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Abstract

Payment Channel Networks(PCN) utilize payment channels with an established link capacity between two
nodes to route transactions over multiple links to carry out transactions. Such transactions can support a
blockchain due to the transactions happening off-chain, i.e., not requiring any information to be published
to a ledger. PCNs can help aid in the scalability of blockchains, by moving transactions off-chain not all
transactions need to be stored on the blockchain, reducing the amount of data that needs to be stored on the
blockchain. Lightning is the PCN implementation that makes use of Bitcoins blockchain.

As transactions occur over the network the capacity of the link may vary over time between two nodes.
This change may lead to the link being only available from one side. If enough links become unavailable
then processing transactions may take longer or in the worst-case scenario transactions may no longer be
feasible in the network. To help avoid these short-comings in PCN strategies can be designed in path-based
transaction algorithms to help keep links capable of handling transactions bidirectionally.

This work presents two such algorithms, the Passive Merchant and Active Merchant. Additionally, two
synthetic data-set models are proposed to help evaluate the effectiveness of the Merchant algorithms, due to
a lack of data-sets in this field. In the evaluation two different topologies are examined to evaluate the impact
a graph has on the success rate of transactions within a PCN.

The evaluation of the The Merchant algorithms is simulation based, experiments evaluated how different
algorithms effected the success rate of transactions. The simulation did indicate that the algorithms were
able to help increase the success rate of transactions, up to 8%. As these algorithms are embedded in the
transaction process of a payment the algorithms are a first of there kind, other solutions have been proposed
for rebalancing as a separate protocol. In addition to being the first to propose transaction embedded rebal-
ancing algorithms, no other synthetic data-set models for PCN have been proposed. The synthetic data-set
models may allow this area of research to be have constant data-sets that are used to evaluate the effective-
ness of path-based transactions.
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1
Introduction

Late 2008, the majority of the world’s financial market was sent into a downward spiral, due to the aftermath
of unethical business practices by major lending institutions[43]. These bad lending practices with the com-
bination of a real-estate bubble were a recipe for disaster. As a domino effect cascaded through the markets
dropping stock values with the end result being the biggest financial crisis since the great depression[43].
Markets crashed and trust in fiat currencies dwindled. During this time Satoshi Nakamoto came forward
with a digital currency in his white paper, "Bitcoin P2P e-cash paper"[51]. Satoshi’s white paper set the rise of
digital currencies in-motion.

A couple of months after publishing the white paper, in January of 2009 the first version of bitcoin was
released. Since then the cryptocurrency market has been flooded with alternatives, as of late 2019, 2000
different cryptocurrencies have been added to the market[26]. Bitcoin still holds a 70% share within this
market[35]. Such increase in public interest and establishment of a digital currency has attracted the atten-
tion of researchers and the industry alike.

Bitcoin is built on-top of blockchain technology[16], this technology allows a ledger to be maintained
within a decentralized peer-to-peer(P2P) network. As blockchain supports digital-currencies, known as cryp-
tocurrencies, it must guarantee certain privacy, security and consensus requirements. Guaranteeing these
requirements on a distributed systems is done with consensus mechanisms and relies heavily on security
provided Cryptographic protocols. Blockchain has an intrinsic trade-off, Figure 1.1 shows the constraints
blockchain faces between security, scalability and decentralization[22]. Two of these constraints can be met
within an implementation of blockchain but all three is not currently possible. To overcome such trade-offs
researchers have had to rethink the way the ledger is utilized.

Figure 1.1: Triangle of trade-offs for current blockchain implementations
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The blockchain mechanism captures a wide audience due to its ability to guarantee security and decen-
tralization. These two components are the corner stone of the technology, thus a solution needs to be found
for scalability while preserving security and decentralization. One of the main issues to scalability is the
amount of transactions that can be processed within a certain time-window without breaking the security
guarantees. Due to the limitation in processing in transactions, off-chain transactions are proposed. Off-
chain transactions are transactions that take place between two parties exchanging cryptocurrency without
having to publish the specific transaction to the blockchain/ledger due to the use of a smart-contract. Off-
chain transactions are also known as off-chain payments and these terms are used interchangeably through-
out this thesis. Smart-contract is a protocol that can be used in the context of blockchain to digitally facilitate,
verify, or enforce certain constraints of a digital-contract[81].

1.1. Utilizing Off-Chain Transactions
Utilizing off-chain transactions reduces the load on the blockchain by reducing the amount of transactions
that need to be stored/pushed onto the ledger, allowing for off-chain transactions to be an avenue to over-
come the scalability issues of blockchain[27, 45]. Opening a payment channel requires two entries to be
pushed to the ledger, an opening and a closing entry. After that all transactions happening between the two
parties of the payment channel happen off-chain, thus not requiring each transaction to have an entry in the
ledger.

Off-chain payments can be materialized with the use of payment channels that are linked to create a net-
work, known as a Payment Channel Network(PCN), figure 1.2 represents a simplistic visualization of a PCN.
Payment channels allow for two users to lock-funds within a channel by pushing a single opening transaction
to the ledger. Locking-funds refers to depositing money within a smart-contract to open a payment channel
so that the money deposited can only be accessed after the closing of the smart-contract. During this process
the deposited funds will be redistributed depending on the balance of the payment channel.

These channels can then be used to route payments through the network, without sharing details about
the transactions with the ledger until the users decide to close the channel with one final closing transaction
that is published to the ledger. Within the Figure 1.2 a node labeled A is transacting with a node labeled B, via
the route described in red.

Figure 1.2: Representation of a Payment Channel Network, where the circles represent nodes and the links represent payment channels.
The red lines indicate how a route can be made so that node A, is able to transact with node B.

As different implementations of PCNs come forth, the interest in researching, optimizing and understand
the mechanics of such networks rises. Lightning is an implementation of a PCN that has been adopted by
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bitcoin[53] and Raiden is a PCN network for etherum[54]. The lightning network already boosts more than
5,000 nodes[7], while the ripple network has around 1000 nodes[8]. To optimize PCNs different character-
istics of PCN need to be identified and researched. Success rate, the amount of transactions a network can
handle over a set of transactions, is a good metric to try and optimize. Optimizing success rate can put the
privacy goals of the network at risk, thus the trade-offs of such a network need to be categorized and exam-
ined. Routing, balancing link-capacities, concurrency and privacy are some of the biggest challenges that are
currently being studied for PCNs[45, 64, 65, 68].

A promising implementation of an algorithm used by PCNs that is designed to route, balance and cre-
ate path-based transactions is SpeedyMurmurs. Results indicate that for certain scenarios SpeedyMurmurs
is able to handle changes in the network efficiently while keeping overhead dealing with network changes
low, flexible but efficient path selection and multi path-payments allowing for efficient use of link capacities.
While achieving value privacy and sender and receiver privacy. Value privacy, is a definition for privacy that
ensures that no party outside of the two trading parties is able to observe the amount of value transacted
between the two parties. Sender and receiver privacy, refers to plausible deniability , plausible deniability
is a privacy definition that ensures that it is impossible to identify the parties transacting with certainty[65].

One of the biggest draw-backs and limiting factors to research in the area of PCNs is the lack of having a
true data-set. Due to their privacy mechanisms that are at work, extracting meaningful data from a PCN is
difficult. Data can be gathered about the initial locking of funds between a link and the closing of such a link,
due to these links being opened via a smart-contract on the ledger. However such data only represents two
points in time and no information is stored about the transactions that have made use of the link. Thus vital
information like firing rate of transactions is missed, the value of transactions and how often transactions fail
due to insufficient link capacity. Without this knowledge of what happened during the opening and closing
of a channel, characterizing and analyzing a PCN becomes rather difficult.

1.2. Objective
The objective of this thesis is to design and evaluate a rebalancing algorithm for PCN. The rebalancing al-
gorithm must not be limited by the graph type and implemented along side a path-based transaction algo-
rithm. To be able to achieve these either a path-based transaction algorithm can be designed with rebalanc-
ing in mind or an existing algorithm is utilized. SpeedyMurmurs is a good candidate to build upon due to
the embedded based routing algorithm and the way it is able to split transactions over multiple paths. The
embedded based routing allows SpeedyMurmurs to make privacy and security guarantees, while allowing for
the routing to be flexible and adapt quickly to a changing network. The multiple paths for a transaction allow
the load of a transaction to be spread over a network, such a mechanism can be used to benefit a rebalancing
algorithm.

To evaluate the rebalancing algorithms simulation based experiments will be run. To run these simu-
lations data-sets are needed. Researching a path-based transition algorithm with rebalancing capabilities
without knowing the exact workload and how the mechanics of the algorithms influence the network under
different workloads is non-trivial. Without being able to monitor and follow the transactions in the network,
knowing the state of the network becomes impossible and being able to pinpoint the issues becomes ex-
tremely difficult. To overcome these challenges data-sets will be needed to evaluate if an increase in success
rate can be found by using rebalancing algorithms.

To formalize the objectives, the objectives are presented as research questions:

1. In the absence of real-world data-sets for modeling a Payment Channel Network, is it possible to gen-
erate synthetic data-sets with concurrent transactions that allow for the emulation of a PCN under
varrying workloads, to evaluate link rebalancing strategies?

2. For a set of transactions that run through a PCN, can the success ratio of a PCN be increased by adding
a monetary incentive tied to the fees of each transaction be used to aid in keeping links balanced?

1.3. Contributions
Rebalancing algorithms should aim to dictate the transactions occurring over the network in such a way that
an optimal route can be found for the payment, while trying to optimize the links capacity balance over the
possible routes the transactions can take. The algorithms being presented in this paper try to leverage an
incentive via monetary incentives. Different fees are offered depending on the state of the link during the
transaction. Trying to act as a broker or merchant, selling the use of its links depending on their link capacity
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balance. The proposed algorithms are called Passive Merchant and Active Merchant, where both algorithms
change their fee for processing a payment depending on the capacity of the link. The passive merchant does
not broadcast any information about the links and fees it is offering. While the active merchant, actively lets
other nodes know about the state of its channels.

To help over-come the limited data-sets within this field of research two types of synthetic data-sets mod-
els are introduced, one based on Lightning and the other based on Ripple. The difference in these synthetic
data-sets lies in the distributions of link-capacities, the value of a transactions. Different distributions are
proposed as there is not one standard for PCNs. With a data-set, even it being a synthetic one, information
can be gathered about how a PCN works. Understanding the inner workings of a PCN will allow researchers
to scale a PCN, allowing higher throughput without having to push entries to the ledger. Due to blockchains
scalability issues, and the proposal of PCNs to be used as a method to increase the scalability of blockchains.
Examining throughput as a point of research will give insights into the limiting factor of the throughput in a
PCN. An obvious place to start exploring throughput is by trying to examine the effects of depleted links to
the overall throughput and how the influence of a rebalancing algorithm may effect overall throughput of the
network.

1.4. Project Overview
During this paper background will be given on the challenges that face blockchain and how PCNs can help
alleviate some of those challenges, then related work is presented on the current state of PCNs and there
transaction routing algorithms. An in-depth look at SpeedyMurmurs is presented, defining its privacy and
security guarantees and the mechanics of how the algorithm works on a network.

Following this the Merchant algorithms will be presented and a discussion presented on how these al-
gorithms fit within the current implementation of SpeedyMurmrs and there potential benefits. These algo-
rithms rely on certain core mechanics, they will be identified and discussed along side the parameters that
would dictate how these algorithms operate. Before testing can be done on the effectiveness of the Merchants,
the generation of the synthetic dataset is discussed. Two use cases for PCNs are examined, the lightning net-
work and the Ripple network. With the limited information available about these PCN an analysis is done
and a model is designed from the results to mimic a PCN and their transactions.

A description of the simulation model that was used to create the results is provided in the methodol-
ogy. Accompanying the simulation model, a description is presented on how the data-sets are generated.
Finishing off with the presenting of results and the conclusions for this thesis.



2
Background on Block-chains and Payment

Channels

This chapter covers the background information about blockchain technology and how its used within cryp-
tocurrencies and why payment channels are needed.

2.1. Blockchain
Within this section a broad overview of blockchain is described.

2.1.1. Building Blocks of Blockchain
Blockchain technology has been a buzzing topic since 2008, around that time the first white paper was pub-
lished on the topic[50]. To understand the significance of blockchain it is essential to understand that at its
core blockchain is a distributed system. For the first time in the research field of Distributed Systems, a dis-
tributed system was able to maintain a secure decentralized ledger without needing a central authority to
regulate the system.

At the core of blockchain lies a very simple goal, to maintain a continuously growing list of ordered
records. In that sense, blockchain technology is an accounting protocol that works on keeping track of a
ledger. A ledger, for a cryptocurrency is a recording and totaling of economic transactions measured in terms
of a monetary value a business has completed[25, 80]. The ledger is not limited to only storing transactions
between two parties, it can also be used store and secure data for government entities or cooperation’s. This
thesis however focuses mainly on transactions between players and will not look further into how blockchain
can be used to store data outside of the scope of cryptocurrencies. Blockchains potential stems from the way
the ledger can be used in a distributed system and has been implemented in a decentralized manner. To
achieve this, the blockchain protocol has pushed the boundaries of cryptography and cybersecurity[84].

Ledgers within the context of blockchain are made up of blocks, these blocks are interconnected due to
each new block’s containing a hash pointer of the previous block, this is illustrated in Figure 2.1. These hash
pointers are used to organize and link blocks together. Essentially having the blocks in the chain build on
each other, this is known as Hash Chained Storage. The hash pointer pointing to the previous block, is created
by cryptographically hashing the data of the previous block. Making use of hash pointers allows for public

Figure 2.1: Illustration of how the previous hash-pointer is connected in a blockchain data structure.
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verification of blocks to prove the stored data was legitimate and not tampered with once it has been placed
in the chain. The first block in a blockchain is known as the Genesis block and is a special type of block as it
is the only block without a hash-pointer to a previous block.

A hash is created by a cryptographic hash function, also known as one-way functions. These hash func-
tions play an important role in digital security[52]. Two important properties of hash functions are as follows[82]:

• Given hash function h, if one were to calculate h(x) a hash function must not allow for a reverse com-
putation. Thus the value x should not be found from having the h(x).

• Another property of a hash function requires that the hash function h given value x makes it computa-
tionally hard to find a value y such that h(y) = h(x) while y 6= x.

With the chains data-structure being cryptographically interconnected, tampering with the data after a
block has been added to a block-chain becomes extremely difficult, as the data would need to be manipu-
lated in such away that the hash of the data remains constant otherwise the tampering can easily be detected.
Adding blocks to a blockchain is dictated by the consensus algorithms that govern the blockchain implemen-
tation.

2.1.2. Consensus Algorithms
Consensus algorithms are a group of algorithms that help a distributed system reach a formal consensus
even if with the system there are some bad actors/malicious players or processes have become faulty, known
as fault tolerance. The classic problem is called the "Byzantine Generals Problem"[58] and the inability to
reach a consensus is referred to as the Byzantine fault. For blockchain such an algorithm is vital due to the
implementation allowing for decentralization. Not all parties can be trusted in a public blockchain.

Two major consensus algorithms co-exist within blockchain employed consensus algorithms. The Proof
of Work(POW) and the Proof of Stake(PoS) algorithms.

Proof of Work, was first introduced in 1999, the mechanism works by having workers in the network
do work[36], working is done by computing a one-way function. Such functions have two very important
properties:

• Fast computation and verification, computing the one-way function should be fast. Allowing for oth-
ers to quickly verify the proof in terms of correctness.

• Preimage resistance, finding the answer to the solution should not be possible if one has the solution.
If the solution to the function is H(x), one should not be able to compute x.

When a worker solves the current hash function, it will generate a block awarding it’s self some form of
reward, this reward is prescribed. Certain cryptocurrencies have opted to limit the amount of supply of digital
currency allowed in the system. In the case of bitcoin, slightly less than 21 million coins can exist. Over time
the rewards for mining bitcoin is halved, known as an ḧalving" event. At some point, when enough blocks
have been mined, no reward is given in the form of bitcoins, the only incentive to mine blocks will come from
the transaction fees fetched. These fees must then offset the costs of mining blocks, which is not cheap due
to the energy consumption required to calculate the right answer from the hash function.

Once the work is done and a party has a solution, it can offer the solution to all other parties in the net-
work, with a new block of transactions that will be stored to the blockchain. Other parties in the network will
receive the solution and validate the solution, once it is validated they will append the block to their ledger
and continue working on solving the next problem.

In the case of Bitcoin a block is mined roughly every 10 minutes, each block has the size of 1-megabyte.
Mining blocks periodically like this allows for the system to not be overloaded with new blocks, though it
does limit the amount of transactions that can be processed by the blockchain; creating a trade-off between
amount of blocks mined per time unit and transaction throughput of the system.

This trade-off of amount of time it takes to mine a block and the amount of transactions that can be pro-
cessed ensures the system is stable. Mining more blocks frequently creates the vulnerability of denial of ser-
vice attacks. Making the system less secure, though more frequent blocks would allow for more transactions.
Due to this trade-off in the way PoW works, scalability is an inherent issue to using PoW as a mechanism for
blockchain.

Security, in the sense of solving the Byzantine Generals problem in PoW is achieved by granting rewards
to whoever created/mined the block. Due to the rewards it helps ensure the robustness of PoW consensus
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algorithm, without this attraction of multiple players to mine blocks, the chance someone achieves 51% of
the mining power is great. More can be found on the 51% attack in 2.1.5.

Proof of Stake, promotes penalties-based solutions instead of reward bases solutions for its security. With
a PoW based blockchain, almost anyone can become a miner and solver the cryptographic puzzles and par-
ticipate in block generation. Within PoS, miners must lock funds, the stake. Once miners have locked funds
they have become eligible for becoming validators. Anyone can become a validator in PoS as long as they
post a special type of transaction where funds are deposited.

The identify of validators in PoS is known, and the system must keep track of all legitimate validators. A
new block can be created by the validators. The set of validators must place a bets on the next block, then
all validators takes turns voting for which block will be validated as a new block. Each vote has a weight that
is proportional to the stake that the validator has choosen to deposit. A validators probability of creating a
block is also proportional to their bet.

In contrast to the PoW, the reward is given to those validators who bet on the right block. This rewards is
also proportional to the bet these validators placed on the block. The underlying security in PoS comes in the
form of penalties, the cost of reverting transactions may costs thousands of times more than the rewards the
validators got from validating blocks during the reverting period. Thus security is done via trying to minimize
economic loss, rather then security from rewards for running energy expensive computations like in PoW.

Consensus algorithms are not the only thing that sets blockchain implementations apart from each other.
Different types of transaction models also exist, effecting the way the system is able to keep track of transac-
tions between users and how transactions are handled on the blockchain.

2.1.3. Types of Blockchain Transaction Models
The two main different transaction models that have emerged for Blockchain are unspent transaction out-
puts(UTXO) model[50] used by Bitcoin and an count-based transaction model, that was coined by Ethereum[83].

The UTXO model, is a transaction model that does not create accounts for each user part-taking in the
blockchain. Rather in the ledger a list of bitcoin instances can be found that the user has not spent yet. A user
can define their balance by the amount of unspent bitcoins in the ledger they have a key too, or are able to
access. These keys are usually stored in what is known as a wallet.

For a UTXO transaction to take place three requirements need to be met. Firstly, all unspent instances of
bitcoin must be signed by the owner. Secondly, transactions with multiple inputs, multiple unspent instance
of bitcoin, must all come from the same owner. Thus having a similar signature. Thirdly a transaction can
only be classified as legal if the input value is greater or equal to that of the desired transaction value. An
inherent consequence of this implementation means that the history of transactions of a blockchain using
UTXO is stored in the ledger.

To get the point across of how UTXO works, an example is given. If James and John want to send Mary
some bitcoins. If James were to send 4 bitcoin and John 1 bitcoin, Mary would have two single instances of
unspent bitcoin. If Mary would like to store her bitcoin under one key instead of two, she would have to also
push a transaction to the blockchain ledger, so that she would have an unspent instance of 5 bitcoin.

Account-Based Online Transaction Model, is a relatively simpler model then the UTXO transaction model.
Account-based online transaction model works by explicitly operating all transactions using the account of
the sender and receiver. Such a model closely resembles that of a bank account in the brick and mortar bank-
ing of today. This model allows for greater space savings due to the need for only one reference and one
signature to produce an output.

A transaction has three requirements. Firstly, the transaction needs to be signed by the sender. Secondly
the senders ownership of the tokens value can be attested. Thirdly the senders spending account has a high
enough balance to send the desired token value.

To get the point across of how account-based online transaction models differ from UTXO, an example is
given. Lets take James and John who would like to send some Ethereum tokens to Mary who currently has
0 tokens in her account. If James were to send 4 tokens and John 1 token, Mary would have 5 tokens in her
account without having to make an extra transaction combining the tokens as she would of had to do in the
UTXO model.

Thus far the discussion about blockchain have assumed that the blockchain is public and fully decen-
tralized. However different types of blockchain technologies can be implemented, depending on the type of
blockchain, the consensus algorithms and transaction models may differ due to different security and privacy
assumptions.
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2.1.4. Classification of Blockchains
Boosting decentralization and allowing anyone to participate in a blockchain network is what captured the
attention of the research community and industry alike. Though not all block chains are public. Three differ-
ent types of categories can be classified for blockchain technology pertaining to the access and construction
of the blockchain. These three classifications are:

1. Public blockchain, is a blockchain anyone is able to join. A property of a public blockchain allows
anyone to participate in the consensus procedure, for the creation and validation of blocks. A public
blockchain is fully decentralized.

2. Consortium blockchain, is a blockchain that has a pre-selection of participants. Within this sub-group
of pre-selected participants a consortium blockchain is able to get certain write permissions and con-
trol the consensus procedure. All read functionality of the chain is open to anyone in a consortium
blockchain. This may be seen as semi-decentralized.

3. Private blockchain, is a blockchain that has restricted read and write of the network to multiple orga-
nizations that may not trust each-other, the set of organizations may choose who may participate in
the blockchain. Within a private blockchain the trust is centered around the organizations running the
blockchain.

Depending on the class of blockchain implementation used, different security and privacy goals needs to
be met. As a public blockchain needs stricter security and privacy guarantees compared to its counter-part
of a private-blockchain.

2.1.5. Security in Blockchain
To discuss security within the context of blockchain, different adversary models need to be addressed. Re-
quirements for security need to be formed and different attack models need to be considered. Within this
section each of these topics is addressed.

Adversary Models
Security in blockchain has been a highly researched field[23, 38, 40, 84]. Being able to discuss security in
blockchain and distributed systems one usually makes use of the Threshold Adversary Model. Typically within
this model the threshold lies between two parameters:

1. All parties participating in a distributed system, n

2. Parties that are acting in an adversarial way, f

The typical threshold in the byzantine agreement case is n > 3 f [19]. For bitcoin that makes use of the
PoW consensus algorithm such an adversary model is less applicable. Due to the way computational power
is the driving force of the algorithm instead of individual parties. For this reason the Computational Threshold
Adversary Model is used[11]. The threshold lies between two parameters:

1. Amount of computational power, C, in the system, NC

2. Amount of computational power, C, of the adversaries in the system, FC

Using Bitcoin and the PoW for the threshold for the Computation Threshold Adversary Model is
NC > 2FC [42]. From this threshold the attack model of the 51% attack was coined for Bitcoin. PoW is not the
only consensus model for blockchain. For the PoS consensus model a different adversary model needs to be
discussed.

The Stake Threshold Adversary Model can be used as an adversary model for PoS consensus[11]. The
threshold lies between two parameters:

1. Total amount of resources, R, in the system, NR

2. Total amount of resources, R, that the adversary control, FR
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In ethereum’s PoS approach to modeling this adversary model it was found that the threshold is at
NR > 3FR .

Requirements
Well defined requirements are important for blockchain and cryptocurrencies security. Due to the implemen-
tation of this technology having monetary value, personal assets of users needs to be protected. To guarantee
the security of assests starts by defining security requirements. Zhang et. al in their paper "Security and Pri-
vacy on Blockchain" define a couple of security requirements for general online transactions, these are listed
and reviewed:

• Consistency of the Ledger across Nodes, within the process of handling transactions and liquidation be-
tween various monetary institutions running nodes. These monetary institutions may have varying
underlying processes dealing with transactions, no matter the underlying process inconsistencies be-
tween ledgers is not tolerated.

• Integrity of Transactions, the system must be able to guarantee that transactions are not to be tam-
pered with. Such that transactions should run without the risk of being altered from initialization of
the transaction process to the end of the process.

• Availability of System and Data, the system must be online and available to the users storing assets to
it. Users must not be hindered by having the system be offline and denying access to personal assets of
users. This also extends to being able to transfer and transact whenever required.

• Prevention of Double-Spending, digital currency must not be spent twice. A verification process must
exist so that currency may not be used for double-spending.

Attack Models
Three of the key attacks for blockchain are described below. Denial-of-service, blockchain tampering and

a majority attack cover the basic support of blockchain.
Distributed Denial-of-Service (DDoS) Attack
Denial-of-Service(DoS) attacks refer to an attack where the host of a service is no longer available. Most

of the time such an attack is done by overloading the hosts network resources and ensuring that no other
party has access to these resources. Distributed Denial-of-Service is trying to achieve a DoS attack on mul-
tiple parties in a network, trying to weaken the infrastructure of the network to such a point it can no longer
function.

Attacking a blockchain with a DDoS attack may render it unavailable if the blockchain network has a lim-
ited amount of participants in the network. As the network grows it becomes more resilient to such attacks as
the underlying consensus protocol, and fully decentralized construction and maintenance of the blockchain
can be ensured by the still active nodes. In order for a DDoS attack to successfully make a blockchain of-
fline it would need to attack a very large portion of the blockchain nodes, needing an incredible amount of
computational resources to achieve this.

Blockchain Tampering
The tamper-resistance of any blockchain means how well it has been designed to be able to detect and

resist any tampering of transactions stored in blocks. As discussed in 2.1.1 each block has a hash pointer of
the transactions to the previous block. This makes tampering with blocks nearly impossible unless all past
and future block pointers are also changed. As every transaction is usually signed and distributed over the
whole blockchain network, it becomes practically impossible to tamper with the transaction data without
being caught.

51% Attack
This attack is closely linked to the adversary model for PoW consensus models. If an adversary was able

to get 51% of the computation power, it could dictate what comes onto the blockchain at all times. This
increases the risk for double-spending. Another possible outcome of this attack is changing past transactions
as if they never occurred. In the case of Bitcoin such an attack is unlikely due to the enormous amount of
computation power that is needed, and doing such an attack may work once. The underlying monetary value
of bitcoin relies on the trust of that value by all parties, if bitcoin were attack by such an attack multiple times,
the trust in the whole network fails and would most likely mean the end of bitcoin. Thus such an attack is a
risk for blockchain however the gains of doing such an attack are short-term.
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2.1.6. Privacy in Blockchain
Besides security and privacy are important aspects when it comes to blockchain. Privacy and anonymity are
closely related, anonymity of a user refers to the non disclosure of a users identity. While privacy, confiden-
tiality of transactions, should allow users to make transactions without disclosing all the details to the public.
Most cryptocurrencies have a public ledger, meaning all transactions are recorded and can be accessed pub-
licly. While this method ensures security and allows any node to join a network, from a privacy perspective
this is counter intuitive.

Examining privacy and anonymity can best be done by describing how users can join a blockchain. When
an user joins a blockchain, a public and private key are generated for them. These keys are a set length of
random characters that cryptographically linked. An assumption that is made is that it is impossible to guess
another users private key given they have their public key. A wallet or address is created by putting the public
key through a hash function, this wallet value can be shared with other users so they can exchange currency.

With the creation of public and private keys, that are not shared amount all users. Anonymity seems to
be very plausible. Gathering personal information from these keys is not possible. A point of weakness in
anonymity is the underlying infrastructure of the internet. The non-anonymity of the internet risks spoiling
the anonymity on the blockchain, an example of this would be an user using a third-party exchange platform
and having to verify his identify. Now the third-party has an identify matched to a public and private key, if
these party was compromised then the identity and users keys could be leaked to the public.

Privacy as mention seems to be more counter intuitive due to most ledgers being public, and ledgers
store a list of all transactions that have occurred. If identities are linked to wallet addresses, privacy is broken
and one would be able to see who made transactions with who. Users are able to create any number of
anonymous wallets boosting the anonymity and privacy of each user. Allowing users to create any number
of wallets, can help mask the type of transactions happening. This is done by having a user use multiple
wallets for a transaction, if these multiple wallets cannot be identified to the user. It will be impossible to
link the multiple transactions together to see the full exchange between users. Allowing for privacy on the
blockchain.

As mentioned the underlying infrastructure of the internet may ruin privacy and anonymity. Researchers
have used different techniques to highlight weak points of privacy in a blockchain. The two main techniques
are analyzing the blockchain and analyzing the current traffic on the blockchain. Analyzing traffic has al-
lowed Koshy et alter to match an IP with a Bitcoin address[41]. Analyzing the blockchain is a more common
way of removing anonymity from Bitcoin. Spagnuolo et alter were able to estimate the amount of Bitcoin
transferred to ransomware software[69]. Androulaki1 et alter were able to recover 40% of users profiles even
after adopting privacy measures suggested by Bitcoin[12].

Security and privacy goals can be described in one corner of the blockchain triangle, along side decen-
tralization and scalability as seen in Figure 1.1. Maintaining security and privacy goals why allowing for a
scale-able decentralized solutions seems to be an issue. While decentralization can be adjusted depending
on the classification of the blockchain implementation. On a public decentralized blockchain security and
privacy seems to be aspects that cannot be loosened, thus the scalability of the blockchain becomes the point
in were the biggest trade-off needs to be made.

2.1.7. Scalability by Increasing Blocksize
Scalability within cryptocurrency comes with trade-offs to the security and transaction throughput of the
system. Creating a system that can scale to handle global demand with high transaction throughput, however
in practice the implementation is not trivial and brings forth risks in the integrity of the technology. Taking
Bitcoin as an example, for Bitcoin to be able to compete on a global scale its throughput would need to at
least sustain the same amount of capacity of current competing technologies. Taking VISA as an example
with Visanet, Visanet being VISA’s massive global credit payment network.

Currently Bitcoin is limited to 7 transactions per second(tps), significantly slower than the 2000 - 4000
tps VISA is averaging on a normal day. During the December holidays VISA’s peak capacity lies much higher,
it was recorded to be around 56,000 tps in 2015 [60, 72, 75]. Would Bitcoin want to compete with visanet it
would need to significantly increase the capacity of transactions it can handle. Not an insignificant amount
of increase in capacity by any stretch of the imagination.

Poon and Dryja have demonstrated for Bitcoin to be able to compete with Visa’s payment network. Bit-
coin’s blockchain block size would need to increase from the current 1 megabyte to 8 gigabytes, if a block
were still to be mined every 10 minutes[60]. Over the span of a year this would accumulate to 400 terabytes of
data per year. Dealing with such massive amounts of data means that smaller non-industrialized computer
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systems would not be able to handle the load.
Raising the concern of the centralization of cryptocurrencies, as only big data-centers would be able to

handle such a type of workload. Going against the very concept of having a decentralized currency. Gervais
shows in his work that such a big block-size is not possible[34] from a security stand-point. Doubling down
on the claim that scalability for blockchain is not a novel task. Ensuring the security of a blockchain is a
very high priority. If cryptocurrencies are not able to handle higher transaction throughput’s, the technology
may suffer as it is out competed by other payment solutions. For this reason different protocols are being
researched that will work on-top of the current cryptocurrency solutions.

Increasing the block-chain block size to such an extend and the centralization of Bitcoin also poses se-
curity risks as with enough mining power one could rewrite and remove transactions from the blockchain.
Bitcoin’s security depends on the PoW-based distribution consensus protocol, that the miners are respon-
sible for. If miners were to acquire the majority of the computation power in the network, a so-called 51%
attack could be done on the blockchain[29, 30]. Allowing the attacker to remove and rewrite transactions
on the blockchain. Such attacks poses more of a risk if the distribution of mining power is done only over a
couple of data-centers, instead of a much broader network. As all transactions are stored on a public ledger,
security and privacy risk are also a concern for individuals using the blockchain.

2.1.8. Scalability with a Layer-2 Protocol
Due to the risks to security by increasing the block-size of a block in a blockchain. Researchers propose to
use layer-2 protocols, to aid in combating the issues that come with blockchain. A layer-2 protocol within
the context of blockchain is implemented on top of the layer-1 protocol, the blockchain or ledger, by either
creating a smart-contract or using opening and closing transactions. Opening and closing transactions is
discussed in more detail in Section 2.2.1.

The layer-2 protocols make-use of the layer-1 trust and security assumptions. Most layer-2 protocols allow
users to perform off-chain transactions through either state channels and side chains. Off-chain transactions
are a type of transaction that exchange/transact cryptocurrency without storing the exchange on the ledger.
Due to this transaction taking place outside of the public ledger, it is known as an off-chain transaction. Off-
chain transactions provide a way to scale blockchain, without having to increase block-size or in the case
of PoW reduce the computation time of new blocks to become a security issue. This thesis focuses on state
channels, payment channels.

Figure 2.2: Layer-2 protocols that work on blockchain

Allowing cryptocurrencies to make use of one or more layer-2 protocols seems to be the way forward for
blockchain scalability. These layer-2 protocols allow for users to make use of different solutions so that a
higher throughput of transactions can be achieved. With the benefit of reducing the amount of transactions
pushed to the blockchain, reducing the need to increase block-sizes of current cryptocurrencies.

2.2. Payment Channels and Payment Channel Networks
Within this section a broad overview of the workings of payment channels and payment channel networks is
given.

2.2.1. Payment Channel
Payment channels, first coined as micro-payment channels[3] allow users the ability to make off-chain trans-
actions. This technique was first implemented in Bitcoin 0.1[2] however the design first used was not secure
due to one party being able to collude with a miner to puts the final version of the payment channel with-
out the consent of the other user. Allowing for the possibility of stealing funds. Different types of payment
channel protocols have been proposed. However the focus will be on the Poon-Dryja proposed protocol for
payment channels while introducing the Lightnining Network[60]. Some properties proposed by Poon-Dryja
was that the channels could have an indefinite lifetime, allowing for an infinite amount of transactions to
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occur on a channel without having to make use of the blockchain. Another property was that the channels
were bi-directional.

Opening and Closing Transactions, can be done by pushing a special type of transaction to the blockchain.
Though the specific name for such a transaction may be different depending on the implementation, here
openChannel and closeChannel represent such an transaction. Within the proposal for payment channels, a
2-of-2 multi-signature was suggested to lock the funds in the chain. A 2-of-2 multi-signature refers to a sig-
nature protocol where both parities create a digital signature before the funds can be locked. Such signatures
also exist in the form of 1-of-2 where two parties have a signature but only one is needed or a 2-of-3 situation
where three parties have a signature, one signature is always necessary and only one of the other two need to
sign.

An openChannel operation opens a payment channel between two nodes via a transaction. This trans-
action is stored on the blockchain with an initial deposit of Bitcoin or other currency, with a couple of extra
key pieces of information. The two nodes need to record their Bitcoin addresses, initial capacity of the link
in both directions, channel timeout, the fee charged for using the channel and a channel identifier. Once the
2-of-2 multisig is established the channel has opened.

A closeChannel operation closes a payment channel between two nodes via a transaction on the blockchain.
The two nodes closing their channel are able to close the channel by defining the state of the capacity of the
link and updating their Bitcoin balances. Closing a channel can be done by either one party or both parties. If
a channel is closed unilaterally the funds of the party requesting to close the channel are temporarily locked
for a period of time, allowing the other party to dispute the state transmitted by the closing party.

Dispute handling, is done outside of payment channels. If any disputes occur either due to malicious
behaviour, or other factors like timing-out a Hashed Time Lock Contract(HTLC) then a dispute handler needs
to find a resolution. When parities close a channel the dispute handler is also opened for a fixed time. During
this fixed time both parties can send evidence to the dispute handler. On the basis of the signed messages
provided and their last-known balance the dispute handler is able to compute and disburse the money ac-
cordingly. Most often the evidence with highest round number wins, though a verification process takes place
to ensure no false evidence is presented.

2.2.2. Payment Channel Networks
A node is not limited to establishing a payment channel with only one other party allowing for nodes to
connect with a multitude of nodes. Once multiple nodes join together with payment channels a Payment
channel network(PCN) is created. An incentive for nodes to join a PCN is that it allows nodes to transact
with nodes in the network, even though no direct payment channel link has been established. This gives the
flexibility to nodes to only establish links with nodes they are willing to trust.

Nodes can forward transactions between their direct neighbours, so the network is able to make multi-
hop transactions. A multi-hop transaction is a transaction that spans over multiple different nodes between
two users, the nodes that participate in the transaction not as the receiver or sender node are known as for-
warding nodes. It is common to collect fees for forwarding transactions, thus creating an incentive to do
so. Off-chain transactions are a great advantage for payment channels from a privacy perspective, seeing as
this enables private transactions that cannot be traced once they have completed. The tracking of transac-
tions can only be done in a very limited manner by examining the opening and closing transactions to the
blockchain, where the difference in capacity in each link could be monitored. Though thousands of transac-
tions could happen before the payment channel is closed, only the difference between opening and closing
the link can be examined on the blockchain.

Figure 2.3: Alice, Bob and Charlie have created a Payment Channel Network
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Figure 2.4: A. Alice and Bob transact $150 with one another B. Charlie transacts with Alice for $150 C. PCN is closed and stored on
blockchain

To illustrate how a PCN works imagine that Alice, Bob and Charlie come together to create a small PCN.
Alice is only able to set-up a payment channel with Bob where the capacity on the line is $100 in both ways.
Charlie is only able to set-up a payment channel with Bob, they agree on having a capacity in the direction
of Bob with $150 and the direction from Bob to Charlie will have $50. The PCN is illustrated in figure 2.3 also
showing the transactions that would be placed on the blockchain in the Layer-1 Protocol.

Alice decides to buy a Duck from Bob for $100. Alice makes the transaction to Bob and in figure 2.4 it can
be seen in A how the state of the channel changes of the layer-2 protocol. However nothing is appended to
the blockchain ledger. Charlie is jealous of the Duck that Alice bought from Bob and offers to buy the Duck
for $150. To make this transaction happen Charlie needs to do a multi-hop transaction, where Bob is acting
as a forwarding node. In this example no fees are taken from forwarding nodes however usually such fees are
taken as an incentive. The final state of the PCN can be seen in figure 2.4 at B. After these transactions Alice,
Bob and Charlie decide to close the channels and the final transaction is made to the blockchain ledger as
seen in C.

Important properties of payment channels and PCNs are described below:

• Conservation of Capacity, between two nodes that have established a payment-channel the total amount
of capacity that is established between the two nodes in the opening of the channel on the blockchain
also has to equal the total amount of capacity when the payment-channel is closed.

• Transaction Connectivity, a node is only able to transact with another node if it is directly or in-directly
connected with a node. Two nodes are in-directly connected when one or more intermediary nodes
need to be used to establish a connection. If no path can be found between two nodes, then the two
nodes are unable to transact on the PCN.

• Transaction Capacity, if a node does not have enough capacity on its link to complete a transaction.
The node without enough capacity is not able to take part in the transaction and must notify nodes
trying to complete the transaction it is not able to be part of the transaction.
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2.2.3. Transactions
Transactions within a PCN require multiple protocols to come together. Simply put a transaction requires
a route through the network, a payment protocol to ensure that the transaction is done successfully and
securely. Also the network needs to establish some sort of accountability. As Roos et alter pointed out path-
based transactions(PBT) are built on three key algorithms, namely: routing, payment and accountability[65].
The specfic tasks for these three algorithms are described as follows:

• Routing algorithm: finds and establishes the path that transactions will take from the sender to the
receiver. Characterized by effectiveness, efficiency, scalability and privacy [65].

• Payment algorithm: mediates the funds between two parties and all the connecting nodes connecting
the two parties. Characterized by robustness and trust.

• Accountability algorithm: resolves any disputes in the presence of malicious behaviour in the network.
Characterized by robustness, scalability and provability[37].

Within the context of this paper the accountability algorithm is abstracted away. Within the assumption
that no nodes behave maliciously.

These three algorithms establish the basis for a functioning PCN. Where the routing algorithm for off-
chain routing has been a point of interest since the draft of the lightning network in 2016[60]. Ensuring secure
payments has a slew of different options

Routing Algorithm
The purpose of the routing algorithm in a PCN is to find a route the transaction can take. Routes for

payments should ideally be as short as possible as every extra hop will mean the sender will be paying an
extra transaction fee. However not all routes are equal due to the capacity of links, if a link has become
directional then transaction routes going against the directional link may not use that link. Thus routes in a
network need to consider the link capacities and not just the links themselves when deciding on a route.

Many different types of path finding algorithms exist and are applicable to PCNs, though the best option
depends on how the PCN is implemented. If nodes know the whole topology of the the network then a flow
algorithm may be feasible. Such algorithms have high complexity and as networks scale may no longer be
useful. If nodes have no idea about the topology and only have only local knowledge then tree-routing or
simply broadcasting the transaction may be applicable. Broadcasting a transaction may overload a network
in message complexity and may reduce the privacy and security aspects of a PCN. In Section 3.1.1 different
types of implemented routing algorithms are discussed.

Payment Algorithm
The payment algorithm helps secure the payment from the sender through the intermediary nodes to the

receiver. Different proposals have been given for such an algorithm. Within the context of this paper, Hashed
Time-Locked Contracts will be used as the primary payment algorithm.

Hashed Time-Locked Contracts [27, 78, 79] are the backbone to most PBT currently implemented, with
some modifications.

To explain how HTLC works, a sender node S and a receiver node R will need to connect along a path. S
is sending Bitcoins, B , along the path to R. Assuming for this case that S and R are not directly linked to one
another. The path, p, between S and R is made with

p = (u0,u1, ...,un−1,un) wher e S = u0 and R = un

Assuming the path has enough funds to allow for the transaction to happen and no concurrent transac-
tions are taking place along p. S is able to send its B along p. To ensure that B is not lost along the path,
a HTLC is established. R can only claim the Bitcoin if it can provide a pre-image of a cryptographic hash.
Each HTLC is initiated with a time t , after this time has passed the HTLC is closed and the Bitcoins on the
channel can no longer be claimed. Once R receives a notice that S would like to make a payment, R makes
a random key Y . Y is put through a hash function, h = H(Y ). R sends h to S. With this hash-value S is able
to set-up a contract with its neighbour in p, S will set-up a HTLC with u1 that is dependent on Y , and will
expire after a curtain time t . u1 will do the same with its neighbor in p and so on till every node has an HTLC
with its neigbouring nodes in the path. The timer is usually decreased along the path with HTLC contracts,
ensuring that no node along the path can expire HTLC before R collects its Bitcoin, or lets un−1 expire. With
the cryptography locks in HTLC relatively secure transactions can be made.

Accountability Algorithm
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The accountability algorithm ensures that if any disputes occur in the system that these can be resolved.
A dispute may entail if a transaction fails one a HTLC contract has been created, or one node would like to
close a channel and the other node has not signed off on it. Some PCN rely on the blockchain to resolve any
disputes, if this is the case then the Network does not need to implement its own accountability algorithm.
Ripple is a cryptocurrency that works on a PCN, the PCN is not a second layer protocol and thus makes use
of an accountability algorithm to ensure all disputes can be managed.

2.2.4. Concurrency
Concurrency refers to having multiple transactions in a network happening at the same time. With the con-
sensus algorithm, like PoW in bitcoin, the miner creating the block is able to fetch from a pool of concurrent
transactions certain transactions. The subset of transactions chosen to go into the block may be related to
the transactions willingness to pay fees and will be ranked accordingly.

Within a PCN transactions are not picked up by the consensus algorithm and users may not be able to
avoid issues that arise from concurrency due to payments involving intermediary nodes. If a link does not
have enough capacity, and an user is unable to avoid this link they will have to wait for an alternative path or
till the balance is restored. Either no transactions are able to get through the network or transactions can get
stuck in a deadlock while they wait for each-others transactions to finish.

To help identify certain concurrency issues within a PCN, three common types of concurrency protocols
are used. These protocols are Blocking, Non-Blocking and Partial-Blockingprotocols.

Blocking Payments

An effort to avoid deadlocks in PCN blocking payments are suggested. In blocking payments channels are
fully blocked during a transaction. Allowing no other user to make use of this channel till the transaction has
completed or failed. A way blocking payments is able to avoid deadlocks is by having payments fail, seeing
as aborted payments do not affect the balance of involved users. Then transactions can be tried again after a
random period of time to ensure that if two channels were blocking one another they will not try and transact
over the same path at the same time.

A blocking payment protocol is simple, and easy to implement. An issue with such a protocol is that if the
transaction volume increases, the chance of two transactions blocking each other and failing will increase. As
more transactions try to complete in the network, the network may no longer be able to find suitable paths
that are not blocked.

Partial-Blocking Payments

During partial-blocking payments the capacity on the link that is required by the transaction is blocked
apposed to the whole link. This strategy allows multiple transaction to transverse over a link. By not having
such a binary open or closed link transactions are more likely to complete. Though no guarantee can be
given.

Non-Blocking Payments

During a non-blocking payment it should be guarantee that at least one of a set of concurrent payments
is able to complete. This can be done with queuing or trying to create a global order of payments. Then
the payment that either has the highest or lowest identifier can be pushed through the network. This means
all channels are open for multiple transactions, though as more transactions enter the system queuing may
result in very slow processing.

2.2.5. Deadlock Detection
Currently most deadlock detection in a PCN is done by letting the HLTC run out of its operational time-frame,
then re-trying the transaction at a later time. This is not an optimal solution, and may lead to issues when
high capacity is expected from a PCN.

Within distributed systems deadlock detection has been a topic of discussion at least since 1983 two dif-
ferent models were developed by Chandy et alter[20]. These models focused on finding a deadlock and hav-
ing nodes release resources if one was found. Such methodology could also be implemented in a PCN if done
carefully.

This may bring up security risks, and privacy risks as nodes will be probing around the network. However
if the protocol is done probably and the assumption that most nodes are acting in the best interest of the
network it could be conceivable.
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2.2.6. Rebalancing
Within PCNs links that are bidirectional allow transactions to come from either side of the link. Once a bidi-
rectional link becomes directional that link is no longer available for certain transactions. This may cause
the PCN to become locked as no more transactions are able to find paths with funds in the direction that
is needed. For this reason re-balancing is an important topic for PCN research. Within this thesis different
re-balancing strategies will be analyzed.

To allow a high throughput of a network concurrent transactions must be able to be handled by the net-
work. This becomes more of an issue when link balances become unbalanced and directional. For this reason
finding optimized re balancing solutions may help aid in keeping PCN transactions going through the net-
work. Some networks operate by have nodes replenish funds during operation with one another to ensure
that transactions can continue. This works great in a more centralized PCN where one party may have mul-
tiple nodes in the PCN. Thus no monetary value is lost when the re-balancing occurs, as a close and open-
transaction are pushed to the blockchain. However for fully decentralized PCN’s re-balancing with the chain
may not be a viable option.

2.2.7. Topology
Due to the relatively new research area for PCNs, the networking and topology side of this research area has
been limited. The lightning network depending on which resource is used either has 10,150 nodes with 35,175
channels[7] as state by "1ML.com" or the network has almost 5000 nodes with 27,711 channels according to
"Bitcoinvisuals.com"[44] , while ripples network is totaling 1030 nodes[8].

The discrepancies on information about the lightning network make it difficult to quantify how the light-
ning network is doing and how many nodes are actually participating in the network.

Zombie Nodes
Something that has not been discussed in any literature on the topic of PCNs is the existence of Zombie
Nodes. Seres et. al never made any mention of zombie nodes during their analysis of the lightning network[67].
Zombie Nodes can be classified as nodes that are connected to the network and have open channels, though
have not sent any channel_updates or node_announcement for a couple of weeks. These nodes may hinder
routing as it is unknown whether routes can pass over their channels.

As of December 2019, "hashxp.org/lightning/node/" suggests that their are 3054 active nodes, while
their being another 11815 zombie nodes in the network. While all sources can agree on the amount of BTC
in the system, the node count is a defendant discrepancy between sources. Hashxp suggests that the total
zombie nodes collectively have 36.65 BTC on their channels, suggesting that this problem is relatively small
compared to the active 815 BTC the live nodes are working with. To be able to more accurately describe
a Lightning topology data would need to be collected on the collection of zombie nodes. Research would
need to inquire about how they effect routing algorithms, do networks need to employ a type of heart-beat to
ensure that zombie nodes do not stay part of the network.

2.2.8. Security and Privacy
If a PCN is built ontop of a blockchain, then the PCN can assume that the security guarantees of the blockchain
hold.

Two notions of security and two on privacy have been presented by Malavolta et. al in their paper Con-
currency and Privacy with Payment-Channel Networks[45]. These formulated notions are:

• Balance Security, an intermediate note part-taking in a transaction may not lose any coins throughout
the transaction. Even if during the transaction all parties involved are malicious.

• Serializability[55], All executions of a PCN must be serializable, allowing for every concurrent execution
there must exist an comparable sequential execution.

• Value privacy, should guarantee that the transaction value is not leaked to users outside of the payment
path, as long as the users in the path are honest and trusted users.

• sender/receiver anonymity, should guarantee that the sender and receiver sending a transaction along
the path with at least one honest user. Corrupted intermediate users should not be able to determine
the pair of sender and receiver for a given transaction.

"1ML.com"
"Bitcoinvisuals.com"
"hashxp.org/lightning/node/"
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Related Work Concerning Payment

Channels and An Introduction to
SpeedyMurmurs

Within this section related work will be explored for PCN in general.

3.1. Payment Channel Networks
PCN are a new research area, however some of the issues and concepts overlap with credit payment networks
like that of VISA. Looking at previous work done on these networks, and comparing issues faced between de-
centralized PBT and credit payment networks allows for previous found solutions to be adopted by PCN[21].
Malavolta et alter identified note-able issues that cross-over from credit payment networks that decentral-
ized PBT will face. The highlighted issues are liquidity, network formation, routing scalability, concurrency
and privacy[45]. These issues are non-trivial to solve, requiring dedicated research to come up with viable
solutions.

Currently different cryptocurrency solutions are looking to PCN. The Lightning Network is based on Bitcoin[60],
and is currently the biggest second layer protocol that helps relieve transactions from the blockchain, the net-
work as writing this thesis has just shy of 5000 nodes[7] with 27,000 edges. Raiden is the PCN that has been
built on-top of Euthereum[83], Euthereum is the second largest cryptocurrency according to CoinMarketCap[4].
The Raiden network currently has 35 nodes and the network is depicted in Figure 3.1.

Figure 3.1: Graph of Raiden Network December 2019

As one can imagine not every PCN is getting as much traction as Lightning. Seeing as Raiden has a lack
luster amount of nodes in there network. Ripple is another cryptocurrency relying on PCN[66]. While the
consensus algorithm for Ripple does not rely on a blockchain but is built into the PCN, it has a much bigger
audience than both the Lightning Network and Raiden Network combined. Currently there is about 8.9 bil-
lion dollars locked into the network compared to the 4 million of lightning[4]. Showing that there is definite
promise in Payment Channel Networks, being it the stand alone solution for a cryptocurrency or a second
layer protocol.
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3.1.1. Existing Routing Algorithms for PCN
Offchain Routing

Offchain routing is an integral part to any PBT in a PCN. Emphasis is laid on the routing algorithm for
numerous reasons. Allowing high-throughput and low latency is highly dependent on the routing algorithm.
Two connecting nodes should find the shortest path between themselves to establish a quick transaction. A
caveat being in PCN that link capacities change dynamically and need to be balanced in a bidirectionally to
allow for high success rates of transactions. Otherwise links may become uni-directional limiting the success
for transactions trying to cross over the link in the direction without any capacity.

Adaptive vs Non-Adaptive Routing
Routing has been classically done in two ways, either adaptively or non-adaptively. Both these types of

routing have its advantages and disadvantages. For adaptive routing, a lot of overhead is created, though for
a dynamically changing system like a PCN it can create more optimal solutions. Non-adapative also known
as static routing allows guarantee of reachability, best used in networks with an abundant capacity. However
static routing may not always be suited for dynamically changing networks, due to it creating routes based
on the knowledge of link capacities.

Numerous different off-chain routing solutions have been proposed that make use of dynamic or static
routing. These solutions can be characterized as: Landmark routing, Beacon routing, Embedding-based
routing, Partial Max-Flow and Routing tables, Centralized routing and Max-flow routing. Different algo-
rithms for each category will be reviewed below.

Landmark Routing
Landmark is a static routing algorithm and is done by selecting certain landmark nodes in a network that

store routing tables. All other nodes that are not a landmark route connect to the landmarks[73]. SilentWhispers[48]
makes use of the landmark routing algorithm. One of the biggest drawbacks to this routing technique is that
if two nodes happen to be in the same branch all transaction will be lead via the landmarks. Possibly leading
to performance issues.

Beacon Routing
Flare[61] proposes a beacon routing algorithm. Each node tracks its neighbours to a curtain maximum

hop-count k, this forms a k-neighbourhood that each node needs to track. Each node also connects with
nearby beacon nodes that maintain paths to other beacon nodes. A downside to this algorithm is that nodes
update their k-neighbourhood with each credit change. Resulting in inefficient ways to deal with messages,
reducing the amount of transactions possible and may result in privacy breaches.

Embedding-based Routing
Embedding-based routing also known as distance-based routing is classically a static routing algorithm

that makes use of a vector embedding for each node. The vector is generated in such a way that for nodes that
lie close to one another in the network with short hop distances, are also close in embedded space. Each node
relays each transaction to the neighbor whose embedding is closest to the destination’s embedding. This type
of routing is used by SpeedyMurmurs[65], inspired by the VOUTE system[64].

SpeedyMurmurs was designed with privacy in-mind, making sure that sensitive information is not leaked
throughout the system. A disadvantage of embedding-based routing is that over time the weights of the links
and topology of the graph changes. Meaning routes may have to be recalculated over time.

An interesting aspect to combining embedded-base routing with AMP Payments, is it allows nodes to
try multiple paths for different spanning trees to find a route that is available for a transaction. Though the
number of routes available can be greater than the number of routes AMP Payments need. Allowing a node to
probe more routes to find a suitable one. This type of dynamic use of paths could lead to a higher throughput
of the system, seeing as lots of different paths can lead to a receiving node.

Partial Max-Flow and Routing tables
Flash[77] is an algorithm that combines both max-flow and landmark routing into its routing algorithm.

Meaning that Flash operates both as a static and dynamic routing algorithm. The algorithm distinguishes be-
tween elephant payments and mice payments, as one can imagine elephant payments are large and fairly rare
transactions on the PCN. While mice payments are classified as smaller transactions that occur continually.

For elephant payments, the payments are split into chunks and a paths are calculated using a modified
max-flow algorithm. The issue of sending elephant payments lies in trying to find enough capacity in a dy-
namically changing environment. Distributing the calculation gives the most accurate result given capacity.
Though the overhead created and latency induced by having a distributed max-flow calculation will make
these transactions non-feasible. To get around this issue, the max-flow calculation is done locally. A node
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probes the capacity of the network to gather information about the link capacities. Then run a modified
algorithm based off of Edmonds-Karp[24] max-flow algorithm.

Mice payments make use of a routing table. Trial and error is used to find a path that is able to handle the
capacity of the transaction, till it finds a path from the table that will work. The routing table is updated each
time the topology of the network is updated.

Centralized Routing
Centralized routing centers around a central trusted server in a PCN. The central server has a map of all

linked nodes in the network and will calculate a shortest path for each transaction on the network. All nodes
will need to communicate with a central server before being able to complete the transaction.

Canal[76] implements centralize routing in an efficient manner with tree-only routing, as the central com-
puter constantly updates the spanning-tree. Constant recalculation of the spanning-tree is done to make sure
the weights of the links stay balanced in the system. The central computer also processes the shortest-path
over the tree between the sender and receiver. Due to having a central server their is a high potential for
security breaches and scalability of the system becomes an issue.

PrivPay[47] also implements centralized routing similar to that of Canal. Though this algorithm lays
higher focus on value privacy and transaction privacy for the sender and receiver. Still this routing algorithm
has a central-point of breach making it a security risk.

Max-flow routing
The lightning network draft routing algorithm falls into the max-flow routing category[60]. This can par-

tially be attributed to its critical benchmark, this benchmark was to achieve maximum success rate of trans-
actions. To accomplish this each node stored a routing table of the entire network and the PCN would run a
distributed implementation of the Ford-Fulkerson method to find a path through the network that supported
the transaction volume.

The proposed algorithm is an almost ideal solution to the problem, however the biggest draw back to
this algorithm is its overhead. The overhead is created by having to calculate the max-flow routing for each
transaction with the Ford-Fulkerson method is linked to the number of nodes in the system. Meaning the
computation per transaction limits high throughput and the computation time will increase as the network
scales.

Routing the path through a network is not the only concern routing algorithms have to deal with. As PCN
networks take on more transactions, transaction will start to interact with one another. Due to transactions
having to deal with capacity of links and other transactions, links that were once thought to be available could
be used by another transaction. Bringing up the issue of how to deal with concurrency in PCN.

3.1.2. Concurrency: Blocking and Non-Blocking Protocols
Flugor

Flugor[45] was designed with the assumptions stated below, it also makes use of three operations: open-
Channel, closeChannel and pay.

Assumptions that Flugor and Rayo were built on
Both Flugor and Rayo were built upon a list of assumptions of the system. These assumptions are as

follows:

1. Every node in the PCN is aware of the topology of the whole graph, including every pair of connected
payment channels between nodes. This can be trivially obtained due to examining the transactions on
the blockchain and inspecting which transactions are opening a payment channel.[62].

2. Every node chooses a transaction path to its receiver via its own criteria.

3. The current capacity of each payment channel is not published, though it is shared locally with other
nodes as otherwise privacy is trivially broken.

4. Nodes are aware of transaction fees along the paths that are chosen.

5. Pairs of users communicate through secure and authenticated channels.

6. Sender and receiver can communicate via a secure and direct channel.



20 3. Related Work Concerning Payment Channels and An Introduction to SpeedyMurmurs

7. The sender of the payment is able to create an anonymous payment channel with each intermediate
user

8. Bounded synchronous communication setting[13] is implemented in the system with loosely synchro-
nized clocks among users.

9. Total order among the users.

A pay operation transfers money from one node to another. Flugor makes use of the blocking mechanic.
For a node to send a transaction, it first calculates if it has enough funds to do the transaction. Calculating
this is done by adding all the fees along the path to the receiver plus the amount that was intended to be sent.
If the links balance is enough to cover the costs of transaction the transaction is initialized. The sender node
sets up the a HTLC with each node along the path to the receiver and with the receiver. Within section 2.2.3
HTLC is explained in greater detail.

HTLC allows nodes to verify that the connection that is being established is non-malicious, this each hop
between sender and receiver is able to verify the Hash-lock without revealing the full payment. A time frame
is added to each HTLC allowing the contract to be valid during this time frame. Once the receiver pulls the
transaction amount it releases, the HTLC contract and this propagates down the path till the sender node is
notified.

Each intermediate nodes checks to see if the link capacity that is requested has enough funds to complete
the payment. Once the payment is released by the receiver, this release propagates down the path. If any
node aborts the transaction the receiver does not release the condition seeing as no payment is made. The
rest of the nodes will also release the transaction after the timeout is reached and the HTLC contract is voided.

To deal with deadlocks the solution that is offered consists of letting payments fail. By allowing the time-
out of the HTLC contracts. The sender will choose a random waiting period and try again once this timer runs
out.

Suggested Modifications for Flugor
Modifications can be made to the original Flugor to guarantee progress as suggest by Werman et alter

[78]. The proposed idea is to have each edge have an unique ID. It is assumed that the path from the sender
and receiver has a communication line traversing multiple edges. To initiate the transaction the requests for
payment will be send to the nodes in lexicographic order according to the edges ID’s. Once all edges accept
the HTLC is established to let the transaction commence.

For this to work, either a node will need to send a probe message to collect id’s. Otherwise it would need
to be constantly aware of changing edges and the new id’s that can be found in the topology of the network.

Rayo
Rayo[45] is a non-blocking concurrency algorithm that also makes use of Multi-Hop HTLC. To achieve this

a channel-state is defined, that works as a type of queue. A channel-state consists of three parts, an array, cur,
that denotes the payments currently using part of the capacity. An array, Q, that denotes payments waiting for
available capacity on the payment channel and a value cap that denotes the current capacity on the payment
channel.

During a pay transaction if there is enough capacity in the intermediate node to allow for the payment to
be made, then the current transaction is stored in the cur queue as an in-flight payment. When the payment
channel is saturated, and not enough link capacity is available for a transaction, the transaction may be put
in the Q. Figuring out if a transaction is stored in the Q, the value of the transaction ID must be higher than
that of current transaction IDs in the cur array. If a current transaction in the cur is aborted then a transaction
stored in Q will be recovered if the transaction ID is higher than that off all the current transaction ID’s in the
cur array. If the transaction ID is lower when its taken from the Q it is automatically aborted.

Queuing is an interesting aspect of a non-blocking algorithm. Rayo makes use of the transaction ID to
make decisions for determining if a transaction is worth queuing and if queued whether or not the transaction
is still worth pursuing once capacity is available. Queuing can also be done in a different manner, instead
of taking a FIFO approach the queue can be searched for transactions that can still be completed with the
current capacity. Though with possibility of starvation. Other possibilities are having dynamic prioritization
for transactions that are queued.

3.1.3. Evaluating against related work
As the state of current research in PCNs is limited, and the area has started to gain more attention as of late.
Evaluation via comparison to other methods is difficult due to the limited or non-existent research papers
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of current solutions to the problems proposed. The performance of the synthetic data-set can be compared
to the "data-set" from ripple, as mentioned in Section 3.1.5 there are some concerns about the validity of
the data-set and thus it will be ignored. Further more, researchers are looking for data-sets to be provided
by Lightning or Ripple, or other blockchain solutions that make use of PCN. However, currently no data-
sets have been made available to the research community, and with some speculation even the companies
themselves are unsure how to gather this data.

Comparing measurable results between rebalancing strategies currently is not possible due to the lack
of data available in this area of research. While rebalancing has been proposed by Lalitha et al in their pa-
per Rebalancing in Acyclic Payment Networks[70] for the rebalancing strategy, their work does not evaluate
their strategy against a simulation and make use of an extra protocol within their PCN. This extra protocol
rearranges link capacities with multiple nodes, this happens outside of transactions. Rami et al. also pro-
pose revive[39], a rebalancing strategy with a leader selection, a nodes sending in requests. In their paper the
results from the simulation are non-comparable, as not much is known about how the simulation was run.

While comparison against other research is difficult, both of the proposed questions can be compared to
different topologies and against one another. The limitation to such an evaluation is that it will be impossible
to evaluate the effectiveness of both the algorithms and synthetic-data relative to other solutions.

3.1.4. Topology
Research on the topology of PCNs is limited, on the lightning topology Seres et. al have published a study[67].
Such studies may not be indicative of the whole network as the number of nodes looked at was 2344, while
currently the number of nodes in the lightning network is 4 times that, at 10,150 nodes[7].

Lightninings Topology Model
An interesting aspect of the study found that the topology of the Lightning network can be classified by the
scale-free model, with the distribution of channels following a power law. Power law distribution of degree’s
is often found in natural occurring networks and such networks have been studied for network resilience.

Lightnings Robustness
Network resilience is a probabilistic measure of potential disconnections in a network[49]. A network may
have to deal with two types of potential disconnections, random failures and targeted attack. In a random
failures random nodes within a network will fail, such a test tries to emulate hardware failures and other
random occurrences that may put a node in a network offline. Within a targeted attack specific nodes are
targeted to see how the network holds up to such an attack. These attacks are usually performed by attacking
nodes with the highest degree or in the case of PCN the nodes with the highest amount of channels.

Random failures, using the Molloy-Reed criteria[46], Seres found that the percolation threshold mea-
sured was fc = 0.9797. Such a threshold has been proven to be adequate for retaining stability of the network
under random failures. A random selected node in the lightning network failing will have little impact due to
most nodes not contributing highly to the topological connectivity.

Targeted Attacks, attacking a PCN can be done via DDoS attacks. Seres found in their research that remov-
ing the single largest node in the network fragmented the network into 37 different connected components.
Attacking the 30 largest hubs fragmented the network in 424 components. This shows the fragility of current
PCN, a DoS attack would currently be able to disrupt the lightning network.

3.1.5. Dataset
Analyzing and making use of data-sets allows researchers to emulate a PCN accurately and allows helps val-
idate testing new ideas. In Roos et. al work on SpeedyMurmurs a dataset was presented[65]. This dataset
was taken from ripple and made publicly available. After a data analysis of the dataset questions were raised
to how use-full the dataset is. Ripple is a credit network and allows establishment of channels with infinite
capacities and this does not translate well to other PCNs. Where establishing a channel means funds must
be deposited, in ripple this is not necessary. Giving very skewed data results. In the appendix A more can be
found out about the dataset and its analysis.
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3.2. Rebalancing of a Payment Channel Network
Two different methods have been proposed for the rebalancing of PCNs. Both of these rebalancing strategies
make use of a protocol outside of the transaction protocol.

3.2.1. REVIVE
Khalil et al. proposed REVIVE[39], the first ever PCN rebalancing protocol that did not require nodes to inter-
act with the blockchain to rebalance links. The protocol requires multiple leaders to be elected in the system.
The job of a leader is to gather information on the link capacities of the nodes that have elected the leader so
that the leader can make a scheme so that nodes will be able to rebalance links. Then nodes can make a pay-
ment to themselves in a cyclic graph, allowing the restoring of link capacities. The leader aims to rebalance
the link in such a way that the link is equally balanced bidirectionally.

The leader makes use of a Linear Problem to optimize the link balances between links. This search is done
locally instead of having a leader calculate it for the whole graph. Multiple leaders that have been selected,
calculate locally the optimum rebalancing strategy, the local area of the rebalancing can overlap with other
local-areas. While it is suggested that this is less effective then having a global calculation for the optimum
rebalancing strategy, it reduces the calculation time of the problem. This design has two big draw backs, one
is that it only works for cyclic graphs and the security risk created by sending all link capacity information to
a chosen leader may proof to be problematic.

3.2.2. Rebalancing in Acyclic Payment Networks
Subramanian et al. have proposed a rebalancing strategy for Acyclic Payment Networks[70]. Within this paper
unidirectional and bidirectional links are able to benefit from the proposed rebalancing strategy. The protocol
consists of three phases the Rebalance request phase, Respond phase and Reserve and pay phase. During the
rebalance request phase, a node will ask a sub-set of its neighbours if it they can help in the rebalancing.
This sub-set consists of all neighbours except for the neighbour that the intended rebalance is meant to take
place in. The neighbour that the node wants to rebalance with will be also requested, the response of this
request is a signed contract that locks the value of the rebalancing agreement between them. Once the node
has received enough contracts to finalize the rebalancing from its neighbours and possibility its neighbours
neighbours till a fair way is found to rebalance, then the rebalance transactions occur.

3.3. SpeedyMurmurs
Currently one of the promising PCN algorithms is speedymurmurs. This algorithm was first proposed by Roos
in 2017, and it is based off-of VOUTE[65]. VOUTE being an algorithm that allows for efficient message delivery
in dynamic route-restricted networks[64]. A route-restricted network is a network that does not allow nodes
to set-up arbitrary links between themselves. A key feature of VOUTE is the privacy-preserving embedding-
based routing algorithm[57]. VOUTE was designed to work within P2P networks, transmitting messages in
uni-directed and unweighted networks. The privacy guarantees, and dealing with routing make VOUTE very
interesting for PCN, though due to being unable to work with weighted links and a credit network it has been
adapted into speedymurmurs.

Speedymurmurs key properties are composed of:

• Path selection, path selection for SpeedyMurmurs is based on two attributes of the PCN. The funds
available and the distance a neighbouring node is to the destination. The specific path selection for
SpeedyMurmurs results in a flexible and efficient algorithm.

• Low overhead, PCNs are dynamic graphs. For that reason SpeedyMurmurs makes use of an on-demand
efficient stabilization algorithm. The overhead due to the algorithm is low without compromising
SpeedyMurmurs efficiency in reacting to changes in the PCN.

• Split Link Capacity, SpeedyMurmurs tries to ensure efficient usage of resources in a PCN. For this rea-
son during transactions, only the link capacity that is needed to complete the transaction is blocked-off
allowing for multiple transactions over the same link to take place. As long as there is link capacity avail-
able.

• Multi-path Transactions, using multiple paths to send transactions over, reduces the load curtain links
experience during a transaction. By spreading the load of a transaction, SpeedyMurmurs distributes
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and balances the load on link capacities of transactions over as many nodes as possible. Trying to
mitigate links becoming over utilized and no longer being able to be traversed due to bad link capacity.

3.3.1. Routing and Path Selection
Embedding-Based Tree Shortcut Routing

PCNs are not directly comparable to other networks due to the rigid structure the network is created
in. Peers predefine connections by opening payment channels with one another and have an established
topology that is not easily altered. SpeedyMurmur’s makes use of the similarity of Friend-to-Friend(F2F) net-
works, these networks only allow connections to between nodes in the network if a mutual trust relationship
is established.[65]

F2F networks current use of routing is embedding-based routing[56, 64], such routing relies on a coor-
dinate system. Coordinates of nodes are dictated by the root node from a spanning tree, thus to initialize
an embedding-based routing system, a spanning tree must be created. After coordinate system has been
assigned to different nodes it is common to disregard the tree and base routing on the coordinate system.

A root node is able to assign a coordinate system by forming vectors. The root node has an empty vector
and will assign a coordinate to each of its children. These children will assign coordinates to their children
and so on. As seen in figure 3.2 a, the root node has an empty vector referring to the root node, where as its
direct children get assigned a vector value.

Figure 3.2: Coordinate assignment by root node, prefix-embedding based routing

With a coordinate system paths do not have to follow the path of a tree, as nodes may be linked to a
node that they are not directly connected to in the tree. Thus allowing for paths to be shortened by taking a
shortcut instead of precisely following the path established by the tree. Shortcuts are not guaranteed, while
tree paths do guarantee that a path can be established between two nodes. For the reason that paths must be
guaranteed, disregarding the tree after coordinates are assigned is not possible.

3.3.2. Concurrency
SpeedyMurmurs works in a partial-blocking manner, allowing for Multi-Path Transactions. Multi-path trans-
actions allow for a transaction to complete over multiple paths. The amount of value that is being transacted
will be divided into different amounts over each path. The thought behind a multi-path transaction allows
for many smaller payments to go over the network. This may reduce the dependency on certain links and
may give an over-all better concurrency performance.

3.3.3. Security
Security within SpeedyMurmurs, a layer-2 protocol, is built upon the security and trust assumptions from the
underlying layer-1 protocol. For the layer-2 protocol, the model that is being built also extends its security for
the layer-2 protocol to accountability, corrupt users and denial of service.

Trust: parties that are transacting within one another or are aiding in the transaction should be trusted to
report the value of the links accurately. Non of these parties should be misrepresenting the capacity on the
link, nor miss represent the value of the transaction. If any user is actively participating in any distribution of
misinformation, the honest peers will be able to detect and validate that a party is acting malicious.
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Each user after participating in a transaction will actively re-balance their values for the link capacity.
These values will be updated properly and without tampering to the agreed upon values that was established
between the participating parties in the transaction. Third-party peers should be able to validate that these
values are correct.

Corrupt User: failure, data corruption and network failure is a reality every distributed network needs to
be able to deal with. within this model a corrupt user that has hardware failure or network failure will no
longer be able to participate in this network. Once the corrupt user is able to fix hardware or network issues,
it will be allowed to join the network again. Such a user will join the network with values for link capacity that
are correct, these values should be validated by a third party.

Data corruption is an issue that is more difficult to detect. Though due to every transaction being created
in such a way that users in the transaction and third-party users in the network should be able to validate
it. The network will realize that data-corruption has occurred and the values are not to be trusted. The user
with data-corruption should be able to revert back to the proper values by either addressing a back-up or
validating link capacities from its connected users and adapting its own values.

Denial of Service: if a participating node is denying other nodes of part-taking in the network via a denial
of service attack or any-other means. This party will be dropped from the network. Nodes are assumed to
have equal opportunity to participating the network, this assumption is important and will be protected by
the network. Creating a fair network allows every node to participate equally and will create the most robust
network.

3.3.4. Privacy
Privacy in the SpeedyMurmurs starts with the privacy assumptions of the underlying blockchain privacy as-
sumptions. The privacy that can be achieved is directly related to the privacy of opening and closing a pay-
ment channel on the blockchain. If this privacy is compromised the anonymity of the user in the layer-2
protocol will also be broken. However the amount and value transacted between two compromised parties
will not be known. Except for the starting deposited channel and the closing values of the channel.

Link Privacy: a node in the network will be unable to gather information about link capacities between
nodes that it is not directly connected to. Even if a node is participating in a multi-node transaction, the node
will only be able to gather knowledge about link capacity of the nodes its directly connected to. Any other link
capacity information in the transaction will not be shared or cannot be requested by any adjacent node not
linked to the capacity.

Anonymity: a couple of properties need to stay anonymous during a transaction. The amount during an
exchange, value privacy, is an important key to the privacy goals of speedymurmurs. Secondly no certainty
can be given to whom the sender/receiver are in a transaction. Though participating nodes in a transaction
cannot be obscured from one another, nodes will not know if they are the first to receive a message, helping
in finding the sender. Nor will they be able to get the information to know if a node is the receiver. Thus
protecting the privacy of sender and receiver.
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Goals and a Debut for Merchant Algorithms

Within this chapter an introduction is given into the Merchant algorithms. Answering one of the research
questions. This question is for a set of transactions that run through a PCN, can the success ratio of a PCN be
increased by adding a monetary incentive tied to the fees of each transaction be used to aid in keeping links
balanced?

4.1. Fees and incentive
The main concept behind the Merchant algorithms is that it relies on adjusting fees based on the rebalancing
potential of a payment channel. Rebalancing potential refers to the potential amount a link capacity will
change if a certain transaction transacts over that link. The potential amount should reflect if a transaction
is allowing a link to be more balanced and have a bidirectional connection or the transaction influences the
capacities on the link in such a way the link becomes directional.

Formalizing the definition of bi-directional, a bi-directional link refers to a link that has nonzero funds
in both directions, in figure 4.1 two nodes are shown with there respective links (u, v) and (v, u). The amount
of capacity on a link is described by c(u, v). A link is bidirectional when c(u, v) > 0 and c(v, u) > 0. A link is
denoted as directional when one of the two links equals 0, e.g. c(u, v) = 0 and c(v, u) > 0.

Figure 4.1: Labeling of nodes and there links

4.1.1. Rebalancing Potential of a Payment Channel
The rebalancing potential of a payment channel describes the potential-effect an incoming transaction can
have on the link’s capacity. While not every transaction depletes the capacity of a link, each transaction will
contribute and change the balance of a link. Determining if a transaction is detrimental to a links capacity
depends on the direction the transaction is going and the point of reference for a balanced link.

To determine a rebalancing potential, a value needs to be determined that symbolizes the ideal balance
for a link so it is able to handle the most possible transactions. Depending on the perspective and the dynamic
behaviour of a PCN the rebalancing reference value may have to be adjusted over time, other factors may also
influence the value for the reference of a balanced link, i.e. the topology or the direction most transactions
go over the graph. To simplify this challenge two different points of reference are proposed in this research,
50-50 Rebalance Potential and Initial State Rebalance Potential. To reduce complexity and without having
accurate insights into a PCN both of these rebalancing potentials are statically assigned and do not consider
the behaviour of the network over time, these concepts are introduced below in there respective sections
below.
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With a point of reference for the rebalancing potential, the change in rebalancing potential can be quan-
tified. With quantification of rebalancing fees can be attributed to a path for a transaction. The way fees are
determined and what factors are considered are discussed in the subsection Fees vs multi-hops.

50-50 Rebalance Potential
A 50-50 rebalance potential refers to the perfect balance in a link to be equally on both sides, i.e. c(u, v) =
c(v,u). If a transaction occurs while the channel is in perfect equilibrium, it would have a negative poten-
tial. However if a link was unbalanced and it was brought closer to a 50-50 split then the potential would be
positive. Such a scheme seems like an obvious choice for a rebalancing potential scheme. As with an equilib-
rium in the link capacity the link is able to process transactions going in both directions. One issue with this
method is that if nodes have intentionally created a link with an unbalanced capacity due to it being known
that transactions will mostly go in one direction, the rebalance potential will try and balance the link around
the wrong point of reference.

In the Figure 4.2, a scale-free topology is illustrated. Such a topology is defined by its power-law distribu-
tions for the degree of the nodes in the graph. Such graphs occur naturally and are a common topology within
a natural occurring network, i.e., electricity, internet, connection of airports[14]. Most nodes are connected
through a couple central nodes, these central nodes defined by a high degree act as hubs. Having a 50-50
rebalancing strategy for the hubs is an obvious solution that will aim to always have nodes be able to transact.
For the nodes with a single link in this scenario a 50-50 rebalance potential would be beneficial, thus nodes
with a singular link should follow a different protocol.

Figure 4.2: Transactions vs Three Sets of Channel Distribution

Initial State Rebalance Potential
Another way to approach an rebalancing potential is by taking the initial state of a payment channel the ideal
state of the channel. Taking the initial state of a payment channel works under the assumption that during
the set-up of the payment channel, the two parties creating the payment channel have deliberately created a
balance in the payment channel that is needed.In such a scenario, the initial state of the payment channel is
stored and referred to as a reference point.

Dynamic State Rebalancing Potential
As more knowledge is gained on PCN and the flow of transactions can be modeled more accurately. One can
imagine that the point of reference for a balanced link may change over time depending on the conditions of
the nodes. Such conditions may include linkage, degree, the role of the node in the network and so on.

4.1.2. Fees vs Multi-hops
Fees in the context of PCN are calculated by totaling the Base fee and a Fee rate. Base fee is the fee that is
always payed when a transaction goes for a link and is constant, Rate fee is the fee that is inquired by the
amount of value that the transaction is trying to send. In equation 4.1 the equation to calculate fees can be
seen.

Fee = base_ f ee + r ate_ f ee ∗Tr ansacti on_value (4.1)

Currently in the lightning network the median base fee is 1 sat and the rate_fee for a transaction is 0.000001sat[1],
this indicates that the vast majority of nodes in the system have not altered the fee rate from the default rate
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provided by the Lightning service package. Allowing for the assumption to be made that the fees that are in-
quired during a transaction are directly proportional to the hop-count of the transaction. For nodes wanting
to rebalance a link, this means that incremental fees will need to be generated. Incremental fees, refers to
the notion that fees must be multiples of a fee, f ee = N ∗de f aul t f ee. Where N is an integer.

With the hop-count being directly proportional to the amount of fees induced for a transaction, it needs
to be beneficial for a transaction to take a longer path if it helps re-balance the network. Thus a positive
rebalance potential must also allow for a transaction to take a longer path, then a shorter path. This can be
achieved by finding a good relationship between a positive and negative rebalance potential.

For a transaction to take a longer path but pay a lower fee, the shorter paths must either have a negative
rebalance, or neutral rebalance and the positive rebalance must be so beneficial to the network it is able
to compensate for the longer path. Finding such a balance is non-trivial and may heavily depend on the
topology of a network and the average length of a transactions hop-count.

4.1.3. Rebalancing Fee Factor
The rebalancing fee factor is an integer that is multiplied by the base fee. Equation 4.2 gives the total fee that
is requested by the forwarding node.

Fee = r ebal anci ng _ f ee_ f actor ∗base_ f ee + r ate_ f ee ∗Tr ansacti on_value (4.2)

The fee factor is an integer, this stems from the assumption that every hop in a transaction requests the
same fee amount due to almost all nodes making use of the default fee values. The rebalancing fee factor is
only run in forwarding nodes, as these are the only nodes that request fees during a transaction.

The goal of a node is to have enough capacity on its edges to help aid in transactions, if a links value is
at the reference point or above; the node will most likely be able to help a transaction over that link. If a
links value falls below that reference point the node may no longer be able to send transactions over that
link. Determining the rebalancing fee factor can thus fall into two scenarios depending on how a transaction
effects the link.

1. Transaction reduces capacity on the link below reference point

2. Transaction does not reduce capacity on the link below reference point

From this logic, if a transaction sends the value of the link below the reference point a high fee is requested
to try and deter the sending node to use that path. If a link has more capacity on its line than the reference
point and the transaction does not cause the the capacity of the link to fall below this point then the node
would like to encourage the sender node to make use of this link.

To determine the rebalancing fee factor for the scenario that the capacity falls below the reference point,
the difference needs to be found between the reference point and the new capacity as seen in equation 4.3.

di f f _c = 1− (new_capaci t y ÷ r e f er ence_capaci t y) (4.3)

The factor is dependent on the percentage the new_capacity takes on compared to the reference_capacity.
Now depending on the tenths value of diff_c a factor is created, that is why the diff_c is multiplied by 10 then
truncated as seen in equation 4.4.

r ebal anci ng _ f ee_ f actor = tr unc(di f f _c ∗10) (4.4)

To determine the rebalancing fee factor for the scenario that the incoming transaction does not bring the
link capacities below the reference point the fee factor is not determined by the outgoing link. This transac-
tion should be encouraged, and thus a negative fee will be allocated to this transaction. Such transactions
should be encouraged due the rebalancing effect it will have on the other side of the link. While this link is
positively unbalanced for the node forwarding the transaction, the next node in the path would have a link
capacity below that of the reference point.

In Equation 4.5 the calculation can be seen for diff_c. Currently the min value is taken for the giving diff_c
a max value of 0.9, this limits the amount the rebalancing_fee_factor can be. Equation 4.6 shows that the
rebalancing factor is negative and is truncated the same way as before.

di f f _c = mi n(0.9,1− (new_capaci t y ÷ r e f er ence_capaci t y)) (4.5)

r ebal anci ng _ f ee_ f actor =−1∗ tr unc(di f f _c ∗10) (4.6)
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4.2. Merchant Algorithms
Within this section the passive and active merchant algorithms will be described. The main working principle
in both of these algorithms is the re-balancing-factor

4.2.1. SpeedyMurmurs and the inclusion of the Merchants
SpeedyMurmurs is a transaction routing algorithm for a PCN that lends its self very well to the inclusion of the
Merchants. As each node is able to act as their own merchant, no additional information needs to be shared
in the network. Allowing for the protocol to take advantage of the embedded routing scheme it uses. Another
great advantage to SpeedyMurmurs for the merchants is that it is able to route payments over multiple paths.
This gives SpeedyMurmurs the flexibility to spread the load of a payment across multiple paths in a network,
though these paths may converge to one if the fees for that specific route are best.

4.2.2. The Merchants
Both the Merchant algorithms make use of similar protocols, that effect the sender and forwarder. For the
sake of completion how the receiver handles messages is also shown. Both Merchant algorithms make use of
the functions given in the list below:

• Initial Path Request

• Locking Paths

• Completing Transactions

While the Merchants algorithms differ, the main mechanism that separates the Passive Merchant with the
Active Merchant is a messaging protocol. The Passive Merchant does not share information with anyone in
the graph, while the Active Merchant actively tries to get transactions to make use of its links when unbal-
anced. As the main difference between the active and passive merchants is sharing and sending of informa-
tion about the link capacity, the methods that handle locking and completing the transactions is identical
and will be covered together.

The general work-flow of these algorithms can be described by a sender, a forwarder and a receiver. The
sending node, known as the sender, will query multiple trees to find a path. Each forwarding node, known
as the forwarder, will give a fee depending on the algorithm chosen and the amount that is being transacted.
The receiving node of the transaction, known as the receiver, will reply to the messages to accept the path.

Once all or enough paths have been returned to the sender node, it will choose the paths to transact over.
From here the process is fairly standard, the transaction amount will be pended in each path. Then once
enough funds are secured to complete the transaction the sender will start an HTLC contract over all paths
so that the receiver can receive all payments. Then the transaction has been completed.

4.2.3. Passive Merchant
The passive merchant algorithm enables nodes to act as a passive merchant. A passive merchant does not
let neighbours or other nodes know if it’s links are unbalanced. During a transaction each node in the path
will act as a passive merchant and will adjust it’s fees according to the re-balancing policy that has been set.
The fees are passed along during the initial probe of investigation for a transaction. Once an path has been
accepted the fees from the initial probe are set. The algorithm starts with an initial path search from the
sender.



4.2. Merchant Algorithms 29

Algorithm 1 Sender: Initial Path Request

i ni t i al i zeTr ansacti on()
2: transId = random()

nQueries = numOfPaths + N
4: [X,Y] = getCordinate(endNode, neighbourhood)

amount = totalAmount / numOfPaths
6: for all nQueries do

pathId = rand()
8: sumOfFee = 0

randomTree = getNewRandomTree()
10: sendQueryMessage(X,Y,amount, transId, pathId, sumOfFee, randomTree)

end for

Algorithm 1 shows the how the sender handles the initial path request. During this stage SpeedyMurmurs
will send initial path requests to see if a path can be found along a route to a receiver node. These paths
follow the underlying tree structure that has been set-up during the initialization of a network. Different
initial probe messages are sent along different sets of spanning-tree graphs within the network. These initial
probe messages are forwarded in the direction of the receiver via the coordinate system, and short-cuts are
taken when possible. As is described in the SpeedyMurmurs implementation[65] and Section 3.3.1.

During the initial probe the sender sends out more probes then that paths it requires, seen in line 3 where
N symbolizes the extra number of trees to try and numOfPaths the number of paths that are required to do
the transaction. Asking more paths than required allows the sender to base the path of the transaction on the
cheapest fees. Each path is sent the same transId, as this is the unique identifier for the transaction as seen in
2. Each path does get a unique identifier as paths may share a path along the same node, as seen in 7. Line 9
summarizes how a random tree is selected, this function must keep track of selected and non-selected trees.
As sending the same inquiry down the same tree should not happen.

Algorithm 2 Forwarder: Initial Path Request

r ecei vedQuer y Messag e()
2: if virtualCapacityTowardsReceiver > amount then

feeFactor = calculateRebalancePotential(amount, linkTowardsReceiver)
4: fee = feeFactor * defaultFee

sumOfFee = sumOfFee + fee
6: forwardQueryMessage(x,y, amount, transId, pathId, sumOfFee)

else
8: capacityError(edgeTowardsSender, transId, pathId)

end if

Algorithm 2 shows the process a forwarding node goes through when receiving an initial path request.
Line 2 shows that the algorithm must first check if it expects to have enough capacity to handle the transac-
tion. If not enough capacity is on the line, then the receiver will send an capacity error message along the
path to the Sender. The Sender can try a different path or if it receives enough capacity errors the transaction
will fail for the time being.

Then in line 3 the rebalance potential is calculated and a fee factor is designated from this potential as
explained in Section 4.1.3. Line 5 shows how the sumOfFee is calculated. The sumOfFee is a variable that
is sent with each initial request send message, to ensure that the sending node can determine which path is
cheapest.

Algorithm 3 Receiver Node: Initial Path Request

for all nIncomingQueries do
sendPathCompleted(edgeTowardsSender, transId, pathId)

end for

Algorithm 3 showcases the receiving node. The receiving node accepts all incoming transaction queries,
as it is the receiving node. The receiving node does not calculate fees for the transaction and accepts all initial
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path requests. Then the path accept is sent down the links till the sender receives all the information.

Once the path is accepted by the receiver, the accept message is past down along all the forwarder nodes.
When the sender node receives

Active Merchant
The Active Merchant algorithm enables nodes to disseminate information about their links trying to lure in
transactions. An active merchant actively tries to keep the balance between its linked nodes in balance to
allow for transactions. Once the balance in a payment channel has reached a critical in-balanced state or is
a a bidirectional link has become directional the active merchant will send messages down certain trees to
encourage the usage of that tree and give a discount for fees, trying to access that path. This message sending
is the reason why it is called active opposed to its counter part the Passive Merchant.

Such discounts are given with a coupon, these coupons can be sent along the path during an inquiry of
a path to get the discount for the fees. The amount of discount given is the determined by the last rebalanc-
ing_fee_factor for that link. This amount is given by:

di scount =−1∗ r ebal anci ng _ f ee_ f actor ∗base_ f ee (4.7)

Such a coupon guarantees the sending node the fee on the coupon, thus it has the pre-knowledge of
paths to try. Figure 4.3, shows two nodes where the link capacity of Node A is only 20, and for Node B is 120.
The coupon is sent along the path of the link it has the imbalance with. The rebalancing_fee_factor in this
instance is -8.

Figure 4.3: Direction of coupon after an imbalance is established

Sending out Coupons:
Coupons are sent out along the link on different spanning-trees if the imbalance of the capacity crosses

a certain threshold. This threshold is any arbitrary value that may risk the link closing. For this model 50%
was used as threshold.This process is initiated after a transaction has been completed, then the capacity has
a new balance and the new balance can be compared to the reference point and the threshold. Each coupon
is sent with an expiry time, if the link balance has not been fixed before this expiry time the coupon is sent
again.
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Algorithm 4 Coupon Creation

for all nLinks do
2: linkBalance = checkLinkBalance(nLinks)

if checkCouponAlongLink(nLinks) then
4: coupon = getCoupon(nLinks)

if coupon.linkBalance == linkBalance then
6: if checkExpiryTime(coupon) then

resendCoupon(coupon)
8: end if

else if coupon.linkBalance > linkBalance then
10: killCoupon(coupon)

expiry_time = EXPIRY_TIME + system_clock;
12: couponId = rand()

store(couponId, expiry_time)
14: sendOutCoupons()

else
16: killCoupon(coupon)

end if
18: else

outGoingEdge = getOutGoingEdge(nLinks)
20: BALANCE_THRESHOLD = getBalanceThreshold(nLinks)

if linkBalance < BALANCE_THRESHOLD then
22: expiry_time = EXPIRY_TIME + system_clock;

couponId = rand()
24: store(couponId, expiry_time)

for all SpanningTreeUsingLink(nLinks) do
26: sendOutCoupons(couponId, maxNumHops, expiry_time)

end for
28: end if

end if
30: end for

Algorithm 4 starts after a transaction has been completed. Once a node finishes a transaction it will check
the link-balance of each of its edges. Line 1 represents a loop and nLinks represents the nth link that is
connected to a node. In Line 3 the algorithm first checks if a coupon has been sent along that edge, if a coupon
has been sent along that edge another check will take place. In Line 5 the balance of when the coupon was
sent out is checked, if this has not changed the algorithm will check the expiry time of the coupon. If the
coupon has expired the coupon will be resent otherwise the algorithm will continue on to the next link.

In Line 9 a check is done to see if the previous link balance was higher than it is currently, if so a new
coupon needs to be created. A killcoupon function as seen in line 10 sends out messages stating the previous
coupon no longer can be used. Then a new coupon is sent along the edges. Otherwise the coupon is no longer
needed and is killed.

If the algorithm was unable to find a coupon for that link it will check if a coupon needs to be created. In
Line 21 this check takes place, if the link Balance is below that of the balance_threshold a coupon needs to be
sent. This coupon is sent along the link along all spanning-trees, if they involve that link.

Algorithm 5 Node receiving a coupon

receivedCouponMessage()
if not doesCouponExist(coupon) then

store(Coupon, SpanningTreeId)
forwardOutCoupons(couponId, maxNumHops, hopsMade)

else
doNothing()

end if
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Algorithm 5 showcases what a node does if it is downstream of a node sending out coupons, it needs to
handle the coupon message. This is done by checking if the coupon has already been received, if not then
the coupon is stored locally to be accessed during a transaction. The coupon is also forwarded along the
spanning-tree path downstream.

Initial Path Search:

Algorithm 6 Sender: Initial Path Search

Initialization
transId = rand()
for all nQueries do

(x,y) = getCordinate(endNode, neighbourhood)
amount = totalAmount / numOfPaths
pathId = rand()
sumOfFee = 0
sendQueryMessage(x,y,amount, transId, pathId, sumOfFee)
if receivedCoupons and
couponPathAlongTransactionPath then

sendQueryMessage(x,y,amount, transId, pathId, sumOfFee, couponId)
end if

end for
if numReceivedCapacityError < numOfDeclinesAllowed then

(x,y) = getCordinate(endNode, newNeighbourhood)
sendQueryMessage(x,y,amount, transId, pathId, sumOfFee)

else
cancelTransaction(timeTryAgainLater)

end if

Algorithm 6 displays the situation of an active merchant when the node is a sender. This algorithm is close
to that of a passive merchant. Except the sender in the active merchant case has information about possible
paths, thus reducing some of the randomness associated with picking of paths. Line 9 would not be needed
in a passive merchant sender, for the active merchant, if a coupon is found that is going in the direction of the
payment the coupon ID is added to the data-structure of the message. Multiple coupons can be added to a
message if it has come from a certain, to try and maximize coupon usage for the sender.

Just because a node sends a message along the path of a received coupon does not mean the coupon
can be used. This is due to the embedded routing of SpeedyMurmurs, if a short-cut is found to the receiver
skipping the sender of the coupon, the coupon will not be redeemed.

Algorithm 7 Forwader: Initial Path Search

receivedQueryMessage
if virtualCapacityTowardsReceiver > amount then

if couponOwner then
fee =coupon_fee

else
rebalancePotential = calculateRebalancePotential(amount, linkTowardsReceiver)
fee = rebalancePotential * defaultFee
sumOfFee = sumOfFee + fee

end if
forwardQueryMessage(x,y, amount, transId, pathId, sumOfFee)

else
capacityError(edgeTowardsSender, transId, pathId)

end if

Algorithm 7 showcases a forwarding node during an active merchant, the active forwarder acts the same
as the passive merchant unless it is the giver of the coupon. Upon receiving the initial path request, and the
message is checked for a coupon. If the forwarder is the owner its fee will be adjusted to that of the coupons
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price.

Algorithm 8 Receiver: Receiving Initial Path Search

for all nIncomingQueries do
sendPathCompleted(edgeTowardsSender, transId, pathId)

end for

Algorithm 8 showcases a receiving node receiving an initial path request the receiving node sends ac-
knowledgement down the path.

4.2.4. Completion of the Merchants
The algorithms presented in this section showcase how the rest of the transaction is handled by the Mer-
chants. This protocol stems from SpeedyMurmurs, it has been added for completeness of the algorithms.

Locking paths:

Algorithm 9 Sender: Locking Paths

for all nReceivedCompletedPaths do
choosenPaths[] = chooseCheapestPaths(nReceivedCompletedPaths)
for all choosenPaths[] do

sendMessageRequestingLockFunds(x,y,amount, transId, pathId)
end for

end for

Algorithm 9 dictates the sender node during the locking of the paths selects the paths with the least num-
ber of fees. Once the selection is made a message is forwarded along the path to lock the requested funds.

Algorithm 10 Forwarder: Locking Paths

if receivedMessageRequestingLockFunds then
sendMessageReqyestingLockFunds(edgeTowardsReceiver, transId, pathId)

else
if receivedMessageLockFunds then

if virtualCapacityTowardsReceiver > amount and
rebalancingPotential < 0 then

updateVirtualCapacity(amount)
else

dontUpdateVirtualCapacity()
end if
sendMessageLockFunds(edgeTowardsSender, transId, pathId)

else
capacityError(edgeTowardsSender, transId, pathId)
capacityError(edgeTowardsReceiver, transId, pathId)

end if
end if

Algorithm 10 gives the psuedoco if a forwarder node receives the requesting of locking funds, it locks
the funds from the transaction into the virtualCapacity. VirtualCapacity is a pessimistic capacity value that
represents the true capacity. However if the transaction is unable to continue once a locking funds has been
granted the virtual capacity is reverted. This is supposed to help ensure that a forwarding node does not
promise outside of its capacity limits for a transaction. If during this time the capacity has changed from the
initial probe and the funds cannot be locked, a capacity error is sent along the path to the sender.
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Algorithm 11 Receiver: Locking Paths

if nOfPaths == receivedMessageRequestingLockFunds then
sendMessageReceivedAllLockedFunds(edgeTowardsSender, transId, pathId)

else
if waitTimedOut then

sendMessageCancelTransaction(edgeTowardsSender, transId)
else

waitForAllRequestsToLockFunds()
end if

end if

Algorithm 11 shows for the receiving node its process, it accumulates all the requesting Locking Fund
requests into one transaction to ensure that enough value is being sent over the links to ensure a successful
transaction. If enough funds have been secured to enable the transaction to be fulfilled an acknowledgement
is sent down each path to the sender.

Complete Transaction:

Algorithm 12 Sender: Completing Transaction

if receivedFundsLocked then
sendMessageCompleteTransaction(edgeTowardsReceiver, trandsId)

else
if receivedCancelTransaction or receivedTimeOutError then

cancelTransaction(transId)
del(transId)

else
waitForFundsLockedMsg()

end if
end if

Algorithm 12 represents how the sender node deals with receiving of a Lock_Funds acknowledgment,
the sender node responds to each one as they come and starts the HTLC process. If during this stage the
transaction cannot continue then the dispute is sent to a mechanism on the blockchain.

Algorithm 13 Forwarder: Completing Transaction

if receivedCompleteTransaction then
sendMessageCompleteTransaction(edgeTowardsReceiver, transId, pathId)

else
if receivedCloseTransaction then

updateCapacity(amount)
if rebalancingPotential > 0 then

updateVirtualCapacity(amount)
else

alreadyUpdatedVirtualCapacity()
end if
sendMessageCloseTransaction(edgeTowardsSender, transId, pathId)

else
if time < timeOut then

wait()
else

timeOutError(edgeTowardsSender, transId, pathId)
timeOutError(edgeTowardsReceiver, transId, pathId)

end if
end if

end if
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Algorithm 13, during the closing of the HTLC contract the forwarder updates the capacity of the link. The
capacity and virtual capacity will be equal if no other transactions are occurring on the link. If value is added
to the link capacity then at this point the virtual capacity is increased, as the virtual capacity is pessimistic
and value is not added untill the transaction is complete.

Algorithm 14 Receiver: Completing Transaction

if receivedCompleteTransaction then
updateCapacity(amount)
sendMessageCloseTransaction(edgeTowardsSender, transId, pathId)

else
if time > timeOut then

timeOutError(edgeTowardsSender, transId, pathId)
timeOutError(edgeTowardsReceiver, transId, pathId)

else
wait()

end if
end if

Algorithm 14, received node receives ending of all HTLC contracts and the transaction has been success-
ful.

With the addition of the Merchant algorithms the security goals and privacy goals for SpeedyMurmurs
need to be evaluated again. To ensure that the addition of these algorithms do not compromise the current
state of privacy and security within SpeedyMurmurs, and if compromises need to be made they should be
addressed.

4.2.5. Attacker Model
SpeedyMurmurs was built against an adversary model that tries to gather information on a user’s financial
situation. The adversary is in control of a subset of nodes within the network, this is achieved by joining
the network with it’s own nodes or is able of corrupting existing nodes. Not all nodes are corrupt-able, it is
assumed not all users will be as effected by malware attacks or can be swindled by social engineering.

Security Risks
With the addition of the Merchants, information to the sender may show that a singular path may be the most
beneficial for the payment to take to rebalance certain links in a network. Taking a single path goes against
protecting the transaction value privacy goals of SpeedyMurmurs, thus no matter the incentive, sender nodes
must use multiple paths to send a transaction. Value Privacy is defined by PrivPay[47] as the ability for an
adversary not to be able to determine the value of a transaction between two non-compromised users. How-
ever in the case of this adversary the transaction value privacy may also be broken if an adversary has enough
nodes in a network.

The adversary can purposefully lure transactions through its links via fees, allowing an adversary to ag-
gregate the transactions value and possibility determine the value of transactions. This may break the trans-
action value goals of SpeedyMurmurs, for such an attack to work the adversary would need to play a large
role in the network. As such an attack can not be done with 1 or 2 nodes.

An adversary attacking the network and trying to undermine transaction throughput is not considered. It
must be noted that such an attack with the Merchant algorithms may become easier by fabricating low fees
for a transaction, thus routing all transactions over its paths and then stopping the transaction from closing.
An adversary may also gain knowledge of the state of certain links, due to the broadcasting of discounts from
the Active Merchant. It is not unthinkable that an adversary with this knowledge is able to hinder the network
by creating a node in a place with bad throughput and routing payments through its nodes by manipulating
the fees.

Privacy Goals
The addition of the Merchant algorithms should not affect the privacy goals of SpeedyMurmurs. As these
algorithms mainly focus on the forwarding and rebalancing aspect of the network and do not effect the
anonymity of a sender or receiver. In a PCN Sender Privacy can be achieved if a transaction takes place
between a non-compromised set of transacting nodes. In this case the senders identity cannot be known



36 4. Goals and a Debut for Merchant Algorithms

with 100% accuracy unless all incoming connected nodes to the sender are known to the adversary and com-
promised. For Receiver Privacy, the same notion hold as for sender privacy. The receiver cannot be known
unless all neighbouring outgoing nodes are compromised by the adversary model.

Conclusion
The merchant algorithms do pose a security risk against the proposed adversary. If the adversary has enough
nodes in the network, it can lure transactions and could know the transaction value of a transaction. While
this may be the case, the adversary will never known if it has been able to intercept all-paths unless it com-
prises of a set of nodes in the network missing the two nodes who are transacting. The privacy goals with the
merchants has not changed in SpeedyMurmurs.



5
Modeling the Synthetic Dataset and

Toplogies

Within this section an explanation will be given into how the synthetic dataset was created and how one can
manipulate parameters to get different effects. Alongside the dataset two synthetic topologies will also be
introduced.

5.1. Challenges
Creating a synthetic dataset for a PCN is not a trivial task, many factors need to be accounted for to make a
well rounded model. Without pre-existing data-sets of current PCN networks being available makes it im-
possible to verify the validity of a synthetic dataset. To overcome this challenge, instead of trying to create a
model that tries to model what is going on in a PCN. An approach will be taken to modeling a dataset around
use cases of a PCN and trying to incorporate available data to tune models.

5.2. Market Interest in Cryptocurrencies
A study in England showed that only 2.85% of Brits have bought cryptocurrencies[15], while in America that
number is 8% and another 8% were looking to buy in the near future[31]. While the study did not conclude
on how many of those individuals are interested in PCNs or have started a node. It does go to show how little
of the population has adopted cryptocurrencies.

Currently 819 bitcoins have been locked into the lightning network[59], while 17,992,075 bitcoins have
been mined by the blockchain[17]. The percentage of locked bitcoins in the Lightning Network is 4.5e−8%,
its adoption by the community has been limited. Due to such a small amount of BTC being found in the
network, one can assume that most transactions taking place have little financial value. A reason for the issue
may be that there are limited amount of available interfaces for consumers and companies alike to interact
with the network.

Ripple is the third biggest cryptocurrency on the market by value of market cap. It runs it network as a
PCN, allowing for insight into how such a network may be modeled. Though the current datasets on this
market are limited, market analysis can be used as a reference to model against.

5.3. Transaction Distribution
To be able to create an adequate transaction distribution, two factors need to be considered. The value dis-
tribution for transactions and the hop-count distribution for transactions. Together these two distributions
should form a transaction distribution. Some reasoning for why these two distributions are needed and are
related is due to human shopping and spending behaviour.

McKinsey published a report on global payments in their work "McKinsey Global Payments Map"[71]
found that on average 6,5% of payments go across border for in the commercial sector[71]. In Europe that
number is 12.5%, countries in that area are situated closely and have open-border trading. Consumers glob-
ally have lower cross-border transactions sitting at 4,5% and in Europe that is 8%.
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One could argue that a great benefit of a PCN is being able to trade globally for a low fee, and in the future
such an advantage may prove to be where PCNs get adopted by the market. If that were the case trading
would most likely be done by big establishments in high transaction values. Ripple makes use of credit as
apposed to debit based paying system. A market strategy ripple has adopted is working with current financial
systems and banks[32].

Taking a look at the market from mid-September to mid-October for a span of 30 days; ripple has had a
trading volume of £8.53e9[10]. Where 5 trading companies have participated in 71,8%. A use-case formed
out of ripples PCN could give insight into how high value trading volumes shapes the network.

Another use case can be formed by taking a look at the Lightning Network, with a market cap of 6.05e6[6].
The market size indicates that many high value transactions are not possible. With a smaller market an as-
sumption is made that it’s user-base trades in a small amount of financial value, however these trades occur
more frequently.

Figure 5.1: Topology of Lightning Network overlaying a world map generated by Lightning Network Explorer[5]

5.3.1. Transaction Value Distribution
Ripple Transaction Value Distribution Model and Lightning Transaction Value Distribution Model are intro-
duced. Both of these Transaction Value Distributions will be limited by an lower- and upper-bound. The
lower-bound will always be greater than a fee for doing a single transaction. The upper-bound is heavily
dictated by the Channel Capacity Distribution.

5.3.2. Ripple Transaction Value Distribution Model
In the Ripple Transaction Value Distribution Model case one can assume that banks and other financial in-
stitutions are using the network to trade. With that assumption comes the need for a large network, this
network would connect various institutions and have networks interconnecting between different branches
of the same company.

To model such a value distribution a normal-distribution will be used. By limiting the rate of fire for
transactions per hour the normal distribution can be modeled around the desired trading volume. By taking
the cumulative distribution function and setting p around the variance of trade volume per hour one could
find varying normal distributions that would model a banking case.

FX (V olmeTr adePer Hour ) =
∫ x

−∞
1p

2πσ2
e

(x−µ)2

2π2 (5.1)

Such a model could give insights into how trading at higher values can impact a network.
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5.3.3. Lightning Transaction Value Distribution Model
In the Lightning Transaction Value Distribution Model the assumption is made that a higher trading fre-
quency occurs but the value of these trades are of lesser financial value. For this model a exponential function
will be used. Modeling this after the Lightning Network is not trivial as trading volume data is hidden behind
the privacy of off-chain payments.

FX (V olmeTr adePer Hour ) =
{
λe−λx x ≥ 0

0 x < 0
(5.2)

5.3.4. Payment hop-count Distribution
The hop-count can be calculated for in a network as shortest-path between two nodes, this value can be
varied depending on the type of model. Howerver, this may not be the path the transaction takes due to the
internal routing algorithm.

5.3.5. Ripple Hop-Count Distribution Model
Assuming that financial institutions trade more readily across borders. This model makes use of the Expo-
nential Distribution, trying to emulate across border transactions.

5.3.6. Lightning Hop-Count Distribution Model
Due to the nature of off-chain payments gathering a dataset around such information is non-trivial. The
base assumptions for this model takes away from the McKinsey reports that it is an indication of consumer
behaviour on a PCN. Most transaction happens will stay within borders, limiting the amount of hops a trans-
action can take. An pareto distribution will be used for this model.

5.4. Channel Capacity Distribution
Channel Distribution is heavily dependent on the topology of the network that is being simulated. As the
lightning topology is scale-free, the network is dependent on hubs. Due to the high traffic demands of a hub,
modeling these channel capacities may require a higher capacity then the rest of the network. For this reason
a channel capacity distribution could distinguish between hubs and normal nods, giving both a different
distribution.

Within the lightning dataset, nodes with 0 degree made up 30%. With such a high degree of singular
nodes, to create a channel capacity distribution these nodes to be grouped in a subset of singular nodes.
The singular node subset would get a distribution mimicking more individuals joining a network with lower
capacity then the rest of the nodes.

For the Erdos-Renyi topology a channel distribution may be tried with a normal distribution. Taking away
that it is not reliant on hubs, each channel may help serve in the network.

5.4.1. Ripple Channel Capacity Distribution
On the xrpl.org there is an api to fetch data from ripple. This may allow for more insights into the modeling
of the ripple channel capacity distribution. For this thesis a normal distribution will be used.

5.4.2. Lightning Channel Capacity Distribution
The channel capacity distribution will be based on the lightning network. The graph data is taken from www.
rompert.com/networkgraphv2, this graph has 4,798 nodes. The units of capacity gotten from rompert are
sat, also known as Satoshi. 1 Satoshi is the smallest unit of btc available. Within this dataset 31098 channels
are examined, each channel is directional. Looking at table 5.1, the average channel capacity lies around 200
euros, while the standard deviation is higher at around 363 euros. This indicates that there is little clumping of
capacities and the distribution of capacities is not centered around the average. The median of the capacities
lies at 43 euros, indicating that the distribution of capacity around the network is not normally distributed
over the network.

xrpl.org
www.rompert.com/networkgraphv2
www.rompert.com/networkgraphv2
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Capacity [sat] Capacity [euro]

Total 80,948,627,914 6,102,957.22
Average 2,603,017 196.30
Standard Dev 4,815,936 363.18
Median 575,839 43.30

Table 5.1: Table showing capacity stats of 31098 channels in a lightning network

Figure 5.2: Link Capacity Distribution Lightning Network, October 2019

5.5. Topologies
The topology of a network defines how robust and resilient a network is to attacks and failures. Despite the
network having such a crucial role, networks tend to grow naturally following a degree distribution associated
with the power law[14]. The occurrence of this phenomenon is wide spread and the power law distribution
can be found in telecommunication networks, social networks and more. Seres et. al have shown that the
Lightning Network also follows a power law distribution for degrees and has been classified as scale-free
network. For the reason that the Lightning Network already follows a power-law distribution, one could make
use of the the Barabasi-Albert Model to create a synthetic topology.

Seres et. al showed in their work that attacking the node with the highest degree allowed for the network
to fracture into 32 components. Such results shows how vulnerable a network can be. Trying to model a more
robust approach to PCN topologies may give valuable insights into what is needed and what the trade-offs
are to such a network. Due to the infancy of the PCN industry the topology may still be malleable and allow
for a different structure to form. To generate such a topology the Erdos-Renyi model will be used.

5.5.1. Lightning Topology
To simulate the Lightning Topology a topology will be generated fromhttps://rompert.com/networkgraphv2,
retrieving the JSON and parsing it will allow for a network topology to be made.

5.5.2. Barabasi-Albert Model
Creating a model for Lightning Topology is no trivial task currently. As discussed in Section 2.2.7 the amount
of nodes in a network is not easily established as different sources have different numbers. The dataset being
used to create the Lightning Topology Model shows there are 4,809 nodes. With only limited insight currently
into the topology of a Lightning network, the model made using the Barabasi-Albert Model will be based on
the network topology gathered from Rompert[] that has 4,809 nodes.

https://rompert.com/networkgraphv2


5.5. Topologies 41

5.5.3. Erdos-Renyi Model
While PCN are still in there infancy, changing the shape of the network may still be possible. While it is widely
known in the networking community that most natural networks have a power law distribution when it comes
to there degree connectivity. Such networks fall short due to nodes relying on hubs and have a limited amount
of robustness. Robustness, is a measurement of how well a network is able to handle and deal with attacks
on its network. This may be due to links failing or malicious parties activity trying to break links. Another
downside to a scale-free network is that the diameter of the network is relatively low, reducing the amount of
different paths payments can take. Diameter, is the length of the longest shortest path in a network.

An Erdos-Renyi graph is a graph that has an more evenly distribution of degrees for its nodes. This allows
the network to have a higher diameter, more paths and be in-general more resilient to failures within the
network. Such a network is harder to realize, however if proper incentives can be found to create such a PCN
it is more likely that paths can be found to finish transactions. Such a network lends well to the merchants,
as many different paths can be tried. The overall fees will be higher as most transactions will have a higher
hop-count, but transactions will not be limited to certain links that have a high connectivity.
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Methodology

Within this section a general overview will be given into the workflow of the simulation and how data was
gathered. Limitations of the simulation will also be described and how they can be improved upon.

6.1. General Workflow
To evaluate the synthetic data-set and the Merchant algorithms, an analysis was done on a simulation of
a PCN running SpeedyMurmurs. The process of gathering data for the analysis from the simulator can be
described in four steps. These steps are as follows, Generate Input Files, Initialize Simulation, Running Simu-
lation and Data Processing.

For each simulation that is run this process is followed. Generating input files entails three processes, the
creation of a graph, allocating capacity to all edges in the graph and generating a stream of transactions for
the simulation to run. These three distinct input files are needed to run a simulation. Allocating capacity
to edges in a graph, creates the initial state of the channels. The initial state is determined by the channel
distribution, as described in section 5.4, depending on a nodes degree a node is classified. Depending on the
classification and the model used to generate the synthetic data-set edges are assigned capacity values based
on a random distribution.

The transaction distribution encompass the firing-rate of transactions, the transaction value and the hop-
count of the shortest-path a transaction must traverse over the network to get to the receiving node. Varying
these values creates distinct different transaction profiles, the description of these different profiles came to
be can be found in 6.3.2. The graph of the network is generated based off of one of two different topology
models. The models are either Scale-free or Erdos-Renyi, further description can be found at 6.3.2.

The initialization of the simulation involves reading the three input files described, figuring out a nodes
neighbours, loading in the transaction stream for each node and generating a spanning-tree. Once all of these
actions are completed the simulation is in a state that it is ready to run.

While running the simulation runs the SpeedyMurmurs algorithm with different re-balancing algorithms.
These algorithms are tested along side different transaction distributions, channel distributions and topolo-
gies. Data is collected during the running of the simulation, depending on the size of the network data is
collected at different rates due to limitations in memory. Finally when the simulation is done all data is pro-
cessed, the results of the data-processing can be found in the results section 7.

6.2. Technical Specs
The simulation runs with the OMNET++ networking framework, having written the simulation code in C++.
To have enough memory the simulation was run on the DAS-4 (The Distributed ASCI Supercomputer 4).
Running the simulation of the servers was automated by the use of bash scripts and python scripts. The input
files were pre-generated and transferred to the servers, where the python scripts managed the directories and
movement of files to allow the simulation to run.

Generation of the input files was written in python. Different libraries were used to help aid in the creation
of these files. The most important libraries are the Networkx library, as it generates graphs using different
models, and the Numpy library to easily make use of different probability distributions.

43



44 6. Methodology

6.2.1. OMNET++ FrameWork
The OMNET++ networking framework is a discrete event-based simulator[74], with a huge library of tools to
help in the making of a network, i.e. connections made in the network were based on a TCP connection com-
ing from OMNET++ library. As the language used to program in is c++ the amount of memory the simulation
requires can be managed and efficiently implemented.

Another great tool that is provided by OMNET++ is that it has a visual run-time environment, this visual
environment allows for an easy understanding of how communication is working between nodes. While such
an environment is not practical for a huge number of nodes, debugging and checking certain corner cases can
be done in the visual environment to have a better understanding of how the network behaves. The simulator
also makes use of ’.ini’ file types, that help configure the simulator. These files provide powerful tools to help
run the simulation in different configurations to allow for quick runaround between simulations. OMNET++
also has graph generation capabilities, creating a special type of file that can be read. Though this is not used
within this thesis, it was a tool that made OMNET++ appealing to use. The file can also be easily generated by
other tools allowing for flexible use of networks.

Outputting data with OMNET++ can be done in multiple ways. As the framework is based on being a
simulator, outputs can be scalar or vectors. A lot of the implementation is taken out of the hands of the
programmer, allowing for easy and efficient mechanisms to store data. With proper pipe-lining and the use of
Pandas in python gathering data is very flexible. However, the amount of data that can be collected is limited
by the amount of storage available. Recording too many events brings its own problems of data-storage. For
this reason mostly scalar values were stored.

6.2.2. Limitations in Implementation Simulator
OMNET++ is a very good framework to build networks on, as mentioned already mentioned. A limitation to
the simulation implementation used in the evaluation of this thesis is the separation of creating transactions,
the graph of the topology and link capacities. This design meant that these input files had to be read by
the simulator, via non supported methods by the OMNET++ framework. This reduces the efficiency and is
believed to be the cause of the limitation of nodes to 500.

Once the initiation of the simulation was finished, all transaction files were fed into the simulator. Having
500 nodes trying to read a file, process the file and store the important information was possible, once more
nodes were added to the system the servers had memory allocation problems. It is believed that these issues
come from reading the input files. While solutions can be thought of to fix this problem, running simulations
in this set-up is not as streamed lined as can be. As input files need to be replaced before simulations can be
run, and a lot of management of documents needs to be done.

From this learning experience, a recommendation can be made to not have the creation of input files be
done outside of the OMNET++ environment but have it built into the simulator. If a seed is used to generate
transactions during the initialization of transactions, the transactions should be the same across each simu-
lation. This same code could be used to output the transaction-list created and that can still be evaluated.

6.3. Generate Input Files
To emulate the behaviour of users transacting on the network a framework is presented in chapter 5 for creat-
ing a synthetic dataset. Within the framework different parameters can be adjusted to allow for networks and
the load on the network to display different different characteristics. These characteristics are dependent on
capacity balance in the network and transaction value, and transaction rate going through the network. In
the way the implementation works there are two separate mechanisms for formulating a channel distribution
and a transaction distribution independently of one another. Details of how these are created can be found
below, in there respective subsections.

Both the channel distribution and the transaction distribution are fed to the simulation during initializa-
tion. Having both these distributions in separate files allows for easy analysis of what is happening within the
simulation. Once the simulation is completed verification can be done on the amount of transactions that
should of been sent and analysis can be done on how the initial capacities changed from the starting state of
the simulation to the end state of the simulation.

In the table 6.1 the different parameters that are used to dictate the generation of the input files are given.
The type of value the parameter takes is also shown, and a description of the parameters. In the table under
model, "LN" refers to the Lightning Model and "XRP" refers to the Ripple Model. The GRAPH_TYPE "SF"
refers to a Scale-Free topology and "ER" refers to an Erdos-Renyi Topology.
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Parameters Inputs Definition
NETWORK_SIZE INTEGER > 1 Dictates the amount of nodes in the network
MODEL "LN" or "XRP" Dictates the model type for capacities and transactions
GRAPH_TYPE "SF" or "ER" Dictates the graph Topology
GRAPH_P 0 < DOUBLE < 1 Probability of links forming, only applicable to Erdos-Renyi
CAP_P INTEGER > 0 Average value for a link capacity of a low-degree node
TRANS_NUM INTEGER > 0 Number of transactions that need to be generated
TRANS_TIME DOUBLE > 0 Maximum time in-between transactions
TRANS_P INTEGER > 0 Average value of a low-degree node

Table 6.1: Parameters for creating input Files

6.3.1. Channel Distribution
Within the proposed synthetic data-set models not all nodes and edges are equal. This can be attributed
to edges being bidirectional and certain edges in a network having a higher betweenness. Betweenness,
indicates the centrality of a edge in a network, having a higher centrality occurs when a link has many shortest
paths traversing it. An edge having a high betweeness can be seen as a bottleneck and allocating low capacity
to such edges is naive, due to the usage of the link in the network. For that reason not all edges are distributed
equally. For the creation of the channel distribution one must have an edge list, and be able to find the degree
of each node that the edge is connected to.

Edges that are connected to two nodes with high degree can be classified as hub-nodes. The exact thresh-
old for hub-nodes depends on the topology of the network and the size of the network. Links connected
between two high degree nodes will need a higher capacity on the link, with the argument that these nodes in
general are set-up by bigger players in the network. CAP_P is multiplied by a factor of 3 for hub-nodes. These
bigger players anticipate that there edge will be used to transfer funds across the network and thus have a
higher capacity, to allow the flow of transactions.

Edges connected to a node with a singular degree are referred to as singular nodes. These nodes repre-
sent players in the network that are seen as consumers. Due to the need for an initial deposit on a link, the
assumption is made that these players most of the time generate a directional link towards the network. Thus
a discrepancy is made between the bidirectional link capacity. Where one link will also be ensured capacity
and the other may or may not get capacity depending on the distribution.

Certain nodes act not as consumers, however there degree is less than that of a hub-node. Due to the
uncertain nature of these nodes. Edges in both direction that are connected to these nodes will get capacity.

6.3.2. Transaction Distribution
The concept behind the transaction distribution can be found in 5.3. Two different models are proposed,
these models have different distributions for the value of the transaction. For the value of the transaction
these values will be determined by the designated distribution for the model.

Nodes transact over the PCN with different nodes, due to general consumer behaviour that is elaborated
on in 5.3. Having nodes randomly transact with different nodes will lead to a variation of long hop-counts
and short-hop counts depending on the connectivity of the network. To have allow for more predictable hop-
counts, a uniform distribution is used generate the hop-count that lies between [2,6] hops. Then an analysis
is done on the graph, determining all possible receiving nodes for the chosen hop-count. A random node is
selected from the set of nodes that are a certain hop-count away. In that way greater control over the type of
hop-counts for transactions can be determined.

The value of the transaction heavily depends on the model that is being emulated. Due to the exploratory
nature of creating and testing the synthetic dataset, different profiles of the distribution are tested against a
single set of a channel distribution. This gives insight into how different profiles of the distribution effect the
throughput of the network.

As stated in the channel distribution, not all edges are created equal and their capacity may be limited due
to a node being a singularity. As the model stands, nothing is done to counter act creating impossible trans-
actions. A way to ensure that this is possible would be by implementing some sort of max-flow algorithm, or
dictating the capacity of the channels from a set of transactions to ensure enough capacity is available. It has
been chosen to keep the creating of the capacity and transactions independent for ease of use and fabricating
channel capacities from a set of transactions can add a positive bias to the system in relation to success of
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transactions. The implementation presented here is more pessimistic.

6.4. Topology Creation
The topology of a network influences the hop-count, the amount of paths that can be taken and the resilience
against failures and attacks. Within the scope of this project no malicious adversary models are examined nor
does the topology of the network lose and gain nodes during the running of the simulation. This is a large
limitation in the emulation of the problem, however this simplifications help reduce the complexity of the
simulation. This reduction allows for lower stabilization messages in the network and stability of transactions.
If transactions fail during the HTLC due to a node going offline, such transactions get disputed on the level
of the blockchain. Without implementing a simulation of the blockchain the reduction of this complexity fits
the scope of the project.

6.4.1. Scale-Free
The creation of the scale-free networks is done using a python library Networkx. The parameters needed to
create the network are based on:

Variable Definition

N Node Count
α Probability for new node connected to an existing node, with in-degree distribution
β Probability for adding an edge between two existing nodes. Based on in-degree and

out-degree between connected nodes
γ Probability for adding a new node connected to an existing node chosen randomly

according to the out-degree distribution

The creation of the graph is based on the work of a Bollobas et. al in their paper Directed Scale-Free
Graphs[18]. An important aspect when determining α,β,γ is that α+β+γ= 1 and α> 0,β> 0,γ> 0.

6.4.2. Erdos-Renyi
The creation of the Erdos-Renyi netowrk is done using the same python library Networkx as the scale-free
model. An erdos-renyi graph is more random and has smaller variation in the degree distribution of nodes.
Not creating the charateristic hub-nodes that can be found in graphs with a power-law distribution of the
degree in nodes. Meaning graphs have a higher connectivity, with the draw-back that the hop-count can
increase to trade between nodes. The parameters needed to create the network are as follows:

Variable Definition

N Node Count
p Probability for edge creation.

The creation of this graph is based on the work of Erdos et al. in their paper, on the evolution of graphs
[28]. Where the distribution of degree for nodes is created by a binomial distribution.

6.5. Initialize Simulation
During the initialization of the simulation, all nodes are created and connected to other nodes provided by
the edge list that is provided to the framework omnetpp. The most important process of during the simula-
tion is the creation of multiple spanning-tree’s to allow for embedded based routing. After the spanning-trees
is created, the root initializes a coordinate creation protocol and coordinate vectors are created for each node
within that spanning-tree. These coordinates are shared along all connected neighbours of a node to allow
for paths to make use of short-cuts. Once all spanning-trees are created, capacities have been loaded from
the initialization file and the coordinates have been shared amound the network. The simulation will start
processing transactions. During the initialization of the simulation a list of transactions is stored. The sim-
ulation starts once all nodes are part of the number of spanning-trees specified, all nodes have coordinates
shared.

6.5.1. Spanning-Tree Creation
The spanning-tree is made using the a minimum-weight spanning tree algorithm proposed by Gallager et. al
in their work on spanning-trees[33]. An important aspect of the creation of the spanning-tree relies on the
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different tree-structures that are created during this stage. If all 10 spanning-trees have the same structure
then a multi-path payment system is redundant because all paths converge to one. To ensure that the trees
are different each instance of the spanning-tree generates a random value. These values are shared with the
nodes neighbours and in response a weight for the link is created.

W ei g ht = Node1,wei g ht −Node2,wei g ht

W ei g ht = Node2,wei g ht −Node1,wei g ht

}
W ei g ht > 0

Due to the randomization of the weights, the minimum-weight spanning tree will be different during
every iteration of the algorithm.

6.6. Simulation of Payment Channel Network
During the simulation of a PCN events are triggered by either the transaction event list, that is created by
the transaction distribution. Or messages are received from a nodes neighbours who are trying to transact.
During a transaction a node can be labeled along the path as either SENDER, FORWARDER, RECEIVER. These
nodes react different to incoming messages depending on their role in a transaction event.

Depending on the concurrency algorithm used, certain paths may give lower fees then others. The amount
of fees collected of each forwarder node is stored. Due to the nature of the algorithms a nodes fees may be
negative indicating that a lot of re-balancing was needed.

Transactions can face multiple issues, from not having enough capacity on a path to timing out. Paths that
fail due to capacity issues will be closed and a new path will be tried. Once no more paths are able to be found
the transaction cancels and is tried again at a later time point. The re-transmission time is in a higher order
than the time it takes to complete a transaction. Transaction’s must wait long enough for re-transmission for
the balance of the network to be different, thus the re-transmission can not be done after a couple of seconds.
If a timeout occurs all paths are closed and the transaction will wait for re-transmission.

6.6.1. Successful Transaction Messaging
The messaging protocol takes a total of 6 messages, 3 that start from the sender and 3 that start from the
receiver. In figure 6.1 these messages are represented in the order they are sent, a forwarding node is not
represented in the image. The forwarding node in this situation only forwards messages and locks the funds
needed. The odd numbers in the illustration correspond to the sender messages and the even numbers cor-
respond to the receiver messages. Before the sender sends the "Request Pend" message, it awaits answers
from all the initial path requests, or till a timer runs out and it has received enough accepts to send out the
"Request Pend" message. The receiver will only send out the "Pend Accept" messages along the paths when
it can validate that enough funds have been locked to complete the transaction.

Figure 6.1: Messages that occur during a successful transaction

6.6.2. Non-Successful Transaction Messaging
The sender and the forwarding messages have a separate set of messages in path failing conditions. In figure
6.2 the different types of messages the forwarding node can send are given. These messages occur when the
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path is unable to help aid the completion of the transaction. The forwarder node will send a "Path Request
Denied" when the virtual capacity of a node is to lower than the requested amount, the mechanics of the
virtual capacity are described in more detail in section 6.6.4.

A capacity error is sent when the node no longer has the funds on the link to complete the transaction.
This can occur during concurrent transactions of the same link. When the sender link receives a capacity
error, it will examine other paths that it has received accepts from or try in find a new path. If no paths
exist the transaction will fail and the paths will be closed with the "Close Path" message. A "Timeout Error"
message is sent when the forwarder has either accepted the initial path request or has pended the transaction
amount and has not had a response within a time limit.

Figure 6.2: Messages that occur during a successful transaction

6.6.3. Sender Node
A SENDER is the starting node for a transaction. This node decides the number of paths the transaction will
take, which spanning-tree routes each part of the transaction will take. The role of the sender is trying to
minimize transaction fees, while trying to complete as many as transactions as possible. Within this imple-
mentation no limit is set on the amount of fees a transaction can have, thus all transactions are accepted.
Only limited by the capacity on the link.

During first communication the coordinates of the receiving node is exchanged with the sender node, as
well as the amount that will be transfer is sent. These transactions do not fail or timeout as such transactions
are emulated to occur on the Internets infrastructure and do not have to take paths across the PCN network.
Due to not having implemented this level of communication the latency of these messages is greatly reduced
when sent along nodes to compensate for the message having to be passed along the network.

Once the coordinates are received, a set of random spanning-trees is chosen to initialize the payment
over. For each outgoing message a latency is calculated, more on this in 6.6.6. If the sender receives all paths
to be accepted, paths are choosen with the least amount of fees. Then a broadcast along the selected paths
that ask nodes to pend the capacity is sent. Here paths can still fail if they are no longer able to acquire the
requested pending capacity. If this occurs that path is closed and the sender node will try to request capacity
along a different path, until it either succeeds or fails.

Once the capacity has been pended the transaction goes into its final stage and a HTLC contract is emu-
lated. Verification of this contract gets sent along the path from the receiver to the sender, once all contracts
are found by the sender the transaction is finalized and the path is closed.

6.6.4. Forwarder Node
A FORWARDER node forwards transactions along a path. A forwarding node plays an important role in a
PCN, it must try and keep its links balanced in such a way that it is able to pass transactions along paths that
make use of its links. A forwarding node will accept all transactions as long as it has the capacity available to
it.

Forwarder nodes do not try to optimize for fees collection but rather link balance, secondly once a trans-
action is established and the capacity has been pended it follows a non-greedy application. A forwarder is
non-greedy due to the way the pending mechanism works, if a payment is pended and it reduces link capac-
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ity on a certain link, this capacity is subtracted from a virtual capacity. However if the transaction were to
add capacity to the link, during pending this is not added to the virtual capacity. Giving the node forwarder a
pessimistic view of its current link capacities.

6.6.5. Receiver Node
A RECEIVING this node receives payments, and will not pend any transaction as the link capacity will only
increase once a transaction is completed. This node initializes the HTLC contract and will close all paths once
it has received verification that all link capacities along the paths have successfully been updated.

6.6.6. Latency
Latency is a very important aspect when emulating a distributed network. Within this simulation three dif-
ferent latency’s can be subjected to a message. These latency’s are Network Link Latency, Operating System
Services and Cryptography Latency’s. It can be noted that these three latency’s do not occur at the same-time
point in a messages life, as network latency is a by product of sending a message across a link and OS latency
occurs during the processing of a message. These latency’s are all induced when a message is sent out from a
node and is placed in a buffer waiting to be sent across the network.

Network Link Latency
Modeling network latency can not be encompassed within a single distribution. As presented by version in
there latency statistics[9] the latency between packet delivery heavily depends on the length of the link that
connects two nodes. Due to the added complexity of giving nodes a geo-location and deriving link capacities
from that it has been opted to make use of a normal distribution for link latency. Europe as presented by
version has a regional round trip time of 30ms, this is taken as the average value and the standard-deviation
lies at 5ms. With such a standard-deviation latency’s in the network will not be consistent, such differences
in latency will allow message ordering to be scrambled. Scrambling message ordering will allow for a more
realistic simulation, then if all messages are passed along sequentially.

Operating System Service
Within a network hardware will not be homogeneous, certain nodes will have hardware that takes away from
professional internet services while others in a PCN may be running a home-server node. Without any re-
liable data on what type of nodes run what kind of hardware and the type of hardware that can currently
be found within a pcn. It has been opted to use a normal distribution to emulate small OS delays into the
message handling. The average time of computation will be estimated at 15ms, with a standard deviation of
10ms. Allowing for a broad-scope of latency’s to be induced.

Cryptography Latency’s
While considered as a latency that should be induced during the creation of the HTLC contract. In the work of
Rifa-Pous et al. on the computation and energy costs for cryptographic algorithms on handheld devices[63],
the computation time is less then 1ms. If handheld devices display such characteristics it may be inferred that
computers in the nodes will also be able to handle such computations at least as fast thus creating negligible
latency compared to that of the OS and Network link.

6.6.7. Finding Paths
SpeedyMurmurs makes use of embedded-routing along a trees path with short-cuts that can be found using
vector coordinates. This ensures the shortest path possible for a certain tree is found between two nodes.
Each node has a set of coordinates for each of its neighbours corresponding to different spanning trees. Before
a node is sent along the path the coordinates are checked to ensure that the shortest path is taken along the
spanning-tree path.





7
Evaluation and Highlighting the Interesting

Bits

Within this chapter the method of evaluation is given, with the results run on the proposed experiments.
All experiments are done with the use of the synthetic data-set generator and simulator. The chapter can
be broken into four-parts, starting with an evaluation of the synthetic data-set generator then going into an
evaluation of the synthetic data-set based on Lightning. Followed by the evaluation of the synthetic data-set
based on Ripple and the last section will cover the results of the Merchants Algorithms.

In Section 1.2 two research questions are proposed, one of these questions is considering if it is possible
to synthetically create a data-set for PCNs in such a way that allows for the emulation of an implementation
of a PCN. The second questions considers if it is possible to increase the amount of successful transactions by
having a rebalancing strategy for a set of transactions. For each question different evaluation methods have
been considered. Most of the evaluation is centered around a single metric. The Success Ratio, the success
ratio can be defined by the ratio of number of transactions that successfully completed measured against the
total number of transactions in the simulation.

During all simulations where SpeedyMurmurs and the Merchant algorithms take part in. 10 spanning-
trees are initiated during the initial-phase of the simulation. This was chosen to aid the diversity of trees in
an Erdos-Renyi graph, the diversity of spanning-trees in a scale-free topology will be less. During the initial
search the algorithms will query 6 tree paths and then select 4 different paths to take if enough paths are
found that will allow the transaction to continue.

7.1. Description of Generated Topologies
The inter-connectivity of nodes is dictated by a PCNs topology. Within networks applied to PCNs, the topol-
ogy plays a huge role in governing the way transactions are able to traverse a network. During the evaluation
of the synthetic data-set and the Merchant algorithms the topologies generated play a role in the success of a
transaction. For each set of an experiment topologies were randomly generated. To give a broad overview of
the characteristic of these generated topologies an evaluation is done on the Scale-Free topology and Edros-
Renyi Topology.

7.1.1. Methodology and Metrics
The method to generate these graphs is done by a python library networkx. Networks has a graph generation
tool, generating directional graphs. To complete the graph all missing edges are added. These generated
classes can be exported to the file system that omnet++ is capable of handling. To evaluate the graphs a
couple of metrics are used, as seen in Table 7.1.

7.1.2. Experimental Setup
These graphs were generated for all all experiments running the scale-free topologies, for the evaluation of
both the synthetic data-set model and the Merchant algorithms. Each of these experiments ran with 500
nodes. Each simulation was run a total of 10 times, the total amount of topologies that were compared is 70.
For the generation of the Scale-Free model no input-parameters were given except the graph size. For the
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Metrics Definition
Nodes Number of nodes in the network
Edge Total number of bi-directional links in the graph
Diameter Longest-shortest path in the network
Degree Average number of links connected to a node
Clustering Coefficient Measure of how nodes tend to cluster together in a graph
Node with 1 Link Number of nodes with a single Link

Table 7.1: Definitions of metrics used in evaluation of generating topologies

generation of the Erdos-Renyi graph the probability for a degree to be generated between a node was 0.01,
this value is above the correctness threshold meaning all nodes will have at least one edge in the graph. This
probability for degree generation is also not so high that it does not allow for nodes to be connected with a
single edge, allowing the graph to still have a relatively low average degree.

7.1.3. Results
In Table 7.2 the metrics of the Scale-Free graph are given. The total number of nodes with a single link is
very high giving an easy indication that this is a Scale-Free graph. A Scale-Free is more formally defined by a
power-law distribution for the nodes degree.

Average Attributes Average Standard Deviation
Nodes 500 0.0
Edge 817 39.46
Diameter 7.5 0.92
Degree 3.44 0.17
Clustering Coefficient 0.15 0.02
Node with 1 Link 282.43 8.67

Table 7.2: Average properties of the Scale-Free topology used in the experiments.

In Table 7.3 the metrics of the Erdos-Renyi graph are given. By law of large numbers an approximation can
be given by the total number of edges a Erdos-Renyi should have. This approximation is given by Equation
7.1. (

n
2

)
∗p (7.1)

The resulting number from this equation is 1248 edges. The difference between the resulting graph is
22% on average. While the approximated value and the outcome of the number of edges from the graph do
not perfectly match up, the difference is not so great that this cannot be considered an Erdos-Renyi graph.
The number of nodes with a single link is low, indicating that most nodes have a higher degree. The average
degree also indicates that this is the case.

Average Attributes Average Standard Deviation
Nodes 500 0.0
Edge 1529 30.47
Diameter 7.7 0.89
Degree 5.43 0.67
Clustering Coefficient 0.0082 0.0033
Node with 1 Link 18.7 3.2

Table 7.3: Average properties of the Erdos-Renyi topology used in the experiments.

7.1.4. Discussion and Conclusion
Looking at Table 7.2 for the Scale-Free graph and Table 7.3 for the Erdos-Renyi graph. Variance in the number
of edges, can result in variations in the number of paths between two nodes, as less edges means less paths.
The amount of edges in the Scale-Free graph is rather low compared to that of the Erdos-Renyi network as
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seen in Table 7.3. With the amount of edges almost being doubled on average within the Erdos-Renyi graph.
With such a lowe edge count, the underlying spanning-trees in the Scale-Free graphs, will have a similar struc-
ture compared to that of the Erdos-Renyi graph. While that also may be the case due to the inter-connectivity
of the graph, less edges generally means less paths.

Another interesting aspect of general Scale-Free network is the amount of nodes with a single link. Nodes
with a single degree are unable to help forward transactions only part-taking in a transaction if they are the
receiver or sender. Such nodes will also have quicker transaction failures, as they only have a singular link
that the transaction can traverse as the first step in a path. Limiting the amount of transaction value that can
be sent over the link by the initial set-up.

In the table 7.3 all metrics have been aggregated of the used Erdos-Renyi graphs to an an average. The
standard deviation in these values indicates that while the graphs were randomly generated similar graphs
were used for the experiments. The edge count for these graphs is much higher than that of a Scale-Free
graph, while the diameter of each graph is similar. Such a relationship shows that every node is as closely
connected as in a scale-free topology but the number of paths between the two nodes can be assumed to be
much higher.

The average degree of each node is also higher, with significantly lower nodes with a single link. In the
case of Erdos-Renyi, the average degree gives a much better insight to the degree of an average node. Within
the Scale-Free topology the average degree for a node is lower, and a significant amount of nodes have a single
link. Such differences in degree, creates graphs with distinct different characteristics when it comes to path
availability for transactions.

The results shows that the two graphs differ, and that both graphs can be classified as what they are in-
tended to be.

7.2. Description of Data-Set Generator
The experiments were run against two different synthetic data-set models. The Lightning model, that was
modeled after exponential distributions and the Ripple model that made use of a normal distribution. Within
this section the different models will be examined, presenting the transaction and capacity distributions that
were created for the experiments. These distributions represent the set of distributions that were not changed
during the experiments, as these sets were run against there counter-part parameter.

7.2.1. Methodology and Metrics
This evaluation is run on the transaction and capacity distributions that were used in the evaluation of the
synthetic data-set. To generate a transaction distribution, the number average value of a transaction is used
to center the distribution around. Also the nodes are needed to distinguish the amount of edges they have.
To generate a capacity distribution, the average value of a capacity needs to be defined and a node list to
generate the capacities. This process is better described in Section 6.3.1.

7.2.2. Experimental Setup
The values to generate the experiment are shown in the Table 7.4. A distinction is made between different
classes of nodes, as different classes interact with the synthetic data-set model differently. ’Small-nodes’ are
nodes that have a degree of 2 or 1. Such nodes will rarely have to forward nodes. Between a degree value of
(3,8) nodes are considered ’Medium-Nodes’ and any node with a degree above 9 is considered a ’Big-Node’.
’Big-Nodes’ can also be classified as hub-nodes, and will be utilized a lot to run transactions through.

Transaction Distribution Capacity Distribution
Parameters Value Value

Nodes 500 500
Average Value [200,400,600] [600,800,1000]
Small-Node 2 2

Medium-Node 8 8
Big-Node 9 9

Table 7.4: Average properties of the Erdos-Renyi topology used in the experiments.
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7.2.3. Results
For the Lightning model, in the experiments for ’Capacity Distribution vs a set of Transactions’. The fig-
ure 7.1 represents the average transaction values used for the experiment. It can be clearly seen that these
transactions are modeled after the exponential distribution. As one expects the lower the transaction value
probability is, the more the transaction value occurs closer to the origin.

Figure 7.1: Transaction Value Distribution for three different Transaction Value Probabilities

For the experiments concerning the Lightning model, where the channel distribution is kept the same
across the experiment a representative of the distribution can be found in figure 7.2. Also this graph repre-
sents an exponential distribution.

Figure 7.2: Channel Distributions for the 3 sets of Channels
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The transactions produced by the Ripple model can be seen in figure 7.3. These transactions are modeled
after a normal distribution and from the figure 7.3 the bar graphs do illustrate a normal distribution. Each of
the normal distributions center lies around the average transaction value it was modeled after. It is interesting
to note that these distributions at a value of 400 and 600 do not have transactions that are near the origin of
the graph.

Figure 7.3: Transaction distributions for the 3 sets of Channels modeled after the Ripple Model

The shape of the channel distribution from the Ripple model represented in 7.4 is not simply a normal
distribution. This is caused by the way the model was created to take into account nodes with different de-
grees. Nodes with a lower degree were given a lower value to model the capacity around than that of higher
degree nodes. This was done to ensure that hub nodes, would have enough capacity in relation to the singular
nodes to handle multiple transactions at once.

Figure 7.4: Channel distributions for the 3 sets of channels modeled after the Ripple Model

7.2.4. Discussion and Conclusion
For the both of the distributions the Values for the channel distribution have a much higher overall value than
that of the transactions. This is influenced by two factors, in general the average transaction value is modeled
lower than that of the average capacity value. The second factor stems from how the model differentiates
between nodes with low, medium and high degree. Nodes with a higher degree get a higher average capacity
to ensure that the edges mostly used in transferring transactions have enough capacity to handle more than
one transaction.

Within the instance of the Ripple model a characteristic of these transaction values is that much less
values occur near the origin and are centered around the transaction probability they are meant to represent.
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With more centrality, the system is transferring more similar transactions across the network compared to
that of the Lightning model for transactions.

A benefit to this model may be that noticeably less high values are trying to be transacted, in the Lightning
transaction model for a probability of 200, transaction values exceed 1000. While for the Ripple model it can
be seen the higher transaction value is below 400. While the opposite may also be said as the amount of
transactions valued around 0 are significantly less in the Ripple model than that of the Lightning Model. Such
discrepancies in characteristic may be the cause that lead to the different results from the data-set evaluation
experiments.

The Figure 7.4 displays the distribution from these set of channel distributions modeled after the Ripple
distribution. The figure have some slight characteristics of the capacity distribution from the Lightning net-
work in figure 5.2. While not a perfect replica by any means, it does hep indicate that some of the assumptions
may conform to what is happening in the actual Lightning network.

The transaction distributions represent the distributions they were modeled after, for the capacity distri-
butions this holds the same. The results help validate the modeled data-set transaction and capacity distri-
butions are modeled as expected.

7.3. Description of the Concurrency in the Networks
Within this section an evaluation will be done on the concurrency of transactions in the network.

7.3.1. Methodology and Metrics
To ensure that concurrency is happening an evaluation is being done on the network and the average number
of transactions a node is handling during a simulation. Over time this number fluctuates during a simulation,
for that reason the average is taken over the starting time of when transactions are sent across the network
after the initialization of the system has finished. Till all transactions have been sent. The values being exam-
ined came from the simulations running the evaluation on the synthetic data-set.

The concurrency average is also influenced by the graph. In the Scale-free graph, not all nodes are con-
sidered for this average value. This is largely due to the bias introduced by the nodes with a single degree.
As they are unable to help aid in transactions and can only receive or send transactions, and seeing as in a
Scale-Free graph these nodes are most abundant they heavily influence the average. No distinction is made
between the XRP model and the Lightning Model when it comes to transaction concurrency as both models
have the same firing rate for these simulations thus no tangible difference can be seen.

7.3.2. Results
For this reasoning they have been removed from Table 7.5 and only the nodes with a degree of 2 or higher are
considered.

TRANS_P Nodes Considered Average Standard Deviation Max
200 120 6.9 3.7 29
400 123 6.1 2.9 24
600 112 7.7 4.3 33

Table 7.5: Number of transactions a node is handling at one time with a Scale-free Graph

In Table 7.6 the concurrency is given for a transaction set running on an Erdos-Renyi graph. All nodes are
considered in this evaluation of concurrency due to each node playing a larger role in transactions that in a
Scale-Free graph.

TRANS_P Nodes Considered Average Standard Deviation Max
200 500 3.5 1.9 21
400 500 4.2 1.7 18
600 500 3.4 2.3 25

Table 7.6: Number of transactions a node is handling at one time with an Erdos-Renyi Graph
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7.3.3. Discussion and Conclusion
Within the Scale-Free transaction models, a higher concurrency of transactions crossing the same nodes can
be found compared to that of the transactions going over the Erdos-Renyi network. This can be expected as
more nodes are considered for the averages in the Erdos-Renyi graph than that of the Scale-Free graphs. Also
the topology of the network will play a large role, due to the way the networks are laid out.

7.4. Description of the Lightning Model
Within this section the results for the synthetic data-set modeled around the Lightning model will be pre-
sented. A broad overview of the way the synthetic data-set behaves under various conditions under the
SpeedyMurmurs algorithm is presented. Values for the static sets of distribution the experiments compare
against have been chosen to mimic realistic values. Without validation it cannot be confirmed these values
are realistic.

This section can be broken down into two parts, as two different topologies were used to conduct the
experiments. The first section covers the Scale-Free topology, a topology that occurs more often in the natural
world. While the second topology is the Erdos-Renyi topology, with a more evenly distribution of edges and
nodes. These types of topologies are harder to establish.

7.4.1. Methodology and Metrics
The evaluation of the synthetic data-set created by the proposed Lightning Model will used during the evalu-
ation. The value of transactions in this model are modeled after an exponential distribution and the capacity
of links in this model are also modeled after the exponential distribution. These distributions can be seen in
Section 7.2.3.

Evaluation of each topology with Lightning model will be done in two parts. The first part is the evaluated
by taking a fixed set of link capacities as shown in Section 7.2.3 and a graph topology where some metrics can
be found in Section 7.1.3. This is then compared to a larger set of transactions that have a varying TRANS_P
value. The metric used to evaluate these simulations will be the success ratio. The success ratio will be
plotted in a graph to give a depiction of how the success ratio changes according to different average values
of transactions compared to a fix capacity.

The second evaluation will be the counter-part, taking a fixed set of transaction value distributions as
seen in Section 7.2.3 and a constant topology while changing the link capacities. The metric used to compare
the fixed set of transactions vs the average link capacity, CAP_P, allowing for insights into how the influence
of average link capacity has an effect on the effectiveness of transactions. These two evaluation methods for
the Lightning model will be compared to two topologies.

7.4.2. Experimental Setup
The values for the distributions can be found in the experiment set-up in Table 7.4. During the simulation 28
different points were examined, these incrementally increase in value.
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7.4.3. Results Scale-Free
Within this subsection the success ratio for the Lightning synthetic data-set is presented while the data-set is
run on an Scale-Free network.

Transactions vs a Set of Link Capacities
The success ratio of different transactions modeled against a set of channel distributions can be seen in Figure
7.5. The figure illustrates that the average success rate is higher when the average capacity is higher. This
means that more capacity is available to the network, allowing for a higher chance of transactions finishing.
It is interesting to note that while the higher the average capacity has better results overall, it performs only
slightly better when the transaction average value is low or very high.

Figure 7.5: Transaction value averages vs three sets of channel distribution with the Lightning model in a scale-free topology

Within Figure 7.6 the error bars are given by the standard deviation of the aggregated 10 simulations done,
from the figure it can be seen that the average error is some-what constant. This figure also illustrates that
between the values [250,1500] it seems as if the success rate has can be plotted with a trend line.

Figure 7.6: Transaction value averages vs a channel distribution with an average of 600 using the Lightning model in a scale-free topology
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Link Capacity Averages vs Three Sets of Transactions
Comparing the channel distribution to that of a set of transactions for a scale-free topology with the Lightning
model can be found in figure 7.7. The blue line in this figure represent an average transaction value of 200,
and it can be seen that the lower the average transaction value is the better the model performs. Within the
context of this simulation there seems to be some upper limit to how well the model is able to perform.

Figure 7.7: Channel distributions vs three sets of transaction distributions with the Lightning Model in a scale-free topology

In figure 7.8 the error bars are once again given by the standard deviation of 10 trials run for this exper-
iment. Within this figure it can be seen how the relation holds between the average transaction value and
the average capacity on the channel. The success rate increases rapidly as the average capacity on a channel
increases, however this increase in success rate slows down when the average capacity is about 10 times that
of the average transaction value.

Figure 7.8: Channel distributions vs a transaction value distribution where the average value of the transactions is 200 in a scale-free
topology using the Lighting model

7.4.4. Discussion Scale-Free
An interesting aspect to examine in Figure 7.5, is that with all three sets of channel distributions, the lowest
transaction probability value does not allow for 100% success rate of transactions. While it is not clear what
the reason for this is, it may be caused by the amount of singular nodes in the Scale-Free network. As nodes
are chosen at random to transact, eventually nodes with a single degree may deplete there link capacity, thus
any subsequent transactions will fail.

This does not always have to be the case if a node receives a transaction. Though due to the random nature
of the generation of transactions, it seems that nodes try to spend outside of there link capacity without the
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link capacity being re-balanced. A method to ensure such transactions are not allocated would be to run a
check before transactions are allocated. However, due to the endless amount of possibilities this becomes an
NP hard problem.

There seem to be some linear decay in the relationship between increasing transaction distribution vs a
fixed capacity distribution. However the values near the origin for the transaction distribution show signifi-
cant decrease in success rate, and around 1500 a limit seems to have been reached. While it is not impossible
to imagine a 0% success rate, achieving this with random distributions is difficult.

Within Figure 7.8, a limit of around 80% is found, this limit is something that was also seen when the
transactions were compared to the set of capacities. Further indicating that something within the network is
limiting the amount of successful transactions possible.

As one may expect the success ratio for transactions increases as the probability for higher capacities
in the distribution increase. The success ratio increase quicker with a lower transaction value distribution,
meaning on average the transactions have lower value. Such a result is to be expected from a network.

Within Figure 7.8, less of a linear pattern can be seen between the points. Possibly indicating that the
relationship between capacities vs transactions is not fully linear. As multiple paths are taken to complete a
transaction, having slightly higher link capacity values may be more beneficial to the success rate till a certain
percentage. Within the figure 7.8 after around a 70% success ratio the increase in success ratio needs a much
higher change in the channel probability then before, indicating that increasing the capacity values after a
certain point in this network gives much smaller return to success.

7.4.5. Results Erdos-Renyi
Within this subsection the success ratio for the Lightning synthetic data-set is presented while the data-set is
run on an Erdos-Renyi network.

Transactions vs a Set of Link Capacities
Within the Figure 7.9, the transaction distribution vs 3 sets of channel distributions can be seen running on
an Erdos-Renyi network. When using the Erdos-Renyi graph the initial success rate of the PCN seems to
increase, indicating that the more even distribution of degrees in nodes positively effects the success rate. In
this model of the PCN the higher average of capacities on the links the better the performance, such a relation
is expected between transaction value and capacity value.

Figure 7.9: Transaction value averages vs three sets of channel distribution with the Lightning model in a Erdos-Renyi topology
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In figure 7.10 the error bars are once again given by the standard deviation of 10 trials run for this experi-
ment. When the average transaction value is really low in this simulation the success rate is able to complete.
This success rate degrades rather quickly as the transaction value increases, then once again a steady decrease
in success rate can be seen. Till the model seems to hit a limit and slowly converges to 0.

Figure 7.10: Transaction value averages vs a channel distribution with an average of 600 using the Lightning model in a Erdos-Renyi
topology

Link Capacity Averages vs Three Sets of Transactions
Changing the channel distribution value against a set of transactions for an Erdos-Renyi graph is represented
in the figure 7.11. As the average capacity of a channel increase so does the success rate, while the figure does
not reach 100% success rate, the lines for all three transaction values seem to generally increase. While not
certain, with a high enough average value for capacity the success rate may become stable at 100% for the set
of transactions.

Figure 7.11: Channel distributions vs three sets of transaction distributions with the Lightning Model in a Erdos-Renyi topology
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In figure 7.12 the error bars are once again given by the standard deviation of 10 trials run for this experi-
ment. It can be clearly seen that with an almost average value of 1 for the capacities the network is unable to
process a lot of transactions. This has to do with the discrepancy with between the transaction value and the
value available to transactions. The Erdos-Renyi graph is able to quickly achieve some success as around an
average of 500 the success rate is almost 50%.

Figure 7.12: Channel distributions vs a transaction value distribution where the average value of the transactions is 200 in a Erdos-Renyi
topology using the Lighting model

7.4.6. Discussion Erdos-Renyi
Within the Figure 7.9, the success ratio is almost 20% higher initially, compared to that of the Scale-Free
topology. This may be attributed to the fact more connections and paths exist, allowing for transactions to
have a higher chance of success. Within the experiments done a 100% success rate does not seem to be
possible in the Lightning model, this may be due to the way the exponential distribution works, as a wider
range in transaction value is possible compared to that of the used normal distribution for these models.

Comparing figure 7.6 with figure 7.10 the results seem very similar. Taking a look at a specific value like
tp = 1500, for the Scale-Free graph the success rate is below 20%. While for the Erdos-Renyi graph the success
rate is slightly higher and above 20%. Such small differences indicate while an Erdos-Renyi graph may have
more paths, and return slightly better results. Overall the difference is minimal.

As the Channel Distribution vs a Set of Transactions is related to the Transaction vs A set of Channel
Distributions, the results show slightly better performance than compared to the scale-free graph. The limit
for success rate for the set of transactions in the simulation also hovers above 80%, similarly found in the
Scale-Free Graph.

7.4.7. General Discussion and Conclusions
The proposed synthetic data-sets models are currently the only known models for the creation of data-sets
concerning PCN. As the only other data-set for a PCN is a Ripple dataset where the validity of the data-set is
questionable as mentioned in Section 3.1.5. Without other data-sets, comparing the synthetic data to current
PCN implementations and trying any type of validation becomes problematic. Validation does not need to
be limited to mimicking actual PCNs.

Without being able to compare to actual implementations, comparing the firing-rate of transactions and
the occurrence of concurrent transactions effecting each other is difficult. The simulation does showcase that
transactions can be completed and that depending on the ratios between the value of the transaction and the
link capacities the success rate of transactions changes. The simulation is also able to handle transactions
failing, and is able to handle concurrent transactions.
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7.5. Description of the Ripple Model
Within this section the evaluation of the synthetic data-set that is modeled after Ripple will be presented and
evaluated. This will be done for both the Scale-Free topology and the Erdos-Renyi topology. Differences will
be examined between the two topologies.

7.5.1. Methodology and Metrics
The evaluation of the synthetic data-set created by the proposed Ripple Model will used during the evalua-
tion. The value of transactions in this model are modeled after an exponential distribution and the capacity
of links in this model are also modeled after the exponential distribution. These distributions can be seen in
Section 7.2.3.

Evaluation of each topology with Ripple model will be done in two parts. The first part is the evaluated by
taking a fixed set of link capacities as shown in Section 7.2.3 and a graph topology where some metrics can be
found in Section 7.1.3. This is then compared to a larger set of transactions that have a varying TRANS_P
value. The metric used to evaluate these simulations will be the success ratio. The success ratio will be
plotted in a graph to give a depiction of how the success ratio changes according to different average values
of transactions compared to a fix capacity.

The second evaluation will be the counter-part, taking a fixed set of transaction value distributions as
seen in Section 7.2.3 and a constant topology while changing the link capacities. The metric used to compare
the fixed set of transactions vs the average link capacity, CAP_P, allowing for insights into how the influence
of average link capacity has an effect on the effectiveness of transactions. These two evaluation methods for
the Lightning model will be compared to two topologies.

7.5.2. Experimental Setup
The values for the distributions can be found in the experiment set-up in Table 7.4. During the simulation 28
different points were examined, these incrementally increase in value.

7.5.3. Results Scale-Free
The results presented within this subsection cover the Scale-Free topology for both types of experiments
transaction vs set of channel distributions and channel distributions vs a set of transactions.
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Transactions vs a Set of Link Capacities
The success ratio of different transactions modeled against a set of channel distributions can be seen in Figure
7.13. In the scale-free topology with an XRP model the success rate is above 80% for the the smallest values
of the transaction distribution. The figure also shows that with a high enough average transaction value the
simulations success rate slowly goes to 0.

Figure 7.13: Transaction value averages vs three sets of channel distribution with the Ripple model in a scale-free topology

Within figure 7.14 the error bars are given by the standard deviation of the aggregated 10 simulations
done. The success rate never achieves 100% but is very close when the average transaction value is 1. A jump
in performance is seen between the average value of 350, and 500. Once the average value of the transactions
close in on the average capacity value the success rate reduces quickly.

Figure 7.14: Transaction value averages vs a channel distribution with an average of 600 using the Ripple model in a scale-free topology
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Link Capacity Averages vs Three Sets of Transactions
Comparing the channel distribution to that of a set of transactions for a scale-free topology with the Lightning
model can be found in figure 7.15. The figure illustrates that there is a bound on the success rate of the
simulation in the case of the scale-free model. The three transaction success-rates are fairly close to one
another, showing a close relation between the normal distributions and the success rate.

Figure 7.15: Channel distributions vs three sets of transaction distributions with the Ripple Model in a scale-free topology

In figure 7.16 the error bars are once again given by the standard deviation of 10 trials run for this exper-
iment. The success rate increases fairly quickly as the average capacity on the links increases, at around 450
average value for capacity the transactions almost succeed 50% of the time.

Figure 7.16: Channel distributions vs a transaction value distribution where the average value of the transactions is 200 in a scale-free
topology using the Ripple model

7.5.4. Discussion Scale-Free
The Ripple model with a Scale-Free topology seems to be limited at around 90%. As seen in figure 7.15, no
matter the increase in channel capacity through-out the network certain transactions will not complete. This
limitation may be attributed to the way the Scale-Free capacities are distributed depending on if a node is
singularly connected to a hub or not. As in trying to model consumer behaviour, some capacities are not ini-
tialized in both directions, possibly excluding some nodes from transactions no matter the capacities found
within the network.
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7.5.5. Results Erdos-Renyi
Within this subsection the transaction vs a set of channel distributions will be explored for the Erdos-Renyi
topology using the Ripple Model. The success ratio for channel distribution vs a set of transactions is also
explored.

Transactions vs a Set of Link Capacities
Within the Figure 7.17, the transaction distribution vs 3 sets of channel distributions can be seen running on
an Erdos-Renyi network. The success rate in this configuration of the simulation allows for 100% success rate,
this can be heavily attributed to the fact nodes have on average a high degree. Allowing for multiple paths to
be found.

Figure 7.17: Transaction value averages vs three sets of channel distribution with the Ripple model in a Erdos-Renyi topology

In figure 7.18 the error bars are once again given by the standard deviation of 10 trials run for this ex-
periment. A jump can be seen in the success rate as the transaction value approaches the average capacity
value. Within the context of this simulation it seems that an equal value for capacity and transaction allows
for roughly 50% of transactions to complete.

Figure 7.18: Transaction value averages vs a channel distribution with an average of 600 using the Ripple model in a Erdos-Renyi topology
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Link Capacity Averages vs Three Sets of Transactions
Changing the channel distribution value against a set of transactions for an Erdos-Renyi graph is represented
in the figure 7.19. The success rate of this simulation is the highest of all simulations discussed within this
chapter, for that reason the x-axis has been limited to 10000 as the simulation will continue to have 100%
success. It appears that an Erdos-Renyi graph allows for good transaction success rate if both the capacity
and the transactions are modeled around a normal distribution.

Figure 7.19: Channel distributions vs three sets of transaction distributions with the Ripple Model in a Erdos-Renyi topology

In figure 7.20 the error bars are once again given by the standard deviation of 10 trials run for this experi-
ment. In this graph it can be clearly seen that again with an equal value of capacity and transaction value the
simulation is able to achieve almost a 50% success rate. While not the case in all simulations, this set-up of
normal distributions and the Erdos-Renyi topology lends its self well to high success rates.

Figure 7.20: Channel distributions vs a transaction value distribution where the average value of the transactions is 200 in a Erdos-Renyi
topology using the Ripple model

7.5.6. Discussion Erdos-Renyi
An initial impression of figure 7.17 shows that 100% success rate is possible within the simulation, though the
right conditions need to be met. The connectivity of Erdos-Renyi graph and the normal distribution of values
generate enough capacity on the lines for micro-transactions to successfully go through the network. As the
transaction value increases the success rate decreases. As one would except.

Looking at figure 7.18, with cP = 600 and tP = 600 the success rate is around 50%. Indicating a balance
between the two values. Such a result is a little surprising as SpeedyMurmurs makes use of multiple paths,
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one could conceive that less capacity is needed on average to transact certain values as in an Erdos-Renyi
graph, two transaction paths do not have to share any of the same links.

The characteristics from changing the channel distribution vs a set of transactions in figure 7.19 show very
promising results for graphs with a t p/cp ratio of around 600/2000 as 80%. Changing the channel distribution
also influences the rate the success ratio goes to 100%. This may be attributed to the more equal spread of
degree and nodes in the generated topology, meaning that most nodes will have capacity going over both
sides of a link during initial setup. Having initial bidirectional links, increases the sum of capacity in the
network compared to that of a Scale-Free topology, also the Erdos-Renyi topology has double the amount of
links as the Scale-Free topology so more capacity can be found in the network in general.

7.5.7. General Discussion and Conclusion
As mentioned in Section 7.4.7 comparing these results to implemented PCN is not possible. The different
Synthetic data-set models show different success rates within the simulation. Where Ripple Model slightly
outperforms the Lightning Model in the success rates of transactions. The Ripple Model was able to achieve
100% success rate. Under certain conditions in an Erdos-Renyi graph it is able to sustain a 100% success rate
with a higher value of transaction vs link capacity ratio than in any of the other models and graphs. Help-
ing solidify that within this simulation, the results indicate that an Erdos-Renyi topology may lead to better
performance of a network. The topology of a network will be easier to incentives for then the transaction
behaviour of people. For that reason both models perform well, but neither of the models can be validated
for distribution accuracy.

7.6. Evaluation of the Success Rate with the Merchant Algorithms
Within this section the evaluation of the Merchant algorithms will be presented.

7.6.1. Methodology and Metrics
As for all the evaluations all these experiments were done with 500 nodes. Each experiment was run 10 times.
The results in the table below show that the merchant algorithms are able to provide a way to increase success
ratio of transactions in a generated PCN with synthetic data-sets.

The evaluation of the merchant algorithms will determine the impact of a set of transaction distributions
and channel distributions from both types of synthetic data-sets. Two different topologies will also, these are
the Scale-Free and Erdos-Renyi topologies. The evaluation metric will be based on the success ratio. Success
Ratio, is a ratio based on the amount of completed transactions vs the amount of total transactions initialized
within the system.

7.6.2. Experiment Set-up
In Table 7.1, the three different scenarios can be seen that the merchants are tested against. These three
scenarios were chosen to portray three different use cases. The Micro-Payments test is meant to emulate
payments such as buying apps, e.g., this test will be effected more by the fees of the network than the other two
tests. This is caused by the low average value of the transitions compared to the fees. The Online-Shopping
scenario is meant to emulate a scenario of purchases online, more geared at retail. While the fees play less
of a role the ratio between TRANS_P and CAP_P is different than the other two tests, allowing for a different
success ratio compared to the other two tests. The Large-Payments is scenario that tries to emulate ’larger’
payments. Also with a unique ratio.

Name Average Transaction Value (T) Average Capacity value (C) Ratio of T/C
Micro-Payments 5 400 0.0125
Online-Shopping-Payments 200 2000 0.1
Large-Payments 2000 10000 0.2
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7.6.3. Results
The results are broken up into three sections. Micro-Payments, Online-Shopping-Payments and Large-Payments.

Micro-Payments
Within this section the results of the Micro-Payments can be seen in Table 7.7. Overall the Success ratio is
the highest of all three experiments as expected. The Merchant algorithms outperform in the Success Ratio
compared to Partial-Blocking.

Simulation Properties Graph-Type Data-Set-Type TRANS_P CAP_P Total Trans Success Rate
Partial-Blocking SC LN 5 400 2000 72% ±9
Passive Merchant SC LN 5 400 2000 76% ±8
Active Merchant SC LN 5 400 2000 77% ±9
Partial-Blocking SC XRP 5 400 2000 76% ±6
Passive Merchant SC XRP 5 400 2000 80% ±7
Active Merchant SC XRP 5 400 2000 80% ±9
Partial-Blocking ER LN 5 400 2000 79% ±7
Passive Merchant ER LN 5 400 2000 84% ±5
Active Merchant ER LN 5 400 2000 85% ±6
Partial-Blocking ER XRP 5 400 2000 93% ±4
Passive Merchant ER XRP 5 400 2000 93% ±4
Active Merchant ER XRP 5 400 2000 93% ±3

Table 7.7: Results of the Micro-Payments Simulation Set

Online-Shopping-Payments
Within this section the results of the Online-Shopping-Payments can be seen in Table 7.8. The Merchant
algorithms outperform in the Success Ratio compared to Partial-Blocking.

Simulation Properties Graph-Type Data-Set-Type TRANS_P CAP_P Total Trans Success Rate
Partial-Blocking SC LN 200 2000 2000 47% ±10
Passive Merchant SC LN 200 2000 2000 51% ±12
Active Merchant SC LN 200 2000 2000 52% ±11
Partial-Blocking SC XRP 200 2000 2000 51% ±7
Passive Merchant SC XRP 200 2000 2000 54% ±10
Active Merchant SC XRP 200 2000 2000 55% ±10
Partial-Blocking ER LN 200 2000 2000 57% ±9
Passive Merchant ER LN 200 2000 2000 63% ±7
Active Merchant ER LN 200 2000 2000 63% ±12
Partial-Blocking ER XRP 200 2000 2000 59% ±9
Passive Merchant ER XRP 200 2000 2000 62% ±9
Active Merchant ER XRP 200 2000 2000 65% ±10

Table 7.8: Results of the Online-Shopping-Payments Simulation Set
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Large-Payments
Within this section the results of the Large-Payments can be seen in Table 7.10. The Merchant algorithms
outperform in the Success Ratio compared to Partial-Blocking.

Simulation Properties Graph-Type Data-Set-Type TRANS_P CAP_P Total Trans Success Rate
Partial-Blocking SC LN 2000 10000 2000 23% ±8
Passive Merchant SC LN 2000 10000 2000 27% ±9
Active Merchant SC LN 2000 10000 2000 29% ±8
Partial-Blocking SC XRP 2000 10000 2000 27% ±7
Passive Merchant SC XRP 2000 10000 2000 30% ±6
Active Merchant SC XRP 2000 10000 2000 31% ±9
Partial-Blocking ER LN 2000 10000 2000 34% ±8
Passive Merchant ER LN 2000 10000 2000 39% ±8
Active Merchant ER LN 2000 10000 2000 41% ±6
Partial-Blocking ER XRP 2000 10000 2000 39% ±8
Passive Merchant ER XRP 2000 10000 2000 45% ±9
Active Merchant ER XRP 2000 10000 2000 47% ±7

Table 7.9: Results of the Large-Payments Simulation Set

7.6.4. Discussion and Conclusion
As mentioned, limited research exists in this area. The Merchant algorithms are state of the art, trying to
keep channels balanced without adding an extra protocol layer, i.e. the work done on Acyclic Payment
Networks[70], allowing for real-time channel balancing. In the section 3.2.1, Revive is presented, a rebal-
ancing strategy for PCNs. Comparison against this rebalancing strategy has been excluded due to the mecha-
nism behind the strategy. Re-balancing occurs on a separate mechanism, without directing transactions and
a high-level of trust is needed within the system. While not impossible such a strategy would require stricter
security and privacy guarantees. Due to the discrepancy in strategies, and having no clear metric in their
results to compare to, the evaluation of the Merchants will exclude revive.

Looking at the results the Active Merchant may be able to have a constant higher success ratio than the
Passive Merchant due to it broadcasting out discounts. Taking out some of the randomization done during
the initial set-up of starting a transaction. As spanning-trees are selected at random unless the node has
received a coupon for a certain edge combined with a spanning-tree. Thus the Active Merchant can take out
some of the randomization as the node has knowledge before hand which path may be cheapest.

The Erdos-Renyi topologies out-perform the Scale-Free topologies. Attributing this to difference in path
counts and possible paths between two nodes allows more flexibility. If certain links are dead/directional
then a route can be found around it more easily in an Erdos-Renyi graph. The success may also come from
the fact the diameter of the networks tested are almost identical. Allowing nodes to be highly inter-connected
for the Erdos-Renyi graph.

7.7. Evaluation of the Overhead with the Merchant Algorithms
Within this section the evaluation of the overhead of the Merchant algorithms is presented.

7.7.1. Methodology and Metrics
To evaluate the overhead of the Merchant Algorithms on SpeedyMurmurs the total message count will be
recorded during each trial simulation. The total amount of coupon messages sent as an Active Merchant will
also be recorded. The Passive Merchant does not create extra messages, however the total message count
may still increase due to the extra dynamics in the network brought on by fluctuating fees.

7.7.2. Results
Within this section the messages being sent over the network can be seen. The Active Merchant has a large
over-head compared to that of SpeedyMurmurs without the Active Merchant.



7.7. Evaluation of the Overhead with the Merchant Algorithms 71

Rebalancing Average Total Message Count Standard Deviation Average Active-Merchant Messages
Partial-Blocking 47.2e10 12.2e10 N/A
Passive Merchant 45.7e10 13.9e10 N/A
Active Merchant 62.8e10 16.8e10 17.0e10

Table 7.10: Message Overhead

7.7.3. Discussion and Conclusion
The overhead that is created by the Merchant algorithms is about 30%. A way to decrease the message over-
head would be by backpacking coupons onto other messages a node forwards. This would decrease the
amount of nodes getting the knowledge, however if the node is very active then it would have a higher chance
of letting nodes know of state of the channel. This would add complexity to canceling coupons, but that may
be fixed with a broadcast down stream. Overall the Active Merchant algorithm is not a heavy message over-
load, it does inquire a bit of overhead in the SpeedyMurmurs implementation. This can be attributed to the
light-weight nature of SpeedyMurmurs.





8
Conclusion and Future Work

8.1. Conclusion
Within this thesis, the current state of Payment Channel Networks(PCN) has been addressed. From the ex-
ploration of the current state of research in this field two different contributions arose. The first being a pair
of rebalancing algorithms, the Merchants, that have been incorporated in SpeedyMurmurs a state-of-the-
art path-based-transaction algorithm secondly two synthetic data-set models have been proposed based on
current knowledge of the Lightning and Ripple networks.

The synthetic data-sets are an essential tool that is currently missing in the research field of PCNs. One
issue that researchers face is that collecting data-sets is not trivial nor are data-sets made readily available.
Current data-sets, are without concurrent transactions and are limited to an early phase of Ripples network.
As the technology matures and evolves this data-set will quickly become obsolete and out-dated. While no di-
rect validation can be done on the synthetic data-set models on how well they accurately emulate transaction
behavior in PCNs, the data-sets allow for concurrent transactions to take place and generate transactions and
capacities that can be regulated by the researcher. Giving researchers the ability to control the type of sce-
narios being simulated. As research progresses in this field it is not unthinkable that data-sets will be made
available, these synthetic data-sets can still serve a purpose.

The novel idea of the Merchant algorithms is that they do not need an additional layer of protocol to be
implemented into a PCN, as the algorithms work by adjusting fees to incentives nodes to make use of a certain
paths. Other researchers have suggested using a protocol that is not embedded in the transaction process as
presented in Section 3.2.1 and 3.2.2. As both approaches of dealing with rebalancing are state-of-the-art, and
not much is known about how PCN operate currently no clear advantage in the operation of these approaches
can be described.

An advantage to rebalancing a PCN with a protocol that works on another layer of a PCN is that it may be
able to rebalance links more effectively, as it can optimize re-balances with more precision due to it not being
limited by the transaction amount. While REVIVE is limited to only cyclic graphs, Subramanian et al. showed
that such an approach can be used in directional and acyclic bi-drectional graphs[70]. Such a protocol has
some apparent disadvantages in a dynamic network, as rebalancing links will be done as transactions are
processed and the values of the links may be different before the protocol is able to complete a rebalance.
Rebalancing with financial incentives in this case allows for the rebalancing to happen real-time, though
may be limited in the extend it can optimize a links rebalance. The Merchant algorithms are adaptive to
change in the network and can be implemented on any topology as cycles are mitigated. Some ideas about
the optimization of the the Merchant algorithms is discussed in the next section.

8.2. Future Work
Further research into the synthetic data-set and the Merchant algorithms could help optimize both contri-
butions. The Merchant algorithms have been shown initial success by improving the success rate of a PCNs
in this thesis’s evaluation. Further exploration into these algorithms may lead to better results, one idea to
optimize the Merchant algorithms is to create a bartering system for the amount of that is getting sent over
the path. The bartering system would allow nodes to request a certain amount of the transaction for a certain
fee. An implementation might entail a single round as the initial path search is done, or multi-rounds of the
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bartering could take place. A single round can be seen as the sender sending information along the path and
the forwarder sending a single reply. Such an optimization could however lead to security issues, thus the
resulting security effects of such an implementation would need to be studied. Some of the security issues
may stem from the fact malicious nodes will be able to win transactions to take there link, and could result in
transactions to fail. Another issue this may bring is in privacy, if a node can see the value of the whole trans-
action the transaction value privacy is lost, but methods can be thought of to ensure that nodes in a path are
unable to known the transaction value with certainty.

As for the synthetic data-set models research can be continued in this area as well. Without validation
against actual data-sets, it is difficult to establish how accurate these models can emulate the behaviour of a
PCN. Being able to compare the models to data-set also allows for a further understanding of the mechanisms
that make up a PCN. An idea that has been discussed with other researchers in this field is to create transac-
tions that go in a certain direction of the graph. A reason for why this may occur can be seen in online-retail.
Shoppers tend to buy from one or multiple-stores, this creates a direction from the shoppers to the stores in
payments.

This would mean that sub-graphs would be needed to be established and that the transaction volume
moves heavier from one sub-graph to another. Such an implementation would allow for stress testing of
rebalancing algorithms. As it may be impossible to balance a PCN without going to the blockchain if trans-
actions have a higher transaction volume in one direction of the graph. Whilst it is unknown if transactions
have direction over a graph, it may lead to better insights into the limits of rebalancing algorithms.

The network in this thesis has taken a static approach, the network is established and kept the same
throughout the duration of the simulation. In actual PCN nodes are able to join and leave the network, this
is a more dynamic environment than that was simulated. While studies have been done into the Lightning
Network, little is known about the dynamics of a PCN. Due to the little information, these dynamic elements
were not added to the simulation. Research into this field will allow for a better understanding of the impact
a PCN has on a blockchain, if rebalancing links is needed via the blockchain periodically, and how to simulate
this dynamic environment better.

As closing words, this thesis has presented two contributions to the research of PCN. By formalizing syn-
thetic data-sets and examining rebalancing strategies for path-based transactions interlaced within the trans-
action protocol. The work has been evaluated and shows promise; as does this field of research.
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[28] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1):
17–60, 1960.

[29] Ittay Eyal and Emin Gün Sirer. How to disincentivize large bitcoin mining pools. Blog post:
http://hackingdistributed. com/2014/06/18/how-to-disincentivize-large-bitcoin-mining-pools, 2014.

[30] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. Communications
of the ACM, 61(7):95–102, 2018.

[31] Finder.com. Why haven’t we all bought cryptocurrency yet?, oct 2019. URL https://www.finder.com/
why-people-arent-buying-cryptocurrency.

[32] William Foxley. Ripple extends banking network with finastra partnership, Oct 2019. URL https://
www.coindesk.com/ripple-extends-banking-network-through-finastra-partnership.

[33] Robert G Gallager, Pierre A Humblet, and Philip M Spira. A distributed algorithm for minimum-weight
spanning trees. ACM Transactions on Programming Languages and systems (TOPLAS), 5(1):66–77, 1983.

[34] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf, and Srdjan Capkun.
On the security and performance of proof of work blockchains. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pages 3–16. ACM, 2016.

[35] Omkar Godbole. Bitcoin’s total share of crypto market now high-
est since march 2017, oct 2019. URL https://www.coindesk.com/
bitcoin-price-bounces-to-10-5k-as-dominance-rate-passes-70.

[36] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding protocols. pages 258–272, 1999.

[37] Rajashekar Kailar. Accountability in electronic commerce protocols. IEEE Transactions on software en-
gineering, 22(5):313–328, 1996.

[38] Ghassan O Karame and Elli Androulaki. Bitcoin and blockchain security. Artech House, 2016.

[39] Rami Khalil and Arthur Gervais. Revive: Rebalancing off-blockchain payment networks. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages 439–453. ACM,
2017.

[40] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and Bryan Ford.
Enhancing bitcoin security and performance with strong consistency via collective signing. In 25th
{USENIX} Security Symposium ({USENIX} Security 16), pages 279–296, 2016.

[41] Philip Koshy, Diana Koshy, and Patrick McDaniel. An analysis of anonymity in bitcoin using p2p net-
work traffic. In International Conference on Financial Cryptography and Data Security, pages 469–485.
Springer, 2014.

[42] Joshua A Kroll, Ian C Davey, and Edward W Felten. The economics of bitcoin mining, or bitcoin in the
presence of adversaries. In Proceedings of WEIS, volume 2013, page 11, 2013.

[43] Victor Lewis, Kenneth D Kay, Chandrika Kelso, and James Larson. Was the 2008 financial crisis caused
by a lack of corporate ethics? Global Journal of Business Research, 4(2):77–84, 2010.

https://www.myaccountingcourse.com/accounting-dictionary/ledger
https://www.myaccountingcourse.com/accounting-dictionary/ledger
https://www.cryptocompare.com/coins/list/USD/20
https://www.finder.com/why-people-arent-buying-cryptocurrency
https://www.finder.com/why-people-arent-buying-cryptocurrency
https://www.coindesk.com/ripple-extends-banking-network-through-finastra-partnership
https://www.coindesk.com/ripple-extends-banking-network-through-finastra-partnership
https://www.coindesk.com/bitcoin-price-bounces-to-10-5k-as-dominance-rate-passes-70
https://www.coindesk.com/bitcoin-price-bounces-to-10-5k-as-dominance-rate-passes-70


Bibliography 77

[44] Lightning, dec 2019.

[45] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivatsan Ravi. Concurrency
and privacy with payment-channel networks. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 455–471. ACM, 2017.

[46] M Molloy and B Reed. Random struct. alg. 6, 161 (1995). Combin. Probab. Comput, 7:295, 1998.

[47] Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Kim Pecina. Privacy preserving payments in
credit networks. In Network and Distributed Security Symposium, 2015.

[48] Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Silentwhispers: Enforcing security and privacy
in decentralized credit networks. In 24th Network and Distributed System Security Symposium (NDSS
2018), 2017.

[49] Walid Najjar and J-L Gaudiot. Network resilience: A measure of network fault tolerance. IEEE Transac-
tions on Computers, 39(2):174–181, 1990.

[50] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec 2008. URL https://bitcoin.
org/bitcoin.pdf. Accessed: 2015-07-01.

[51] Satoshi Nakamoto. Re: Bitcoin p2p e-cash paper. Email posted to listserv, 9:04, 2008.

[52] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In
Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing, STOC ’89, pages 33–
43, New York, NY, USA, 1989. ACM. ISBN 0-89791-307-8. doi: 10.1145/73007.73011. URL http:
//doi.acm.org/10.1145/73007.73011.

[53] Lightning Network, nov 2019.

[54] Raiden Network, nov 2019.

[55] Christos H Papadimitriou. Serializability of concurrent database updates. Technical report, MAS-
SACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE, 1979.

[56] Christos H Papadimitriou and David Ratajczak. On a conjecture related to geometric routing (algorith-
mic aspects of wireless sensor networks), volume 3121/2004, chapter on a conjecture related to geomet-
ric routing, 2004.

[57] Christos H Papadimitriou and David Ratajczak. On a conjecture related to geometric routing. Theoretical
Computer Science, 344(1):3–14, 2005.

[58] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of faults.
Journal of the ACM (JACM), 27(2):228–234, 1980.

[59] Defi Plus. Lightning network, oct 2019. URL https://defipulse.com/lightning-network.

[60] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant payments,
2016.

[61] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy, and Olaoluwa Osuntokun. Flare: An
approach to routing in lightning network. White Paper, 2016.

[62] Fergal Reid and Martin Harrigan. An analysis of anonymity in the bitcoin system. In Security and privacy
in social networks, pages 197–223. Springer, 2013.

[63] Helena Rifa-Pous and Jordi Herrera-Joancomartí. Computational and energy costs of cryptographic al-
gorithms on handheld devices. Future internet, 3(1):31–48, 2011.

[64] Stefanie Roos, Martin Beck, and Thorsten Strufe. Anonymous addresses for efficient and resilient routing
in f2f overlays. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer
Communications, pages 1–9. IEEE, 2016.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://doi.acm.org/10.1145/73007.73011
http://doi.acm.org/10.1145/73007.73011
https://defipulse.com/lightning-network


78 Bibliography

[65] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Settling payments fast and pri-
vate: Efficient decentralized routing for path-based transactions. arXiv preprint arXiv:1709.05748, 2017.

[66] David Schwartz, Noah Youngs, Arthur Britto, et al. The ripple protocol consensus algorithm. Ripple Labs
Inc White Paper, 5:8, 2014.

[67] István András Seres, László Gulyás, Dániel A Nagy, and Péter Burcsi. Topological analysis of bitcoin’s
lightning network. arXiv preprint arXiv:1901.04972, 2019.

[68] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh, Giulia Fanti, and
Pramod Viswanath. Routing cryptocurrency with the spider network. arXiv preprint arXiv:1809.05088,
2018.

[69] Michele Spagnuolo, Federico Maggi, and Stefano Zanero. Bitiodine: Extracting intelligence from the
bitcoin network. In International Conference on Financial Cryptography and Data Security, pages 457–
468. Springer, 2014.

[70] Lalitha Muthu Subramanian, Guruprasad Eswaraiah, and Roopa Vishwanathan. Rebalancing in acyclic
payment networks.

[71] Olivier Denecker Madhav Goparaju Marc Niederkorn Sukriti Bansal, Philip Bruno. Global payments
2018: A dynamic industry continues to break new ground. Online, Mckinsey&Company, oct 2018.

[72] Manny Trillo. Stress test prepares visanet for the most wonderful time of
the year, 2013. URL https://www.visa.com/blogarchives/us/2013/10/10/
stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html.

[73] Paul F Tsuchiya. The landmark hierarchy: a new hierarchy for routing in very large networks. In ACM
SIGCOMM Computer Communication Review, volume 18, pages 35–42. ACM, 1988.

[74] András Varga. The omnet++ discrete event simulation system. In In ESM’01, 2001.

[75] Visa. Visa inc. at a glance, June 2015. URL https://usa.visa.com/dam/VCOM/download/corporate/
media/visa-fact-sheet-Jun2015.pdf.

[76] Bimal Viswanath, Mainack Mondal, Krishna P Gummadi, Alan Mislove, and Ansley Post. Canal: Scaling
social network-based sybil tolerance schemes. In Proceedings of the 7th ACM european conference on
Computer Systems, pages 309–322. ACM, 2012.

[77] Peng Wang, Hong Xu, Xin Jin, and Tao Wang. Flash: Efficient dynamic routing for offchain networks.
arXiv preprint arXiv:1902.05260, 2019.

[78] Shira Werman and Aviv Zohar. Avoiding deadlocks in payment channel networks. In Data Privacy Man-
agement, Cryptocurrencies and Blockchain Technology, pages 175–187. Springer, 2018.

[79] B. Wiki. Hash time locked contracts. URL https://en.bitcoin.it/wiki/Hash_Time_Locked_
Contracts.

[80] Wikipedia. Ledger — Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Ledger,
2019. [Online; accessed 12-October-2019].

[81] Wikipedia contributors. Smart contract — Wikipedia, the free encyclopedia, 2019. URL https://en.
wikipedia.org/w/index.php?title=Smart_contract&oldid=923105708. [Online; accessed 15-
November-2019].

[82] Robert S Winternitz. A secure one-way hash function built from des. In 1984 IEEE Symposium on Security
and Privacy, pages 88–88. IEEE, 1984.

[83] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project
yellow paper, 151(2014):1–32, 2014.

[84] Rui Zhang, Rui Xue, and Ling Liu. Security and privacy on blockchain. arXiv preprint arXiv:1903.07602,
2019.

https://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://usa.visa.com/dam/VCOM/download/corporate/media/visa-fact-sheet-Jun2015.pdf
https://usa.visa.com/dam/VCOM/download/corporate/media/visa-fact-sheet-Jun2015.pdf
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
http://en.wikipedia.org/wiki/Ledger
https://en.wikipedia.org/w/index.php?title=Smart_contract&oldid=923105708
https://en.wikipedia.org/w/index.php?title=Smart_contract&oldid=923105708


A
Ripple Dataset Analysis

Development and research in the are of PCNs is still in early development, a consequence of this is that
there are no load models that have been verified. Not enough research has been done in trying to emulate
how PCNs behave within the real-world with models. This is partially due to the lack of data-sets and partially
because of the current state of this research area. Roos benchmarked speedymurmurs against a ripple dataset
in her work on speedymurmurs[65]. The ripple dataset was taken over the course of three years, in the time
window of 2013−2016. Such a vast dataset can aid in the creation of load models that can emulate real-world
interaction. To get the best picture of how PCNs work multiple data-sets would give a better results, though
due to the lack of access to different data-sets only the ripple dataset will be used to create a representative
model of a PCN.

Taking the dataset directly from Roos’s work, means that the dataset has already been filtered and all
data has been removed that created inconsistencies. The dataset was split into a dynamic and static graph
topologies and transactions. For the case in this work, only the static dataset will be analyzed as during the
running of the simulation, no nodes will fail, be added or have any dynamic properties.

To generate a representative model a couple of characteristics need to be examined from the dataset.
These characteristics are Channel Capacity, Value of transactions and Node Connection Distribution. These
characteristics will form the foundation of different load models. Different load models will be created that
generate transactions either randomly, or give the transactions a specific direction within the model. These
load models are as follows:

A.0.1. Node Connection Distribution
Node connection distribution is the measurement of how many nodes are connected to one another and
how these connections are distributed throughout the network. From the filtered ripple data-set it can be
seen in table A.1 that the average node has a very low connectivity. For the static data-set it is just under 3
connections and for the dynamic dataset it is a little more than 3.5.

Table A.1: Nodes, Edges and Average Edge per Node from Ripple Dataset

Dataset Amount of Nodes Amount of Edges Average

Static 67149 199547 2.97
Dynamic 93502 331096 3.54

Such low averages indicate that most nodes are not highly connected. Examining the static data it can
be seen that 47842 nodes have a single connection, that is 71%. For the dynamic dataset there seems to
be less single connection connectivity, 58037 nodes have a single connection. Making the amount of single
connected nodes 62%. Having more such large fraction of the network connected with a singular other node
demonstrates that the distribution of connections for non-singular connected nodes in the network must be
much higher.

For nodes connected to less then 12 other nodes the distribution can be seen in fig A.1. Within the his-
togram range of maximum 12 connected nodes more than 99% of the nodes fall into this category. This
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indicates that the connectivity of the ripple PCN during 2013−2016 was rather low. A graph having such low
connectivity means that to create a graph curtain nodes must have a very high connectivity.

Figure A.1: Node connectivity distribution pulled from the static and dynamic dataset used by Roos

Table A.2: 100 Most Connected Nodes

Dataset Amount of Edges Percentage of Edges Total Max Min

Static 96639 48.43% 12506 28
Dynamic 153542 46.37% 21363 74

Modeling the node connectivity distribution one will need to consider the low amount of connectivity
found in the ripple dataset. With such low connectivity between the nodes, the network becomes vulnerable
to attacks and failures if the top tier connected nodes were to fail. This paper does not look into the effects
of this on the stability of the node network, however modeling only a low connectivity graph may not fully be
indicative of how PCNs should and will be created in the future. Creating graphs with super high connectivity
would also not be indicative of how PCNs may work, seeing as currently the data shows that when users
connect to a PCN, they will connect to the network via a highly connected node.

A.0.2. Channel Capacity
The amount and type of payments that can be made on a network are dependent on the channel capacity. If
a network has a low channel capacity on most links then high capacity payments cannot be made. Analyzing
the channel capacity graph from the ripple dataset it becomes apparent that not all edges in the network have
a capacity. From table A.1 it was shown that the static data set had a total of 199547 edges, however the capac-
ity dataset has only managed to establish 98625 edges with a capacity that is above 0. For the dynamic dataset
for only 8627 nodes a capacity was found, though 165548 data points were in the file and in the network graph
331096 edges exist. This could be that more capacity is added dynamically over time.

Table A.3: Link Capacity found in Ripple dataset

Dataset Average Capacity of Link Max Capacity Min Capacity Edges with Capacity

Static 1.1e36 1.1e41 8.39e −18 98625
Dynamic 8.39e18 7.23e22 1e −18 8627

Taking this data at face value and making assumptions from this data to translate to running simulations
does not seem fully plausible. The reliability of this part of the data seems questionable. The max capacity
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of the static dataset is 1.1e41, according to coinmarketcap the max supply of ripple is 1e11. Meaning that the
max capacity of this data set far exceeds the maximum amount of ripple available on the market. Assuming
these data points are errors it is easy enough to filter out these values. The data is filtered twice separately
one at the max supply of 1e11 and once again at 1e9, this last value was taken due to it representing roughly
$10,000,000. Seeing as such technology is relatively new, most nodes would not set-up such high amount of
capacity between one another.

Table A.4: Link Capacity found in Ripple dataset filtered 1e11

Dataset Average Capacity of Link Max Capacity Edges with Capacity Total Sum Ripple

Static 640e6 9.6e10 83633 53e12
Dynamic 19.8e6 7.2e10 8534 169e9

Table A.5: Link Capacity found in Ripple dataset filtered 1e9

Dataset Average Capacity of Link Max Capacity Edges with Capacity Total Sum Ripple

Static 65e6 960e6 73578 4.8e12
Dynamic 495e3 723e6 8522 4.2e9

After extreme values have been filtered out of the graph the values in table A.5 still shows that the sum
of capacity on the links exceeds the maximum amount of ripple available. The dynamic graph stays below
the maximum capacity however it has significantly less edges accounted for. Filtering out just the values that
go above the maximum amount of available ripple as in table A.4, these values also are well above what is
expected. Due to these values seemingly being so off, no distribution nor conclusions for real world capacity
links can be gathered.

A.0.3. Value of Transactions
An important aspect of PCN is that users can exchange currency for services or goods. Examining the rip-
ple dataset for transaction amounts should give a good indication of the amount of currency that is being
exchanged and in what volumes this usually occurs. From that data one could construct a value transaction
distribution, allowing simulations to run synthetic transactions that reflect transaction amounts from users
of a PCN.

Table A.6: Transactions from Ripple Dataset

Dataset Average Transaction Median Transaction Max Transaction Number of Transactions

Static 2.2e11 3.0 7.232e17 1e6
Dynamic 1.8e17 0.0 7.23e22 800819

The table A.6 represents the raw data from the data sets. Averages for both static and the dynamic data
set are above the limit of ripples available, 1e11. Secondly the median of these datasets is very low. For the
dynamic dataset the median is 0, thus no currency is being transacted and for the static dataset it is 3. This
suggests that the dataset has transactions that are trying to transact more than possible and transactions that
do not transact anything. Assuming the users of the ripple PCN, are unable to do either of these things. One
could filter out values above plausible limits and remove transactions that do not transfer anything.

Table A.7: Transactions from Filtered Ripple Dataset

Dataset Average Transaction Median Transaction Max Transaction Number of Transactions

Static 13562 3 7.7e8 999199
Dynamic 26834 0 .9e8 800229

• Talk about many small transactions

• exponential distribution
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• transactions with super small payments

Figure A.2: Transaction distribution
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