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a b s t r a c t

Finding the best purification process is a challenging task. Recently, mechanistic models that can accel-
erate the development of chromatographic unit operations, the most important purification units,
became widely available. In previous work, several chromatographic models have been linked together
to simulate and optimize integrated processes. However, considering only chromatographic steps may
lead to a suboptimal process. Consequently, the aim of this study was to include models for ultra- and
diafiltration units into the optimization approach to account for buffer exchange steps before or between
chromatography units. This approach was applied to an industrial case, the purification of a monoclonal
antibody, where cation exchange, hydrophobic interaction and mixed mode were the possible chromato-
graphic separation modes. It turned out that only the duration of the total filtration step and the duration
of the ultrafiltration step were crucial variables for the optimization of the ultra- and diafiltration steps.
The ‘best’ in silico purification process was found based on the performance criteria yield and solvent
usage. The purity was required to be at least 99.9%.
� 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The purification of biopharmaceuticals is an area of great inter-
est for current research in academia and industry alike. High qual-
ity assurances are generally required for pharmaceutical products,
which puts pressure on the downstream process. Moreover, costs
of downstream purification units such as chromatography columns
typically do not benefit much from economies of scale but instead
scale at least linearly. Thus, the more is produced upstream, the
higher will be the proportional cost of the downstream process.
Therefore, purification processes might even be the bottleneck of
the whole production process (Gronemeyer et al., 2014). This
increasing importance of the downstream process clearly shows
the need for better development and optimization approaches.

One way to achieve that, is the use of detailed mechanistic
models based on first principles. Currently, these type of models
are widely used for instance for the simulation and design of chro-
matography units (Meyer et al., 2018; Wang et al., 2016; Sellberg
et al., 2015) and allow an easy exploration of the design space
for a specific unit. Prior work has dealt with linking such
chromatography models together and optimizing the resulting
sequences (Nfor et al., 2013; Huuk et al., 2014). In a recent study
(Pirrung et al., 2017), this was even done simultaneously using a
combination of detailed mechanistic models and speed-
enhancing artificial neural networks (ANNs). This novel approach
opened up the way for more complex optimization problems.
However, a downside in all these studies was that only chromato-
graphic separation units were considered and not ultra/diafiltra-
tion (UF/DF) units, which can be placed between
chromatography columns to adjust the buffer conditions and, thus,
could alter the resulting optimal process (Huuk et al., 2014;
Pirrung et al., 2017).

Thus, the aim of this work is to integrate filtration units into the
latter approach, which would extend the general applicability of
the approach greatly. To achieve that, filtration models are imple-
mented and applied in the optimization approach. The purification
of a monoclonal antibody, IgG1, from clarified cell harvest is used
as a test case. Parameters for two chromatographic resins, a cation
exchange (CEX) resin and a mixed mode chromatography (MMC)
resin, were already available (Pirrung et al., 2018). Therefore,
additional model parameters are only determined for one extra
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Fig. 1. Scheme with all considered process options. A maximum of two chromato-
graphic units are allowed as defined by the second constraint in Eq. (2b).

Table 1
Optimization settings with their MATLAB abbreviations in brackets.

Settings Global optimization Local
optimization

Algorithm patternsearch fmincon
Search method (SearchMethod) searchlhs with complete

search
–

Initial mesh size (Initial Mesh
Size)

0.5 –

Mesh contraction
(MeshContraction)

0.5 –

Function tolerance (TolFun) 0.1 1e-6
X tolerance (TolX) 0.01 1e-8
Constraint tolerance (TolCon) – 0.1
Maximum evaluations

(MaxFunEvals)
1000 –

Relative step (FinDiffRelStep) – 1e-3
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hydrophobic interaction (HIC) resin as well as the UF/DF units.
Subsequently, the optimization approach is applied to sequences
of filtration and chromatography units to find the best purification
sequence.

2. Material and methods

2.1. Modelling and optimization

2.1.1. Optimization problem definition
The optimization problem was defined and treated in a similar

manner as described in a prior study (Pirrung et al., 2017). A gen-
eral constrained optimization problem can be described as:

max f x; yð Þ ð1aÞ

s:t: h xð Þ ¼ 0
g x; yð Þ � 0
lb � x � ub; y 2 0;1f g

ð1bÞ

where f is the objective function. The objective function depends on
two type of variables: continuous x variables, which reflect either
operating conditions or design parameters for each unit, and binary
y variables, which define the investigated process sequences. In this
study, the objective function includes the overall process yield and
the overall solvent use, since solvent use is affected by chromatog-
raphy and filtration units. The equality constraints h xð Þ include for
instance mass balances. Other constraints can be defined using
the inequalities gðx; yÞ. Here, the final product purity was defined
to be at least above 99.9%.

This overall problem was split up into smaller problems twice.
First, it was divided into a master problem and subproblems. The
master problem is responsible for generating all possible process
sequences, which is shown by the binary y variables. These vari-
ables tell, which unit operations are in a sequence and their order.
The master problem here was formulated as:

max f ðym;sÞ ð2aÞ

s:t:
P

mym;s � 1P
s

P3
m¼1ym;s � 2P

sym;s � 1 for 1 � m � 3

1� y4;s þ
P3

m¼1ym;sþ1 � 1
1�Pmym;2 þ

P
mym;1 � 1

1�Pmym;3 þ
P

mym;2 � 1
1�Pmym;4 þ

P
mym;3 � 1

ym;s� 0;1f g

ð2bÞ

where subscript m indicates the mode used, m� 1;2;3;4f g meaning
CEX, HIC, MMC and UF/DF. The number of purification steps is given
by s, s� 1;2;3;4f g. The first constraint defines that maximal one unit
can be used per purification step. The second constraint shows that
only a maximum of two chromatography units can be in a process
sequence. The third constraint then defines that each chromatogra-
phy mode can only be included once. Filtration units can be used
more often. However, they can only occur before a chromatography
unit shown in the next constraint. Finally, the last constraints mean
that a unit has to be chosen for all earlier occurring steps. A scheme
with all resulting process alternatives is shown in Fig. 1.

Each generated process sequence than forms its own subprob-
lem. In each subproblem, the operating variables x for each purifi-
cation unit in the specific sequence are optimised simultaneously.
Since this is still a rather complex optimization, the problem was
divided again into a local search and a global search problem.
The global search was performed to generate good starting points
for the subsequent local search increasing the chance to find a glo-
bal optimum. In this study, the global search problem was defined
as

max f ¼ yieldþ 2 � purity ð3aÞ
s:t: h xð Þ ¼ 0
0 � x � 1

ð3bÞ

All variables were normalized, so that their lower boundary is
zero and their upper boundary one. For an easier solution, no non-
linear constraints were included in the global search problem.
Thus, the purity after the final purification unit was treated as an
additional objective. Its importance over the other objectives was
set higher to increase the likelihood of already feasible starting
points for the local search, where purity is used as constraint.
The solvent volume was not yet included in the objective, since this
first optimization is primarily performed to find feasible starting
points for the next optimisation. Potential yield loss in UF/DF
was not taken into account, since the considered product, IgG1,
cannot pass the membrane.

The global optimisation was run 40 times for each process
sequence with random starting points, which were created with
MATLAB’s function lhsdesign (criterion set to correlation). As opti-
misation algorithm patternsearchwas used with searchlhs as search
method performing a complete search. The maximum number of
function evaluations was set to 1000 and an output function was
used, which could stop the search early, if the starting point was
not promising. These and other settings are summarized in Table 1.

The x variables that were optimised for each chromatography
unit were the length of the gradient elution, the length of the extra
elution volume with the final eluent composition, the product pool
cut points and the final salt concentration as shown in Fig. 2. The
starting salt concentration as well as the pH are determined by
the prior processing unit. For the filtration units, it was investi-
gated in Section 3.1 which variables to include.



Fig. 2. Optimization variables for chromatography units.
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During the global optimization, ANNs were used as surrogate
models for the mechanistic models. This allows a faster evaluation
of purity and yield at specific variable values. Since the ANNs
sometimes find solutions that only exist due to inaccuracies in
their own predictions (Pirrung et al., 2017), all starting points were
checked with the mechanistic models. This is also why ANNs were
only used during the global optimization. If the objective function
value was below a specified value they were fed to the next
optimizer.

The local search problem was then defined with the final purity
as constraint and the solvent volume included in the objective:

max f ¼ �Vsolvent þ yield ð4aÞ

s:t: h xð Þ ¼ 0
purity xð Þ > 99:9%
0 � x � 1

ð4bÞ

The solvent volume, Vsolvent , is the sum of solvent used per unit
operation. Both objectives were normalized to give them a similar
importance. The local search algorithm used was fmincon. The
objective and constraint function are approximated by finite differ-
ences. Since the values of these functions are numerical solutions
of ordinary and partial differential equations, the relative step of
the finite difference should not be too small or too big. If it is too
small, it might be for instance that there is no change in the objec-
tive function yet. If it is too big, nonlinearity might influence the
finite difference. A value of 1e-3 was chosen as recommended by
MATLAB for optimization problems including ordinary differential
equations. All settings are summarized in Table 1.

2.1.2. Filtration modelling
The ultrafiltration/diafiltration (UF/DF) process can be

described by a set of ordinary differential equations (ODE) for a
variable volume diafiltration process (Foley, 2013):

dV
dt

¼ a� 1ð ÞJA ð5Þ

dci
dt

¼ ci
V

ri � að ÞJA ð6Þ

dVdiluent

dt
¼ aJA ð7Þ

where a is the ratio between diluent inflow and outflow over the
membrane, a ¼ Q=JA with Q the volumetric flowrate of the diluent,
J the flux over the membrane and A the membrane area. V is the
volume of the solution and ci is the concentration for a compound
i. The rejection coefficient ri defines how well compounds are being
retained by the membrane. For instance for the salt, the rejection
coefficient is 0, because it can freely pass the membrane. If the
added diluent buffer already contains salt (cs;diluentÞ, Eq. (6) needs
to be adjusted as follows to describe the change in salt concentra-
tion (i ¼ s):

dcs
dt

¼ cs
V

rs � að ÞJAþ cs;diluent
V

aJA ð8Þ

The flux J can be calculated with the osmotic pressure model:

J ¼ DP � Dp
lRm

ð9Þ

where l is the viscosity of the permeate stream, Dp is the osmotic
pressure and DP the transmembrane pressure (TMP), which is
defined as:

DP ¼ Pfeed þ Pretentate

2
� Ppermeate ð10Þ

The osmotic pressure can be expressed by a virial expansion. An
expansion with two virial coefficients was chosen; the third coeffi-
cient can be negligible in low concentration ranges (van Reis et al.,
1997). In case of a final formulation step, where much higher con-
centration ranges occur, the third coefficient would need to be
included. Additionally, the spatial variation in transmembrane
pressure would need to be taken into account. This situation was
extensively studied by Binabaji (2015).

p
ci;wallRT

¼ 1
M

þ B22ci;wall þ � � � ð11Þ

where ci;wall is the concentration of protein at the wall or membrane
surface. B22 is the second osmotic virial coefficient. In UF/DF pro-
cesses, a layer forms almost immediately as a result of concentra-
tion polarization, when a solution with macromolecules is to be
filtered (Baker, 2004). Assuming the instantaneous formation of this
layer; ci;wall can be calculated by the stagnant film model (Zydney,
1997):

J ¼ k ln
ci;wall � ci;permeate

ci;bulk � ci;permeate
ð12Þ

where ci;bulk is the protein concentration in the bulk solution assum-
ing that it is well mixed and ci;permeate is the concentration in the per-
meate. The mass transfer coefficient k is defined as the ratio of
diffusivity D to the thickness of the boundary layer. It can be
described depending on the Sherwood number, a commonly used
dimensionless number (Da Costa et al., 1994):

Sh ¼ kdh

D
¼ aRebScc

dh

l

� �d

ð13Þ

where Re is the Reynolds number defined with the density q and
the cross membrane velocity t as Re ¼ qtdh=l. The Schmidt num-
ber Sc can be calculated as Sc ¼ l=qD. The diffusivity D was calcu-
lated using the Young correlation valid for globular proteins (Young
et al., 1980).

The characteristic length of the system is shown as l. The mem-
brane cassette used here is a flat channel with spacers enhancing
mass transfer. For this module geometry, the characteristic length
is the size of one mesh (Da Costa et al., 1994), which can be calcu-
lated as the sum of the mesh opening and twice the wire diameter.
For the C screen type membrane cassettes, these parameters can be
found in recent literature (Lutz et al., 2017). The mesh opening is
thus 350 lm, the wire diameter 270 lm resulting in a total charac-
teristic length of 890 lm. The empirical constants a, b, c and d are
dependent of the specific geometry of the system as well and can
be found in literature for most systems. Here, a is 0.664, b 0.5, c
0.33 and d 0.5 respectively (Da Costa et al., 1994). Additionally,
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the hydraulic diameter dh is defined as 4 � cross section=
wetted perimeter and, thus, depends on the system used. In this
case, it can be defined as (Lutz, 2015):

dh ¼ 4h
es

1þ 2 1�esð Þh
r

ð14Þ

where es is the porosity of the spacer, h is the half-height of the
channel and r is the fibre radius. Furthermore, the cross-
membrane velocity can be calculated as t ¼ J= acesð Þ, where ac is
the ratio of feed channel area to membrane area. The spacers in
the membrane cassette used were Screen C type (es ¼0.63;
h ¼0.026 cm; r ¼0.014 cm; ac ¼0.0018) (Lutz, 2015).

With increasing protein concentration, the viscosity of the solu-
tion changes, which is why the dependence of the mass transfer
coefficient on viscosity was incorporated. An exponential relation-
ship between viscosity and protein concentration, ci, can often be
assumed: l ¼ l0e

#ci , where # is a constant depending on the mole-
cule and l0 the solvent viscosity. In this study, # was found to be
0.017�0.001 L/g. It was determined by measuring the viscosity of
the IgG solution at different protein concentrations using a vis-
cometer. Subsequently, a least square fit was performed using
MATLAB’s lsqcurvefit function. The relationship between mass
transfer coefficient and viscosity was derived from Eq. (13) with
the module specific constants b and c:

k ¼ k0
l
l0

� ��1
6

¼ k0e�
1
6#ci ð15Þ

The initial mass transfer coefficient, k0, was calculated using Eq.
(13). Assuming that the boundary layer is sufficiently thin, the vis-
cosity was evaluated using the bulk concentration ci;bulk.

At initial conditions, it was assumed that the flux predicted by
the osmotic pressure model is identical to the flux due to the
immediately formed concentration polarization. Another assump-
tion made was that the antibody has by far the most impact due
to its higher molecular mass and concentration (i ¼ mAb). Addi-
tionally, the antibody is completely retained by the membrane.
Based on these assumptions, Eqs. (9) and (12) could be equated
as follows:

k ln
cmAb;wall

cmAb;bulk
� DP � Dp

lRm
¼ 0 ð16Þ

This function was solved by the MATLAB function fsolve for
finding the initial wall concentration.

The change of wall concentration over time was found by impli-
cit differentiation of Eq. (16) as shown for a similar case in detail by
Foley (2013) and incorporated in the ODE system comprised of Eqs.
(5)–(8). An additional ODE described the fraction of diluent in the
system at a specific time. The ODE system was solved using the
ODE solver ode15s from MATLAB.
2.1.3. Filtration optimization
Different objectives can be defined in the optimization of UF/DF

units such as processing time (Foley, 1999; Paulen et al., 2011),
economic factors (Fikar et al., 2010), minimum amount of diluent
(Paulen et al., 2011), product loss, if the product is not fully
rejected by the membrane, or a combination of all of these factors
(Fikar, 2014). For the optimization of only the filtration step, the
minimum amount of diluent was chosen as single objective, since
the results can be easily evaluated experimentally. Therefore, the
optimization problem was formulated as:

max f ¼ mina tð Þ

Z tend

t0

a tð ÞAJ tð Þdt ð17aÞ
s:t: V t0ð Þ ¼ V0; ci t0ð Þ ¼ ci;0; ci tendð Þ ¼ ci;end
0 � a tð Þ � 1

a tð Þ ¼PN
k¼1ak

ð17bÞ

where a tð Þ is described as a piecewise constant for N time intervals.
ak is then the value a assumes during a specific step k. The duration
of each step k, the value of ak during the step and the overall
duration of the ultrafiltration/diafiltration process were used as
variables. To define constraints for an easier comparison, a simple
base case was simulated with only one step and a constant
a(a = 0.75). The final concentrations experienced during the base
case were used as constraints,ci;end. In this base case, the diafiltration
was performed for 20 min, the concentration of the antibody was
increased from 1.0 to 5.6 g/L and the salt concentration was
decreased from 58.4 to 0.4 g/L. In total, 123 mL of diluent were
consumed.

The optimizations were performed with MATLAB’s function
fmincon. The same settings as described above for the local opti-
mization were used. Each optimization was performed with 20 dif-
ferent starting points, which were generated with the function
lhsdesign and the criterion set to correlation.

2.1.4. Chromatography modelling
The equilibrium transport dispersive model can be applied to

model chromatography columns (Guiochon et al., 2006). The
following mass balance is used to describe the mobile phase
(Eq. (18)):

@ci
@t

þ 1� eb
eb

@qi

@t
¼ �v @ci

@x
þ DL;i

@2ci
@x2

ð18Þ

where ci is the concentration of protein i in the bulk phase, eb is the
bed porosity and DL;i is the axial dispersion coefficient. The intersti-
tial velocity of the mobile phase v is defined as v ¼ u=eb with u, the
superficial velocity of the mobile phase.

The change in qi, the concentration in the stationary phase, over
time was approximated with the linear driving force approach for
the mass transfer in the liquid phase (Eq. (19)).

@qi

@t
¼ kov ;i ci � ci�ð Þ ð19Þ

where kov;i is the overall mass transfer coefficient. An appropriate
adsorption isotherm needs to be used to calculate ci�, the protein
concentration inside the particle pores. One possible option is the
mixed-mode isotherm developed based on thermodynamic princi-
ples by Nfor et al. (2010):

qi

ci�
¼ Ai 1�

Xm
j¼1

qj

qmax
j

 !miþni

ð20Þ

Its validity range spans mixed-mode chromatography, ion-
exchange chromatography and hydrophobic interaction. m stands
for the number of proteins, qmax for the maximum binding capacity
and j for the protein species. The stoichiometric coefficient in
hydrophobic interaction chromatography is ni and in ion exchange
chromatography mi respectively. mi can be calculated as zp=zs with
zp, the effective binding charge of the protein, and zs, the charge
on the salt counter ion.

The initial slope of the isotherm Ai is defined as:

Ai ¼ Keq;iK
miþnið Þ zscsð Þ�mi cv�nici ð21Þ

where Keq is the thermodynamic equilibrium constant, cs the salt
concentration, cv the molarity of the solution in the pore volume
and K the ligand density. The activity coefficient can be expressed
as

ci ¼ e2B22ci ð22Þ
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Assuming that protein-protein interactions are only of impor-
tance between one protein species and that these interactions
mostly occur between two molecules (Pirrung et al., 2018).
Additionally, it is assumed that salt protein interactions are negli-
gible, which is valid when salts with a low salting-out effect are
used such as chlorides (Mollerup et al., 2008). For hydrophobic
interaction chromatography, however, sulphates are commonly
used, which makes this assumption invalid. Therefore, the
salting-out constant Ks and the salt concentration were included
in the definition of the activity coefficient in case sulphates are
used:

ci ¼ eKs;icsþ2B22ci ð23Þ
The mechanistic model was solved as described in (Pirrung

et al., 2017) employing the mass transfer correlations as shown
in Pirrung et al. (2018).

2.1.4.1. Artificial neural networks. Artificial neural networks (ANNs)
were generated and trained with the Neural Network ToolboxTM by
MATLAB as described previously (Pirrung et al., 2017). Here, seven
variables were used: the gradient length, the length of the extra
elution volume after the end of the gradient, both product pool
cut points, the injection volume, the starting and final salt concen-
tration as well as the pH. Different ANNs were trained to predict
the protein concentration for all proteins in the product pool, the
volume of the product pool, the solvent volume as well as the salt
concentration of the product pool. The neural networks were
trained for different number of sample points (1000 or 2000), hid-
den layer sizes (10 to 40) as well as different amounts of hidden
layers (1 or 2); networks with the best R2 were chosen further.
Typically an R2 above 0.8 indicates sufficient predictive power
(Forrester et al., 2008).

2.1.5. Computations
All computations were performed on an Intel� Xeon� Processor

E5-1620 v2 with 3.7 GHz. MATLAB’s Parallel Computing ToolboxTM

was used to compute in parallel on four cores whenever possible.

2.2. Materials

2.2.1. Sample preparation
A clarified Chinese hamster ovary (CHO) cell culture super-

natant containing a monoclonal immunoglobulin G (IgG1) was
used as sample with a concentration of 1.3 mg/mL of IgG1 and a
pH pf 7.72. The pI of IgG1 was determined to be 8.6 by capillary
isoelectric focusing. Additionally, a sample of the same antibody
after Protein A purification was used.

2.2.1.1. Buffers and chromatography resins. The buffers used in this
study are shown in Table 2. In the chromatographic steps, the
acetic acid buffer was mainly used for the cation exchange resin
Poros 50 HS (Thermo Fisher Scientific Breda, Breda, The Nether-
lands), the MOPS buffer for the mixed mode resin Capto MMC
(GE Healthcare, Eindhoven, The Netherlands) and the Tris-HCl buf-
fer for the hydrophobic interaction resin Cellufine Phenyl (AMS
Biotechnology, Abingdon, United Kingdom). All buffers were
purchased in buffer grade.
Table 2
Buffer specifications.

Buffer type Supplier pH

Acetic acid Sigma Aldrich, Zwijndrecht, The Netherlands 4.5
MOPS Applichem GmbH Darmstadt, Germany 6.75
Tris-HCl Sigma Aldrich, Zwijndrecht, The Netherlands 7.5
2.3. Experimental techniques

2.3.1. Filtration
Fig. 3 shows a scheme of the experimental set-up used for all

UF/DF experiments. The sample solution was added to the feed
tank, from where it was continuously circulated over an 88 cm2

Pellicon 3 Ultracel 30 kDa membrane cassette placed in a cassette
holder (Merck Millipore, Amsterdam, The Netherlands) by a peri-
staltic Masterflex L/S pump (Metrohm Netherlands B.V., Baren-
drecht, The Netherlands). If desired, diluent solution was added
with a LC-8A HPLC pump (Shimadzu, s’Hertogenbosch, The Nether-
lands). The mass of permeate and retentate was constantly
recorded with the help of PG 3001-S scales (Mettler Toledo, Tiel,
The Netherlands). Signals from all other sensors were sent as an
analogous signal to the data acquisition device DAQ USB 6009
(National Instruments Netherlands BV, Woerden, The Nether-
lands), which converts them to digital signals. The program Sig-
nalExpress (National Instruments Netherlands BV, Woerden, The
Netherlands) was then used to process the data.

2.3.1.1. Initial membrane resistance. The flux of a purewater stream J
was measured at a flowrate of 20 mL/min. Subsequently, the initial
membrane resistance was calculated to be 7.92�0.44 * 1012 1/m
using the following equation and the viscosity of water:

Rm ¼ DP
lJ ð24Þ
2.3.1.2. Rejection coefficient. A relation for the rejection coefficient,
which describes how well proteins are retained by the membrane,
was found based on model molecules as listed in Table 3. Model
proteins were used instead of dextrans, which are linear polymers,
since not only molecular weight but also molecule structure influ-
ences retention behavior (Baker, 2004). For each experiment, the
protein concentration was 0.2 g/L.

2.3.1.3. Second virial coefficient. The second virial osmotic coeffi-
cient was determined and fitted for the Tris-HCl buffer as described
in detail elsewhere using self-interaction chromatography (Pirrung
et al, 2018). In that study, data for IgG1 in the acetate and MOPS
buffer can also be found as shown in Table 4.

A second order polynomial function was fitted to the deter-
mined B22 values using MATLAB’s fit function:

B22 ¼ b1 þ b2pH þ b3cs þ b4pHcs þ b5pH
2 þ b6c2s ð25Þ

The salt concentration is shown as cs: The resulting B22 was in
the units (mol mL)/g2 as required for Eq. (11). To use the deter-
mined B22 in the chromatographic mechanistic model as shown
in Eqs. (22) and (23), the units need to be changed to L/mol with
the squared molecular weight.

The pH during the diafiltration was assumed to be a sum of the
pH of each buffer multiplied with its fraction of the total solution.
This assumption was proven to be applicable through mixing
experiments (data not shown).

2.3.1.4. Validation experiments. Experiments were performed at
least in duplicates. The TMP was kept constant during the experi-
Buffer [mM] Salt type Salt range [mM]

25 Sodium chloride 0–1000
25 Sodium chloride 0–1000
25 Ammonium sulphate 0–750



Fig. 3. Scheme of the experimental setup with the ultrafiltration/diafiltration membrane.

Table 3
Model proteins used to determine the rejection coefficient.

Name Molecular weight (kDa) Stokes radius (nm)

Lysozyme 14.3 1.86
a-Chymotrypsin 25.0 2.09
Albumin from hen egg white 44.3 2.93
Albumin from bovine serum 66.5 3.48
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ments. The starting concentration of IgG1 was 1 g/L. Modelling
results were compared with experimental data with help of the
coefficient of determination (R2), which was calculated from the
correlation coefficients given by MATLAB’s corrcoef function.

2.3.1.5. Cleaning. After each use, the membrane was cleaned
according to the manufacturer’s instructions.

2.3.2. Chromatography
2.3.2.1. Ion exchange and mixed mode chromatography. Model input
parameters for the cation exchange resin, POROS 50 HS, and the
mixed mode resin, Capto MMC, were taken from literature
(Pirrung et al., 2018).

2.3.2.2. Hydrophobic interaction chromatography. Parameters for the
hydrophobic interaction resin, Cellufine Phenyl, were determined
by a 3D liquid chromatography method as described in Hanke
et al. (2016), Tsintavi (2015). The first dimension, which is mainly
to reduce the complexity of the mixture and to allow a focus on
critical impurities, is identical to the one shown in Pirrung et al.
(2018). Here, the mixture was prefractioned twice, once on a cation
exchange resin and once on an anion exchange resin. However,
more fractions were analysed further, since the adsorption behav-
ior on cation or anion exchange resins is quite different from the
Table 4
Parameters to calculate the B22 for IgG1 in the acetate and MOPS buffer taken from Pirrun

b1 b2 b3

Acetate buffer 6.791 �2.794 1.2
MOPS buffer 2.119 �0.807 �0
adsorption behavior due to hydrophobic interaction. To avoid cor-
relation errors during the regression, several parameters, which
can be assumed as constant in the investigated range, were com-
bined with the equilibrium constant to form one parameter
(Kcomb;i ¼ Keq;i K=cvð Þn) (Hanke et al., 2016). The isotherm parame-
ters Kcomb and Ks for proteins contained in these fractions were
determined on RoboColumns with a volume of 200 lL prefilled
with the resin of interest, Cellufine Phenyl, by Repligen (Wein-
garten, Germany). For that, three types of gradient elution experi-
ments (12, 24 and 36 CV gradient length) were performed for each
fraction. The salt concentration in the beginning of the gradient,
cs;in, was 1 M ammonium sulphate and the salt concentration in
the end, cs;f , 0 M respectively. The following equation as derived
in Hanke et al. (2016) was used to fit the resulting data:

VR;g;i ¼ VG

�Ks;i cs;f � cs;in
� �

� ln 1þ Vcolumn 1� ebð ÞepKD;i
�Ks;i cs;f � cs;in

� �
VG

Kcomb;ieKs;ics;in

� �
ð26Þ

As determined in Hanke et al. (2016), the bed porosity of the
RoboColumns filled with Cellufine Phenyl was 0.3 and the particle
porosity 0.93. The other isotherm parameters qmax and n were
determined in batch uptake experiments as described in Pirrung
et al. (2018). Different to the method described there, the salt con-
centration to perform these experiments was set to 0.75 M of
ammonium sulphate, since binding capacities are typically higher
in HIC at higher salt concentrations.

2.3.2.3. Validation experiments. Validation experiments were per-
formed on OPUS� ValiChrom 11.3/100 columns prepacked with
the resin Cellufine Phenyl by Repligen (Weingarten, Germany) on
g et al. (2018). They need to be multiplied with 10�4.

b4 b5 b6

49 �0.575 0.237 1.474
.199 0.222 0.046 �1.013



Fig. 4. Rejection coefficient.

Fig. 5. B22 values of IgG1 as a function of salt concentration and pH for the Tris-HCl
buffer. a: Second order polynomial function that was fitted on experimental data; b:
Comparison of experimentally obtained B22 values with values given by the
polynomial function.

S.M. Pirrung et al. / Chemical Engineering Science: X 3 (2019) 100025 7
an Äkta Avant 25 (GE Healthcare, Uppsala, Sweden). The bed
porosity was determined with the help of the Blake-Kozeny equa-
tion that correlates pressure drop and applied flowrate. The flow-
rate was 182 cm/h. Linear salt gradients of 12 CV were used
during the elution. 20% Ethanol was used as storage solution.
Absorption was recorded at 210, 230 and 280 nm.

2.3.3. Quantification
If not defined otherwise, protein concentrations were deter-

mined in an ultra-high performance liquid chromatography
(UHPLC+) (Thermo Fisher Scientific, Waltham, USA) system as
described by Hanke et al. (2016).

2.3.4. Protein identification
A mass spectrometric (MS) analysis was performed for the frac-

tions of the cation exchange prefractionation. The samples were
desalted and concentrated prior to a proteolytic digestion, which
was based on literature (Wang et al., 2016). They were then anal-
ysed with liquid chromatography followed by mass spectrometry
(LC-MS). Protein names of all proteins and their intensity in each
fraction were determined with the help of UniProt. After that, they
were matched with the tracked proteins. Additionally, the isoelec-
tric point for the antibody was measured externally with capillary
isoelectric focusing (CIEF). Isoelectric points for the impurities
were estimated using ExPASy (the Expert Protein Analysis System,
a bioinformatics resource portal by the SIB Swiss Institute of
Bioinformatics).

3. Results and discussion

The first section focusses on UF/DF units. Here, parameter
determination, modelling and subsequent validation of the model
is shown. Additionally, a short section on the optimization of UF/
DF units is included. The second section is about chromatography
units. It starts by describing the chromatographic model input
parameters and then shows the mechanistic model together with
its validation. This section finishes with a short discussion on the
training of ANNs to predict the chromatography units. The last sec-
tion shows the results of the process optimisation including the
best found process option.

3.1. Filtration

3.1.1. Model parameters
3.1.1.1. Rejection coefficient. To understand how well differently
sized proteins are retained by the membrane, sieving experiments
were performed. The rejection coefficient was approximated with a
logistic function and the molecular weight, MW, in kDa as:

ri ¼ 1
1þ ða1 �MWiÞa2

ð27Þ

The experimental results together with the fitted curve can be
found in Fig. 4. As expected, smaller proteins up to 15 kDa can
easily pass the 30 kDa membrane. Above 50 kDa, proteins are
almost fully retained. The fitted parameter a1 was found to be
0.037�0.001 and a2�5.9�1.1. For an improved description of the
retention of impurities, the dependence of the rejection coefficient
on the flux should be taken into account additionally.

3.1.1.2. Second virial coefficient. All B22 results for the Tris-HCl buf-
fer are summarized in Fig. 5. Fig. 5a shows the second order poly-
nomial function. It was fitted to the experimentally determined B22

values resulting in the following constants � 10�4: b1=�7.016;
b2=2.145; b3=2.431; b4=�0.226; b5=�0.187 and b6=�1.407. Ammo-
nium sulfate concentrations greater than 0.75M were not investi-
gated due to stability issues such as aggregation. Two general
trends can be observed from the results: First, the B22 values
decrease with increasing pH. Second, salt concentration only has
a strong influence on protein-protein interactions at high pH val-
ues. Both trends can well be explained by the fact that the IgG is
getting closer to its pI (around 8.6) and therefore is less charged.
With a decrease in protein charge, repulsive interactions between
IgGs decrease as shown by the decrease in B22.



8 S.M. Pirrung et al. / Chemical Engineering Science: X 3 (2019) 100025
The correlation between B22 values predicted by the polynomial
and the experimentally determined ones is plotted in Fig. 5b. A
good correlation was also found for two test data points, that were
not included in the data set used for fitting.

3.1.2. Modelling and validation
Fig. 6 compares model predictions for UF/DF processes with

experimental data. An excellent agreement (R2 of at least 0.99)
was found in all cases supporting the validity of the model
approach employed. In the ultrafiltration experiment in Fig. 6a,
only a small deviation between experimental values and model
predictions was found indicating that the third virial coefficient
as well as fouling of the membrane are indeed negligible in the
investigated concentration range of up to around 15 g/L. This was
not clear beforehand considering the high wall concentrations,
which were predicted to be around 5 g/L at the start of the exper-
iment and around 85 g/L at the end.

Fig. 6b and c show different dilution strategies; even the results
for the most complex dilution strategy was well predicted as is
shown in Fig. 6b. Here a random trajectory with ten different steps
was chosen. In conclusion, the UF/DF model can well be used in the
investigated concentration range.

These validation experiments were performed with a purified
solution of IgG1. To see, if other proteins have an additional impact
on the flux, experiments with the clarified cell harvest were per-
formed at different salt concentrations, buffer compositions and
Fig. 6. Model predictions for comparison with ultrafiltration/diafiltration experiments (a
for an ultrafiltration experiment. The TMP was kept constant at 93 kPa. b: For a diafiltrat
and a constant TMP of 93 kPa; c: For a diafiltration experiment with constant alpha of 0
pH values. Fluxes predicted fell in the range of experimental error
(1.3 10�6 m/s) of experimentally determined fluxes, which is why
the prediction with only osmotic data of IgG1 was declared
sufficient.

Experiments, where buffer was exchanged from initial clarified
cell harvest, resulted in unexpected aggregation. Therefore, the
final protein concentration for the initial diafiltration step was con-
strained to stay below 5 g/L. For filtration units that were placed
between chromatography units it was constrained to stay below
10 g/L. If higher protein concentrations are being used, as would
be needed for instance for a final formulation step, the influence
of fouling on the ultra/diafiltration needs to be investigated in
more detail.
3.1.3. Optimization
The purpose of the optimization as described in Eq. (17) was the

reduction of diluent volume. Typically, an ultrafiltration/diafiltra-
tion process is performed as follows: First step, the volume is
reduced until the product concentration reaches the desired value
(a = 0); second step, the diafiltration is performed until the desired
salt concentration or pH is achieved (a = 1). It was investigated if a
higher flexibility in a, meaning more steps with variable a and
variable duration, would lead to a further reduction in diluent vol-
ume. Consequently, optimizations were performed with two, five,
ten and forty steps.
), (b) and (c) and the optimization result (d). a: Compared with experimental values
ion experiment with alpha as a piece wise constant following the shown trajectory
.75. The TMP was constant at 123 kPa; d: Regardless of the number of steps.



Table 5
Isotherm parameters regressed from retention volume curves determined in RoboColumns with their standard deviation as taken from Pirrung et al. (2018) for POROS 50 HS and
Capto MMC or determined in this study for Cellufine Phenyl.

Resin Protein ID rh [nm] Keq or Kcomb [–] m [–] Ks [L/mol]

AEX CEX

POROS 50 HS 1 2.4 12.6�0.54 2.9�0.5 –
POROS 50 HS 2 1 4.2 34.6�1.7 9.8�1.3 –
POROS 50 HS 3 2.7 2.2�0.2 7.4�0.7 –
POROS 50 HS 4 2 2.2 177.1�16.1 5.4�1.1 –
POROS 50 HS 6 4 2.2 0.9�0.8 7.0�0.3 –
POROS 50 HS 7 3 4.2 2.0�0.2 2.5�0.2 –
POROS 50 HS 8 2.4 0.2�0.1 16.9�6.4 –
Capto MMC 2 1 4.2 51.5�2.1 3.6�0.4 –
Capto MMC 4 2 2.8 16.6�5.8 4.7�1.6 –
Cellufine Phenyl 2 1 3.5 13.9�6.4 – 4.7�2.0
Cellufine Phenyl 4 2 2.2 6.4�3.2 – 3.3�1.0
Cellufine Phenyl 6 4 2.2 11.3�3.9 – 6.4�6.2
Cellufine Phenyl 7 3 3.5 17.0 ± 2.4 – 3.8 ± 0.5

MW: molecular weight; Keq or Kcomb: equilibrium constant; m: stoichiometric coefficient; Ks: Salting out constant.
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In all cases, the sameoptimal resultwas found,which is shown in
Fig. 6d. The minimal diluent volume needed was 43 mL which is a
great reduction of 65% compared to the base case. This result shows
that the traditional way of operating is indeed optimal in regards to
diluent usage confirming the finding by Paulen et al. (2011). How-
ever, the samegroup showed ina later study thatmore complex con-
trol strategies for a can be beneficial in certain cases (Paulen et al.,
2012). Since no benefits were found by usingmore complex profiles
fora in this case, the typical two stepprofilewas chosen as described
above in all further studies. Thus, only the total length of the ultra-
filtration/diafiltration process and the duration of the ultrafiltration
step were used as variables further on, which greatly reduces the
complexity of the optimization problem. The duration of the diafil-
tration step was calculated as difference between total length of
the filtration step and the ultrafiltration step.

In general, this is a sensible approach. First the volume is
reduced until the desired product concentration is reached leading
to a smaller amount of diluent that is needed to exchange the buf-
fer. However, it should be kept in mind that this way of processing
means that the buffer is exchanged at the highest protein concen-
tration. This might cause stability problems, which should be
investigated first.

3.1.3.1. Speed. The time needed to evaluate the filtration model is
very fast compared to the chromatography model. It only takes
in between 0.01 and 0.05 s, when the relative tolerance is set to
10�4 and the absolute tolerance to 10�6. Thus, the speed increase
due to artificial neural networks (around 0.005 s per evaluation)
would not compensate for the initial time needed to train them
and the general loss of accuracy. The complete optimization for a
two-step process with five variables took with 20 different starting
points around 200 s for a parallel computation on four cores. In 14
of these optimizations, the constraints could be fulfilled and the
same minimal diluent was found.

3.2. Chromatography

3.2.1. Model parameters
The parameters regressed from all linear gradient experiments

with the HIC resin Cellufine Phenyl are summarized in Table 5
together with the results taken from previous work for the other
two resins (Pirrung et al., 2018). There it was shown that proteins
can be given an ID and tracked through different experiments by
knowing, which proteins are in each fraction and what their hydro-
dynamic radius is. In the case of Cellufine Phenyl, two prefraction-
ations were performed with an anion exchange and a cation
exchange resin. Many fractions were taken during the prefraction-
ations, so that all impurities with a high abundancy could be char-
acterised by their hydrophobicity.

Determining hydrophobic interaction parameters for fractions
of both prefractionations allowed the matching of protein ID’s from
the different prefractionations to each other. Since the hydrody-
namic radius of proteins, which were known to be identical, varied
in the different experiments on Cellufine Phenyl, the peak volume
as well as the elution behaviour were used in addition for this pro-
tein matching. Nonetheless, the varying hydrodynamic radii made
the ID matching less conclusive. Therefore, the worst case scenario,
which means the most challenging separation, was considered: if a
protein showed near identical behaviour on HIC even though the
hydrodynamic radius was different, it was assumed to be the same
protein.

Even so, it was difficult to assess if any protein of the AEX pre-
fractionation is equivalent to the protein with ID 2 from the CEX
prefractionation (ID2 CEX). It was assigned to be the same protein
as ID4 AEX but it might also be equivalent to ID3 AEX. To eliminate
any ambiguity in future studies, it would be recommended to per-
form all parameter determination studies with fractions of both
prefractionations. Another option would be to analyse all fractions
of the prefractionations by MS.

How the model parameters for the hydrophobic interaction
resin were determined is shown in Fig. 7 taking the product as
example. The product IgG1 was assigned ID 2 during the anion
exchange prefractionation (ID2 AEX) and ID 1 during the cation
exchange prefractionation (ID1 CEX). In Fig. 7(a), experimental
retention volumes for IgG1 (ID2 AEX & ID1 CEX) at different gradi-
ent lengths are shown with markers; the curves resulted from the
parameter fitting using Eq. (26). Fraction 2 and 3 were taken during
the AEX prefractionation, while fraction 4 and 5 were taken during
the CEX prefractionation. In all other fractions, the concentrations
of IgG1 were too small to be analysed. The retention volumes
found for IgG1 in the different fractions were quite similar to each
other, showing that the prefractionation method does not change
the hydrophobicity of the protein.

The maximal capacity of the resin for IgG1 was determined with
batch uptake experiments as shown in Fig. 7b. It was found to be
31.8�4.7 g/L. This capacity is in the range reported for other types
of proteins on the same resin (JNC-Corporation, 2017). The
hydrophobic stoichiometric coefficient was regressed to be
2.8�0.9. The particle size average (85 lm) was taken from the
technical data sheet supplied by the manufacturer (JNC-
Corporation, 2017). The pore size was estimated to be 45 nm based
on a published pore size accessibility curve (Hanke et al., 2016).



Fig. 7. Results of the linear gradient RoboColumn experiments (a) and the batch uptake experiments (b) for IgG1 on the hydrophobic interaction resin.
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3.2.1.1. pH dependence of the stoichiometric ion exchange coeffi-
cient. Hydrophobic interactions are almost not influenced by pH
changes. However, electrostatic interactions are highly depending
on pH. The variance of the stoichiometric ion exchange coefficient,
which is in this case identical to the effective binding charge, with
pH was assumed to follow this relationship (Mollerup, 2008):

mi ¼ g1;i þ g2;i ln pH ð28Þ
However, this trend is only valid at pH values that are not too

close to the pKa of the ligand (Nfor et al., 2010). Since the pKa of
Capto MMC is 3.3 (Pinto et al., 2015) and the pKa of the functional
group of POROS 50 HS is 1.2, this is given in the investigated pH
range. Additionally, the isoelectric points (pI) for the proteins were
used assuming that net charge and binding charge are identical at
that point. The pI’s for the impurities were estimated with ExPASy,
while the pI for IgG1 was determined experimentally. This partly
explains the much smaller standard deviation found for the fitting
parameters of the monoclonal antibody as shown in Table 6.

Generally protein charge does not follow a strict relationship as
given in Eq. (28), as can be seen for instance in published protein
net charge data (Lehermayr et al., 2011). Therefore, Eq. (28) and
the fitted parameters shown in Table 6 should be seen as esti-
mates. The influence of the stoichiometric coefficient on the equi-
librium constant was not taken into account.

3.2.2. Modelling and validation
Validation of the mechanistic chromatography model with

experimental data was shown previously for POROS 50 HS and
Capto MMC (Pirrung et al., 2018). Therefore, validation experi-
ments were only performed with the hydrophobic interaction
resin, Cellufine Phenyl. Unfortunately, IgG1 (ID1 CEX) did not show
Table 6
pH dependence of the stoichiometric coefficient for ion exchange.

Protein ID AEX pI g1 g2

1 7.1b 12.4c �6.3c

2 8.6a 32.6�0.2 �15.1�0.11
3 5.6b 58.3c �33.8c

4 8.7b 17.5�8.6 �7.6�4.6
6 7.6b 26.9c �13.2c

7 4.7b 89.0c �57.5c

8 7.5b 66.4c �32.9c

a Experimentally determined with capillary isoelectric focusing.
b Estimated with ExPASy.
c Not enough data points available to calculate the standard deviation.
the expected behaviour in experiments on the lab scale column
packed with this resin. It did not elute with ammonium sulphate
as an eluent even though the elution was predicted by a simula-
tion, which is depicted in Fig. 8a. A potential reason for this might
be varying ligand density caused by a different resin lot used in the
lab scale columns than in the RoboColumns. This difference in
ligand density might be up to 20% (Susanto et al., 2008), which
could explain this observation in part. As investigated by
Deitcher et al. (2010), a change in the ligand density of 7.5% could
already lead up to a change in the retention factor of 50–100%.
Therefore, simulations were performed at varying ligand densities,
which is shown for IgG1 in Fig. 8b. As can be seen, even a 20% dif-
ference in ligand density would lead to the elution of IgG1 with the
salt buffer at the end of the gradient.

In our experimental approach, the ligand density was lumped
together with another parameter. Since it appears to be an impor-
tant parameter, however, thiswouldnot be recommended for future
work. An experimental determination of the ligand density for each
used resin batch is highly recommendable (Huuk et al., 2016).

Generally, the purification capability of this resin is quite poor
for IgG1, since IgG1 as well as critical impurities elute in the very
end or even after the ammonium sulphate gradient. To avoid this
problem, a less hydrophobic resin such as for instance one with a
butyl group as functional group should be investigated instead.
Another option to improve this step would be the use of a different
salt with a smaller salting-out capacity such as sodium chloride.
Nevertheless, Cellufine Phenyl was used during the process optimi-
sation later; it can still show how the approach works.

3.2.3. Artificial neural networks
Since more variables were included compared with a previous

study (Pirrung et al., 2017), the number of hidden layers, the
amount of neurons in them and the needed starting points were
reevaluated. It was found that two hidden layers increased the pre-
dictive quality of the ANNs considerably. The amount of neurons
were varied from 10 to 20 in each layer during training; the net-
works with the best R2 were used further. For the cation exchange
and hydrophobic interaction resins, 1000 sample points were suf-
ficient, while for the mixed mode resin the sample points had to be
increased to 2000 to obtain ANNs with an R2 above 0.8 for yield.

3.3. Optimization of process sequences

Finally, an overall optimization of all process sequences was
performed. The scheme to generate process sequences, which



Fig. 8. Modelling of a chromatographic separation in a column filled with the
hydrophobic interaction resin Cellufine Phenyl. a: The behaviour of all proteins of
interest was simulated. The ID’s are from the cation exchange prefractionation; b:
The behaviour of IgG1 was simulated at varying ligand densities.
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was previously described in Eq. (2), employs y variables that tell
which unit is in a sequence and at which position. Having the
duration of the UF/DF process as one of the x variables, greatly
simplifies this scheme. With that, the filtration units can be
included as fixed units before each chromatography unit without
having y variables attached to it, because the optimizer can sim-
ply change the duration of the UF/DF to zero if a filtration unit
was not needed in that position. Thus, only the chromatographic
units needed to be taken into account for generating all process
alternatives. The amount of process sequence variants was there-
fore reduced from 30 to 9 while still taking all possibilities into
account:

max f ðym;sÞ ð29aÞ
Table 7
Best results for each possible process sequence fulfilling the constraint of 99.9% purity.

Sequence CEX HIC MMC CEX - HIC CEX -

Filtration steps 1 – 1 2 2
Solvent use [mL] 63.6 – 106.9 297.2 133.2
Yield [–] 96.8 – 95.7 94.7 95.5

The best process option is highlighted in bold. UF/DF units were added by the optimize
exchange chromatography; HIC: hydrophobic interaction chromatography; MMC: mixed
s:t:
P

mym;s � 1P
sym;s � 1

1�Pmym;2 þ
P

mym;1 � 1
ym;s� 0;1f g;m� 1;2;3f g; s� 1;2f g

ð29bÞ

The optimization of all resulting process sequences took about
9.5 h with the local optimization taking around 80% of the total
time.

Table 7 summarizes the best results for each process sequence;
the nonlinear constraint of at least 99.9% purity was fulfilled for all
shown options. The solvent use includes the solvent used in filtra-
tion and chromatography units alike. As can be seen, all sequences
including the hydrophobic interaction resin show a much higher
solvent use, which is due to the very late elution of the product.
Thus, the resulting peaks are very broad and the elution is more
time and solvent consuming. Moreover, this complicates the sepa-
ration of product and impurities resulting in a trade-off between
solvent use and yield. It was the only resin that would not be
expected to purify the solution when applied as single chromatog-
raphy column in the process sequence.

The best process option found, which consists of a UF/DF step
and a subsequent cation exchange column, is shown in Fig. 9. Dur-
ing the first step, the bigger molecules such as the product (ID2
AEX) and the biggest impurity (ID7 AEX) are being concentrated.

Smaller molecules, which are able to pass the membrane such
as the salt and the smallest impurity (ID4 AEX), are being diluted.
Additionally, this step adjusts the pH for the following chromato-
graphic step. The cation exchange chromatography is able to sepa-
rate the product from the impurities reaching the wanted purity
while still having a generally high yield.

To test the robustness of this process, a simulation was per-
formed with four times spiked impurity levels. Under these condi-
tions, a purity of only 99.6% could be reached, which is below the
defined constraint of 99.9%. This could be counteracted by moving
the product pool cut points accordingly leading to a great loss of
yield. Another option would be to add more processing units such
as suggested in the process sequence CEX-MMC. This would lead to
a more robust process that could easily remove higher concentra-
tions of impurities.

Even though some of the influences of pH were already
included in this study, it would be very interesting to see them
implemented in more detail. Chromatography units could for
instance use pH or dual gradients (a combination of salt and pH)
(Lee et al., 2015) as eluents, which could definitely change the
result of the optimization.
4. Conclusion

This paper presented an improved approach for the
development and optimization of process sequences to purify a
monoclonal antibody from clarified cell harvest. The main
improvement is the addition of ultra/diafiltration units. To add
new unit operations into the optimization approach, the following
steps needed to be carried out: First, mechanistic models describ-
ing the considered unit operations were developed. Next, the
MMC HIC - CEX HIC - MMC MMC - CEX MMC-HIC

2 2 2 2
259.3 257.7 196.0 260.3
84.7 89.8 95.8 75.1

r before each chromatography unit in every shown process sequence; CEX: cation
-mode chromatography.



Fig. 9. Best process option. a and b: First step is a UF/DF unit to adjust salt level and pH shown in full (a) and as zoom-in (b). 50 mL of clarified cell harvest was used. The TMP
was set to 123 kPa. c and d: Second and final step is a cation exchange column at pH 5.6 with the full chromatogram (c) and the zoom-in (d). The white area is the product
pool. The ID’s are the ones according to the anion exchange prefractionation.
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needed model input parameters were determined. After that,
optimizations of only the respective unit were performed to
decide, which variables need to be included in further optimiza-
tions. For the ultra/diafiltration unit, it was found that only two
of the investigated variables are crucial: The duration of the total
filtration step and the duration of the ultrafiltration step.

Then, the simulation time was evaluated to see, if it is necessary
to train fast artificial neural networks, which can be used instead of
the more detailed mechanistic models during optimization. Since
the simulation time of the UF/DF only takes in between 0.01 and
0.05 s, this was deemed unnecessary. For unit operation models
that take a longer time to simulate such as the chromatography
units, however, this step needed to be performed. Finally, the unit
operations were included into the process sequences for an overall
optimization.

By adding new unit operations and objectives, this paper
showed the flexibility of the optimization approach. The approach
could easily be extended to include more unit operations. Also the
objectives and constraints can be changed as long as they can be
simulated by the used mechanistic models. Additionally, the num-
ber of variables used as inputs for ANNs was doubled, which
showed that more complex problems can be tackled with only
few adjustments. By looking at other recent publications, a further
surge of new applications including ANNs or other surrogate mod-
els for chromatography is expected due to their ease of use and
great applicability.

Furthermore, it should be kept in mind that only high molecular
weight contaminants were considered as impurities in this study.
The removal of other impurities such as viruses, DNA or endotoxins
was not yet investigated with this method. However, this could be
a very interesting addition in the future making the results more
realistic.

In conclusion, the presented approach can greatly influence and
improve the way purification processes are being developed. It is
especially useful in early process development stages when little
is known about the sample material and availability is limited.
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