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Abstract 

This research was aimed to assess the potential of a radial basis function (RBF) approximation method 

against the dislocation substructure-based constitutive model in predicting high-temperature 

deformation behavior of the AA7020 aluminum alloy. Hot compression tests were performed over a 

range of strain rate of 0.1-100 s-1 and a range of temperature of 350-500 oC up to a strain of 0.6. The hot 

deformation behavior of the alloy was first described by a substructure kinetic-based constitutive 

equation, with the effects of strain, strain rate and temperature together with dynamic recovery 

parameters taken into consideration. A RBF approximation method was then developed to model the 

flow behavior of the material. The RBF model, as a kind of novel mesh-free function estimation 

approach, was trained and tested with the obtained datasets from the hot compression tests. The 

performance of the developed analytical and neural computational models was evaluated using 
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statistical criteria. The results showed that the RBF model was more proficient and accurate in 

predicting the hot deformation behavior of this aluminum alloy than the substructure-based constitutive 

model. 

Keywords: Radial Basis Function; Hot deformation; Constitutive equation; Aluminum alloy 

1 Introduction 

7000 series aluminum alloys with Zn and Mg as the major alloying elements possess an excellent 

combination of strength and fracture toughness, as well as good stress corrosion cracking (SCC) 

resistance, and are thus extensively used in the aircraft and aerospace industries (Deng et al., 2011; 

Oliveira et al., 2004). Hot workability of these alloys is affected mainly by their microstructure 

characteristics that are primarily determined by the Zn/Mg ratio and Cu concentration (Jin et al., 2009). 

The evolution of microstructural characteristics during hot deformation is governed by the 

thermomechanical conditions applied and the stacking fault energy (SFE) values of the alloys 

(Humphreys and Hatherly, 2012). Hence, the studies on the hot deformation behavior and associated 

microstructural changes at elevated temperatures are of fundamental importance for optimized 

processing of 7000 series aluminum alloys. 

The hot deformation behavior of a particular aluminum alloy is often related to a number of 

metallurgical phenomena, such as work hardening, dynamic recovery (DRV), dynamic recrystallization 

(DRX), precipitation hardening, superplasticity and flow instability (Holm et al., 2003; Liu et al., 2010). 

The relationships between high-temperature flow stress and these metallurgical phenomena are 

complex and non-linear, which makes reliable prediction of the hot workability of an alloy of interest 

intricate. A considerable amount of research has recently been performed in this regard and different 

approaches, such as analytical (Mirzadeh and Parsa, 2014; Shalbafi et al., 2017; Wen et al., 2015), 

numerical (Haghdadi et al., 2016; Huang and Logé, 2017; Zouari et al., 2016) and artificial intelligence 



3 
 

(Ashtiani and Shahsavari, 2016; Yao et al., 2014; Zhao et al., 2014) models, have been used to predict 

the hot deformation characteristics of different alloys at elevated temperatures. Although many of 

these methods are able to yield good results for describing deformability, each of these methods has its 

own shortcomings. Physically based analytical models, based on the kinetics of dislocation motion and 

accumulation, for example, need a deep understanding of the plastic deformation mechanisms involved 

in hot deformation which control the generation and development of the substructure and are affected 

by the temperature and strain rate applied.  

Over the last ten years, meshless methods have attracted a lot of attention in the research community 

and gained significant importance for providing numerical solutions to various types of engineering 

problems. Radial basis function (RBF) is an efficient method for approximating or interpolating 

multidimensional scattered data, since the method is meshless and can be remarkably accurate. RBFs 

have been applied in other areas in addition to the interpolation of scattered data on subsets of 

multidimensional space (Fasshauer, 2007). In comparison with the mesh-based methods, such as finite 

element method (FEM), finite volume method (FVM) and finite difference method (FDM), the meshless 

methods use a set of random or uniform points which are not interlinked in the form of mesh 

(Fasshauer, 2007). The RBF methods may be considered as a sort of compromise between FEM and the 

pseudo-spectral (PS) methods (Buhmann, 2003). The RBF methods are based on expansion into the basis 

functions that have a spatial location as with FEM. By studying sample data, RBF-based computation can 

not only preserve high accuracy and be adaptive while facing non-linear data, but also learn data 

patterns and generalize its learned knowledge (Wendland, 2004). 

In the past years, a number of investigations have been carried out to study the hot deformation, 

related annealing phenomena and microstructural evolution of some typical aluminum alloys. 

Processing maps of Al alloys have been used to assess the efficiency of power dissipation and 

metallurgical instability in order to optimize hot working conditions (Lin et al., 2013; Raj, 1981; 
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Srinivasan et al., 2008; Wang et al., 2015). The kinetics of DRV and DRX of many Al alloys has been 

investigated as well (Blum et al., 1996; Hausselt and Blum, 1976; Sakai et al., 2009). In addition, some 

phenomenological and physically based constitutive models have been developed to predict the 

recrystallization, grain and subgrain growth of these alloys using Monte Carlo simulation (Eivani et al., 

2014; Eivani et al., 2012; Radhakrishnan et al., 1998; Shen et al., 2007). A hybrid finite element-cellular 

automaton method using probabilistic models has been utilized to analyze the static recrystallization  

(SRX) behavior (Raabe and Becker, 2000; Salehi and Serajzadeh, 2012). Their accuracies depend on the 

physical assumptions made.   

Despite the research to model the hot deformation behavior and microstructural evolution of some Al 

alloys, dislocation substructure-based constitutive models have not been developed to accurately 

describe the high-temperature deformation characteristics of aluminum alloys with high SFE values. In 

the present research, a substructure-based constitutive model and a RBF model were developed to 

describe and to predict the hot deformation behavior of the AA7020 aluminum alloy. Deformation 

temperature, strain rate and strain were used as input datasets of the models and the flow stress was 

assumed to be the output. The predictability of the RBF model was evaluated against the substructure-

based constitutive model in terms of relative error R2 and average root mean square error (RMSE).  

2 Experimental procedure 

As-extruded AA7020 aluminum alloy was received with a diameter of 48 mm. Table 1 gives the chemical 

composition of the alloy used. The homogenized ingot was machined to cylindrical specimens with a 

diameter of 10 mm and a height of 12 mm. Compression tests were carried out using a Gleeble 

thermomechanical simulator at temperatures of 350, 400, 450 and 500 oC and strain rates of 0.1, 1, 10, 

25, 45 and 100 s−1. The specimens were compressed up to a strain of 0.6 and then quenched in water 

immediately. Isothermal compression tests were repeated at least twice at each condition. The 
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specimen was heated to a desired deformation temperature at a heating rate of 10 oC/s and held at that 

temperature for 100 s in order to reduce thermal inhomogeneity. To minimize the friction effect, 

graphite sheets with a thickness of 0.1 mm were inserted between the specimen and anvils.  

The as-deformed microstructure was revealed on the section parallel to the compression axis across the 

centerline, Samples were prepared by using the conventional methods for the microstructural study. 

Observation was made with a scanning electron microscope equipped with an EBSD detector. 

Table 1: Chemical composition of the AA7020 aluminum alloy used in this research. 

Element Si Fe Cu Mn Mg Zn Ti Cr Zr Al 

wt.% 0.31 0.28 0.2 0.34 1.24 4.36 0.001 0.1 0.08 Base 

3 Results and discussion 

3.1 Microstructural evolution during hot deformation 

Fig. 1 (a) shows the microstructure of the AA7020 aluminum alloy before the hot compression test. It 

can be observed that the initial microstructure is composed of a coarse grain structure with an average 

grain size of about 250 µm. The grain structure of the samples after hot deformation are shown in Figs. 1 

(b) to (d). It can be seen that the microstructures, regardless of the deformation conditions, are 

composed of deformed grains. Recrystallized grains, to be detected as fine circular ones, are hardly 

observed. The grain structure and the substructure of the alloy can affect its flow stress during hot 

deformation. In order to be able to precisely estimate the flow stress of the alloy during deformation, it 

is important to ensure that the microstructure is recrystallized or elongated after deformation. Indeed, 

since the alloy is one with high SFE, if the microstructure is not recrystallized, it can be concluded that a 

substructure exists. In order to make sure, the EBSD map of the sample deformed at 450 C and strain 

rate of 0.1 s-1, is shown in Fig. 2.  
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(a) 

 

(b) 

 

(c) 
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(d) 

Fig. 1: (a) Initial microstructure of AA7020 alloy prior to deformation and after deformation at 

(b) 400 C and 1 s-1, (c) 450 C and 1 s-1 and (d) 500 C and 1 s-1. 

Substructure of the sample deformed at 450 oC and a strain rate of 0.1 s-1 is shown in Fig. 2. It can be 

seen that subgrains with low angle grain boundaries (white lines) are distributed throughout the as-

deformed microstructure. The fact that the substructure is formed in this alloy during hot deformation 

in addition that the microstructure was not recrystallized indicates that the flow stress of this material 

during hot deformation may be precisely predicted using substructure based model.  

 

Fig. 2: The substructure formed in a sample deformed at 450 oC and a strain rate of 0.1 s-1. 
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3.2 Flow stress of the material during hot deformation 

The true stress–true strain curves obtained from the hot compression of the AA7020 aluminum alloy are 

shown in Fig. 3. As can be clearly seen, flow stress rises rapidly at the initial stage of deformation and 

then stays at a constant level after the maximum stress, called saturated stress, is reached. Retention of 

flow stress at a constant level with increasing plastic strain at almost all the deformation conditions 

applied indicates dynamic flow softening as the main restoration mechanism. In principle, hot 

deformation entails competitive phenomena of dynamic work softening and work hardening. At the 

commencement of high-temperature deformation, dislocation density intensely increases due to strain 

hardening, leading to quick increases in flow stress. As deformation continues, a restoration 

phenomenon, such as DRV and/or DRX is triggered to take place, which can balance or partially 

compensate the effect of work hardening, and finally the true stress remains unchanged with rising true 

strain. 
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Fig. 3: Stress-strain curves of AA7020 at different strain rates and temperatures of (a) 350, (b) 

400, (c) 450 and (d) 500 oC. 

In the case of the AA7020 aluminum alloy with high SFE, the increase in flow stress at the initial stage of 

deformation can be attributed to the increases in dislocation density, which consequently, leads to cell 

formation, dislocation tangles and finally the formation of subgrain boundaries as a combined result of 

strain hardening and dynamic recovery (DRV). The values of flow stress and steady-state stress decrease 

with increasing temperature and decreasing strain rate applied during the hot compression tests. When 

strain rate is fixed, with increasing deformation temperature, dynamic softening becomes more obvious, 

leading to the decreases in true stress. As temperature increases, DRV accelerates and the critical strain 

for the development of a subgrain structure decreases. Moreover, at a higher temperature, the mobility 

of grain boundaries increases, which results in an upturn in the kinetics of DRV. On the other hand, at a 

fixed temperature, as strain rate increases, the flow stress increases, which indicates that this high SFE 

material is quite sensitive to strain rate. As a matter of fact, if deformation occurs in a short period of 

time, there is insufficient time for dislocation movements and then the rate of DRV decreases and flow 

stress increases.  

It is well known that dislocation generation and movements during deformation lead to strain 

hardening, whereas dislocation rearrangement and further annihilation are caused by restoration 

through DRV, possibly followed by continuous dynamic recrystallization (CDRX). However, at the 

deformation conditions applied in this research, i.e., high temperatures and low strain rates, the initially 

formed low angle subgrain boundaries get enough required activation energy and time to transform 

themselves into high angle grain boundaries, which consequently yields new strain-free grains. For this 

Al alloy with high SFE, subgrain structures with low angle grain boundaries are formed during 

deformation due to proficient DRV and they gradually develop into high angle grain boundaries at larger 

strains. 
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The transformation of low angle subgrain boundaries into high angle grain boundaries usually takes 

place through homogeneous increases in misorientation of low angle boundaries at a relatively high 

deformation temperature by progressive lattice rotation near grain boundaries or by the development 

of micro-shear bands (MSBs) at higher plastic strains (Humphreys and Hatherly, 2012). These 

mechanisms have been detected during thermomechanical processing of materials other than Al alloys 

(Gourdet and Montheillet, 2000; Lin et al., 2013), such as 304-type austenitic stainless steel 

(Yanushkevich et al., 2015) and microduplex stainless steel (Tsuzaki et al., 1996). For Al alloys, however, 

CDRX takes place by progressive accumulation of dislocations into low angle subgrain boundaries, which 

subsequently intensifies their misorientations and in the end high angle grain boundaries are formed 

when misorientation angles reach a critical value (15°).  

3.3 Substructure-based constitutive equations 

During thermomechanical processing of alloys, two key phenomena, i.e., work hardening and work 

softening, concurrently take place due to the generation and annihilation of dislocations, respectively. 

The dominant phenomenon and related mechanism dictate the flow stress variation trend. The 

occurrence of work hardening results in an increase in dislocation density. On the other hand, work 

softening is a thermally activated phenomenon, causing decreases in overall system energy via two 

major restoration mechanisms, namely DRV and DRX. DRV, which is much more overriding in high SFE 

materials than DRX, such as the AA7020 alloy in this investigation, fulfills the mentioned task by 

dislocation rearrangement and further cell formation in the substructure. The resultant dislocation 

density distribution depends on both work hardening and work softening rates.  The rate of dislocation 

density (ρ) variation with strain ε can be expressed as (Jonas et al., 2009; Mostafaei and Kazeminezhad, 

2012):  

𝑑𝜌

𝑑𝜀
= ℎ − 𝑟𝜌                                    (1) 
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where h is the work hardening rate and r is the dynamic softening rate at any specified deformation 

conditions. By integrating Eq. 1, ρ can be expressed as a function of h, r and ε, considering C1 as the 

integration constant: 

𝜌 =  
ℎ

𝑟
−  

𝐶1

𝑟
exp(−𝑟𝜀)                   (2) 

Assigning the value of ρ0 to the dislocation density just before high-temperature deformation (𝜀 = 0), 

the definite integration constant can be determined and Eq. 2 can be rewritten as: 

𝜌 =  𝜌0 exp(−𝑟𝜀) +  
ℎ

𝑟
 [1 − 𝑒𝑥𝑝(−𝑟𝜀)]                                       (3) 

According to the correlation between dislocation density and stress as expressed in Eq. 4, the 

dependence of high-temperature flow stress 𝜎 and yield stress σ0 on ρ can be defined by Eqs. 5 and 6 

with a slight modification (Nes et al., 2002): 

𝜎 =  𝛼𝐺𝑏√𝜌                                       (4) 

𝜌 =  (
𝜎

𝛼𝐺𝑏
)

2

                                        (5) 

𝜎0 =  𝛼𝐺𝑏√𝜌0                                  (6) 

 

In the abovementioned mathematical descriptions, α is a constant value typically of the order of 0.5, 

and G and b are the physical terms for describing shear elastic modulus and Burger’s vector.  

During the hot compression tests, the flow stress of this high SFE Al alloy approaches a constant value, 

named DRV saturated stress 𝜎𝑅𝑉, after a certain amount of deformation. By considering Eqs. 3 and 4, Eq. 

7 for saturated stress is written: 
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𝜎𝑅𝑉 =  𝛼𝐺𝑏 √
ℎ

𝑟
                                     (7) 

By re-ordering and substituting of the stress and dislocation density terms in Eqs. 4 to 7, the flow stress 

of a material with DRV dominant deformation behavior can be expressed as: 

𝜎2 = 𝜎𝑅𝑉
2 + (𝜎0

2 − 𝜎𝑅𝑉
2 ) exp(−𝑟𝜀)              (8) 

Using Eq. 8, the kinetics of DRV for the AA7020 aluminum alloy during thermomechanical processing can 

be identified. For this, three key parameters present in Eq. 8, i.e., saturated stress, yield stress and 

dynamic softening rate, must be recognized. By differentiating Eq. 8, Eq. 9 is obtained: 

𝑑𝜎

𝑑𝜀
= 0.5 ×  [ 𝜎𝑅𝑉

2 + (𝜎0
2 −  𝜎𝑅𝑉

2 ) exp(−𝑟𝜀)]−0.5 ×  (𝜎0
2 −  𝜎𝑅𝑉

2 ) exp(−𝑟𝜀) 𝑟    (9) 

Considering Eq. 8, the term 
𝜎2 − 𝜎0

2

𝜎𝑅𝑉
2 − 𝜎0

2 can be replaced by the exponential term of 𝑒𝑥𝑝(– 𝑟𝜀) and Eq. 9 can 

be rewritten as Eq. 10: 

𝑑𝜎

𝑑𝜀
= 0.5𝑟 (

𝜎𝑅𝑉
2 −𝜎2

𝜎
)                                (10) 

From now on, the work hardening rate will be represented by the term θ based on Eq. 11 and hence, Eq. 

10 can be used in the form of Eq. 12: 

𝜃 =  
𝑑𝜎

𝑑𝜀
                                                    (11) 

𝜎
𝑑𝜎

𝑑𝜀
= 0.5𝑟 (𝜎𝑅𝑉

2 − 𝜎2)                                (12) 

By plotting θ against 𝜎2 at all the hot working temperatures of 350, 400, 450 and 500 oC (Fig. 4) and by 

using the mentioned terms of Eq. 12, the terms of −0.5r and 0.5𝑟𝜎𝑅𝑉
2  can be calculated as the slope and 

the intercept of the graph, respectively.   
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Consequently, by simple calculations, r and σRV values at all deformation temperatures and strain rates 

can be determined. Tables 2 and 3 list the dynamic softening rate and saturated stress values of the 

AA7020 alloy, respectively.  

 

Fig. 4: θσ – σ2 curves for AA7020 at different strain rates and temperatures of (a) 350, (b) 400, 

(c) 450 and (d) 500 oC. 

After that, the plastic strain where the softening phenomenon begins to get activated after initial work 

hardening can be found by identifying the point, at which the strain-stress curve shows a tendency to 

become plateaued. This is representative of dislocation re-arrangement and cell formation at DRV steps 

after the initial formation of dislocation tangles through work hardening.  The resulting plastic strains in 

all deformation conditions can be found in Table 4. As the values of r and σRV at different deformation 

conditions were calculated at the previous step, the yield stress 𝜎0 could be estimated using regression 

analysis of the experimental stress-strain curves (Table 5). 
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Increasing strain rate may lead to two key effects of higher deformation heating and enhanced 

work hardening due to stress increase, which act reciprocally but on the opposite side of each 

other’s and the dominance of them will be changed at different temperatures regarding activating 

mechanisms. It can be assumed that at 350
o
C, the process of thermally-activated cross-slip and 

climb of dislocations become more active at low and high strain rates with respect to mild strain 

rates, at which, a rise in strain rate from 25 to 45 s
-1

 increases the dislocation generation rate, 

drives the formation of less recovered substructure and so effectively reduces the time to reach 

dislocation density in the steady-state region of DRV. On the other side at relatively higher 

temperatures of 450
o
C, the thermal circumstance is good enough for having a relatively steady 

recovery rate and increasing strain rate from low 25s
-1

 to 45s
-1

 facilitate the restoration 

phenomena by creating more potent zones for DRV. But, by more increasing of strain rate to 

extreme values of 100 s
-1

at very high temperature persuasive conditions leads to both higher 

dislocation  mobility and generations that impose some localized strain localization and flow 

instability that give rises to decreasing r by consuming energy in negative route. In the end, both 

the number and the size of dislocation cells increase simultaneously with the increase of strain 

rate, which is conducive to balancing the effects of softening and work hardening with different 

extent of affection on parameter of r. 

In order to model and describe the flow stress-strain curves of the AA7020 alloy with DRV as the main 

restoration mechanism, the computed r, σ0 and σRV values for all the deformation conditions were filled 

in Eq. 8. The main advantage of using such an approach and formulation in modeling the flow stress-

strain curves of the alloy is considering both the effects of work hardening and DRV. It can be clearly 

seen that the predicted flow curves are in good agreement with the experimental data extracted from 

the hot compression tests, particularly for low stress levels where the major mechanism is DRV. 

However, at relatively high stress levels and at final deformation steps, non-conformity is seen between 
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the predicted and experimental stress values, which can be attributed to the following two factors. The 

first factor is the friction on both ends of buckled cylindrical specimens. The second factor is the 

diminishing role of DRV at relatively high strains and increasing misorientaions between adjacent 

subgrains, which finally gives rise to gradual activation of CDRX. Moreover, it can be recognized that the 

predicted maximum flow stress is almost equal to the saturated stress.  

As another proof of the efficiency and accuracy of the proposed substructure-based model, since the 

curves derived from the constitutive equation of DRV are in good agreement with the results from the 

hot compressions tests, the key softening mechanism for the AA7020 alloy is DRV. Thus, the proposed 

model is accurate and applicable for such a high SFE Al alloy. For evaluating the accuracy and efficiency 

of the analytical dislocation-based model, the cross-validation of the experimental data versus the 

predicted data is shown in Fig. 5. 

Table 2: Values of r at all deformation conditions. 

T (0C) Strain rate (s-1) 

0.1 1 10 25 45 100 

350 4.9 14.5 13.5 20.5 17.4 26.18 

400 16.4 14.6 6.68 20.9 36.7 27.5 

450 30.2 29.4 27.5 17.9 58.8 29.9 

500 7.02 5.9 36.5 19.7 28.2 29.6 

 

Table 3: Values of σRV at all deformation conditions. 

T (0C) Strain rate (s-1) 

0.1 1 10 25 45 100 
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350 65.6 72.1 99.7 114.3 117.7 128.3 

400 50.5 71.8 81.1 93.7 98.7 113.2 

450 36.8 58.3 73.9 74.2 81.6 92.9 

500 29.7 43.5 51.2 56.2 62 69.8 

Table 5: Values of σ0 at all deformation conditions. 

T (0C) Strain rate (s-1) 

0.1 1 10 25 45 100 

350 34.5 51.5 52.5 56.6 68.4 91.6 

400 26.6 51.3 42.7 46.4 57.4 80.9 

450 19.4 41.6 38.9 36.7 47.4 66.4 

500 15.6 31.1 26.9 27.8 36.0 49.9 

Table 4: Values of strain at which dynamic recovery initiates at all deformation conditions. 

T (0C) Strain rate (s-1) 

0.1 1 10 25 45 100 

350 0.122 0.075 0.098 0.085 0.075 0.135 

400 0.102 0.77 0.085 0.087 0.08 0.14 

450 0.113 0.65 0.079 0.078 0.077 0.111 

500 0.093 0.6 0.09 0.76 0.065 0.125 
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Fig. 5: Relationship between the experimental and analytically predicted flow stresses. The solid 

line and the markers show the experimental and predicted results, respectively 

3.4 True stress estimation using radial basis functions 

Mesh-free methods using radial basis functions (RBFs) have been proven to be an advantageous 

problem-solving approach, especially in tackling complex geometry and high dimensional problems. The 

only required input for such methods is the data points distributed in the domain instead of being 

concerned with the connectivity of the nodes (such as FEM). Mesh-free methods using RBFs were first 

introduced by Hardy (Hardy, 1971) in 1971, taking advantage of the multiquadric (MQ) function as the 

operating radial basis function. After the initial development of the model, Franke (Franke, 1982) 

examined various methods to solve two-dimensional scattered-data interpolation problems and 

concluded that Hardy’s approach was the most efficient for modeling. It was also demonstrated that the 

interpolation matrix of many RBFs are invertible, which can be considered as the major benefit of these 

functions.  

RBFs tend to approximate multivariable (also called multivariate) functions by using a linear combination 

of terms based on a single univariate function that is called the radial basis function. In the fundamental 
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concept of the mesh-free approximation methods and according to Eq. 13, a multi-dimensional dataset 

can be transformed into a real integer using the continuous radial basis function 𝜙: 

𝜙: ℝ𝑚 →  ℝ                                     (13) 

A radial basis function in ℝ  space is a function of the form 𝜙(||𝐱 − 𝐱𝑗||) where 𝐱, 𝐱𝑗 ∈ ℝ𝑚 and ||. || 

denote the Euclidean distance between 𝐱 and 𝐱𝑗 s vectors.  

If one chooses 𝑁 points {𝐱𝑗}𝑗=1
𝑁  in ℝ𝑚, by subsequent use of the interpolation function of s(𝐱) = 

∑ ϕ(||𝐱 −  𝐱𝑗||)𝑁
𝑗=1  𝑗 ∈  ℝ, a one-dimensional output is yielded.  

Different kinds of radial basis functions (𝜙) that have been utilized in function estimation and data 

interpolations are listed in Table 6. 

Table 6: Definitions of some types of RBFs 

Name  Definition 

Gaussian (GA) 
ϕ(r) = e

−r2

μ2  

Multiquadric (MQ) ϕ(r) = √r2 + μ2 

Inverse Multiquadric (IMQ) 
ϕ(r) = (r2 + μ2)−

1
2 

Inverse Quadric (IQ) ϕ(r) = (r2 + μ2)−1 

Cubic ϕ(r) = |r|3 

The term r = (||𝐱 − 𝐱𝑗||) symbolizes the distance between x and the 𝑗–th nodal point  𝐱𝑗 and the  μ 

signifies the shape parameter. Parameter μ is a parameter for controlling the shape of functions which 

affects the convergence rate and prevents the model from localization. This category of mesh-free 

methods are usually applied to approximate functions or data which are only known at a finite number 

of points (or too difficult to evaluate) so that evaluation of the approximating function can take place 

efficiently. The methods usually work in 𝑛 dimensional Euclidean space which is called Rn fitted with the 
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Euclidean norm ∥⋅∥.  There are 𝑚 points in this space at which the function to be approximated is known 

and can be written as 𝐱 1, 𝐱 2… 𝐱 m. These points are usually assumed to be all different from each other; 

otherwise the problem will become singular when interpolation is used. Both n and m are positive 

integers. In modeling thermomechanical processing, every xi is the deformation condition that 

influences the material response at a given deformation condition, i.e., temperature, strain rate and 

strain. Any given sets of hot defamation parameters can be transformed to a radialized value using 

functions of  f(𝐱1), f(𝐱2)….f(𝐱m) based on the abovementioned concept that comes from the 

function 𝑓: 𝑅𝑚 → 𝑅. The established function may be entirely unidentified, excluding data at m points or 

too difficult or time-consuming to evaluate. The schematic paradigm of the RBF approach for the 

estimation of function values at a specific domain with some known values is illustrated in Fig. 6.  

 

Fig. 6: Schematic demonstration of different steps of the RBF approach: (a) scattered data 

within a 2-D region (b) radial basis functions, here ‘rotated’ Gaussian RBF and (c) linear 

combination of the basis function that fits all the data. 

To approximate flow stress at any deformation condition, true stress at an arbitrary point 𝑥 (which 

represents a set of temperature - strain rate - strain) can be written as a linear combination of m basis 

functions listed in Table 6, as can be seen in Eq. 14:  

𝜎(𝐱) ≈ 𝑆(𝐱) = ∑ 𝑐𝑗ϕ(||𝐱 −  𝐱𝑗||)𝑚
𝑗=1                    (14) 
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where m is the number of data points, {𝑐𝑗}𝑗=1
𝑚   are the set of coefficients to be determined. In this 

research, the Gaussian radial basis function with µ=0.5 was employed in the estimation model to predict 

flow stress from a set of deformation parameters for the AA7020 Al alloy (Fig. 7). It should be noted that 

the expansion coefficients 𝑐𝑗 are determined by the interpolation conditions s(𝐱𝑖) = 𝑓𝑖.  

From a mathematical point of view, it can be expressed by solving a linear system of Eq. 15: 

Ac = f                                                           (15) 

where the entries of the matrix A, c and f are defined according to Eqs. 16 to 18: 

𝐴𝑖,𝑗  =  𝜙(||𝐱𝑖 −  𝐱𝑗  ||)1≤𝑖≤𝑚,1≤ 𝑗≤𝑚                (16) 

𝑓 = [𝑓1  ···  𝑓𝑚]𝑇                                                (17) 

𝒄 = [𝑐1  ···  𝑐𝑚]𝑇                                                 (18) 

The matrix notation of Eq. 15 can be defined as Eq. 19: 

[

𝜙(‖𝐱1 − 𝐱1‖) 𝜙(‖𝐱1 − x2‖) ⋯

𝜙(‖𝐱2 − 𝐱1‖) 𝜙(‖𝐱2 − 𝐱2‖) ⋯

𝜙(‖𝐱1 − 𝐱𝑚‖

  𝜙(‖𝐱2 − 𝐱𝑚‖)
⋮          ⋯                ⋱

𝜙(‖𝐱m − 𝐱1‖) 𝜙(‖𝐱m − 𝐱2‖) ⋯
⋮

𝜙(‖𝐱m − x𝑚‖)

] [

𝑐1
𝑐2

⋮
𝑐𝑚

] = [

𝑓1

𝑓2

⋮
𝑓𝑚

]          (19) 

It is worthy of note that the estimation of 𝑓 (𝑥) is unique if the matrix A is nonsingular. After solving the 

abovementioned linear system, the c vector was determined and the interpolation estimation function 

could be expressed according to Eq. 14 for describing flow stress as a function of strain, strain rate and 

temperature. The scatter map of the predicted and measured flow stresses is displayed in Fig 8.  
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Fig. 7: Gaussian radial basis function with µ=0.5 used in this research. 

 

Fig. 8: Relationship between the experimental and RBF predicted flow stresses. The solid line 

and the markers show the experimental and predicted results, respectively. 

Radial basis function (RBF) methods can provide excellent interpolating operator for high 

dimensional data sets of poorly distributed data points (scarce and unevenly distributed points). For any 

finite data set in any Euclidean space, one can construct an interpolation of the data by using RBFs, even 
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if the data points are unevenly and sporadically distributed in a high dimensional Euclidean 

space. Implementing RBF methods requires choosing which basis functions to use, and many basis 

functions are defined by a shape parameter which must also be chosen. The choices made have a 

tremendous impact on the accuracy of the results and the numerical stability of the method used. 

Among radial basis functions methods, Gaussian RBF methods, are one of the most referenced in 

literature for solving wing weight fitting problems. For our data set, Gaussian RBF methods presented 

the most desirable results. Many RBF methods contain a free shape parameter that plays an important 

role for the accuracy of the method. Different shape parameters correspond to different approximations 

resulting from RBF interpolation. Finding the shape parameter that will produce the most accurate 

approximation.  Optimal shape parameter values are found experimentally and these values are written 

for interpolating problems. Theoretically, RBF methods are most accurate when the shape parameter is 

small. However, the use of small shape parameters results in system matrices that are very poorly 

conditioned. The by now very established fact that in RBF methods is that we cannot have both good 

accuracy and good conditioning at the same is known as the uncertainty principle. About the case that 

why one should use a "relatively small" shape parameter. The reason is to offer a little bit extra 

smoothness, as a too large shape parameter won't work. It should be pointed out that generally the 

choice of the optimal shape parameter in RBFs is still an open problem. Determination of suitable shape 

parameter is extracted experimentally for GA- RBFs used in this study, which is 0.5. 

3.5 Comparison between the proposed models  

To evaluate the predictive proficiency of the developed RBF approach, comparisons between the 

experimental and predicted flow stresses by RBF, as well as substructure-based constitutive model were 

made. Fig. 9 shows the predicted and experimental high-temperature stress-strain curves at all the 

testing conditions. Noticeably, the true stresses predicted by the RBF approximation method are closer 
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to the experimentally measured values than those calculated by using the dislocation-based constitutive 

model. 

During deformation at high strain rates and low temperatures, the substructure-based constitutive 

equation could not correctly model the flow stress, while the RBF method could predict the flow stress 

precisely. According to the strain-stress variation in the predicted curves derived from the constitutive 

and RBF models, it could be deduced that the dynamic softening phenomenon as a result of DRV was 

dominant at all temperatures and strain rates. 

 

Fig. 9: Comparisons between predicted and experimental stress-strain curves of AA7020 at 

different strain rates and temperatures of (a) 350, (b) 400, (c) 450 and (d) 500 oC.  (Solid black, 

dotted blue and dotted red represent experimental, constitutive and RBF predicted results, 

respectively).  
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In the application of the constitutive model, the relative error between the predicted and experimental 

data could be caused by the overestimation of the work hardening phenomenon. As a result, the 

predicted flow stresses curves from the constitutive model appeared to be higher than the experimental 

ones. In comparison with the substructure-based constitutive model, the RBF model could accurately 

describe the high-temperature deformation behavior of this Al alloy and did not involve complex 

physical mechanisms. This can be inferred from the cross-validation graphs of the predicted and 

experimental flow stresses shown in Fig. 6 and 8. It is obvious that the predictive capability of the RBF 

model is higher than that of the constitutive model. In order to further compare the predictive 

capabilities of the RBF and constitutive models, the correction coefficient R2 and RMSE values between 

the measured and predicted true stresses are listed in Table 7. It can be seen that the correction 

coefficient R2 values of the constitutive and RBF models are 0.978 and 0.997, respectively, which 

indicates that the predicted and experimental data are in excellent agreement with each other. In 

addition, the RMSE value of the RBF model is 2.213, which is much smaller than that of the constitutive 

model. This confirms that the prediction efficiency and accuracy of the RBF model are superior to those 

of the constitutive model. In other words, the mesh-free approach using the RBF estimation model can 

more exactly describe the hot deformation characteristics of the studied aluminum alloy. 

Table 7: Statistical criteria for comparing the performance of the RBF and constitutive models. 

Approach R2 RMSE 

Constitutive model 0.978 3.056 

RBF 0.997 2.213 

4 Conclusions 

In this research, the hot deformation characteristics of the AA7020 aluminum alloy were investigated by 

using two modeling approaches. The results obtained from hot compression tests clearly indicated that 
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the developed subgrain substructure due to DRV was influenced by two major deformation parameters, 

i.e., temperature and strain rate, and subsequent CDRX occurred from the subgrain structure. Flow 

stress decreased with increasing deformation temperature and decreasing strain rate. By making use of 

the true stress-strain curves, the radial basis function (RBF) model was developed for assessing the hot 

deformation behavior of the aluminum alloy. It was demonstrated by using the statistical criteria that 

the proposed RBF model could correctly and truthfully predict the flow stress-strain curves of the alloy 

at the all deformation conditions. Compared to the substructure-based constitutive model, the RBF 

method showed outstanding predictive potential and could be implemented for describing the 

thermomechanical behavior of the AA7020 aluminum alloy. 
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