption). The process per-
formance was considered optimal when achieving the desired effluent 
quality while maximizing the treatment capacity and minimizing energy 
consumption. Details of the model adaptations per scenario and calcu-
lation methods can be found in S.I. section S3.4. 

3. Results and discussion 

3.1. Effect of alpha dynamics on reactor performance 

The 1-D biofilm reactor model was calibrated to the reference case 
for both a constant maximum alpha = 1 and a time-dependent alpha 
factor (Fig. 3b and e respectively). The implications of assuming a 
constant maximum alpha versus considering the dynamic nature of 
alpha are discussed in view of the model structure, calibration and 
predicted reactor performance, i.e. the treatment capacity and energy 
consumption. 

3.1.1. Effect of alpha on model structure and calibration 
The calibration approach varied significantly between the model 

assuming a maximum alpha compared to the model considering the 
observed time-dependent dynamic behaviour of alpha. When a 
maximum alpha factor was used, the oxygen transfer efficiency and thus 
oxygenation capacity of the system was overestimated. More specif-
ically, the model with dynamic alpha predicts a 33 % lower oxygen 

transfer efficiency compared to the model with a constant maximum 
alpha (Eq. S37, the difference in kLaO2 is indicated by the red area in 
Fig. 3d). The lower oxygen transfer efficiency resulted in a better match 
with the average time (1.6 h) to reach the DO set-point of 1 g O2.m− 3, 
thereby validating the model with dynamic alpha in its more accurate 
prediction of the system’s oxygenation capacity compared to a model 
with a constant maximum alpha. 

The overestimation of the oxygenation capacity for the model with a 
constant maximum alpha of 1 caused faster phosphate uptake and 
nitrification compared to the experimental data before calibration 
(Fig. S14). Model calibration, which was performed in three steps, 
allowed to match the simulated concentration profiles with the experi-
mentally determined bulk MLSS concentration and NH4

+ and PO4
3−

profiles. First, the bulk MLSS concentration of 1.5 kg TSS.m− 3 was 
calibrated by estimating the parameter φ, which represents the fraction 
of total bulk particulates (XTSS, kg TSS.m− 3) wasted every cycle (Eq. 
S17). Through the process of trial and error, φ was set at 0.2, meaning 
that 20 % of XTSS was wasted every cycle. Secondly, the NH4

+ concen-
tration profile over the aeration phase was calibrated by decreasing the 
calculated total granular biofilm surface area, Ā, per 100 000 m2 until 
NH4

+ concentration profile matched the measured values (Fig. 3b). The 
rate of decrease in NH4

+ concentration was judged to be adequately 
simulated and did not need further calibration. Finally, the PO4

3− con-
centration profile over the aeration phase was calibrated by adapting 
five kinetic parameters related to the PAO metabolism to correctly 
simulate the end of phosphate uptake as determined experimentally 
(Fig. 3b). Note that GAO activity was not modelled explicitly due to the 
limited added insights related to the impact of alpha on the process 
performance. Neglecting GAO activity led to a higher simulated phos-
phate release compared to practice, as all VFA was assumed to be stored 
only by PAOs. The calibrated model parameters for a constant alpha are 
summarized in Table 1.. 

The calibration approach for the model with a dynamic alpha factor 
exposed a limitation in the 1-D biofilm reactor model. The low 
oxygenation capacity of the system limited the ANO population in the 
granules. Moreover, the model assumed that granules had a fixed size 
and that growth products were detached in the bulk phase. Conse-
quently, the simulated biomass population in the bulk phase largely 
reflected the simulated biomass population in the granules, causing an 
underestimation of the SRT of the floc fraction (Eq. S39). Due to the 
limited oxygenation capacity of the system, it is assumed that the ANO 
population lives in the smaller granular fraction or the so-called floc 
fraction. However, the wasting factor φ (0.2) reduced the SRT of the floc 
fraction to less than 5 days. As a result, the model was unable to accu-
rately predict the experimentally determined nitrification capacity. To 
address this issue, a species-specific wasting factor φi was introduced in 
the model, allowing to capture the SRT distribution for different size 
classes in an AGS reactor. The AGS process is engineered to selectively 
waste the poor settling biomass while retaining the best settling gran-
ules. Consequently, an SRT distribution exists across the different 

Fig. 2. Visualization of the different biodegradable COD components, either particulates (X) or solutes (S), over the different batch phases, of the extended 
ASM2d model. 
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granule sizes. The calibration approach in this case was iterative. First, 
the wasting factor of the inert particulates, φU, was adapted to match the 
experimentally determined MLSS concentration in the bulk of 1.5 kg 

TSS.m− 3. Secondly, the total granular biofilm surface area, Ā, was again 
set to the calculated value to improve the growth of ANOs in the gran-
ules. The wasting factor of ANOs, φ ANO, was decreased while the 

Fig. 3. Simulation results of the model calibration at steady state with the average measured values of 14 batch cycles between 3 and 6 July 2020 of the reference 
case for a constant maximum alpha = 1 (top graphs, a-c) and a time-dependent alpha factor (bottom graphs, d-f). (a) and (d): simulated DO set-point (g.m− 3), PI 
controller’s manipulated kLaO2,clean , and the effectivekLaO2 = α F• kLaO2,clean (d

− 1), controlled and measured DO concentration (g.m− 3). b and e: simulated and measured 
concentration profiles (g.m− 3). c and f: oxygen uptake rate (OUR, kg O2.h− 1) for different species (OHO, PAO, and ANO) compared to the oxygen transfer rate (OTR, 
kg O2.h− 1). The light grey shaded area represents the aeration phase, whereas the dark grey shaded area denotes the post-denitrification phase. 

Table 1 
Original values of the biokinetic (ASM2d [36]) and reactor model parameters compared to the calibrated parameters for the model with a constant maximum alpha (αF 
= 1), with a time-dependent alpha, αF(t), and alpha dependent on the biodegradable soluble organics, αF(bCODS).  

Symbol Definition Original 
value 

Calibrated 
value for 
αF = 1 

Calibrated value 
for αF(t) 

Calibrated value for 
αF(bCODS) 

Unit 

Influent characteristics 
SF Fermentable organic matter 200 200 200 180 g COD.m− 3 

SCB Slowly biodegradable soluble organic matter n.a. n.a. n.a. 20 g COD.m− 3  

Reactor and biomass model parameters 
φ Fraction of total bulk biomass wasted every cycle n.a. 0.2 n.a. n.a. – 
φU Fraction of unbiodegradable particulate organics wasted every 

cycle 
n.a. n.a. 0.6 0.6 – 

φCB, OHO, PAO, 

PP, PHA 

Fraction of biodegradable particulate organics, heterotrophic 
organisms and storage polymers wasted every cycle 

n.a. n.a. 0.4 0.4 – 

φANO Fraction of autrophic nitrifying organisms wasted every cycle n.a. n.a. 0.04 0.04 – 
A Total granular biomass surface area 1 200 000 800 000 1 200 000 1 200 000 m2 

C Correction factor 
for αF 

1 1 1.35 1.35 –  

Biokinetic model parameters 
bPAO Decay rate of XPAO 0.02* 0.05 0.02 0.02 d− 1 

bPP PO4 Rate constant for lysis of XPAO,PP 0.02* 0.05 0.02 0.02 d− 1 

bStor VFA Rate constant for respiration of XPAO,Stor 0.02* 0.05 0.02 0.02 d− 1 

qPAO,PO4 PP Rate constant for storage of XPAO,PP 1.5 1 1 1 g P.(g 
COD)− 1.d− 1 

fPP PAO,Max Maximum ratio of XPAO,PP/XPAO 0.34 0.204 0.204 0.204 g P.(g 
COD)− 1 

*Values given by [9] were assumed to be the original ones applicable for an AGS system as a value of 0.2 d− 1 [36] eliminates any PAO activity in the system. 
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wasting factor of the other organisms and biodegradable particulates (φ 
CB, OHO, PAO, PP, PHA) and was increased compared to the general φ of 0.2. 
It increased the SRT of ANOs and lowered the oxygen consumption 
respectively. Thirdly, the decay rate of PAOs was again reduced to fit the 
end of phosphate uptake rate (Fig. 3e). Finally, the increase in alpha was 
corrected to calibrate the average time to reach the DO set-point of 1 g 
O2.m− 3 (Fig. 3d). The calibrated model parameters for the time- 
dependent alpha factor are given in Table 1. Note that simulations for 
a constant minimum, maximum and average alpha factor were con-
ducted as well (Fig. S16). Explicitly incorporating alpha dynamics was 
determined to be the most suitable approach, since their effect on the 
removal rates deviated significantly from the more realistic dynamic 
alpha behaviour. 

3.1.2. Effect of alpha on the treatment capacity and energy consumption 
While optimising the AGS process, a constant maximum alpha is 

often considered through the assumption that the DO set-point is 
reached instantaneously [3,4,9,11,31,41–43]. However, this research 
has shown that a dynamic alpha not only affects the model structure and 
calibration, but also the process performance, i.e. treatment capacity 
and energy consumption. 

The difference between a constant maximum and dynamic alpha 
factor resulted in a different distribution of ANOs over the granule and 
floc fraction. In case of the maximum alpha, the ANOs were evenly 
distributed over both fractions (Fig. S17). However, with a dynamic 
alpha, a larger proportion of ANOs were present in the floc fraction 
(Fig. S18). This has been supported by several studies, along with full- 
scale measurements [44], which have shown that in smaller granules 
nitrifying organisms are enriched due to a larger relative aerobic volume 
[45,46]. This variation in ANO distribution between the two cases was 
reflected in the simulated oxygen uptake rate (OUR) profiles. In the case 
of a constant maximum alpha, the OUR declined over time, in line with 
substrate concentrations. However, in case of a dynamic alpha, the OUR 
of ANOs increased during the aeration period. Initially, during the 
oxygenation capacity-limited phase, the OUR of PAO and OHO was at its 
maximum. As their activity decreased and the oxygenation capacity 
diminished, oxygen reached the ANO population in the granules as well, 
stimulating their activity and increasing their OUR. 

The difference in ANO distribution and OUR profiles was also re-
flected in the model predictions of SND efficiency (reflected by the 
difference in NH4

+ and NO3
– peak), where the dynamic alpha resulted in a 

higher SND efficiency (52 %) compared to the maximum alpha (39 %). 
The higher SND efficiency is in line with historical data of the plant 
under study (data not shown) and the measured NO3

– concentration at 
the end of aeration (i.e. 0.5–3.5 mg N.L− 1, with an accuracy of 0.5 mg N. 
L− 1). Therefore, the hypothesis is that incorporating the dynamics of 
alpha into the model leads to a better estimation of changes in OUR over 
time (Fig. 3f). This, in turn, enabled more accurate predictions of SND 
efficiency (Fig. 3e) and thus treatment capacity. The reported effi-
ciencies of AGS treating municipal wastewater (SND) vary greatly, 
ranging from 70 % to 10 % (Fig. 1, Layer et al. (2020)). This simulation 
highlighted that electron-donor availability is not the sole influencing 
factor on SND efficiency, contrary to the conclusions of Layer et al. 
(2020). The dynamic alpha factor should also be considered. Besides, 
considering the dynamic nature of alpha gave a more realistic prediction 
of the oxygen transfer efficiency (Fig. 3d) and thus the related energy 
consumption. 

3.1.3. Reference case with alpha dependent on the concentration of 
biodegradable organics 

To evaluate the impact of the alpha factor on process performance 
for different operating strategies, the empirical relation between alpha 
and the bCODS concentration over the aeration phase length replaced 
the time-dependent relation of alpha. The simulated kLaO2 for both 
cases, along with the different bCODS concentrations over time, are 
shown in Fig. 4. The kLaO2 profiles were in good agreement with each 

other, demonstrating the success of the calibration. The nutrient con-
centration profiles and OUR over time are not shown, but were found to 
be similar to those of the time-dependent alpha case (Fig. 3e and f). The 
calibrated model parameters for the alpha factor dependent on bCODS 

are given in Table 1. 
The dynamic aeration model, which takes into account the rela-

tionship between alpha and the bCODS concentration over the aeration 
phase length, was integrated for the first time in an AGS model which 
allows to simulate how alpha dynamics impact process performance. 
The calibrated AGS model with the dynamic aeration model can now be 
used for scenario analysis. 

3.2. Scenario analysis 

3.2.1. Influence of volume exchange ratio 
When taking into account alpha dynamics, an operating optimum in 

VER exist (Fig. 5a). A VER of 25 % increased the treatment capacity by 
13 % compared to a lower VER of 12.5 %, while a VER of 50 % was 7 % 
lower compared to the VER of 25 %. This is explained by the fact that a 
low VER resulted in a fast alpha increase due to low bCODS concentra-
tions at the start of the aeration phase, resulting in a shorter reaction 
time. However, the total treatment capacity (Eq. S35) was reduced 
because the feeding and settling times remain the same, regardless of the 
shorter aeration time, resulting in a longer cycle time per volume of 
wastewater treated. Conversely, a high VER led to a slow alpha increase 
and thus a low oxygen transfer efficiency, which was particularly pro-
nounced at the start of the aeration. This low oxygen transfer efficiency, 
led to a prolonged period of limited oxygenation capacity, which in turn, 
slowed down all conversion rates, further extending the ‘alpha-delay’. 
Moreover, the limited oxygenation capacity caused a delay in nitrifica-
tion, leading to a decrease in SND efficiency of 10 % (Fig. 5b). In the end, 
the higher VER of 50 % led to a disproportionately longer reaction phase 
compared to a lower VER of 25 %, which eventually decreased the 
treatment capacity. However, when considering energy consumption, a 
lower VER was the most beneficial option, as it was associated with the 
highest oxygen transfer efficiency (Fig. 5c). 

Fig. 4. Simulated oxygen mass transfer coefficient (kLaO2 = αF • kLaO2 , clean , 
d− 1) for the alpha factor described by the time-dependent first-order relation 
(αF(t)) compared to the alpha factor related to the soluble biodegradable 
organic carbon (αF(bCODS)) determined by [15]. bCODS is defined as the sum 
of readily SVFA(t), SF(t) and slowly biodegradable COD SCB(t) of which the 
concentration profiles are shown on the right y-axes. 
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In practice, the VER is often determined by the incoming wastewater 
flow rate, the selected cycle time and other boundary conditions, e.g. 
respecting a maximum practical VER of 65 % and keeping a maximum 
liquid upflow velocity of 5 m.h− 1 [47]. Moreover, the pollutant load and 
the consequent increase in alpha cannot be solely attributed to the VER, 
as assumed in this study, since the wastewater strength is highly dy-
namic due to daily activity and weather conditions. The optimal VER 
and cycle time to be applied in practice should consider all of these ef-
fects. Additionally, although the differences in oxygen transfer effi-
ciency were not significant (Fig. 5c), they do provide insight into 
potential influences on energy efficiency. However, it will be important 
to validate its impact on energy consumption at full-scale plants. 

3.2.2. Influence of aeration capacity 
When taking into account alpha dynamics, an optimum in installed 

aeration capacity exist (Fig. 5a). Halving the aeration capacity (74 
versus 148 d− 1) resulted in a lower system’s oxygenation capacity, 
which led to slower conversion rates, lengthening aeration times, and 
thus a 26 % lower treatment capacity. However, doubling the aeration 
capacity (296 versus 148 d− 1) reduced the SND efficiency, resulting in a 
disproportionately longer post-denitrification phase. This was caused by 
a higher DO concentration at the start of the aeration phase, which 
decreased the SND efficiency (Fig. 5b). Despite a decrease in the aeration 
phase length, the post-denitrification phase length increased, resulting 
in the same overall reaction phase length as the reference case. Conse-
quently, a higher aeration capacity did not improve the treatment ca-
pacity of the system (1056 m3.d− 1 for both cases). While increasing the 
aeration capacity led to a faster achievement of the DO set-point and 
improved the oxygen transfer, it did not result in improved aeration 
efficiency, which remained constant for all cases (Fig. 5c). In fact, the 
higher aeration capacity consumed more oxygen compared to the lower 
capacity, as more COD was oxidized aerobically instead of being utilized 

through SND. Consequently, despite the higher mass flow of oxygen 
supplied by the blower to the aeration tank, a larger mass of oxygen was 
consumed, resulting in the same average oxygen transfer efficiency. This 
offsets any potential gain in energy efficiency that may have arisen from 
a faster increase in alpha. Note that this scenario of a larger aeration 
capacity aligns with an aeration strategy in which extra aeration ca-
pacity at the start of the aeration phase is used, enabling the rapid 
achievement of the DO set-point. However further research could 
investigate an optimal aeration strategy which optimizes the OTE, while 
still ensuring enough capacity for SND, e.g. through the use of 2-step or 
alternating aeration [4]. 

In practice, it is more economically advantageous to install a lower 
aeration capacity. Moreover, it is important to consider that the avail-
able surface area in the reactor design can limit the installed aeration 
capacity, which may restrict the options for system optimization. 
Neglecting the blower’s optimal working area may further constrain 
system optimization [48]. The aeration capacity needs to be optimized 
within the constraints of available surface area and achieve a balance 
between installation costs, blower efficiency and treatment capacity. 

3.2.3. Influence of granule size 
When taking into account alpha dynamics, an optimum in granule 

size exist (Fig. 5a). Larger granules have a lower specific surface area, 
which makes them more diffusion limited, compared to smaller gran-
ules. However, diffusion limitation of oxygen enhanced SND efficiency 
for larger granules, as shown in Fig. 5b. This resulted in a shorter post- 
denitrification phase length, which, in turn, increased treatment ca-
pacity (Fig. 5a). Despite this, a larger average granule size resulted in a 
decreased oxygen transfer efficiency (Fig. 5c) due to their mass transfer 
limitations of COD and lower uptake of VFA during the anaerobic 
feeding phase. This led to a higher bCODS concentration at the start of 
the aeration phase, resulting in a slower increase of alpha and thus a 

Fig. 5. Overview of the different scenarios with dynamic alpha factor and their effect on (a) the treatment capacity (m3.d− 1), (b) simultaneous nitrification and 
denitrification (SND) efficiency (%) and (c) the oxygen transfer efficiency (OTE, %). The reference case is marked in yellow. 
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lower oxygen transfer efficiency. Therefore, it is necessary to achieve an 
optimal balance between treatment capacity and oxygen transfer 
efficiency. 

Contrary to expectations, the simulation results did not show an 
improvement in the aeration phase length with smaller granules, despite 
the higher biofilm surface area. In fact, the model showed a decrease in 
OHO bulk concentration due to the lower bCODS concentration at the 
start of the aeration phase (Fig. S18). Consequently, there was an 
accumulation of particulate COD in the bulk, leading to a lower SRT of 
ANOs, decreasing the nitrification rate. Furthermore, due to the lower 
SND efficiency of smaller granules, a longer post-denitrification phase 
length is required, further decreasing the treatment capacity (Fig. 5a). 

The effect of granule size on SND has been extensively studied 
[4,14,46,49,50]. However, it remains challenging to control granule size 
in practice due to the various mechanisms influencing granulation [32]. 
Furthermore, there is a poor correlation between average granule size 
and nitrification capacity because it depends on individual size fractions 
and their distribution in ANOs [45]. A uniform average granule size may 
not equate to the same SND capacity due to differences in granule size 
distribution. Investigating the incorporation of granule size selection in 
full-scale reactor operations to enhance SND is worthwhile. 

3.2.4. Influence of temperature 
Temperature can have contrasting effects on bioconversion rates and 

oxygen transfer efficiency. While a lower temperature decreased 
bioconversion rates, it increased the oxygen saturation concentration, 
thus increasing the oxygenation capacity of the system. With more ox-
ygen available, conversion rates were improved despite the lower tem-
perature, accelerating the increase of alpha. However, the model 
simulations showed that lower conversion rates still prevailed and ul-
timately decreased the treatment capacity and SND efficiency (Fig. 5a an 
b respectively). From an energy perspective, the aeration efficiency was 
not negatively impacted by the lower conversion rates at lower tem-
peratures because the increased oxygen transfer compensated for the 
reduction in bioconversion rates (Fig. 5c). 

De Kreuk et al. (2005) [51] recommended to control the DO con-
centration in the reactor to ensure optimal effluent quality across 
different seasons. However, our research also highlighted the impor-
tance of considering the dynamic alpha factor. Therefore, to achieve 
optimal performance, both factors must be taken into account. Addi-
tionally, adjusting the variables mentioned earlier, i.e. VER, aeration 
capacity, and granule size can help balance treatment capacity and en-
ergy consumption for varying seasonal temperatures. 

3.3. Perspectives 

This study highlighted that explicit modelling of the dynamic 
behaviour of alpha can substantially improve the accuracy and reli-
ability of predictions and advance our understanding of the AGS process. 
The performed trend analysis provided insights in the optimization of 
the design and operation of not only AGS processes but also other batch- 
wisely operated aerobic wastewater treatment systems. A 1-D AGS 
model including a dynamic aeration model and associated calibration 
procedure (Fig. S11 step 2 and 3) was described in detail to allow its 
further use by other researchers. While the model in this work was coded 
in Matlab-Simulink, many commercial simulators include pre- 
implemented granular sludge models which can also used for process 
optimization. The results in this work show that, independent of the 
model complexity and implementation, it is important to include the 
dynamics of alpha when describing the gas–liquid transfer. 

The most important dynamic feature of alpha to be considered is its 
increase along the aeration phase. The results in this work were obtained 
with a dynamic aeration model including the relation between the alpha 
factor and the degradation of bCODS, considering the initial and final 
values of alpha previously determined for the plant under study. In order 
to generalize the applicability of the aeration model, the relation 

between alpha and bCODS could be tested for varying influent condi-
tions, which will further improve the knowledge on removal kinetics of 
different COD fractions. It is possible that the hydrolysis and fermen-
tation processes in AGS systems which are now predicted by conven-
tional equations and model parameters derived from activated sludge 
systems, such as ASM2d [36], needs to be recalibrated for the AGS 
process. Recent research has attempted to investigate hydrolysis in AGS 
batch reactors [52,53], but there is still limited information on the 
specific microorganisms involved and on the extent to which polymeric 
substrates contribute to anaerobic COD storage or aerobic and anoxic 
COD removal in AGS. Further research can help to develop an ASM 
matrix specific for AGS systems. Besides, the aeration model and thus 
optimization efforts could consider various other factors, such as the 
effect of reactor height, fouling, SRT, biomass concentration and 
rheology and soluble microbial metabolites on alpha dynamics [15]. 

Valuable insights were obtained regarding the qualitative influence 
of alpha dynamics on process performance under various operating 
strategies. It is important to note however that the results should not be 
interpreted in a fully quantitative way. The optimal setting of VER, 
aeration capacity and granule size, considering the prevailing temper-
ature, will be case-specific. For instance, while this study focused on the 
removal of total nitrogen, in regions where the NH4

+ effluent quality is 
the only parameter of concern, SND may be less relevant, changing the 
optimization strategy. For example, in the case of NH4

+ limits only, it is 
preferable to select small granules and operate at a high aeration ca-
pacity to optimize OTE, reduce aeration costs and enhancing the nitri-
fication rate. Conversely, in situations where energy is not limiting, the 
selection of large granules can significantly increase treatment capacity 
through SND, while meeting the total nitrogen criteria. 

Finally, the proposed optimization strategies require full-scale vali-
dation to evaluate their economic feasibility and long-term impact on 
the system. Such full-scale validation would also help to clarify the 
impact of these strategies on energy consumption, an issue of growing 
importance. 

4. Conclusions 

This study demonstrated that the dynamic nature of the alpha factor 
affects the performance of a batch-wisely operated aerobic granular 
sludge (AGS) reactor. It was also shown that, in order to model the 
observed behaviour, specific considerations regarding the model struc-
ture apply. 

The dynamic nature of alpha influences both the energy consump-
tion and the treatment capacity. The energy consumption is influenced 
through dynamics in oxygen transfer efficiency, while the treatment 
capacity is influenced through the dynamics in simultaneous nitrifica-
tion and denitrification. As a result, a dynamic alpha model is an 
essential part of mathematical models aiming to optimise the AGS pro-
cess performance. Taking into account the dynamic nature of alpha in 
models instead of assuming a constant maximum alpha is essential to 
describe the observed relatively lower oxygenation capacity of the sys-
tem at the start of the aeration. 

The empirical relation between alpha and the removal of soluble 
biodegradable organic carbon (bCODS) can be adequately modelled by 
the extension of the biokinetic ASM2d model with a state variable SCB, 
representing the soluble slowly biodegradable organic carbon. This 
model extension was necessary to evaluate the impact of the alpha factor 
on the process performance for different operating strategies. The mi-
crobial distribution in the granule and in the floc fraction is influenced 
by the alpha dynamics. In models assuming a fixed average granule size, 
the latter influence can be taken into account by the incorporation of a 
species-specific wasting factor (φi). 

The dynamic nature of alpha can be exploited to optimize the reactor 
performance, through various process variables such as volume ex-
change ratio, aeration capacity, granule size and reactor temperature. 
Incorporating the influence of alpha on these variables during design 
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and operation reveals an optimal configuration that increases treatment 
capacity and reduces energy consumption. 

The practical and model-related insights from this study facilitate the 
optimization of not only AGS processes but also other batch-wisely 
operated aerobic wastewater treatment systems. 
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